sourcemod/sourcepawn/vm/jit/x86/opcode_helpers.cpp

614 lines
19 KiB
C++
Raw Normal View History

#include <limits.h>
#include <string.h>
#include "jit_x86.h"
#include "opcode_helpers.h"
#include "x86_macros.h"
int OpAdvTable[OP_NUM_OPCODES];
jitoffs_t Write_Execute_Function(JitWriter *jit, bool never_inline)
{
/**
* The variables we're passed in:
* sp_context_t *ctx, uint32_t code_idx, cell_t *result
*/
/**
* !NOTE!
* Currently, we do not accept ctx->frm as the new frame pointer.
* Instead, we copy the frame from the stack pointer.
* This is because we do not support resuming or sleeping!
*/
//push ebp
//mov ebp, esp
IA32_Push_Reg(jit, REG_EBP);
IA32_Mov_Reg_Rm(jit, REG_EBP, REG_ESP, MOD_REG);
//push esi
//push edi
//push ebx
IA32_Push_Reg(jit, REG_ESI);
IA32_Push_Reg(jit, REG_EDI);
IA32_Push_Reg(jit, REG_EBX);
//sub esp, 4*6 - allocate info array
//mov esi, esp - save info pointer
IA32_Sub_Rm_Imm8(jit, REG_ESP, 4*6, MOD_REG);
IA32_Mov_Reg_Rm(jit, AMX_REG_INFO, REG_ESP, MOD_REG);
/* Initial memory setup */
//mov eax, [ebp+16] - get result pointer
//mov [esi+8], eax - store into info pointer
//mov eax, [ebp+8] - get context
//mov [esi+12], eax - store context into info pointer
//mov ecx, [eax+<offs>] - get heap pointer
//mov [esi+4], ecx - store heap into info pointer
//mov edi, [eax+<offs>] - get data pointer
IA32_Mov_Reg_Rm_Disp8(jit, REG_EAX, REG_EBP, 16);
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_INFO, REG_EAX, AMX_INFO_RETVAL);
IA32_Mov_Reg_Rm_Disp8(jit, REG_EAX, REG_EBP, 8);
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_INFO, REG_EAX, AMX_INFO_CONTEXT);
IA32_Mov_Reg_Rm_Disp8(jit, REG_ECX, REG_EAX, offsetof(sp_context_t, hp));
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_INFO, REG_ECX, AMX_INFO_HEAP);
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_DAT, REG_EAX, offsetof(sp_context_t, data));
/* Frame setup */
//mov ebp, [eax+<offs>] - get stack pointer
//add ebp, edi - relocate to data section
//mov ebx, ebp - copy sp to frm
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_STK, REG_EAX, offsetof(sp_context_t, sp));
IA32_Add_Rm_Reg(jit, REG_EBP, AMX_REG_STK, AMX_REG_DAT);
IA32_Mov_Reg_Rm(jit, AMX_REG_FRM, AMX_REG_STK, MOD_REG);
/* Info memory setup */
//mov ecx, edi - copy base of data to temp var
//add ecx, [eax+<offs>] - add memsize to get stack top
//mov [esi+16], ecx - store stack top into info pointer
//mov ecx, [eax+<offs>] - get heap low
//mov [esi+20], ecx - store heap low into info pointer
IA32_Mov_Reg_Rm(jit, REG_ECX, AMX_REG_DAT, MOD_REG);
IA32_Add_Reg_Rm_Disp8(jit, REG_ECX, REG_EAX, offsetof(sp_context_t, memory));
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_INFO, REG_ECX, AMX_INFO_STACKTOP);
IA32_Mov_Reg_Rm_Disp8(jit, REG_ECX, REG_EAX, offsetof(sp_context_t, heapbase));
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_INFO, REG_ECX, AMX_INFO_HEAPLOW);
/* Remaining needed vars */
//mov ecx, [ebp+12] - get code index
//add ecx, [eax+<offs>] - add code base to index
//mov edx, [eax+<offs>] - get alt
//mov eax, [eax+<offs>] - get pri
IA32_Mov_Reg_Rm_Disp8(jit, REG_ECX, REG_EBP, 12);
IA32_Add_Reg_Rm_Disp8(jit, REG_ECX, REG_EAX, offsetof(sp_context_t, base));
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_ALT, REG_EAX, offsetof(sp_context_t, alt));
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_PRI, REG_EAX, offsetof(sp_context_t, pri));
/* by now, everything is set up, so we can call into the plugin */
//call ecx
IA32_Call_Rm(jit, REG_ECX);
/* if the code flow gets to here, there was a normal return */
//mov ebp, [esi+8] - get retval pointer
//mov [ebp], eax - store retval from PRI
//mov eax, SP_ERR_NONE - set no error
IA32_Mov_Reg_Rm_Disp8(jit, REG_EBP, AMX_REG_INFO, AMX_INFO_RETVAL);
IA32_Mov_Rm_Reg(jit, REG_EBP, AMX_REG_PRI, MOD_MEM_REG);
IA32_Mov_Reg_Imm32(jit, REG_EAX, SP_ERR_NONE);
/* save where error checking/halting functions should go to */
jitoffs_t offs_return;
CompData *data = (CompData *)jit->data;
if (!(data->inline_level & JIT_INLINE_ERRORCHECKS))
{
/* We have to write code assume we're breaking out of a call */
//jmp [past the next instruction]
//add esp, 4
jitoffs_t offs = IA32_Jump_Imm8(jit, 0);
offs_return = jit->jit_curpos();
IA32_Sub_Rm_Imm8(jit, REG_ESP, 4, MOD_REG);
IA32_Send_Jump8_Here(jit, offs);
} else {
offs_return = jit->jit_curpos();
}
/* _FOR NOW_ ...
* We are _not_ going to restore anything that was on the stack.
* This is a tiny, useless optimization based on the fact that
* BaseContext::Execute() automatically restores our values anyway.
*/
//add esp, 4*6
//pop ebx
//pop edi
//pop esi
//pop ebp
//ret
IA32_Add_Rm_Imm8(jit, REG_ESP, 4*6, MOD_REG);
IA32_Pop_Reg(jit, REG_EBX);
IA32_Pop_Reg(jit, REG_EDI);
IA32_Pop_Reg(jit, REG_ESI);
IA32_Pop_Reg(jit, REG_EBP);
IA32_Return(jit);
return offs_return;
}
void Write_Error(JitWriter *jit, int error)
{
CompData *data = (CompData *)jit->data;
/* These are so small that we always inline them! */
//mov eax, <error>
//jmp [...jit_return]
IA32_Mov_Reg_Imm32(jit, REG_EAX, error);
jitoffs_t jmp = IA32_Jump_Imm32(jit, 0);
IA32_Write_Jump32(jit, jmp, data->jit_return);
}
void Write_Check_DivZero(JitWriter *jit, jit_uint8_t reg)
{
CompData *data = (CompData *)jit->data;
//test reg, reg
//jnz :continue
//divzero: (write error)
IA32_Test_Rm_Reg(jit, reg, reg, MOD_REG);
jitoffs_t jmp = IA32_Jump_Cond_Imm8(jit, CC_NZ, 0);
if (!(data->inline_level & JIT_INLINE_ERRORCHECKS))
{
//sub esp, 4 - correct stack for returning to non-inlined JIT
IA32_Sub_Rm_Imm8(jit, REG_ESP, 4, MOD_REG);
}
Write_Error(jit, SP_ERR_DIVIDE_BY_ZERO);
//continue:
IA32_Send_Jump8_Here(jit, jmp);
}
void Write_Check_VerifyAddr(JitWriter *jit, jit_uint8_t reg, bool firstcall)
{
CompData *data = (CompData *)jit->data;
/* :TODO: Should this be checking for below heaplow?
* The old JIT did not.
*/
if (!data->checks)
{
return;
}
bool call = false;
if (!(data->inline_level & JIT_INLINE_ERRORCHECKS))
{
/* If we're not in the initial generation phase,
* Write a call to the actual routine instead.
*/
if (!firstcall)
{
jitoffs_t call = IA32_Call_Imm32(jit, 0);
if (reg == REG_EAX)
{
IA32_Write_Jump32(jit, call, data->jit_verify_addr_eax);
} else if (reg == REG_EDX) {
IA32_Write_Jump32(jit, call, data->jit_verify_addr_edx);
}
return;
}
call = true;
} else if (firstcall) {
/* Inline + initial gen == no code */
return;
}
//cmp reg, [stp]
//jae memaccess
//cmp reg, [hea]
//jb continue
//lea ecx, [reg+edi]
//cmp ecx, ebp
//jae continue
//memaccess: (write error)
//continue:
IA32_Cmp_Reg_Rm_Disp8(jit, reg, AMX_REG_INFO, AMX_INFO_STACKTOP);
jitoffs_t jmp1 = IA32_Jump_Cond_Imm8(jit, CC_AE, 0);
IA32_Cmp_Reg_Rm_Disp8(jit, reg, AMX_REG_INFO, AMX_INFO_HEAP);
jitoffs_t jmp2 = IA32_Jump_Cond_Imm8(jit, CC_B, 0);
IA32_Lea_Reg_DispRegMult(jit, REG_ECX, reg, REG_EDI, NOSCALE);
IA32_Cmp_Rm_Reg(jit, REG_ECX, AMX_REG_STK, MOD_REG);
jitoffs_t jmp3 = IA32_Jump_Cond_Imm8(jit, CC_AE, 0);
IA32_Send_Jump8_Here(jit, jmp1);
Write_Error(jit, SP_ERR_MEMACCESS);
IA32_Send_Jump8_Here(jit, jmp2);
IA32_Send_Jump8_Here(jit, jmp3);
if (call)
{
IA32_Return(jit);
}
}
void Write_BoundsCheck(JitWriter *jit)
{
CompData *data = (CompData *)jit->data;
bool always_inline = ((data->inline_level & JIT_INLINE_ERRORCHECKS) == JIT_INLINE_ERRORCHECKS);
/* :TODO: break out on high -O level? */
if (!always_inline)
{
if (data->jit_bounds)
{
/* just generate the call */
//mov ecx, <val>
//call <offs>
IA32_Mov_Reg_Imm32(jit, AMX_REG_TMP, jit->read_cell());
jitoffs_t call = IA32_Call_Imm32(jit, 0);
IA32_Write_Jump32(jit, call, data->jit_bounds);
} else {
//cmp eax, 0
//jl :err_bounds
//cmp eax, ecx
//jg :err_bounds
//ret
IA32_Cmp_Rm_Imm32(jit, MOD_REG, AMX_REG_PRI, 0);
jitoffs_t jmp1 = IA32_Jump_Cond_Imm8(jit, CC_L, 0);
//:TODO: make sure this is right order
IA32_Cmp_Rm_Reg(jit, AMX_REG_PRI, AMX_REG_TMP, MOD_REG);
jitoffs_t jmp2 = IA32_Jump_Cond_Imm8(jit, CC_G, 0);
IA32_Return(jit);
IA32_Send_Jump8_Here(jit, jmp1);
IA32_Send_Jump8_Here(jit, jmp2);
Write_Error(jit, SP_ERR_ARRAY_BOUNDS);
}
} else {
//cmp eax, 0
//jl :err_bounds
IA32_Cmp_Rm_Imm32(jit, MOD_REG, AMX_REG_PRI, 0);
jitoffs_t jmp1 = IA32_Jump_Cond_Imm8(jit, CC_L, 0);
//cmp eax, <val>
//jg :err_bounds
IA32_Cmp_Rm_Imm32(jit, MOD_REG, AMX_REG_PRI, jit->read_cell());
jitoffs_t jmp2 = IA32_Jump_Cond_Imm8(jit, CC_G, 0);
//jmp :continue
jitoffs_t cont = IA32_Jump_Imm8(jit, 0);
//:err_bounds
IA32_Send_Jump8_Here(jit, jmp1);
IA32_Send_Jump8_Here(jit, jmp2);
Write_Error(jit, SP_ERR_ARRAY_BOUNDS);
//:continue
IA32_Send_Jump8_Here(jit, cont);
}
}
void Write_CheckMargin_Heap(JitWriter *jit)
{
CompData *data = (CompData *)jit->data;
bool always_inline = ((data->inline_level & JIT_INLINE_ERRORCHECKS) == JIT_INLINE_ERRORCHECKS);
if (!always_inline && data->jit_chkmargin_heap)
{
/* just generate the call */
jitoffs_t call = IA32_Call_Imm32(jit, 0);
IA32_Write_Jump32(jit, call, data->jit_chkmargin_heap);
} else {
//mov ecx, [esi+hea]
//cmp ecx, [esi+hlw]
//jl :error_heapmin
IA32_Mov_Reg_Rm_Disp8(jit, REG_ECX, AMX_REG_INFO, AMX_INFO_HEAP);
IA32_Cmp_Reg_Rm_Disp8(jit, REG_ECX, AMX_REG_INFO, AMX_INFO_HEAPLOW);
jitoffs_t hm = IA32_Jump_Cond_Imm8(jit, CC_L, 0);
//lea ecx, [edi+ecx+STACK_MARGIN]
//cmp ecx, ebp
// jg :error_heaplow
//OR
// ret
IA32_Lea_Reg_DispRegMultImm8(jit, REG_ECX, AMX_REG_DAT, REG_ECX, NOSCALE, STACK_MARGIN);
IA32_Cmp_Rm_Reg(jit, REG_ECX, AMX_REG_STK, MOD_REG);
jitoffs_t hl = IA32_Jump_Cond_Imm8(jit, CC_G, 0);
jitoffs_t cont;
if (always_inline)
{
cont = IA32_Jump_Imm8(jit, 0);
} else {
IA32_Return(jit);
}
//:error_heapmin
IA32_Send_Jump8_Here(jit, hm);
Write_Error(jit, SP_ERR_HEAPMIN);
//:error_heaplow
IA32_Send_Jump8_Here(jit, hl);
Write_Error(jit, SP_ERR_HEAPLOW);
//:continue
if (!always_inline)
{
IA32_Send_Jump8_Here(jit, cont);
}
}
}
void Write_CheckMargin_Stack(JitWriter *jit)
{
/* this is small, so we always inline it.
*/
//cmp ebp, [esi+stp]
//jle :continue
IA32_Cmp_Reg_Rm_Disp8(jit, AMX_REG_STK, AMX_REG_INFO, AMX_INFO_STACKTOP);
jitoffs_t jmp = IA32_Jump_Cond_Imm8(jit, CC_LE, 0);
if (!(((CompData *)jit->data)->inline_level & JIT_INLINE_ERRORCHECKS))
{
//sub esp, 4 - correct stack for returning to non-inlined JIT
IA32_Sub_Rm_Imm8(jit, REG_ESP, 4, MOD_REG);
}
Write_Error(jit, SP_ERR_STACKMIN);
//continue:
IA32_Send_Jump8_Here(jit, jmp);
}
void Macro_PushN_Addr(JitWriter *jit, int i)
{
//push eax
//mov eax, frm
//loop i times:
// lea ecx, [eax+<val>]
// mov [ebp-4*i], ecx
//sub ebp, 4*N
//pop eax
cell_t val;
int n = 1;
IA32_Push_Reg(jit, AMX_REG_PRI);
IA32_Mov_Reg_Rm(jit, AMX_REG_PRI, AMX_INFO_FRM, MOD_MEM_REG);
do
{
val = jit->read_cell();
if (val < SCHAR_MAX && val > SCHAR_MIN)
IA32_Lea_DispRegImm8(jit, AMX_REG_TMP, AMX_REG_PRI, (jit_int8_t)val);
else
IA32_Lea_DispRegImm32(jit, AMX_REG_TMP, AMX_REG_PRI, val);
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_STK, AMX_REG_TMP, -4*n);
} while (n++ < i);
IA32_Sub_Rm_Imm8(jit, AMX_REG_STK, 4*i, MOD_REG);
IA32_Pop_Reg(jit, AMX_REG_PRI);
}
void Macro_PushN_S(JitWriter *jit, int i)
{
//loop i times:
// mov ecx, [ebx+<val>]
// mov [ebp-4*i], ecx
//sub ebp, 4*N
cell_t val;
int n = 1;
do
{
val = jit->read_cell();
if (val < SCHAR_MAX && val > SCHAR_MIN)
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, AMX_REG_FRM, (jit_int8_t)val);
else
IA32_Mov_Reg_Rm_Disp32(jit, AMX_REG_TMP, AMX_REG_FRM, val);
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_STK, AMX_REG_TMP, -4*n);
} while (n++ < i);
IA32_Sub_Rm_Imm8(jit, AMX_REG_STK, 4*i, MOD_REG);
}
void Macro_PushN_C(JitWriter *jit, int i)
{
//loop i times:
// mov [ebp-4*i], <val>
//sub ebp, 4*N
int n = 1;
do
{
IA32_Mov_Rm_Imm32_Disp8(jit, AMX_REG_STK, jit->read_cell(), -4*n);
} while (n++ < i);
IA32_Sub_Rm_Imm8(jit, AMX_REG_STK, 4*i, MOD_REG);
}
void Macro_PushN(JitWriter *jit, int i)
{
//loop i times:
// mov ecx, [edi+<val>]
// mov [ebp-4*i], ecx
//sub ebp, 4*N
cell_t val;
int n = 1;
do
{
val = jit->read_cell();
if (val < SCHAR_MAX && val > SCHAR_MIN)
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, AMX_REG_DAT, (jit_int8_t)val);
else
IA32_Mov_Reg_Rm_Disp32(jit, AMX_REG_TMP, AMX_REG_DAT, val);
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_STK, AMX_REG_TMP, -4*n);
} while (n++ < i);
IA32_Sub_Rm_Imm8(jit, AMX_REG_STK, 4*i, MOD_REG);
}
JITX86::JITX86()
{
memset(OpAdvTable, -1, sizeof(OpAdvTable));
/* instructions with 5 parameters */
OpAdvTable[OP_PUSH5_C] = sizeof(cell_t)*5;
OpAdvTable[OP_PUSH5] = sizeof(cell_t)*5;
OpAdvTable[OP_PUSH5_S] = sizeof(cell_t)*5;
OpAdvTable[OP_PUSH5_ADR] = sizeof(cell_t)*5;
/* instructions with 4 parameters */
OpAdvTable[OP_PUSH4_C] = sizeof(cell_t)*4;
OpAdvTable[OP_PUSH4] = sizeof(cell_t)*4;
OpAdvTable[OP_PUSH4_S] = sizeof(cell_t)*4;
OpAdvTable[OP_PUSH4_ADR] = sizeof(cell_t)*4;
/* instructions with 3 parameters */
OpAdvTable[OP_PUSH3_C] = sizeof(cell_t)*3;
OpAdvTable[OP_PUSH3] = sizeof(cell_t)*3;
OpAdvTable[OP_PUSH3_S] = sizeof(cell_t)*3;
OpAdvTable[OP_PUSH3_ADR] = sizeof(cell_t)*3;
/* instructions with 2 parameters */
OpAdvTable[OP_PUSH2_C] = sizeof(cell_t)*2;
OpAdvTable[OP_PUSH2] = sizeof(cell_t)*2;
OpAdvTable[OP_PUSH2_S] = sizeof(cell_t)*2;
OpAdvTable[OP_PUSH2_ADR] = sizeof(cell_t)*2;
OpAdvTable[OP_LOAD_BOTH] = sizeof(cell_t)*2;
OpAdvTable[OP_LOAD_S_BOTH] = sizeof(cell_t)*2;
OpAdvTable[OP_CONST] = sizeof(cell_t)*2;
OpAdvTable[OP_CONST_S] = sizeof(cell_t)*2;
OpAdvTable[OP_SYSREQ_N] = sizeof(cell_t)*2;
/* instructions with 1 parameter */
OpAdvTable[OP_LOAD_PRI] = sizeof(cell_t);
OpAdvTable[OP_LOAD_ALT] = sizeof(cell_t);
OpAdvTable[OP_LOAD_S_PRI] = sizeof(cell_t);
OpAdvTable[OP_LOAD_S_ALT] = sizeof(cell_t);
OpAdvTable[OP_LREF_PRI] = sizeof(cell_t);
OpAdvTable[OP_LREF_ALT] = sizeof(cell_t);
OpAdvTable[OP_LREF_S_PRI] = sizeof(cell_t);
OpAdvTable[OP_LREF_S_ALT] = sizeof(cell_t);
OpAdvTable[OP_LODB_I] = sizeof(cell_t);
OpAdvTable[OP_CONST_PRI] = sizeof(cell_t);
OpAdvTable[OP_CONST_ALT] = sizeof(cell_t);
OpAdvTable[OP_ADDR_PRI] = sizeof(cell_t);
OpAdvTable[OP_ADDR_ALT] = sizeof(cell_t);
OpAdvTable[OP_STOR_PRI] = sizeof(cell_t);
OpAdvTable[OP_STOR_ALT] = sizeof(cell_t);
OpAdvTable[OP_STOR_S_PRI] = sizeof(cell_t);
OpAdvTable[OP_STOR_S_ALT] = sizeof(cell_t);
OpAdvTable[OP_SREF_PRI] = sizeof(cell_t);
OpAdvTable[OP_SREF_ALT] = sizeof(cell_t);
OpAdvTable[OP_SREF_S_PRI] = sizeof(cell_t);
OpAdvTable[OP_SREF_S_ALT] = sizeof(cell_t);
OpAdvTable[OP_STRB_I] = sizeof(cell_t);
OpAdvTable[OP_LIDX_B] = sizeof(cell_t);
OpAdvTable[OP_IDXADDR_B] = sizeof(cell_t);
OpAdvTable[OP_ALIGN_PRI] = sizeof(cell_t);
OpAdvTable[OP_ALIGN_ALT] = sizeof(cell_t);
OpAdvTable[OP_LCTRL] = sizeof(cell_t);
OpAdvTable[OP_SCTRL] = sizeof(cell_t);
OpAdvTable[OP_PUSH_C] = sizeof(cell_t);
OpAdvTable[OP_PUSH] = sizeof(cell_t);
OpAdvTable[OP_PUSH_S] = sizeof(cell_t);
OpAdvTable[OP_STACK] = sizeof(cell_t);
OpAdvTable[OP_HEAP] = sizeof(cell_t);
OpAdvTable[OP_JREL] = sizeof(cell_t);
OpAdvTable[OP_SHL_C_PRI] = sizeof(cell_t);
OpAdvTable[OP_SHL_C_ALT] = sizeof(cell_t);
OpAdvTable[OP_SHR_C_PRI] = sizeof(cell_t);
OpAdvTable[OP_SHR_C_ALT] = sizeof(cell_t);
OpAdvTable[OP_ADD_C] = sizeof(cell_t);
OpAdvTable[OP_SMUL_C] = sizeof(cell_t);
OpAdvTable[OP_ZERO] = sizeof(cell_t);
OpAdvTable[OP_ZERO_S] = sizeof(cell_t);
OpAdvTable[OP_EQ_C_PRI] = sizeof(cell_t);
OpAdvTable[OP_EQ_C_ALT] = sizeof(cell_t);
OpAdvTable[OP_INC] = sizeof(cell_t);
OpAdvTable[OP_INC_S] = sizeof(cell_t);
OpAdvTable[OP_DEC] = sizeof(cell_t);
OpAdvTable[OP_DEC_S] = sizeof(cell_t);
OpAdvTable[OP_MOVS] = sizeof(cell_t);
OpAdvTable[OP_CMPS] = sizeof(cell_t);
OpAdvTable[OP_FILL] = sizeof(cell_t);
OpAdvTable[OP_HALT] = sizeof(cell_t);
OpAdvTable[OP_BOUNDS] = sizeof(cell_t);
OpAdvTable[OP_PUSH_ADR] = sizeof(cell_t);
OpAdvTable[OP_PUSH_HEAP_C] = sizeof(cell_t);
OpAdvTable[OP_SYSREQ_C] = sizeof(cell_t);
/* instructions with 0 parameters */
OpAdvTable[OP_LOAD_I] = 0;
OpAdvTable[OP_STOR_I] = 0;
OpAdvTable[OP_LIDX] = 0;
OpAdvTable[OP_IDXADDR] = 0;
OpAdvTable[OP_MOVE_PRI] = 0;
OpAdvTable[OP_MOVE_ALT] = 0;
OpAdvTable[OP_XCHG] = 0;
OpAdvTable[OP_PUSH_PRI] = 0;
OpAdvTable[OP_PUSH_ALT] = 0;
OpAdvTable[OP_POP_PRI] = 0;
OpAdvTable[OP_POP_ALT] = 0;
OpAdvTable[OP_PROC] = 0;
OpAdvTable[OP_RET] = 0;
OpAdvTable[OP_RETN] = 0;
OpAdvTable[OP_CALL_PRI] = 0;
OpAdvTable[OP_SHL] = 0;
OpAdvTable[OP_SHR] = 0;
OpAdvTable[OP_SSHR] = 0;
OpAdvTable[OP_SMUL] = 0;
OpAdvTable[OP_SDIV] = 0;
OpAdvTable[OP_SDIV_ALT] = 0;
OpAdvTable[OP_UMUL] = 0;
OpAdvTable[OP_UDIV] = 0;
OpAdvTable[OP_UDIV_ALT] = 0;
OpAdvTable[OP_ADD] = 0;
OpAdvTable[OP_SUB] = 0;
OpAdvTable[OP_SUB_ALT] = 0;
OpAdvTable[OP_AND] = 0;
OpAdvTable[OP_OR] = 0;
OpAdvTable[OP_XOR] = 0;
OpAdvTable[OP_NOT] = 0;
OpAdvTable[OP_NEG] = 0;
OpAdvTable[OP_INVERT] = 0;
OpAdvTable[OP_ZERO_PRI] = 0;
OpAdvTable[OP_ZERO_ALT] = 0;
OpAdvTable[OP_SIGN_PRI] = 0;
OpAdvTable[OP_SIGN_ALT] = 0;
OpAdvTable[OP_EQ] = 0;
OpAdvTable[OP_NEQ] = 0;
OpAdvTable[OP_LESS] = 0;
OpAdvTable[OP_LEQ] = 0;
OpAdvTable[OP_GRTR] = 0;
OpAdvTable[OP_GEQ] = 0;
OpAdvTable[OP_SLESS] = 0;
OpAdvTable[OP_SLEQ] = 0;
OpAdvTable[OP_SGRTR] = 0;
OpAdvTable[OP_SGEQ] = 0;
OpAdvTable[OP_INC_PRI] = 0;
OpAdvTable[OP_INC_ALT] = 0;
OpAdvTable[OP_INC_I] = 0;
OpAdvTable[OP_DEC_PRI] = 0;
OpAdvTable[OP_DEC_ALT] = 0;
OpAdvTable[OP_DEC_I] = 0;
OpAdvTable[OP_JUMP_PRI] = 0;
OpAdvTable[OP_SWAP_PRI] = 0;
OpAdvTable[OP_SWAP_ALT] = 0;
OpAdvTable[OP_NOP] = 0;
OpAdvTable[OP_BREAK] = 0;
OpAdvTable[OP_HEAP_PRI] = 0;
OpAdvTable[OP_POP_HEAP_PRI] = 0;
OpAdvTable[OP_SYSREQ_PRI] = 0;
/* opcodes that need relocation */
OpAdvTable[OP_CALL] = -2;
OpAdvTable[OP_JUMP] = -2;
OpAdvTable[OP_JZER] = -2;
OpAdvTable[OP_JNZ] = -2;
OpAdvTable[OP_JEQ] = -2;
OpAdvTable[OP_JNEQ] = -2;
OpAdvTable[OP_JLESS] = -2;
OpAdvTable[OP_JLEQ] = -2;
OpAdvTable[OP_JGRTR] = -2;
OpAdvTable[OP_JGEQ] = -2;
OpAdvTable[OP_JSLESS] = -2;
OpAdvTable[OP_JSLEQ] = -2;
OpAdvTable[OP_JSGRTR] = -2;
OpAdvTable[OP_JSGEQ] = -2;
OpAdvTable[OP_SWITCH] = -2;
/* opcodes that are totally invalid */
OpAdvTable[OP_FILE] = -3;
OpAdvTable[OP_SYMBOL] = -3;
OpAdvTable[OP_LINE] = -3;
OpAdvTable[OP_SRANGE] = -3;
OpAdvTable[OP_SYMTAG] = -3;
OpAdvTable[OP_SYSREQ_D] = -3;
OpAdvTable[OP_SYSREQ_ND] = -3;
OpAdvTable[OP_PUSH_R] = -3;
}