sm-plugins/rngfix/scripting/rngfix.sp

1055 lines
34 KiB
SourcePawn

#include <sdktools>
#include <sdkhooks>
#include <dhooks>
#pragma semicolon 1
#pragma newdecls required
#define PLUGIN_VERSION "1.1.2"
public Plugin myinfo =
{
name = "RNGFix",
author = "rio",
description = "Fixes physics bugs in movement game modes",
version = PLUGIN_VERSION,
url = "https://github.com/jason-e/rngfix"
}
// Engine constants, NOT settings (do not change)
#define LAND_HEIGHT 2.0 // Maximum height above ground at which you can "land"
#define NON_JUMP_VELOCITY 140.0 // Maximum Z velocity you are allowed to have and still land
#define MIN_STANDABLE_ZNRM 0.7 // Minimum surface normal Z component of a walkable surface
#define AIR_SPEED_CAP 30.0 // Constant used to limit air acceleration
#define DUCK_MIN_DUCKSPEED 1.5 // Minimum duckspeed to start ducking
#define DEFAULT_JUMP_IMPULSE 301.99337741 // sqrt(2 * 57.0 units * 800.0 u/s^2)
float g_vecMins[3];
float g_vecMaxsUnducked[3];
float g_vecMaxsDucked[3];
float g_flDuckDelta;
int g_iTick[MAXPLAYERS+1];
float g_flFrameTime[MAXPLAYERS+1];
int g_iButtons[MAXPLAYERS+1];
float g_vVel[MAXPLAYERS+1][3];
float g_vAngles[MAXPLAYERS+1][3];
int g_iOldButtons[MAXPLAYERS+1];
int g_iLastTickPredicted[MAXPLAYERS+1];
float g_vPreCollisionVelocity[MAXPLAYERS+1][3];
float g_vLastBaseVelocity[MAXPLAYERS+1][3];
int g_iLastGroundEnt[MAXPLAYERS+1];
int g_iLastLandTick[MAXPLAYERS+1];
int g_iLastCollisionTick[MAXPLAYERS+1];
int g_iLastMapTeleportTick[MAXPLAYERS+1];
bool g_bMapTeleportedSequentialTicks[MAXPLAYERS+1];
float g_vCollisionPoint[MAXPLAYERS+1][3];
float g_vCollisionNormal[MAXPLAYERS+1][3];
enum
{
UPHILL_LOSS = -1, // Force a jump, AND negatively affect speed as if a collision occurred (fix RNG not in player's favor)
UPHILL_DEFAULT = 0, // Do nothing (retain RNG)
UPHILL_NEUTRAL = 1 // Force a jump (respecting NON_JUMP_VELOCITY) (fix RNG in player's favor)
}
// Plugin settings
ConVar g_cvDownhill;
ConVar g_cvUphill;
ConVar g_cvEdge;
ConVar g_cvTriggerjump;
ConVar g_cvTelehop;
ConVar g_cvStairs;
ConVar g_cvUseOldSlopefixLogic;
ConVar g_cvDebug;
// Core physics ConVars
ConVar g_cvMaxVelocity;
ConVar g_cvGravity;
ConVar g_cvAirAccelerate;
// In CSS and CSGO but apparently not used in CSS
ConVar g_cvTimeBetweenDucks;
// CSGO-only
ConVar g_cvJumpImpulse;
ConVar g_cvAutoBunnyHopping;
Handle g_hPassesTriggerFilters;
Handle g_hProcessMovementHookPre;
Address g_IServerGameEnts;
Handle g_hMarkEntitiesAsTouching;
bool g_bLateLoad;
int g_iLaserIndex;
int g_color1[] = {0, 100, 255, 255};
int g_color2[] = {0, 255, 0, 255};
void DebugMsg(int client, const char[] fmt, any ...)
{
if (!g_cvDebug.BoolValue) return;
char output[1024];
VFormat(output, sizeof(output), fmt, 3);
PrintToConsole(client, "[%i] %s", g_iTick[client], output);
}
void DebugLaser(int client, const float p1[3], const float p2[3], float life, float width, const int color[4])
{
if (g_cvDebug.IntValue < 2) return;
TE_SetupBeamPoints(p2, p1, g_iLaserIndex, 0, 0, 0, life, width, width, 10, 0.0, color, 0);
TE_SendToClient(client);
}
public APLRes AskPluginLoad2(Handle myself, bool late, char[] error, int err_max)
{
g_bLateLoad = late;
return APLRes_Success;
}
public void OnPluginStart()
{
EngineVersion engine = GetEngineVersion();
if (engine != Engine_CSGO && engine != Engine_CSS)
{
SetFailState("Game is not supported");
}
g_vecMins = view_as<float>({-16.0, -16.0, 0.0});
g_vecMaxsUnducked = view_as<float>({16.0, 16.0, 0.0});
g_vecMaxsDucked = view_as<float>({16.0, 16.0, 0.0});
switch (engine)
{
case Engine_CSGO:
{
g_vecMaxsUnducked[2] = 72.0;
g_vecMaxsDucked[2] = 64.0;
}
case Engine_CSS:
{
g_vecMaxsUnducked[2] = 62.0;
g_vecMaxsDucked[2] = 45.0;
}
}
g_flDuckDelta = (g_vecMaxsUnducked[2]-g_vecMaxsDucked[2]) / 2;
g_cvDownhill = CreateConVar("rngfix_downhill", "1", "Enable downhill incline fix.", FCVAR_NOTIFY, true, 0.0, true, 1.0);
g_cvUphill = CreateConVar("rngfix_uphill", "1", "Enable uphill incline fix. Set to -1 to normalize effects not in the player's favor (not recommended).", FCVAR_NOTIFY, true, -1.0, true, 1.0);
g_cvEdge = CreateConVar("rngfix_edge", "1", "Enable edgebug fix.", FCVAR_NOTIFY, true, 0.0, true, 1.0);
g_cvTriggerjump = CreateConVar("rngfix_triggerjump", "1", "Enable trigger jump fix.", FCVAR_NOTIFY, true, 0.0, true, 1.0);
g_cvTelehop = CreateConVar("rngfix_telehop", "1", "Enable telehop fix.", FCVAR_NOTIFY, true, 0.0, true, 1.0);
g_cvStairs = CreateConVar("rngfix_stairs", "1", "Enable stair slide fix (surf only). You must have Movement Unlocker for sliding to work on CSGO.", FCVAR_NOTIFY, true, 0.0, true, 1.0);
g_cvUseOldSlopefixLogic = CreateConVar("rngfix_useoldslopefixlogic", "0", "Old Slopefix had some logic errors that could cause double boosts. Enable this on a per-map basis to retain old behavior. (NOT RECOMMENDED)", FCVAR_NOTIFY, true, 0.0, true, 1.0);
g_cvDebug = CreateConVar("rngfix_debug", "0", "1 = Enable debug messages. 2 = Enable debug messages and lasers.", _, true, 0.0, true, 2.0);
AutoExecConfig();
g_cvMaxVelocity = FindConVar("sv_maxvelocity");
g_cvGravity = FindConVar("sv_gravity");
g_cvAirAccelerate = FindConVar("sv_airaccelerate");
if (g_cvMaxVelocity == null || g_cvGravity == null || g_cvAirAccelerate == null)
{
SetFailState("Could not find all ConVars");
}
// Not required
g_cvTimeBetweenDucks = FindConVar("sv_timebetweenducks");
g_cvJumpImpulse = FindConVar("sv_jump_impulse");
g_cvAutoBunnyHopping = FindConVar("sv_autobunnyhopping");
Handle gamedataConf = LoadGameConfigFile("rngfix.games");
if (gamedataConf == null) SetFailState("Failed to load rngfix gamedata");
// PassesTriggerFilters
StartPrepSDKCall(SDKCall_Entity);
if (!PrepSDKCall_SetFromConf(gamedataConf, SDKConf_Virtual, "CBaseTrigger::PassesTriggerFilters"))
{
SetFailState("Failed to get CBaseTrigger::PassesTriggerFilters offset");
}
PrepSDKCall_SetReturnInfo(SDKType_Bool, SDKPass_Plain);
PrepSDKCall_AddParameter(SDKType_CBaseEntity, SDKPass_Pointer);
g_hPassesTriggerFilters = EndPrepSDKCall();
if (g_hPassesTriggerFilters == null) SetFailState("Unable to prepare SDKCall for CBaseTrigger::PassesTriggerFilters");
// CreateInterface
// Thanks SlidyBat and ici
StartPrepSDKCall(SDKCall_Static);
if (!PrepSDKCall_SetFromConf(gamedataConf, SDKConf_Signature, "CreateInterface"))
{
SetFailState("Failed to get CreateInterface");
}
PrepSDKCall_AddParameter(SDKType_String, SDKPass_Pointer);
PrepSDKCall_AddParameter(SDKType_PlainOldData, SDKPass_Pointer, VDECODE_FLAG_ALLOWNULL);
PrepSDKCall_SetReturnInfo(SDKType_PlainOldData, SDKPass_Plain);
Handle CreateInterface = EndPrepSDKCall();
if (CreateInterface == null) SetFailState("Unable to prepare SDKCall for CreateInterface");
char interfaceName[64];
// ProcessMovement
if (!GameConfGetKeyValue(gamedataConf, "IGameMovement", interfaceName, sizeof(interfaceName)))
{
SetFailState("Failed to get IGameMovement interface name");
}
Address IGameMovement = SDKCall(CreateInterface, interfaceName, 0);
if (!IGameMovement)
{
SetFailState("Failed to get IGameMovement pointer");
}
int offset = GameConfGetOffset(gamedataConf, "ProcessMovement");
if (offset == -1) SetFailState("Failed to get ProcessMovement offset");
g_hProcessMovementHookPre = DHookCreate(offset, HookType_Raw, ReturnType_Void, ThisPointer_Ignore, DHook_ProcessMovementPre);
DHookAddParam(g_hProcessMovementHookPre, HookParamType_CBaseEntity);
DHookAddParam(g_hProcessMovementHookPre, HookParamType_ObjectPtr);
DHookRaw(g_hProcessMovementHookPre, false, IGameMovement);
// MarkEntitiesAsTouching
if (!GameConfGetKeyValue(gamedataConf, "IServerGameEnts", interfaceName, sizeof(interfaceName)))
{
SetFailState("Failed to get IServerGameEnts interface name");
}
g_IServerGameEnts = SDKCall(CreateInterface, interfaceName, 0);
if (!g_IServerGameEnts)
{
SetFailState("Failed to get IServerGameEnts pointer");
}
StartPrepSDKCall(SDKCall_Raw);
if (!PrepSDKCall_SetFromConf(gamedataConf, SDKConf_Virtual, "IServerGameEnts::MarkEntitiesAsTouching"))
{
SetFailState("Failed to get IServerGameEnts::MarkEntitiesAsTouching offset");
}
PrepSDKCall_AddParameter(SDKType_Edict, SDKPass_Pointer);
PrepSDKCall_AddParameter(SDKType_Edict, SDKPass_Pointer);
g_hMarkEntitiesAsTouching = EndPrepSDKCall();
if (g_hMarkEntitiesAsTouching == null) SetFailState("Unable to prepare SDKCall for IServerGameEnts::MarkEntitiesAsTouching");
delete CreateInterface;
delete gamedataConf;
if (g_bLateLoad)
{
for (int client = 1; client <= MaxClients; client++)
{
if (IsClientInGame(client)) OnClientPutInServer(client);
}
}
}
public void OnMapStart()
{
g_iLaserIndex = PrecacheModel("materials/sprites/laserbeam.vmt", true);
}
public void OnEntityCreated(int entity, const char[] classname)
{
if (StrContains(classname, "trigger_teleport") != -1)
{
SDKHook(entity, SDKHook_TouchPost, Hook_TriggerTeleportTouchPost);
}
}
public void OnClientConnected(int client)
{
g_iTick[client] = 0;
}
public void OnClientPutInServer(int client)
{
SDKHook(client, SDKHook_GroundEntChangedPost, Hook_PlayerGroundEntChanged);
SDKHook(client, SDKHook_PostThink, Hook_PlayerPostThink);
}
// TODO Would be nice to have IServerTools::FindEntityByName / CGlobalEntityList::FindEntityByName
bool NameExists(const char[] targetname)
{
// Assume special types exist
if (targetname[0] == '!') return true;
char targetname2[128];
int max = GetMaxEntities();
for (int entity = 1; entity < max; entity++)
{
if (!IsValidEntity(entity)) continue;
if (GetEntPropString(entity, Prop_Data, "m_iName", targetname2, sizeof(targetname2)) == 0) continue;
if (StrEqual(targetname, targetname2)) return true;
}
return false;
}
public void Hook_TriggerTeleportTouchPost(int entity, int other)
{
if (!(1 <= other <= MaxClients)) return;
if (!SDKCall(g_hPassesTriggerFilters, entity, other)) return;
char targetstring[128];
if (GetEntPropString(entity, Prop_Data, "m_target", targetstring, sizeof(targetstring)) == 0) return;
if (!NameExists(targetstring)) return;
if (g_iLastMapTeleportTick[other] == g_iTick[other]-1)
{
g_bMapTeleportedSequentialTicks[other] = true;
}
g_iLastMapTeleportTick[other] = g_iTick[other];
DebugMsg(other, "Triggered teleport %i", entity);
}
public bool PlayerFilter(int entity, int mask)
{
return !(1 <= entity <= MaxClients);
}
float GetJumpImpulse()
{
if (g_cvJumpImpulse != null)
{
return g_cvJumpImpulse.FloatValue;
}
else
{
return DEFAULT_JUMP_IMPULSE;
}
}
bool IsDuckCoolingDown(int client)
{
// TODO Is this stuff in MoveData?
// Ducking is prevented if the last switch to a ducked state from an unducked state is sooner than sv_timebetweenducks ago.
// Note: This cooldown is based on client's curtime (GetGameTime() in this context) and thus is unaffected by m_flLaggedMovementValue.
if (g_cvTimeBetweenDucks != null && HasEntProp(client, Prop_Data, "m_flLastDuckTime"))
{
if (GetGameTime() - GetEntPropFloat(client, Prop_Data, "m_flLastDuckTime") < g_cvTimeBetweenDucks.FloatValue) return true;
}
// m_flDuckSpeed is decreased by 2.0 to a minimum of 0.0 every time the duck key is pressed OR released.
// It recovers at a rate of 3.0 * m_flLaggedMovementValue per second and caps at 8.0.
// Switching to a ducked state from an unducked state is prevented if it is less than 1.5.
if (HasEntProp(client, Prop_Data, "m_flDuckSpeed"))
{
if (GetEntPropFloat(client, Prop_Data, "m_flDuckSpeed") < DUCK_MIN_DUCKSPEED) return true;
}
return false;
}
void Duck(int client, float origin[3], float mins[3], float maxs[3])
{
bool ducking = GetEntityFlags(client) & FL_DUCKING != 0;
bool nextDucking = ducking;
if (g_iButtons[client] & IN_DUCK != 0 && !ducking)
{
if (!IsDuckCoolingDown(client))
{
origin[2] += g_flDuckDelta;
nextDucking = true;
}
}
else if (g_iButtons[client] & IN_DUCK == 0 && ducking)
{
origin[2] -= g_flDuckDelta;
TR_TraceHullFilter(origin, origin, g_vecMins, g_vecMaxsUnducked, MASK_PLAYERSOLID, PlayerFilter);
// Cannot unduck in air, not enough room
if (TR_DidHit()) origin[2] += g_flDuckDelta;
else nextDucking = false;
}
mins = g_vecMins;
maxs = nextDucking ? g_vecMaxsDucked : g_vecMaxsUnducked;
}
bool CanJump(int client)
{
if (g_iButtons[client] & IN_JUMP == 0) return false;
if (g_iOldButtons[client] & IN_JUMP != 0 && !(g_cvAutoBunnyHopping != null && g_cvAutoBunnyHopping.BoolValue)) return false;
return true;
}
void CheckJumpButton(int client, float velocity[3])
{
// Skip dead and water checks since we already did them.
// We need to check for ground somewhere so stick it here.
if (GetEntityFlags(client) & FL_ONGROUND == 0) return;
if (!CanJump(client)) return;
// TODO Incorporate surfacedata jump factor
// This conditional is why jumping while crouched jumps higher! Bad!
if (GetEntProp(client, Prop_Data, "m_bDucking") != 0 || GetEntityFlags(client) & FL_DUCKING != 0)
{
velocity[2] = GetJumpImpulse();
}
else
{
velocity[2] += GetJumpImpulse();
}
// Jumping does an extra half tick of gravity! Bad!
FinishGravity(client, velocity);
}
void AirAccelerate(int client, float velocity[3], Handle hParams)
{
// This also includes the initial parts of AirMove()
float fore[3], side[3];
float wishvel[3], wishdir[3];
GetAngleVectors(g_vAngles[client], fore, side, NULL_VECTOR);
fore[2] = 0.0;
side[2] = 0.0;
NormalizeVector(fore, fore);
NormalizeVector(side, side);
for (int i = 0; i < 2; i++) wishvel[i] = fore[i] * g_vVel[client][0] + side[i] * g_vVel[client][1];
float wishspeed = NormalizeVector(wishvel, wishdir);
float m_flMaxSpeed = DHookGetParamObjectPtrVar(hParams, 2, 56, ObjectValueType_Float);
if (wishspeed > m_flMaxSpeed && m_flMaxSpeed != 0.0) wishspeed = m_flMaxSpeed;
if (wishspeed)
{
float wishspd = wishspeed;
if (wishspd > AIR_SPEED_CAP) wishspd = AIR_SPEED_CAP;
float currentspeed = GetVectorDotProduct(velocity, wishdir);
float addspeed = wishspd - currentspeed;
if (addspeed > 0)
{
float accelspeed = g_cvAirAccelerate.FloatValue * wishspeed * g_flFrameTime[client];
if (accelspeed > addspeed) accelspeed = addspeed;
for (int i = 0; i < 2; i++) velocity[i] += accelspeed * wishdir[i];
}
}
}
void CheckVelocity(float velocity[3])
{
for (int i = 0; i < 3; i++)
{
if (velocity[i] > g_cvMaxVelocity.FloatValue) velocity[i] = g_cvMaxVelocity.FloatValue;
else if (velocity[i] < -g_cvMaxVelocity.FloatValue) velocity[i] = -g_cvMaxVelocity.FloatValue;
}
}
void StartGravity(int client, float velocity[3])
{
float localGravity = GetEntPropFloat(client, Prop_Data, "m_flGravity");
if (localGravity == 0.0) localGravity = 1.0;
velocity[2] -= localGravity * g_cvGravity.FloatValue * 0.5 * g_flFrameTime[client];
float baseVelocity[3];
GetEntPropVector(client, Prop_Data, "m_vecBaseVelocity", baseVelocity);
velocity[2] += baseVelocity[2] * g_flFrameTime[client];
// baseVelocity[2] would get cleared here but we shouldn't do that since this is just a prediction.
CheckVelocity(velocity);
}
void FinishGravity(int client, float velocity[3])
{
float localGravity = GetEntPropFloat(client, Prop_Data, "m_flGravity");
if (localGravity == 0.0) localGravity = 1.0;
velocity[2] -= localGravity * g_cvGravity.FloatValue * 0.5 * g_flFrameTime[client];
CheckVelocity(velocity);
}
bool CheckWater(int client)
{
// The cached water level is updated multiple times per tick, including after movement happens,
// so we can just check the cached value here.
return GetEntProp(client, Prop_Data, "m_nWaterLevel") > 1;
}
void PreventCollision(int client, Handle hParams, const float origin[3], const float collisionPoint[3], const float velocity_tick[3])
{
DebugLaser(client, origin, collisionPoint, 15.0, 0.5, g_color1);
// Rewind part of a tick so at the end of this tick we will end up close to the ground without colliding with it.
// This effectively simulates a mid-tick jump (we lose part of a tick but its a miniscule trade-off).
// This is also only an approximation of a partial tick rewind but it's good enough.
float newOrigin[3];
SubtractVectors(collisionPoint, velocity_tick, newOrigin);
// Add a little space between us and the ground so we don't accidentally hit it anyway, maybe due to floating point error or something.
// I don't know if this is necessary but I would rather be safe.
newOrigin[2] += 0.1;
// Since the MoveData for this tick has already been filled and is about to be used, we need
// to modify it directly instead of changing the player entity's actual position (such as with TeleportEntity).
DHookSetParamObjectPtrVarVector(hParams, 2, GetEngineVersion() == Engine_CSGO ? 172 : 152, ObjectValueType_Vector, newOrigin);
DebugLaser(client, origin, newOrigin, 15.0, 0.5, g_color2);
float adjustment[3];
SubtractVectors(newOrigin, origin, adjustment);
DebugMsg(client, "Moved: %.2f %.2f %.2f", adjustment[0], adjustment[1], adjustment[2]);
// No longer colliding this tick, clear our prediction flag
g_iLastCollisionTick[client] = 0;
}
void ClipVelocity(const float velocity[3], const float nrm[3], float out[3])
{
float backoff = GetVectorDotProduct(velocity, nrm);
for (int i = 0; i < 3; i++)
{
out[i] = velocity[i] - nrm[i]*backoff;
}
// The adjust step only matters with overbounce which doesnt apply to walkable surfaces.
}
void SetVelocity(int client, float velocity[3], bool dontUseTeleportEntity = false)
{
// Pull out basevelocity from desired true velocity
// Use the pre-tick basevelocity because that is what influenced this tick's movement and the desired new velocity.
SubtractVectors(velocity, g_vLastBaseVelocity[client], velocity);
if (dontUseTeleportEntity && GetEntPropEnt(client, Prop_Data, "m_hMoveParent") == -1)
{
SetEntPropVector(client, Prop_Data, "m_vecAbsVelocity", velocity);
SetEntPropVector(client, Prop_Data, "m_vecVelocity", velocity);
}
else
{
float baseVelocity[3];
GetEntPropVector(client, Prop_Data, "m_vecBaseVelocity", baseVelocity);
TeleportEntity(client, NULL_VECTOR, NULL_VECTOR, velocity);
// TeleportEntity with non-null velocity wipes out basevelocity, so restore it after.
// Since we didn't change position, nothing should change regarding influences on basevelocity.
SetEntPropVector(client, Prop_Data, "m_vecBaseVelocity", baseVelocity);
}
}
public MRESReturn DHook_ProcessMovementPre(Handle hParams)
{
int client = DHookGetParam(hParams, 1);
g_iTick[client]++;
g_flFrameTime[client] = GetTickInterval() * GetEntPropFloat(client, Prop_Data, "m_flLaggedMovementValue");
g_bMapTeleportedSequentialTicks[client] = false;
// If we are actually not doing ANY of the fixes that rely on pre-tick collision prediction, skip all this.
if (!g_cvUphill.BoolValue && !g_cvEdge.BoolValue && !g_cvStairs.BoolValue && !g_cvTelehop.BoolValue && !g_cvDownhill.BoolValue)
{
return MRES_Ignored;
}
RunPreTickChecks(client, hParams);
return MRES_Ignored;
}
void RunPreTickChecks(int client, Handle hParams)
{
// Recreate enough of CGameMovement::ProcessMovement to predict if fixes are needed.
// We only really care about a limited set of scenarios (less than waist-deep in water, MOVETYPE_WALK, air movement).
if (!IsPlayerAlive(client)) return;
if (GetEntityMoveType(client) != MOVETYPE_WALK) return;
if (CheckWater(client)) return;
g_iLastGroundEnt[client] = GetEntPropEnt(client, Prop_Data, "m_hGroundEntity");
// If we are definitely staying on the ground this tick, don't predict it.
if (g_iLastGroundEnt[client] != -1 && !CanJump(client)) return;
g_iLastTickPredicted[client] = g_iTick[client];
g_iButtons[client] = DHookGetParamObjectPtrVar(hParams, 2, 36, ObjectValueType_Int);
g_iOldButtons[client] = DHookGetParamObjectPtrVar(hParams, 2, 40, ObjectValueType_Int);
DHookGetParamObjectPtrVarVector(hParams, 2, 44, ObjectValueType_Vector, g_vVel[client]);
DHookGetParamObjectPtrVarVector(hParams, 2, 12, ObjectValueType_Vector, g_vAngles[client]);
float velocity[3];
DHookGetParamObjectPtrVarVector(hParams, 2, 64, ObjectValueType_Vector, velocity);
float baseVelocity[3];
// basevelocity is not stored in MoveData
GetEntPropVector(client, Prop_Data, "m_vecBaseVelocity", baseVelocity);
float origin[3];
DHookGetParamObjectPtrVarVector(hParams, 2, GetEngineVersion() == Engine_CSGO ? 172 : 152, ObjectValueType_Vector, origin);
float nextOrigin[3], mins[3], maxs[3];
nextOrigin = origin;
// These roughly replicate the behavior of their equivalent CGameMovement functions.
Duck(client, nextOrigin, mins, maxs);
StartGravity(client, velocity);
CheckJumpButton(client, velocity);
CheckVelocity(velocity);
AirAccelerate(client, velocity, hParams);
// StartGravity dealt with Z basevelocity.
baseVelocity[2] = 0.0;
g_vLastBaseVelocity[client] = baseVelocity;
AddVectors(velocity, baseVelocity, velocity);
// Store this for later in case we need to undo the effects of a collision.
g_vPreCollisionVelocity[client] = velocity;
// This is basically where TryPlayerMove happens.
// We don't really care about anything after TryPlayerMove either.
float velocity_tick[3];
velocity_tick = velocity;
ScaleVector(velocity_tick, g_flFrameTime[client]);
AddVectors(nextOrigin, velocity_tick, nextOrigin);
// Check if we will hit something this tick.
TR_TraceHullFilter(origin, nextOrigin, mins, maxs, MASK_PLAYERSOLID, PlayerFilter);
if (TR_DidHit())
{
float nrm[3];
TR_GetPlaneNormal(null, nrm);
if (g_iLastCollisionTick[client] < g_iTick[client]-1)
{
DebugMsg(client, "Collision predicted! (normal: %.3f %.3f %.3f)", nrm[0], nrm[1], nrm[2]);
}
float collisionPoint[3];
TR_GetEndPosition(collisionPoint);
// Store this result for post-tick fixes.
g_iLastCollisionTick[client] = g_iTick[client];
g_vCollisionPoint[client] = collisionPoint;
g_vCollisionNormal[client] = nrm;
// If we are moving up too fast, we can't land anyway so these fixes aren't needed.
if (velocity[2] > NON_JUMP_VELOCITY) return;
// Landing also requires a walkable surface.
// This will give false negatives if the surface initially collided
// is too steep but the final one isn't (rare and unlikely to matter).
if (nrm[2] < MIN_STANDABLE_ZNRM) return;
// Check uphill incline fix first since it's more common and faster.
if (g_cvUphill.IntValue == UPHILL_NEUTRAL)
{
// Make sure it's not flat, and that we are actually going uphill (X/Y dot product < 0.0)
if (nrm[2] < 1.0 && nrm[0]*velocity[0] + nrm[1]*velocity[1] < 0.0)
{
bool shouldDoDownhillFixInstead = false;
if (g_cvDownhill.BoolValue)
{
// We also want to make sure this isn't a case where it's actually more beneficial to do the downhill fix.
float newVelocity[3];
ClipVelocity(velocity, nrm, newVelocity);
if (newVelocity[0]*newVelocity[0] + newVelocity[1]*newVelocity[1] > velocity[0]*velocity[0] + velocity[1]*velocity[1])
{
shouldDoDownhillFixInstead = true;
}
}
if (!shouldDoDownhillFixInstead)
{
DebugMsg(client, "DO FIX: Uphill Incline");
PreventCollision(client, hParams, origin, collisionPoint, velocity_tick);
// This naturally prevents any edge bugs so we can skip the edge fix.
return;
}
}
}
if (g_cvEdge.BoolValue)
{
// Do a rough estimate of where we will be at the end of the tick after colliding.
// This method assumes no more collisions will take place after the first.
// There are some very extreme circumstances where this will give false positives (unlikely to come into play).
float tickEnd[3];
float fraction_left = 1.0 - TR_GetFraction();
if (nrm[2] == 1.0)
{
// If the ground is level, all that changes is Z velocity becomes zero.
tickEnd[0] = collisionPoint[0] + velocity_tick[0]*fraction_left;
tickEnd[1] = collisionPoint[1] + velocity_tick[1]*fraction_left;
tickEnd[2] = collisionPoint[2];
}
else
{
float velocity2[3];
ClipVelocity(velocity, nrm, velocity2);
if (velocity2[2] > NON_JUMP_VELOCITY)
{
// This would be an "edge bug" (slide without landing at the end of the tick)
// 100% of the time due to the Z velocity restriction.
return;
}
else
{
ScaleVector(velocity2, g_flFrameTime[client]*fraction_left);
AddVectors(collisionPoint, velocity2, tickEnd);
}
}
// Check if there's something close enough to land on below the player at the end of this tick.
float tickEndBelow[3];
tickEndBelow[0] = tickEnd[0];
tickEndBelow[1] = tickEnd[1];
tickEndBelow[2] = tickEnd[2] - LAND_HEIGHT;
TR_TraceHullFilter(tickEnd, tickEndBelow, mins, maxs, MASK_PLAYERSOLID, PlayerFilter);
if (TR_DidHit())
{
// There's something there, can we land on it?
float nrm2[3];
TR_GetPlaneNormal(null, nrm2);
// Yes, it's not too steep.
if (nrm2[2] >= MIN_STANDABLE_ZNRM) return;
// Yes, the quadrant check finds ground that isn't too steep.
if (TracePlayerBBoxForGround(tickEnd, tickEndBelow, mins, maxs)) return;
}
DebugMsg(client, "DO FIX: Edge Bug");
DebugLaser(client, collisionPoint, tickEnd, 15.0, 0.5, g_color1);
PreventCollision(client, hParams, origin, collisionPoint, velocity_tick);
}
}
}
public void Hook_PlayerGroundEntChanged(int client)
{
// We cannot get the new ground entity at this point,
// but if the previous value was -1, it must be something else now, so we landed.
if (GetEntPropEnt(client, Prop_Data, "m_hGroundEntity") == -1)
{
g_iLastLandTick[client] = g_iTick[client];
DebugMsg(client, "Landed");
}
}
bool DoInclineCollisionFixes(int client, const float nrm[3])
{
if (!g_cvDownhill.BoolValue && g_cvUphill.IntValue != UPHILL_LOSS) return false;
if (g_iLastTickPredicted[client] != g_iTick[client]) return false;
// There's no point in checking for fix if we were moving up, unless we want to do an uphill collision
if (g_vPreCollisionVelocity[client][2] > 0.0 && g_cvUphill.IntValue != UPHILL_LOSS) return false;
// If a collision was predicted this tick (and wasn't prevented by another fix alrady), no fix is needed.
// It's possible we actually have to run the edge bug fix and an incline fix in the same tick.
// If using the old Slopefix logic, do the fix regardless of necessity just like Slopefix
// so we can be sure to trigger a double boost if applicable.
if (g_iLastCollisionTick[client] == g_iTick[client] && !g_cvUseOldSlopefixLogic.BoolValue) return false;
// Make sure the ground is not level, otherwise a collision would do nothing important anyway.
if (nrm[2] == 1.0) return false;
// This velocity includes changes from player input this tick as well as
// the half tick of gravity applied before collision would occur.
float velocity[3];
velocity = g_vPreCollisionVelocity[client];
if (g_cvUseOldSlopefixLogic.BoolValue)
{
// The old slopefix did not consider basevelocity when calculating deflected velocity
SubtractVectors(velocity, g_vLastBaseVelocity[client], velocity);
}
float dot = nrm[0]*velocity[0] + nrm[1]*velocity[1];
if (dot >= 0)
{
// If going downhill, only adjust velocity if the downhill incline fix is on.
if (!g_cvDownhill.BoolValue) return false;
}
bool downhillFixIsBeneficial = false;
float newVelocity[3];
ClipVelocity(velocity, nrm, newVelocity);
if (newVelocity[0]*newVelocity[0] + newVelocity[1]*newVelocity[1] > velocity[0]*velocity[0] + velocity[1]*velocity[1])
{
downhillFixIsBeneficial = true;
}
if (dot < 0)
{
// If going uphill, only adjust velocity if uphill incline fix is set to loss mode
// OR if this is actually a case where the downhill incline fix is better.
if (!((downhillFixIsBeneficial && g_cvDownhill.BoolValue) || g_cvUphill.IntValue == UPHILL_LOSS)) return false;
}
DebugMsg(client, "DO FIX: Incline Collision (%s) (z-normal: %.3f)", downhillFixIsBeneficial ? "Downhill" : "Uphill", nrm[2]);
// Make sure Z velocity is zero since we are on the ground.
newVelocity[2] = 0.0;
// Since we are on the ground, we also don't need to FinishGravity().
if (g_cvUseOldSlopefixLogic.BoolValue)
{
// The old slopefix immediately moves basevelocity into local velocity to keep it from getting cleared.
// This results in double boosts as the player is likely still being influenced by the source of the basevelocity.
if (GetEntityFlags(client) & FL_BASEVELOCITY != 0)
{
float baseVelocity[3];
GetEntPropVector(client, Prop_Data, "m_vecBaseVelocity", baseVelocity);
AddVectors(newVelocity, baseVelocity, newVelocity);
}
TeleportEntity(client, NULL_VECTOR, NULL_VECTOR, newVelocity);
}
else
{
SetVelocity(client, newVelocity);
}
return true;
}
bool DoTelehopFix(int client)
{
if (!g_cvTelehop.BoolValue) return false;
if (g_iLastTickPredicted[client] != g_iTick[client]) return false;
if (g_iLastMapTeleportTick[client] != g_iTick[client]) return false;
// If the player was teleported two ticks in a row, don't do this fix because the player likely just passed
// through a speed-stopping teleport hub, and the map really did want to stop the player this way.
if (g_bMapTeleportedSequentialTicks[client]) return false;
// Check if we either collided this tick OR landed during this tick.
// Note that we could have landed this tick, lost Z velocity, then gotten teleported, making us no longer on the ground.
// This is why we need to remember if we landed mid-tick rather than just check ground state now.
if (!(g_iLastCollisionTick[client] == g_iTick[client] || g_iLastLandTick[client] == g_iTick[client])) return false;
// At this point, ideally we should check if the teleport would have triggered "after" the collision (within the tick duration),
// and, if so, not restore speed, but properly doing that would involve completely duplicating TryPlayerMove but with
// multiple intermediate trigger checks which is probably a bad idea... better to just give people the benefit of the doubt sometimes.
// Restore the velocity we would have had if we didn't collide or land.
float newVelocity[3];
newVelocity = g_vPreCollisionVelocity[client];
// Don't forget to add the second half-tick of gravity ourselves.
FinishGravity(client, newVelocity);
float origin[3];
GetEntPropVector(client, Prop_Data, "m_vecAbsOrigin", origin);
float mins[3], maxs[3];
GetEntPropVector(client, Prop_Data, "m_vecMins", mins);
GetEntPropVector(client, Prop_Data, "m_vecMaxs", maxs);
TR_TraceHullFilter(origin, origin, mins, maxs, MASK_PLAYERSOLID, PlayerFilter);
// If we appear to be "stuck" after teleporting (likely because the teleport destination
// was exactly on the ground), set velocity directly to avoid side-effects of
// TeleportEntity that can cause the player to really get stuck in the ground.
// This might only be an issue in CSS, but do it on CSGO too just to be safe.
bool dontUseTeleportEntity = TR_DidHit();
DebugMsg(client, "DO FIX: Telehop%s", dontUseTeleportEntity ? " (no TeleportEntity)" : "");
SetVelocity(client, newVelocity, dontUseTeleportEntity);
return true;
}
// PostThink works a little better than a ProcessMovement post hook because we need to wait for ProcessImpacts (trigger activation)
public void Hook_PlayerPostThink(int client)
{
if (!IsPlayerAlive(client)) return;
if (GetEntityMoveType(client) != MOVETYPE_WALK) return;
if (CheckWater(client)) return;
bool landed = GetEntPropEnt(client, Prop_Data, "m_hGroundEntity") != -1 && g_iLastGroundEnt[client] == -1;
float origin[3], landingMins[3], landingMaxs[3], nrm[3], landingPoint[3];
// Get info about the ground we landed on (if we need to do landing fixes).
if (landed && (g_cvTriggerjump.BoolValue || g_cvDownhill.BoolValue || g_cvUphill.IntValue == UPHILL_LOSS))
{
GetEntPropVector(client, Prop_Data, "m_vecAbsOrigin", origin);
GetEntPropVector(client, Prop_Data, "m_vecMins", landingMins);
GetEntPropVector(client, Prop_Data, "m_vecMaxs", landingMaxs);
float originBelow[3];
originBelow[0] = origin[0];
originBelow[1] = origin[1];
originBelow[2] = origin[2] - LAND_HEIGHT;
TR_TraceHullFilter(origin, originBelow, landingMins, landingMaxs, MASK_PLAYERSOLID, PlayerFilter);
if (!TR_DidHit())
{
// This should never happen, since we know we are on the ground.
landed = false;
}
else
{
TR_GetPlaneNormal(null, nrm);
if (nrm[2] < MIN_STANDABLE_ZNRM)
{
// This is rare, and how the incline fix should behave isn't entirely clear because maybe we should
// collide with multiple faces at once in this case, but let's just get the ground we officially
// landed on and use that for our ground normal.
// landingMins and landingMaxs will contain the final values used to find the ground after returning.
if (TracePlayerBBoxForGround(origin, originBelow, landingMins, landingMaxs))
{
TR_GetPlaneNormal(null, nrm);
}
else
{
// This should also never happen.
landed = false;
}
DebugMsg(client, "Used bounding box quadrant to find ground (z-normal: %.3f)", nrm[2]);
}
TR_GetEndPosition(landingPoint);
}
}
if (landed)
{
DoInclineCollisionFixes(client, nrm);
}
DoTelehopFix(client);
}
bool TracePlayerBBoxForGround(const float origin[3], const float originBelow[3], float mins[3], float maxs[3])
{
// See CGameMovement::TracePlayerBBoxForGround()
float origMins[3], origMaxs[3];
origMins = mins;
origMaxs = maxs;
float nrm[3];
mins = origMins;
// -x -y
maxs[0] = origMaxs[0] > 0.0 ? 0.0 : origMaxs[0];
maxs[1] = origMaxs[1] > 0.0 ? 0.0 : origMaxs[1];
maxs[2] = origMaxs[2];
TR_TraceHullFilter(origin, originBelow, mins, maxs, MASK_PLAYERSOLID, PlayerFilter);
if (TR_DidHit())
{
TR_GetPlaneNormal(null, nrm);
if (nrm[2] >= MIN_STANDABLE_ZNRM) return true;
}
// +x +y
mins[0] = origMins[0] < 0.0 ? 0.0 : origMins[0];
mins[1] = origMins[1] < 0.0 ? 0.0 : origMins[1];
mins[2] = origMins[2];
maxs = origMaxs;
TR_TraceHullFilter(origin, originBelow, mins, maxs, MASK_PLAYERSOLID, PlayerFilter);
if (TR_DidHit())
{
TR_GetPlaneNormal(null, nrm);
if (nrm[2] >= MIN_STANDABLE_ZNRM) return true;
}
// -x +y
mins[0] = origMins[0];
mins[1] = origMins[1] < 0.0 ? 0.0 : origMins[1];
mins[2] = origMins[2];
maxs[0] = origMaxs[0] > 0.0 ? 0.0 : origMaxs[0];
maxs[1] = origMaxs[1];
maxs[2] = origMaxs[2];
TR_TraceHullFilter(origin, originBelow, mins, maxs, MASK_PLAYERSOLID, PlayerFilter);
if (TR_DidHit())
{
TR_GetPlaneNormal(null, nrm);
if (nrm[2] >= MIN_STANDABLE_ZNRM) return true;
}
// +x -y
mins[0] = origMins[0] < 0.0 ? 0.0 : origMins[0];
mins[1] = origMins[1];
mins[2] = origMins[2];
maxs[0] = origMaxs[0];
maxs[1] = origMaxs[1] > 0.0 ? 0.0 : origMaxs[1];
maxs[2] = origMaxs[2];
TR_TraceHullFilter(origin, originBelow, mins, maxs, MASK_PLAYERSOLID, PlayerFilter);
if (TR_DidHit())
{
TR_GetPlaneNormal(null, nrm);
if (nrm[2] >= MIN_STANDABLE_ZNRM) return true;
}
return false;
}