sourcemod/sourcepawn/jit/x86/jit_x86.cpp

3013 lines
76 KiB
C++

/**
* vim: set ts=4 :
* =============================================================================
* SourceMod
* Copyright (C) 2004-2008 AlliedModders LLC. All rights reserved.
* =============================================================================
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License, version 3.0, as published by the
* Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*
* As a special exception, AlliedModders LLC gives you permission to link the
* code of this program (as well as its derivative works) to "Half-Life 2," the
* "Source Engine," the "SourcePawn JIT," and any Game MODs that run on software
* by the Valve Corporation. You must obey the GNU General Public License in
* all respects for all other code used. Additionally, AlliedModders LLC grants
* this exception to all derivative works. AlliedModders LLC defines further
* exceptions, found in LICENSE.txt (as of this writing, version JULY-31-2007),
* or <http://www.sourcemod.net/license.php>.
*
* Version: $Id$
*/
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include "jit_x86.h"
#include "opcode_helpers.h"
#include <x86_macros.h>
#include "../jit_version.h"
#include "../sp_vm_engine.h"
#include "../engine2.h"
#include "../BaseRuntime.h"
#include "../sp_vm_basecontext.h"
using namespace Knight;
#if defined USE_UNGEN_OPCODES
#include "ungen_opcodes.h"
#endif
JITX86 g_Jit;
KeCodeCache *g_pCodeCache = NULL;
ISourcePawnEngine *engine = &g_engine1;
inline sp_plugin_t *GETPLUGIN(sp_context_t *ctx)
{
return (sp_plugin_t *)(ctx->vm[JITVARS_PLUGIN]);
}
inline void WriteOp_Move_Pri(JitWriter *jit)
{
//mov eax, edx
IA32_Mov_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
}
inline void WriteOp_Move_Alt(JitWriter *jit)
{
//mov edx, eax
IA32_Mov_Reg_Rm(jit, AMX_REG_ALT, AMX_REG_PRI, MOD_REG);
}
inline void WriteOp_Xchg(JitWriter *jit)
{
//xchg eax, edx
IA32_Xchg_Eax_Reg(jit, AMX_REG_ALT);
}
inline void WriteOp_Push(JitWriter *jit)
{
//push stack, DAT offset based
//sub edi, 4
//mov ecx, [ebp+<val>]
//mov [edi], ecx
cell_t val = jit->read_cell();
IA32_Sub_Rm_Imm8(jit, AMX_REG_STK, 4, MOD_REG);
//optimize encoding a bit...
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, AMX_REG_DAT, (jit_int8_t)val);
} else {
IA32_Mov_Reg_Rm_Disp32(jit, AMX_REG_TMP, AMX_REG_DAT, val);
}
IA32_Mov_Rm_Reg(jit, AMX_REG_STK, AMX_REG_TMP, MOD_MEM_REG);
}
inline void WriteOp_Push_C(JitWriter *jit)
{
//push stack
//mov [edi-4], <val>
//sub edi, 4
cell_t val = jit->read_cell();
IA32_Mov_Rm_Imm32_Disp8(jit, AMX_REG_STK, val, -4);
IA32_Sub_Rm_Imm8(jit, AMX_REG_STK, 4, MOD_REG);
}
inline void WriteOp_Zero(JitWriter *jit)
{
//mov [ebp+<val>], 0
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Mov_Rm_Imm32_Disp8(jit, AMX_REG_DAT, 0, (jit_int8_t)val);
} else {
IA32_Mov_Rm_Imm32_Disp32(jit, AMX_REG_DAT, 0, val);
}
}
inline void WriteOp_Zero_S(JitWriter *jit)
{
//mov [ebx+<val>], 0
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Mov_Rm_Imm32_Disp8(jit, AMX_REG_FRM, 0, (jit_int8_t)val);
} else {
IA32_Mov_Rm_Imm32_Disp32(jit, AMX_REG_FRM, 0, val);
}
}
inline void WriteOp_Push_S(JitWriter *jit)
{
//push stack, FRM offset based
//sub edi, 4
//mov ecx, [ebx+<val>]
//mov [edi], ecx
cell_t val = jit->read_cell();
IA32_Sub_Rm_Imm8(jit, AMX_REG_STK, 4, MOD_REG);
//optimize encoding a bit...
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, AMX_REG_FRM, (jit_int8_t)val);
} else {
IA32_Mov_Reg_Rm_Disp32(jit, AMX_REG_TMP, AMX_REG_FRM, val);
}
IA32_Mov_Rm_Reg(jit, AMX_REG_STK, AMX_REG_TMP, MOD_MEM_REG);
}
inline void WriteOp_Push_Pri(JitWriter *jit)
{
//mov [edi-4], eax
//sub edi, 4
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_STK, AMX_REG_PRI, -4);
IA32_Sub_Rm_Imm8(jit, AMX_REG_STK, 4, MOD_REG);
}
inline void WriteOp_Push_Alt(JitWriter *jit)
{
//mov [edi-4], edx
//sub edi, 4
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_STK, AMX_REG_ALT, -4);
IA32_Sub_Rm_Imm8(jit, AMX_REG_STK, 4, MOD_REG);
}
inline void WriteOp_Push2_C(JitWriter *jit)
{
Macro_PushN_C(jit, 2);
}
inline void WriteOp_Push3_C(JitWriter *jit)
{
Macro_PushN_C(jit, 3);
}
inline void WriteOp_Push4_C(JitWriter *jit)
{
Macro_PushN_C(jit, 4);
}
inline void WriteOp_Push5_C(JitWriter *jit)
{
Macro_PushN_C(jit, 5);
}
inline void WriteOp_Push2_Adr(JitWriter *jit)
{
Macro_PushN_Addr(jit, 2);
}
inline void WriteOp_Push3_Adr(JitWriter *jit)
{
Macro_PushN_Addr(jit, 3);
}
inline void WriteOp_Push4_Adr(JitWriter *jit)
{
Macro_PushN_Addr(jit, 4);
}
inline void WriteOp_Push5_Adr(JitWriter *jit)
{
Macro_PushN_Addr(jit, 5);
}
inline void WriteOp_Push2_S(JitWriter *jit)
{
Macro_PushN_S(jit, 2);
}
inline void WriteOp_Push3_S(JitWriter *jit)
{
Macro_PushN_S(jit, 3);
}
inline void WriteOp_Push4_S(JitWriter *jit)
{
Macro_PushN_S(jit, 4);
}
inline void WriteOp_Push5_S(JitWriter *jit)
{
Macro_PushN_S(jit, 5);
}
inline void WriteOp_Push5(JitWriter *jit)
{
Macro_PushN(jit, 5);
}
inline void WriteOp_Push4(JitWriter *jit)
{
Macro_PushN(jit, 4);
}
inline void WriteOp_Push3(JitWriter *jit)
{
Macro_PushN(jit, 3);
}
inline void WriteOp_Push2(JitWriter *jit)
{
Macro_PushN(jit, 2);
}
inline void WriteOp_Zero_Pri(JitWriter *jit)
{
//xor eax, eax
IA32_Xor_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_PRI, MOD_REG);
}
inline void WriteOp_Zero_Alt(JitWriter *jit)
{
//xor edx, edx
IA32_Xor_Reg_Rm(jit, AMX_REG_ALT, AMX_REG_ALT, MOD_REG);
}
inline void WriteOp_Add(JitWriter *jit)
{
//add eax, edx
IA32_Add_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
}
inline void WriteOp_Sub(JitWriter *jit)
{
//sub eax, edx
IA32_Sub_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
}
inline void WriteOp_Sub_Alt(JitWriter *jit)
{
//neg eax
//add eax, edx
IA32_Neg_Rm(jit, AMX_REG_PRI, MOD_REG);
IA32_Add_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
}
inline void WriteOp_Proc(JitWriter *jit)
{
#if 0 /* :TODO: We no longer use this */
/* Specialized code to align this taking in account the function magic number */
jitoffs_t cur_offs = jit->get_outputpos();
jitoffs_t offset = ((cur_offs & 0xFFFFFFF8) + 8) - cur_offs;
if (!((offset + cur_offs) & 8))
{
offset += 8;
}
if (offset)
{
for (jit_uint32_t i=0; i<offset; i++)
{
jit->write_ubyte(IA32_INT3);
}
}
/* Write the info struct about this function */
jit->write_uint32(JIT_FUNCMAGIC);
jit->write_uint32(co->func_idx);
/* Now we have to backpatch our reloction offset! */
{
jitoffs_t offs = jit->get_inputpos() - sizeof(cell_t);
uint8_t *rebase = ((CompData *)jit->data)->rebase;
*(jitoffs_t *)(rebase + offs) = jit->get_outputpos();
}
/* Lastly, if we're writing, keep track of the function count */
if (jit->outbase)
{
co->func_idx++;
}
#endif
//push old frame on stack:
//mov ecx, [esi+frm]
//mov [edi-4], ecx
//sub edi, 8 ;extra un-used slot for non-existant CIP
IA32_Mov_Reg_Rm(jit, AMX_REG_TMP, AMX_REG_INFO, MOD_MEM_REG);
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_STK, AMX_REG_TMP, -4);
IA32_Sub_Rm_Imm8(jit, AMX_REG_STK, 8, MOD_REG);
//save frame:
//mov ecx, edi - get new frame
//mov ebx, edi - store frame back
//sub ecx, ebp - relocate local frame
//mov [esi+frm], ecx
IA32_Mov_Reg_Rm(jit, AMX_REG_TMP, AMX_REG_STK, MOD_REG);
IA32_Mov_Reg_Rm(jit, AMX_REG_FRM, AMX_REG_STK, MOD_REG);
IA32_Sub_Reg_Rm(jit, AMX_REG_TMP, AMX_REG_DAT, MOD_REG);
IA32_Mov_Rm_Reg(jit, AMX_REG_INFO, AMX_REG_TMP, MOD_MEM_REG);
}
inline void WriteOp_Lidx_B(JitWriter *jit)
{
cell_t val = jit->read_cell();
//shl eax, <val>
//add eax, edx
//mov eax, [ebp+eax]
IA32_Shl_Rm_Imm8(jit, AMX_REG_PRI, (jit_uint8_t)val, MOD_REG);
IA32_Add_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
Write_Check_VerifyAddr(jit, AMX_REG_PRI);
IA32_Mov_Reg_RmEBP_Disp_Reg(jit, AMX_REG_PRI, AMX_REG_DAT, AMX_REG_PRI, NOSCALE);
}
inline void WriteOp_Idxaddr_B(JitWriter *jit)
{
//shl eax, <val>
//add eax, edx
cell_t val = jit->read_cell();
IA32_Shl_Rm_Imm8(jit, AMX_REG_PRI, (jit_uint8_t)val, MOD_REG);
IA32_Add_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
}
inline void WriteOp_Shl(JitWriter *jit)
{
//mov ecx, edx
//shl eax, cl
IA32_Mov_Reg_Rm(jit, AMX_REG_TMP, AMX_REG_ALT, MOD_REG);
IA32_Shl_Rm_CL(jit, AMX_REG_PRI, MOD_REG);
}
inline void WriteOp_Shr(JitWriter *jit)
{
//mov ecx, edx
//shr eax, cl
IA32_Mov_Reg_Rm(jit, AMX_REG_TMP, AMX_REG_ALT, MOD_REG);
IA32_Shr_Rm_CL(jit, AMX_REG_PRI, MOD_REG);
}
inline void WriteOp_Sshr(JitWriter *jit)
{
//mov ecx, edx
//sar eax, cl
IA32_Mov_Reg_Rm(jit, AMX_REG_TMP, AMX_REG_ALT, MOD_REG);
IA32_Sar_Rm_CL(jit, AMX_REG_PRI, MOD_REG);
}
inline void WriteOp_Shl_C_Pri(JitWriter *jit)
{
//shl eax, <val>
jit_uint8_t val = (jit_uint8_t)jit->read_cell();
if (val == 1)
{
IA32_Shl_Rm_1(jit, AMX_REG_PRI, MOD_REG);
} else {
IA32_Shl_Rm_Imm8(jit, AMX_REG_PRI, val, MOD_REG);
}
}
inline void WriteOp_Shl_C_Alt(JitWriter *jit)
{
//shl edx, <val>
jit_uint8_t val = (jit_uint8_t)jit->read_cell();
if (val == 1)
{
IA32_Shl_Rm_1(jit, AMX_REG_ALT, MOD_REG);
} else {
IA32_Shl_Rm_Imm8(jit, AMX_REG_ALT, val, MOD_REG);
}
}
inline void WriteOp_Shr_C_Pri(JitWriter *jit)
{
//shr eax, <val>
jit_uint8_t val = (jit_uint8_t)jit->read_cell();
if (val == 1)
{
IA32_Shr_Rm_1(jit, AMX_REG_PRI, MOD_REG);
} else {
IA32_Shr_Rm_Imm8(jit, AMX_REG_PRI, val, MOD_REG);
}
}
inline void WriteOp_Shr_C_Alt(JitWriter *jit)
{
//shr edx, <val>
jit_uint8_t val = (jit_uint8_t)jit->read_cell();
if (val == 1)
{
IA32_Shr_Rm_1(jit, AMX_REG_ALT, MOD_REG);
} else {
IA32_Shr_Rm_Imm8(jit, AMX_REG_ALT, val, MOD_REG);
}
}
inline void WriteOp_SMul(JitWriter *jit)
{
//mov ecx, edx
//imul edx
//mov edx, ecx
IA32_Mov_Reg_Rm(jit, AMX_REG_TMP, AMX_REG_ALT, MOD_REG);
IA32_IMul_Rm(jit, AMX_REG_ALT, MOD_REG);
IA32_Mov_Reg_Rm(jit, AMX_REG_ALT, AMX_REG_TMP, MOD_REG);
}
inline void WriteOp_Not(JitWriter *jit)
{
//test eax, eax
//mov eax, 0
//sete al
IA32_Test_Rm_Reg(jit, AMX_REG_PRI, AMX_REG_PRI, MOD_REG);
IA32_Mov_Reg_Imm32(jit, AMX_REG_PRI, 0);
IA32_SetCC_Rm8(jit, AMX_REG_PRI, CC_E);
}
inline void WriteOp_Neg(JitWriter *jit)
{
//neg eax
IA32_Neg_Rm(jit, AMX_REG_PRI, MOD_REG);
}
inline void WriteOp_Xor(JitWriter *jit)
{
//xor eax, edx
IA32_Xor_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
}
inline void WriteOp_Or(JitWriter *jit)
{
//or eax, edx
IA32_Or_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
}
inline void WriteOp_And(JitWriter *jit)
{
//and eax, edx
IA32_And_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
}
inline void WriteOp_Invert(JitWriter *jit)
{
//not eax
IA32_Not_Rm(jit, AMX_REG_PRI, MOD_REG);
}
inline void WriteOp_Add_C(JitWriter *jit)
{
//add eax, <val>
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
IA32_Add_Rm_Imm8(jit, AMX_REG_PRI, (jit_int8_t)val, MOD_REG);
else
IA32_Add_Eax_Imm32(jit, val);
}
inline void WriteOp_SMul_C(JitWriter *jit)
{
//imul eax, <val>
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
IA32_IMul_Reg_Imm8(jit, AMX_REG_PRI, MOD_REG, (jit_int8_t)val);
else
IA32_IMul_Reg_Imm32(jit, AMX_REG_PRI, MOD_REG, val);
}
inline void WriteOp_Sign_Pri(JitWriter *jit)
{
//shl eax, 24
//sar eax, 24
IA32_Shl_Rm_Imm8(jit, AMX_REG_PRI, 24, MOD_REG);
IA32_Sar_Rm_Imm8(jit, AMX_REG_PRI, 24, MOD_REG);
}
inline void WriteOp_Sign_Alt(JitWriter *jit)
{
//shl edx, 24
//sar edx, 24
IA32_Shl_Rm_Imm8(jit, AMX_REG_ALT, 24, MOD_REG);
IA32_Sar_Rm_Imm8(jit, AMX_REG_ALT, 24, MOD_REG);
}
inline void WriteOp_Eq(JitWriter *jit)
{
//cmp eax, edx ; PRI == ALT ?
//mov eax, 0
//sete al
IA32_Cmp_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
IA32_Mov_Reg_Imm32(jit, AMX_REG_PRI, 0);
IA32_SetCC_Rm8(jit, AMX_REG_PRI, CC_E);
}
inline void WriteOp_Neq(JitWriter *jit)
{
//cmp eax, edx ; PRI != ALT ?
//mov eax, 0
//setne al
IA32_Cmp_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
IA32_Mov_Reg_Imm32(jit, AMX_REG_PRI, 0);
IA32_SetCC_Rm8(jit, AMX_REG_PRI, CC_NE);
}
inline void WriteOp_Sless(JitWriter *jit)
{
//cmp eax, edx ; PRI < ALT ? (signed)
//mov eax, 0
//setl al
IA32_Cmp_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
IA32_Mov_Reg_Imm32(jit, AMX_REG_PRI, 0);
IA32_SetCC_Rm8(jit, AMX_REG_PRI, CC_L);
}
inline void WriteOp_Sleq(JitWriter *jit)
{
//cmp eax, edx ; PRI <= ALT ? (signed)
//mov eax, 0
//setle al
IA32_Cmp_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
IA32_Mov_Reg_Imm32(jit, AMX_REG_PRI, 0);
IA32_SetCC_Rm8(jit, AMX_REG_PRI, CC_LE);
}
inline void WriteOp_Sgrtr(JitWriter *jit)
{
//cmp eax, edx ; PRI > ALT ? (signed)
//mov eax, 0
//setg al
IA32_Cmp_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
IA32_Mov_Reg_Imm32(jit, AMX_REG_PRI, 0);
IA32_SetCC_Rm8(jit, AMX_REG_PRI, CC_G);
}
inline void WriteOp_Sgeq(JitWriter *jit)
{
//cmp eax, edx ; PRI >= ALT ? (signed)
//mov eax, 0
//setge al
IA32_Cmp_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
IA32_Mov_Reg_Imm32(jit, AMX_REG_PRI, 0);
IA32_SetCC_Rm8(jit, AMX_REG_PRI, CC_GE);
}
inline void WriteOp_Eq_C_Pri(JitWriter *jit)
{
//cmp eax, <val> ; PRI == value ?
//mov eax, 0
//sete al
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
IA32_Cmp_Rm_Imm8(jit, MOD_REG, AMX_REG_PRI, (jit_int8_t)val);
else
IA32_Cmp_Eax_Imm32(jit, val);
IA32_Mov_Reg_Imm32(jit, AMX_REG_PRI, 0);
IA32_SetCC_Rm8(jit, AMX_REG_PRI, CC_E);
}
inline void WriteOp_Eq_C_Alt(JitWriter *jit)
{
//xor eax, eax
//cmp edx, <val> ; ALT == value ?
//sete al
cell_t val = jit->read_cell();
IA32_Xor_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_PRI, MOD_REG);
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
IA32_Cmp_Rm_Imm8(jit, MOD_REG, AMX_REG_ALT, (jit_int8_t)val);
else
IA32_Cmp_Rm_Imm32(jit, MOD_REG, AMX_REG_ALT, val);
IA32_SetCC_Rm8(jit, AMX_REG_PRI, CC_E);
}
inline void WriteOp_Inc_Pri(JitWriter *jit)
{
//add eax, 1
IA32_Add_Rm_Imm8(jit, AMX_REG_PRI, 1, MOD_REG);
}
inline void WriteOp_Inc_Alt(JitWriter *jit)
{
//add edx, 1
IA32_Add_Rm_Imm8(jit, AMX_REG_ALT, 1, MOD_REG);
}
inline void WriteOp_Inc(JitWriter *jit)
{
//add [ebp+<val>], 1
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
IA32_Add_Rm_Imm8_Disp8(jit, AMX_REG_DAT, 1, (jit_int8_t)val);
else
IA32_Add_Rm_Imm8_Disp32(jit, AMX_REG_DAT, 1, val);
}
inline void WriteOp_Inc_S(JitWriter *jit)
{
//add [ebx+<val>], 1
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
IA32_Add_Rm_Imm8_Disp8(jit, AMX_REG_FRM, 1, (jit_int8_t)val);
else
IA32_Add_Rm_Imm8_Disp32(jit, AMX_REG_FRM, 1, val);
}
inline void WriteOp_Inc_I(JitWriter *jit)
{
//add [ebp+eax], 1
IA32_Add_RmEBP_Imm8_Disp_Reg(jit, AMX_REG_DAT, AMX_REG_PRI, NOSCALE, 1);
}
inline void WriteOp_Dec_Pri(JitWriter *jit)
{
//sub eax, 1
IA32_Sub_Rm_Imm8(jit, AMX_REG_PRI, 1, MOD_REG);
}
inline void WriteOp_Dec_Alt(JitWriter *jit)
{
//sub edx, 1
IA32_Sub_Rm_Imm8(jit, AMX_REG_ALT, 1, MOD_REG);
}
inline void WriteOp_Dec(JitWriter *jit)
{
//sub [ebp+<val>], 1
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Sub_Rm_Imm8_Disp8(jit, AMX_REG_DAT, 1, (jit_int8_t)val);
} else {
IA32_Sub_Rm_Imm8_Disp32(jit, AMX_REG_DAT, 1, val);
}
}
inline void WriteOp_Dec_S(JitWriter *jit)
{
//sub [ebx+<val>], 1
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Sub_Rm_Imm8_Disp8(jit, AMX_REG_FRM, 1, (jit_int8_t)val);
} else {
IA32_Sub_Rm_Imm8_Disp32(jit, AMX_REG_FRM, 1, val);
}
}
inline void WriteOp_Dec_I(JitWriter *jit)
{
//sub [ebp+eax], 1
IA32_Sub_RmEBP_Imm8_Disp_Reg(jit, AMX_REG_DAT, AMX_REG_PRI, NOSCALE, 1);
}
inline void WriteOp_Load_Pri(JitWriter *jit)
{
//mov eax, [ebp+<val>]
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_PRI, AMX_REG_DAT, (jit_int8_t)val);
} else {
IA32_Mov_Reg_Rm_Disp32(jit, AMX_REG_PRI, AMX_REG_DAT, val);
}
}
inline void WriteOp_Load_Alt(JitWriter *jit)
{
//mov edx, [ebp+<val>]
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_ALT, AMX_REG_DAT, (jit_int8_t)val);
} else {
IA32_Mov_Reg_Rm_Disp32(jit, AMX_REG_ALT, AMX_REG_DAT, val);
}
}
inline void WriteOp_Load_S_Pri(JitWriter *jit)
{
//mov eax, [ebx+<val>]
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_PRI, AMX_REG_FRM, (jit_int8_t)val);
} else {
IA32_Mov_Reg_Rm_Disp32(jit, AMX_REG_PRI, AMX_REG_FRM, val);
}
}
inline void WriteOp_Load_S_Alt(JitWriter *jit)
{
//mov edx, [ebx+<val>]
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_ALT, AMX_REG_FRM, (jit_int8_t)val);
} else {
IA32_Mov_Reg_Rm_Disp32(jit, AMX_REG_ALT, AMX_REG_FRM, val);
}
}
inline void WriteOp_Lref_Pri(JitWriter *jit)
{
//mov eax, [ebp+<val>]
//mov eax, [ebp+eax]
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_PRI, AMX_REG_DAT, (jit_int8_t)val);
} else {
IA32_Mov_Reg_Rm_Disp32(jit, AMX_REG_PRI, AMX_REG_DAT, val);
}
IA32_Mov_Reg_RmEBP_Disp_Reg(jit, AMX_REG_PRI, AMX_REG_DAT, AMX_REG_PRI, NOSCALE);
}
inline void WriteOp_Lref_Alt(JitWriter *jit)
{
//mov edx, [ebp+<val>]
//mov edx, [ebp+edx]
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_ALT, AMX_REG_DAT, (jit_int8_t)val);
} else {
IA32_Mov_Reg_Rm_Disp32(jit, AMX_REG_ALT, AMX_REG_DAT, val);
}
IA32_Mov_Reg_RmEBP_Disp_Reg(jit, AMX_REG_ALT, AMX_REG_DAT, AMX_REG_ALT, NOSCALE);
}
inline void WriteOp_Lref_S_Pri(JitWriter *jit)
{
//mov eax, [ebx+<val>]
//mov eax, [ebp+eax]
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_PRI, AMX_REG_FRM, (jit_int8_t)val);
} else {
IA32_Mov_Reg_Rm_Disp32(jit, AMX_REG_PRI, AMX_REG_FRM, val);
}
IA32_Mov_Reg_RmEBP_Disp_Reg(jit, AMX_REG_PRI, AMX_REG_DAT, AMX_REG_PRI, NOSCALE);
}
inline void WriteOp_Lref_S_Alt(JitWriter *jit)
{
//mov edx, [ebx+<val>]
//mov edx, [ebp+edx]
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_ALT, AMX_REG_FRM, (jit_int8_t)val);
} else {
IA32_Mov_Reg_Rm_Disp32(jit, AMX_REG_ALT, AMX_REG_FRM, val);
}
IA32_Mov_Reg_RmEBP_Disp_Reg(jit, AMX_REG_ALT, AMX_REG_DAT, AMX_REG_ALT, NOSCALE);
}
inline void WriteOp_Const_Pri(JitWriter *jit)
{
//mov eax, <val>
cell_t val = jit->read_cell();
IA32_Mov_Reg_Imm32(jit, AMX_REG_PRI, val);
}
inline void WriteOp_Const_Alt(JitWriter *jit)
{
//mov edx, <val>
cell_t val = jit->read_cell();
IA32_Mov_Reg_Imm32(jit, AMX_REG_ALT, val);
}
inline void WriteOp_Addr_Pri(JitWriter *jit)
{
//mov eax, [esi+frm]
//add eax, <val>
cell_t val = jit->read_cell();
IA32_Mov_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_INFO, MOD_MEM_REG);
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Add_Rm_Imm8(jit, AMX_REG_PRI, (jit_int8_t)val, MOD_REG);
} else {
IA32_Add_Eax_Imm32(jit, val);
}
}
inline void WriteOp_Addr_Alt(JitWriter *jit)
{
//mov edx, [esi+frm]
//add edx, <val>
cell_t val = jit->read_cell();
IA32_Mov_Reg_Rm(jit, AMX_REG_ALT, AMX_REG_INFO, MOD_MEM_REG);
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Add_Rm_Imm8(jit, AMX_REG_ALT, (jit_int8_t)val, MOD_REG);
} else {
IA32_Add_Rm_Imm32(jit, AMX_REG_ALT, val, MOD_REG);
}
}
inline void WriteOp_Stor_Pri(JitWriter *jit)
{
//mov [ebp+<val>], eax
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_DAT, AMX_REG_PRI, (jit_int8_t)val);
} else {
IA32_Mov_Rm_Reg_Disp32(jit, AMX_REG_DAT, AMX_REG_PRI, val);
}
}
inline void WriteOp_Stor_Alt(JitWriter *jit)
{
//mov [ebp+<val>], edx
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_DAT, AMX_REG_ALT, (jit_int8_t)val);
} else {
IA32_Mov_Rm_Reg_Disp32(jit, AMX_REG_DAT, AMX_REG_ALT, val);
}
}
inline void WriteOp_Stor_S_Pri(JitWriter *jit)
{
//mov [ebx+<val>], eax
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_FRM, AMX_REG_PRI, (jit_int8_t)val);
} else {
IA32_Mov_Rm_Reg_Disp32(jit, AMX_REG_FRM, AMX_REG_PRI, val);
}
}
inline void WriteOp_Stor_S_Alt(JitWriter *jit)
{
//mov [ebx+<val>], edx
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_FRM, AMX_REG_ALT, (jit_int8_t)val);
} else {
IA32_Mov_Rm_Reg_Disp32(jit, AMX_REG_FRM, AMX_REG_ALT, val);
}
}
inline void WriteOp_Idxaddr(JitWriter *jit)
{
//lea eax, [edx+4*eax]
IA32_Lea_Reg_DispRegMult(jit, AMX_REG_PRI, AMX_REG_ALT, AMX_REG_PRI, SCALE4);
}
inline void WriteOp_Sref_Pri(JitWriter *jit)
{
//mov ecx, [ebp+<val>]
//mov [ebp+ecx], eax
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, AMX_REG_DAT, (jit_int8_t)val);
} else {
IA32_Mov_Reg_Rm_Disp32(jit, AMX_REG_TMP, AMX_REG_DAT, val);
}
IA32_Mov_RmEBP_Reg_Disp_Reg(jit, AMX_REG_DAT, AMX_REG_TMP, NOSCALE, AMX_REG_PRI);
}
inline void WriteOp_Sref_Alt(JitWriter *jit)
{
//mov ecx, [ebp+<val>]
//mov [ebp+ecx], edx
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, AMX_REG_DAT, (jit_int8_t)val);
} else {
IA32_Mov_Reg_Rm_Disp32(jit, AMX_REG_TMP, AMX_REG_DAT, val);
}
IA32_Mov_RmEBP_Reg_Disp_Reg(jit, AMX_REG_DAT, AMX_REG_TMP, NOSCALE, AMX_REG_ALT);
}
inline void WriteOp_Sref_S_Pri(JitWriter *jit)
{
//mov ecx, [ebx+<val>]
//mov [ebp+ecx], eax
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, AMX_REG_FRM, (jit_int8_t)val);
} else {
IA32_Mov_Reg_Rm_Disp32(jit, AMX_REG_TMP, AMX_REG_FRM, val);
}
IA32_Mov_RmEBP_Reg_Disp_Reg(jit, AMX_REG_DAT, AMX_REG_TMP, NOSCALE, AMX_REG_PRI);
}
inline void WriteOp_Sref_S_Alt(JitWriter *jit)
{
//mov ecx, [ebx+<val>]
//mov [ebp+ecx], edx
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, AMX_REG_FRM, (jit_int8_t)val);
} else {
IA32_Mov_Reg_Rm_Disp32(jit, AMX_REG_TMP, AMX_REG_FRM, val);
}
IA32_Mov_RmEBP_Reg_Disp_Reg(jit, AMX_REG_DAT, AMX_REG_TMP, NOSCALE, AMX_REG_ALT);
}
inline void WriteOp_Pop_Pri(JitWriter *jit)
{
//mov eax, [edi]
//add edi, 4
IA32_Mov_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_STK, MOD_MEM_REG);
IA32_Add_Rm_Imm8(jit, AMX_REG_STK, 4, MOD_REG);
}
inline void WriteOp_Pop_Alt(JitWriter *jit)
{
//mov edx, [edi]
//add edi, 4
IA32_Mov_Reg_Rm(jit, AMX_REG_ALT, AMX_REG_STK, MOD_MEM_REG);
IA32_Add_Rm_Imm8(jit, AMX_REG_STK, 4, MOD_REG);
}
inline void WriteOp_Swap_Pri(JitWriter *jit)
{
//add [edi], eax
//sub eax, [edi]
//add [edi], eax
//neg eax
IA32_Add_Rm_Reg(jit, AMX_REG_STK, AMX_REG_PRI, MOD_MEM_REG);
IA32_Sub_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_STK, MOD_MEM_REG);
IA32_Add_Rm_Reg(jit, AMX_REG_STK, AMX_REG_PRI, MOD_MEM_REG);
IA32_Neg_Rm(jit, AMX_REG_PRI, MOD_REG);
}
inline void WriteOp_Swap_Alt(JitWriter *jit)
{
//add [edi], edx
//sub edx, [edi]
//add [edi], edx
//neg edx
IA32_Add_Rm_Reg(jit, AMX_REG_STK, AMX_REG_ALT, MOD_MEM_REG);
IA32_Sub_Reg_Rm(jit, AMX_REG_ALT, AMX_REG_STK, MOD_MEM_REG);
IA32_Add_Rm_Reg(jit, AMX_REG_STK, AMX_REG_ALT, MOD_MEM_REG);
IA32_Neg_Rm(jit, AMX_REG_ALT, MOD_REG);
}
inline void WriteOp_PushAddr(JitWriter *jit)
{
//mov ecx, [esi+frm] ;get address (offset from frame)
//sub edi, 4
//add ecx, <val>
//mov [edi], ecx
cell_t val = jit->read_cell();
IA32_Mov_Reg_Rm(jit, AMX_REG_TMP, AMX_REG_INFO, MOD_MEM_REG);
IA32_Sub_Rm_Imm8(jit, AMX_REG_STK, 4, MOD_REG);
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Add_Rm_Imm8(jit, AMX_REG_TMP, (jit_int8_t)val, MOD_REG);
} else {
IA32_Add_Rm_Imm32(jit, AMX_REG_TMP, val, MOD_REG);
}
IA32_Mov_Rm_Reg(jit, AMX_REG_STK, AMX_REG_TMP, MOD_MEM_REG);
}
inline void WriteOp_Movs(JitWriter *jit)
{
//cld
//push esi
//push edi
//lea esi, [ebp+eax]
//lea edi, [ebp+edx]
//if dword:
// mov ecx, dword
// rep movsd
//if byte:
// mov ecx, byte
// rep movsb
//pop edi
//pop esi
cell_t val = jit->read_cell();
unsigned int dwords = val >> 2;
unsigned int bytes = val & 0x3;
IA32_Cld(jit);
IA32_Push_Reg(jit, REG_ESI);
IA32_Push_Reg(jit, REG_EDI);
IA32_Lea_Reg_DispEBPRegMult(jit, REG_ESI, AMX_REG_DAT, AMX_REG_PRI, NOSCALE);
IA32_Lea_Reg_DispEBPRegMult(jit, REG_EDI, AMX_REG_DAT, AMX_REG_ALT, NOSCALE);
if (dwords)
{
IA32_Mov_Reg_Imm32(jit, REG_ECX, dwords);
IA32_Rep(jit);
IA32_Movsd(jit);
}
if (bytes)
{
IA32_Mov_Reg_Imm32(jit, REG_ECX, bytes);
IA32_Rep(jit);
IA32_Movsb(jit);
}
IA32_Pop_Reg(jit, REG_EDI);
IA32_Pop_Reg(jit, REG_ESI);
}
inline void WriteOp_Fill(JitWriter *jit)
{
//push edi
//lea edi, [ebp+edx]
//mov ecx, <val> >> 2
//cld
//rep stosd
//pop edi
unsigned int val = jit->read_cell() >> 2;
IA32_Push_Reg(jit, REG_EDI);
IA32_Lea_Reg_DispEBPRegMult(jit, REG_EDI, AMX_REG_DAT, AMX_REG_ALT, NOSCALE);
IA32_Mov_Reg_Imm32(jit, REG_ECX, val);
IA32_Cld(jit);
IA32_Rep(jit);
IA32_Stosd(jit);
IA32_Pop_Reg(jit, REG_EDI);
}
inline void WriteOp_GenArray(JitWriter *jit, bool autozero)
{
cell_t val = jit->read_cell();
if (val == 1)
{
/* flat array. we can generate this without indirection tables. */
/* Note that we can overwrite ALT because technically STACK should be destroying ALT */
//mov edx, [esi+info.heap]
//mov ecx, [edi]
//mov [edi], edx ;store base of array into stack
//lea edx, [edx+ecx*4] ;get the final new heap pointer
//mov [esi+info.heap], edx ;store heap pointer back
//add edx, ebp ;relocate
//cmp edx, edi ;compare against stack pointer
//jae :error ;error out if not enough space
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_ALT, AMX_REG_INFO, AMX_INFO_HEAP);
IA32_Mov_Reg_Rm(jit, AMX_REG_TMP, AMX_REG_STK, MOD_MEM_REG);
IA32_Mov_Rm_Reg(jit, AMX_REG_STK, AMX_REG_ALT, MOD_MEM_REG);
IA32_Lea_Reg_DispRegMult(jit, AMX_REG_ALT, AMX_REG_ALT, AMX_REG_TMP, SCALE4);
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_INFO, AMX_REG_ALT, AMX_INFO_HEAP);
IA32_Add_Reg_Rm(jit, AMX_REG_ALT, AMX_REG_DAT, MOD_REG);
IA32_Cmp_Reg_Rm(jit, AMX_REG_ALT, AMX_REG_STK, MOD_REG);
IA32_Jump_Cond_Imm32_Rel(jit, CC_AE, ((CompData *)jit->data)->jit_error_heaplow);
WriteOp_Tracker_Push_Reg(jit, REG_ECX);
if (autozero)
{
/* Zero out the array - inline a quick fill */
//push eax ;save pri
//push edi ;save stk
//xor eax, eax ;zero source
//mov edi, [edi] ;get heap ptr out of the stack
//add edi, ebp ;relocate
//cld ;clear direction flag
//rep stosd ;copy (note: ECX is sane from above)
//pop edi ;pop stk
//pop eax ;pop pri
IA32_Push_Reg(jit, REG_EAX);
IA32_Push_Reg(jit, REG_EDI);
IA32_Xor_Reg_Rm(jit, REG_EAX, REG_EAX, MOD_REG);
IA32_Mov_Reg_Rm(jit, REG_EDI, REG_EDI, MOD_MEM_REG);
IA32_Add_Reg_Rm(jit, REG_EDI, REG_EBP, MOD_REG);
IA32_Cld(jit);
IA32_Rep(jit);
IA32_Stosd(jit);
IA32_Pop_Reg(jit, REG_EDI);
IA32_Pop_Reg(jit, REG_EAX);
}
} else {
//mov ecx, num_dims
//mov edx, 0/1
//call [genarray]
IA32_Mov_Reg_Imm32(jit, AMX_REG_TMP, val);
if (autozero)
{
IA32_Mov_Reg_Imm32(jit, REG_EDX, 1);
} else {
IA32_Mov_Reg_Imm32(jit, REG_EDX, 0);
}
jitoffs_t call = IA32_Call_Imm32(jit, 0);
IA32_Write_Jump32_Abs(jit, call, g_Jit.GetGenArrayIntrinsic());
}
}
inline void WriteOp_Load_Both(JitWriter *jit)
{
WriteOp_Load_Pri(jit);
WriteOp_Load_Alt(jit);
}
inline void WriteOp_Load_S_Both(JitWriter *jit)
{
WriteOp_Load_S_Pri(jit);
WriteOp_Load_S_Alt(jit);
}
inline void WriteOp_Const(JitWriter *jit)
{
//mov [ebp+<addr>], <val>
cell_t addr = jit->read_cell();
cell_t val = jit->read_cell();
if (addr <= SCHAR_MAX && addr >= SCHAR_MIN)
{
IA32_Mov_Rm_Imm32_Disp8(jit, AMX_REG_DAT, val, (jit_int8_t)addr);
} else {
IA32_Mov_Rm_Imm32_Disp32(jit, AMX_REG_DAT, val, addr);
}
}
inline void WriteOp_Const_S(JitWriter *jit)
{
//mov [ebx+<offs>], <val>
cell_t offs = jit->read_cell();
cell_t val = jit->read_cell();
if (offs <= SCHAR_MAX && offs >= SCHAR_MIN)
{
IA32_Mov_Rm_Imm32_Disp8(jit, AMX_REG_FRM, val, (jit_int8_t)offs);
} else {
IA32_Mov_Rm_Imm32_Disp32(jit, AMX_REG_FRM, val, offs);
}
}
inline void WriteOp_Load_I(JitWriter *jit)
{
//mov eax, [ebp+eax]
Write_Check_VerifyAddr(jit, AMX_REG_PRI);
IA32_Mov_Reg_RmEBP_Disp_Reg(jit, AMX_REG_PRI, AMX_REG_DAT, AMX_REG_PRI, NOSCALE);
}
inline void WriteOp_Lodb_I(JitWriter *jit)
{
Write_Check_VerifyAddr(jit, AMX_REG_PRI);
//mov eax, [ebp+eax]
IA32_Mov_Reg_RmEBP_Disp_Reg(jit, AMX_REG_PRI, AMX_REG_DAT, AMX_REG_PRI, NOSCALE);
//and eax, <bitmask>
cell_t val = jit->read_cell();
switch(val)
{
case 1:
{
IA32_And_Eax_Imm32(jit, 0x000000FF);
break;
}
case 2:
{
IA32_And_Eax_Imm32(jit, 0x0000FFFF);
break;
}
}
}
inline void WriteOp_Stor_I(JitWriter *jit)
{
//mov [ebp+edx], eax
Write_Check_VerifyAddr(jit, AMX_REG_ALT);
IA32_Mov_RmEBP_Reg_Disp_Reg(jit, AMX_REG_DAT, AMX_REG_ALT, NOSCALE, AMX_REG_PRI);
}
inline void WriteOp_Strb_I(JitWriter *jit)
{
Write_Check_VerifyAddr(jit, AMX_REG_ALT);
//mov [ebp+edx], eax
cell_t val = jit->read_cell();
switch (val)
{
case 1:
{
IA32_Mov_Rm8EBP_Reg_Disp_Reg(jit, AMX_REG_DAT, AMX_REG_ALT, NOSCALE, AMX_REG_PRI);
break;
}
case 2:
{
IA32_Mov_Rm16EBP_Reg_Disp_Reg(jit, AMX_REG_DAT, AMX_REG_ALT, NOSCALE, AMX_REG_PRI);
break;
}
case 4:
{
IA32_Mov_RmEBP_Reg_Disp_Reg(jit, AMX_REG_DAT, AMX_REG_ALT, NOSCALE, AMX_REG_PRI);
break;
}
}
}
inline void WriteOp_Lidx(JitWriter *jit)
{
//lea eax, [edx+4*eax]
//mov eax, [ebp+eax]
IA32_Lea_Reg_DispRegMult(jit, AMX_REG_PRI, AMX_REG_ALT, AMX_REG_PRI, SCALE4);
Write_Check_VerifyAddr(jit, AMX_REG_PRI);
IA32_Mov_Reg_RmEBP_Disp_Reg(jit, AMX_REG_PRI, AMX_REG_DAT, AMX_REG_PRI, NOSCALE);
}
inline void WriteOp_Stack(JitWriter *jit)
{
//add edi, <val>
cell_t val = jit->read_cell();
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Add_Rm_Imm8(jit, AMX_REG_STK, (jit_int8_t)val, MOD_REG);
} else {
IA32_Add_Rm_Imm32(jit, AMX_REG_STK, val, MOD_REG);
}
if (val > 0)
{
Write_CheckStack_Min(jit);
} else if (val < 0) {
Write_CheckStack_Low(jit);
}
}
inline void WriteOp_StackAdjust(JitWriter *jit)
{
cell_t val = jit->read_cell();
assert(val <= 0);
//lea edi, [ebx-val]
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Lea_DispRegImm8(jit, AMX_REG_STK, AMX_REG_FRM, val);
}
else
{
IA32_Lea_DispRegImm32(jit, AMX_REG_STK, AMX_REG_FRM, val);
}
/* We assume the compiler has generated good code --
* That is, we do not bother validating this amount!
*/
}
inline void WriteOp_Heap(JitWriter *jit)
{
//mov edx, [esi+hea]
//add [esi+hea], <val>
cell_t val = jit->read_cell();
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_ALT, AMX_REG_INFO, AMX_INFO_HEAP);
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Add_Rm_Imm8_Disp8(jit, AMX_REG_INFO, (jit_int8_t)val, AMX_INFO_HEAP);
} else {
IA32_Add_Rm_Imm32_Disp8(jit, AMX_REG_INFO, val, AMX_INFO_HEAP);
}
/* NOTE: Backwards from op.stack */
if (val > 0)
{
Write_CheckHeap_Low(jit);
} else if (val < 0) {
Write_CheckHeap_Min(jit);
}
}
inline void WriteOp_SDiv(JitWriter *jit)
{
//mov ecx, edx
//mov edx, eax
//sar edx, 31
//idiv ecx
IA32_Mov_Reg_Rm(jit, AMX_REG_TMP, AMX_REG_ALT, MOD_REG);
IA32_Mov_Reg_Rm(jit, AMX_REG_ALT, AMX_REG_PRI, MOD_REG);
IA32_Sar_Rm_Imm8(jit, AMX_REG_ALT, 31, MOD_REG);
Write_Check_DivZero(jit, AMX_REG_TMP);
IA32_IDiv_Rm(jit, AMX_REG_TMP, MOD_REG);
}
inline void WriteOp_SDiv_Alt(JitWriter *jit)
{
//mov ecx, eax
//mov eax, edx
//sar edx, 31
//idiv ecx
IA32_Mov_Reg_Rm(jit, AMX_REG_TMP, AMX_REG_PRI, MOD_REG);
IA32_Mov_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
IA32_Sar_Rm_Imm8(jit, AMX_REG_ALT, 31, MOD_REG);
Write_Check_DivZero(jit, AMX_REG_TMP);
IA32_IDiv_Rm(jit, AMX_REG_TMP, MOD_REG);
}
inline void WriteOp_Retn(JitWriter *jit)
{
//mov ebx, [edi+4] - get old frm
//add edi, 8 - pop stack
//mov [esi+frm], ebx - restore frame pointer
//add ebx, ebp - relocate
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_FRM, AMX_REG_STK, 4);
IA32_Add_Rm_Imm8(jit, AMX_REG_STK, 8, MOD_REG);
IA32_Mov_Rm_Reg(jit, AMX_REG_INFO, AMX_REG_FRM, MOD_MEM_REG);
IA32_Add_Reg_Rm(jit, AMX_REG_FRM, AMX_REG_DAT, MOD_REG);
/* pop params */
//mov ecx, [edi]
//lea edi, [edi+ecx*4+4]
IA32_Mov_Reg_Rm(jit, AMX_REG_TMP, AMX_REG_STK, MOD_MEM_REG);
IA32_Lea_Reg_DispRegMultImm8(jit, AMX_REG_STK, AMX_REG_STK, AMX_REG_TMP, SCALE4, 4);
//ret - return (EIP on real stack!)
IA32_Return(jit);
}
void ProfCallGate_Begin(sp_context_t *ctx, const char *name)
{
((IProfiler *)ctx->vm[JITVARS_PROFILER])->OnFunctionBegin((IPluginContext *)ctx->vm[JITVARS_BASECTX], name);
}
void ProfCallGate_End(sp_context_t *ctx)
{
((IProfiler *)ctx->vm[JITVARS_PROFILER])->OnFunctionEnd();
}
const char *find_func_name(sp_plugin_t *plugin, uint32_t offs)
{
uint32_t max, iter;
sp_fdbg_symbol_t *sym;
sp_fdbg_arraydim_t *arr;
uint8_t *cursor = (uint8_t *)(plugin->debug.symbols);
max = plugin->debug.syms_num;
for (iter = 0; iter < max; iter++)
{
sym = (sp_fdbg_symbol_t *)cursor;
if (sym->ident == SP_SYM_FUNCTION
&& sym->codestart <= offs
&& sym->codeend > offs)
{
return plugin->debug.stringbase + sym->name;
}
if (sym->dimcount > 0)
{
cursor += sizeof(sp_fdbg_symbol_t);
arr = (sp_fdbg_arraydim_t *)cursor;
cursor += sizeof(sp_fdbg_arraydim_t) * sym->dimcount;
continue;
}
cursor += sizeof(sp_fdbg_symbol_t);
}
return NULL;
}
inline void WriteOp_Call(JitWriter *jit)
{
cell_t offs;
jitoffs_t jmp;
CompData *data;
uint32_t func_idx;
data = (CompData *)jit->data;
offs = jit->read_cell();
/* Get the context + rp */
//mov eax, [esi+ctx]
//mov ecx, [eax+rp]
IA32_Mov_Reg_Rm_Disp8(jit, REG_EAX, AMX_REG_INFO, AMX_INFO_CONTEXT);
IA32_Mov_Reg_Rm_Disp8(jit, REG_ECX, REG_EAX, offsetof(sp_context_t, rp));
/* Check if the return stack is used up. */
//cmp ecx, <max stack>
//jae :stacklow
IA32_Cmp_Rm_Imm32(jit, MOD_REG, REG_ECX, SP_MAX_RETURN_STACK);
IA32_Jump_Cond_Imm32_Rel(jit, CC_AE, data->jit_error_stacklow);
/* Add us to the return stack */
//mov [eax+ecx*4+cips], cip
IA32_Mov_Rm_Imm32_SIB(jit,
REG_EAX,
(uint8_t *)(jit->inptr - 2) - data->plugin->pcode,
offsetof(sp_context_t, rstk_cips),
REG_ECX,
SCALE4);
/* Increment the return stack pointer */
//inc [eax+rp]
if ((int)offsetof(sp_context_t, rp) >= SCHAR_MIN && (int)offsetof(sp_context_t, rp) <= SCHAR_MAX)
{
IA32_Inc_Rm_Disp8(jit, REG_EAX, offsetof(sp_context_t, rp));
}
else
{
IA32_Inc_Rm_Disp32(jit, REG_EAX, offsetof(sp_context_t, rp));
}
/* Store the CIP of the function we're about to call. */
IA32_Mov_Rm_Imm32_Disp8(jit, AMX_REG_INFO, offs, AMX_INFO_CIP);
/* Call the function */
func_idx = FuncLookup(data, offs);
/* We need to emit a delayed thunk instead. */
if (func_idx == 0)
{
if (jit->outbase == NULL)
{
data->num_thunks++;
/* We still emit the call because we need consistent size counting */
IA32_Call_Imm32(jit, 0);
}
else
{
call_thunk_t *thunk;
/* Find the thunk we're associated with */
thunk = &data->thunks[data->num_thunks];
data->num_thunks++;
/* Emit the call, save its target position.
* Save thunk info, then patch the target to the thunk.
*/
thunk->patch_addr = IA32_Call_Imm32(jit, 0);
thunk->pcode_offs = offs;
IA32_Write_Jump32(jit, thunk->patch_addr, thunk->thunk_addr);
}
}
/* The function is already jitted. We can emit a direct call. */
else
{
JitFunction *fn;
fn = data->runtime->GetJittedFunction(func_idx);
jmp = IA32_Call_Imm32(jit, 0);
IA32_Write_Jump32_Abs(jit, jmp, fn->GetEntryAddress());
}
/* Restore the last cip */
//mov [esi+cip], <cip>
IA32_Mov_Rm_Imm32_Disp8(jit,
AMX_REG_INFO,
(uint8_t *)(jit->inptr - 2) - data->plugin->pcode,
AMX_INFO_CIP);
/* Mark us as leaving the last frame. */
//mov ecx, [esi+ctx]
//dec [ecx+rp]
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, AMX_REG_INFO, AMX_INFO_CONTEXT);
IA32_Dec_Rm_Disp8(jit, REG_ECX, offsetof(sp_context_t, rp));
}
inline void WriteOp_Bounds(JitWriter *jit)
{
cell_t val = jit->read_cell();
//cmp eax, <val>
//ja :error
if (val <= SCHAR_MAX && val >= SCHAR_MIN)
{
IA32_Cmp_Rm_Imm8(jit, MOD_REG, AMX_REG_PRI, (jit_int8_t)val);
} else {
IA32_Cmp_Eax_Imm32(jit, val);
}
IA32_Jump_Cond_Imm32_Rel(jit, CC_A, ((CompData *)jit->data)->jit_error_bounds);
}
inline void WriteOp_Halt(JitWriter *jit)
{
AlignMe(jit);
//mov ecx, [esi+ret]
//mov [ecx], eax
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, AMX_REG_INFO, AMX_INFO_RETVAL);
IA32_Mov_Rm_Reg(jit, AMX_REG_TMP, AMX_REG_PRI, MOD_MEM_REG);
/* :TODO:
* We don't support sleeping or halting with weird values.
* So we're omitting the mov eax <val> that was here.
*/
jit->read_cell();
IA32_Jump_Imm32_Abs(jit, g_Jit.GetReturnPoint());
}
inline void WriteOp_Break(JitWriter *jit)
{
CompData *data;
data = (CompData *)jit->data;
//mov [esi+cip], <cip>
IA32_Mov_Rm_Imm32_Disp8(jit,
AMX_REG_INFO,
(uint8_t *)(jit->inptr - 1) - data->plugin->pcode,
AMX_INFO_CIP);
}
inline void WriteOp_Jump(JitWriter *jit)
{
//jmp <offs>
cell_t amx_offs = jit->read_cell();
IA32_Jump_Imm32_Rel(jit, RelocLookup(jit, amx_offs, false));
}
inline void WriteOp_Jzer(JitWriter *jit)
{
//test eax, eax
//jz <target>
cell_t target = jit->read_cell();
IA32_Test_Rm_Reg(jit, AMX_REG_PRI, AMX_REG_PRI, MOD_REG);
IA32_Jump_Cond_Imm32_Rel(jit, CC_Z, RelocLookup(jit, target, false));
}
inline void WriteOp_Jnz(JitWriter *jit)
{
//test eax, eax
//jnz <target>
cell_t target = jit->read_cell();
IA32_Test_Rm_Reg(jit, AMX_REG_PRI, AMX_REG_PRI, MOD_REG);
IA32_Jump_Cond_Imm32_Rel(jit, CC_NZ, RelocLookup(jit, target, false));
}
inline void WriteOp_Jeq(JitWriter *jit)
{
//cmp eax, edx
//je <target>
cell_t target = jit->read_cell();
IA32_Cmp_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
IA32_Jump_Cond_Imm32_Rel(jit, CC_E, RelocLookup(jit, target, false));
}
inline void WriteOp_Jneq(JitWriter *jit)
{
//cmp eax, edx
//jne <target>
cell_t target = jit->read_cell();
IA32_Cmp_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
IA32_Jump_Cond_Imm32_Rel(jit, CC_NE, RelocLookup(jit, target, false));
}
inline void WriteOp_Jsless(JitWriter *jit)
{
//cmp eax, edx
//jl <target>
cell_t target = jit->read_cell();
IA32_Cmp_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
IA32_Jump_Cond_Imm32_Rel(jit, CC_L, RelocLookup(jit, target, false));
}
inline void WriteOp_Jsleq(JitWriter *jit)
{
//cmp eax, edx
//jle <target>
cell_t target = jit->read_cell();
IA32_Cmp_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
IA32_Jump_Cond_Imm32_Rel(jit, CC_LE, RelocLookup(jit, target, false));
}
inline void WriteOp_JsGrtr(JitWriter *jit)
{
//cmp eax, edx
//jg <target>
cell_t target = jit->read_cell();
IA32_Cmp_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
IA32_Jump_Cond_Imm32_Rel(jit, CC_G, RelocLookup(jit, target, false));
}
inline void WriteOp_JsGeq(JitWriter *jit)
{
//cmp eax, edx
//jge <target>
cell_t target = jit->read_cell();
IA32_Cmp_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_ALT, MOD_REG);
IA32_Jump_Cond_Imm32_Rel(jit, CC_GE, RelocLookup(jit, target, false));
}
inline void WriteOp_Switch(JitWriter *jit)
{
CompData *data = (CompData *)jit->data;
cell_t offs = jit->read_cell();
cell_t *tbl = (cell_t *)((char *)data->plugin->pcode + offs + sizeof(cell_t));
struct casetbl
{
cell_t val;
cell_t offs;
};
/* Read the number of cases, then advance by one */
cell_t num_cases = *tbl++;
if (!num_cases)
{
/* Special treatment for 0 cases */
//jmp <default>
IA32_Jump_Imm32_Rel(jit, RelocLookup(jit, *tbl, false));
} else {
/* Check if the case layout is fully sequential */
casetbl *iter = (casetbl *)(tbl + 1);
casetbl *cases = iter;
cell_t first = iter[0].val;
cell_t last = first;
bool sequential = true;
for (cell_t i=1; i<num_cases; i++)
{
if (iter[i].val != ++last)
{
sequential = false;
break;
}
}
/* Time to generate.
* First check whether the bounds are correct: if (a < LOW || a > HIGH)
* This check is valid for both sequential and non-sequential.
*/
cell_t low_bound = cases[0].val;
if (low_bound != 0)
{
/* negate it so we'll get a lower bound of 0 */
//lea ecx, [eax-<LOWER_BOUND>]
low_bound = -low_bound;
if (low_bound >= SCHAR_MIN && low_bound <= SCHAR_MAX)
{
IA32_Lea_DispRegImm8(jit, AMX_REG_TMP, AMX_REG_PRI, low_bound);
} else {
IA32_Lea_DispRegImm32(jit, AMX_REG_TMP, AMX_REG_PRI, low_bound);
}
} else {
//mov ecx, eax
IA32_Mov_Reg_Rm(jit, AMX_REG_TMP, AMX_REG_PRI, MOD_REG);
}
cell_t high_bound = abs(cases[0].val - cases[num_cases-1].val);
//cmp ecx, <UPPER BOUND BOUND>
if (high_bound >= SCHAR_MIN && high_bound <= SCHAR_MAX)
{
IA32_Cmp_Rm_Imm8(jit, MOD_REG, AMX_REG_TMP, high_bound);
} else {
IA32_Cmp_Rm_Imm32(jit, MOD_REG, AMX_REG_TMP, high_bound);
}
//ja <default case>
IA32_Jump_Cond_Imm32_Rel(jit, CC_A, RelocLookup(jit, *tbl, false));
/**
* Now we've taken the default case out of the way, it's time to do the
* full check, which is different for sequential vs. non-sequential.
*/
if (sequential)
{
/* we're now theoretically guaranteed to be jumping to a correct offset.
* ECX still has the correctly bound offset in it, luckily!
* thus, we simply need to relocate ECX and store the cases.
*/
//lea ecx, [ecx*4]
//add ecx, <case table start>
IA32_Lea_Reg_RegMultImm32(jit, AMX_REG_TMP, AMX_REG_TMP, SCALE4, 0);
jitoffs_t tbl_offs = IA32_Add_Rm_Imm32_Later(jit, AMX_REG_TMP, MOD_REG);
IA32_Jump_Rm(jit, AMX_REG_TMP, MOD_MEM_REG);
/* The case table starts here. Go back and write the output pointer. */
jitoffs_t cur_pos = jit->get_outputpos();
jit->set_outputpos(tbl_offs);
jit->write_uint32((jit_uint32_t)(jit->outbase + cur_pos));
jit->set_outputpos(cur_pos);
//now we can write the case table, finally!
jit_uint32_t base = (jit_uint32_t)jit->outbase;
for (cell_t i=0; i<num_cases; i++)
{
jit->write_uint32(base + RelocLookup(jit, cases[i].offs, false));
}
} else {
/* The slow version. Go through each case and generate a check.
* In the future we should replace case tables of more than ~8 cases with a
* hash table lookup.
* :THOUGHT: Another method of optimizing this - fill in the gaps with jumps to the default case,
* but only if we're under N cases or so!
* :THOUGHT: Write out a static btree lookup :)
*/
cell_t val;
for (cell_t i=0; i<num_cases; i++)
{
val = cases[i].val;
//cmp eax, <val> OR cmp al, <val>
if (val >= SCHAR_MIN && val <= SCHAR_MAX)
{
IA32_Cmp_Al_Imm8(jit, val);
} else {
IA32_Cmp_Eax_Imm32(jit, cases[i].val);
}
IA32_Jump_Cond_Imm32_Rel(jit, CC_E, RelocLookup(jit, cases[i].offs, false));
}
/* After all this, jump to the default case! */
IA32_Jump_Imm32_Rel(jit, RelocLookup(jit, *tbl, false));
}
}
}
inline void WriteOp_Casetbl(JitWriter *jit)
{
/* do nothing here, switch does all ze work */
cell_t num_cases = jit->read_cell();
/* Two cells per case, one extra case for the default jump */
num_cases = (num_cases * 2) + 1;
jit->inptr += num_cases;
}
inline void WriteOp_Sysreq_C(JitWriter *jit)
{
/* store the number of parameters on the stack,
* and store the native index as well.
*/
cell_t native_index = jit->read_cell();
if ((uint32_t)native_index >= ((CompData*)jit->data)->plugin->num_natives)
{
((CompData *)jit->data)->error_set = SP_ERROR_INSTRUCTION_PARAM;
return;
}
//mov ecx, <native_index>
IA32_Mov_Reg_Imm32(jit, REG_ECX, native_index);
jitoffs_t call = IA32_Call_Imm32(jit, 0);
IA32_Write_Jump32(jit, call, ((CompData *)jit->data)->jit_sysreq_c);
}
inline void WriteOp_Sysreq_N(JitWriter *jit)
{
/* The big daddy of opcodes. */
cell_t native_index = jit->read_cell();
cell_t num_params = jit->read_cell();
CompData *data = (CompData *)jit->data;
if ((uint32_t)native_index >= data->plugin->num_natives)
{
data->error_set = SP_ERROR_INSTRUCTION_PARAM;
return;
}
/* store the number of parameters on the stack */
//mov [edi-4], num_params
//sub edi, 4
IA32_Mov_Rm_Imm32_Disp8(jit, AMX_REG_STK, num_params, -4);
IA32_Sub_Rm_Imm8(jit, AMX_REG_STK, 4, MOD_REG);
/* save registers we will need */
//push edx
IA32_Push_Reg(jit, AMX_REG_ALT);
/* Align the stack to 16 bytes */
//push ebx
//mov ebx, esp
//and esp, 0xFFFFFF0
//sub esp, 4
IA32_Push_Reg(jit, REG_EBX);
IA32_Mov_Reg_Rm(jit, REG_EBX, REG_ESP, MOD_REG);
IA32_And_Rm_Imm8(jit, REG_ESP, MOD_REG, -16);
IA32_Sub_Rm_Imm8(jit, REG_ESP, 4, MOD_REG);
/* push some callback stuff */
//push edi ; stack
//push <native> ; native index
IA32_Push_Reg(jit, AMX_REG_STK);
if (native_index <= SCHAR_MAX && native_index >= SCHAR_MIN)
{
IA32_Push_Imm8(jit, (jit_int8_t)native_index);
} else {
IA32_Push_Imm32(jit, native_index);
}
/* Relocate stack, heap, frm information, then store back */
//mov eax, [esi+context]
//mov ecx, [esi+hea]
//sub edi, ebp
//mov [eax+hp], ecx
//mov ecx, [esi]
//mov [eax+sp], edi
//mov [eax+frm], ecx
IA32_Mov_Reg_Rm_Disp8(jit, REG_EAX, AMX_REG_INFO, AMX_INFO_CONTEXT);
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, AMX_REG_INFO, AMX_INFO_HEAP);
IA32_Sub_Reg_Rm(jit, AMX_REG_STK, AMX_REG_DAT, MOD_REG);
IA32_Mov_Rm_Reg_Disp8(jit, REG_EAX, AMX_REG_TMP, offsetof(sp_context_t, hp));
IA32_Mov_Reg_Rm(jit, AMX_REG_TMP, AMX_INFO_FRM, MOD_MEM_REG);
IA32_Mov_Rm_Reg_Disp8(jit, REG_EAX, AMX_REG_STK, offsetof(sp_context_t, sp));
IA32_Mov_Rm_Reg_Disp8(jit, REG_EAX, AMX_REG_TMP, offsetof(sp_context_t, frm));
/* finally, push the last parameter and make the call */
//push eax ; context
//call NativeCallback
IA32_Push_Reg(jit, REG_EAX);
jitoffs_t call = IA32_Call_Imm32(jit, 0);
if ((data->profile & SP_PROF_NATIVES) == SP_PROF_NATIVES)
{
IA32_Write_Jump32_Abs(jit, call, (void *)NativeCallback_Profile);
}
else
{
IA32_Write_Jump32_Abs(jit, call, (void *)NativeCallback);
}
/* check for errors */
//mov ecx, [esi+context]
//cmp [ecx+err], 0
//jnz :error
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, AMX_REG_INFO, AMX_INFO_CONTEXT);
IA32_Cmp_Rm_Disp8_Imm8(jit, AMX_REG_TMP, offsetof(sp_context_t, n_err), 0);
IA32_Jump_Cond_Imm32_Rel(jit, CC_NZ, data->jit_extern_error);
/* restore what we damaged */
//mov esp, ebx
//pop ebx
//add edi, ebp
//pop edx
IA32_Mov_Reg_Rm(jit, REG_ESP, REG_EBX, MOD_REG);
IA32_Pop_Reg(jit, REG_EBX);
IA32_Add_Reg_Rm(jit, AMX_REG_STK, AMX_REG_DAT, MOD_REG);
IA32_Pop_Reg(jit, AMX_REG_ALT);
/* pop the stack. do not check the margins.
* Note that this is not a true macro - we don't bother to
* set ALT here because nothing will be using it.
*/
num_params++;
num_params *= 4;
//add edi, <val*4+4>
if (num_params <= SCHAR_MAX && num_params >= SCHAR_MIN)
{
IA32_Add_Rm_Imm8(jit, AMX_REG_STK, (jit_int8_t)num_params, MOD_REG);
} else {
IA32_Add_Rm_Imm32(jit, AMX_REG_STK, num_params, MOD_REG);
}
}
inline void WriteOp_Tracker_Push_C(JitWriter *jit)
{
cell_t val = jit->read_cell();
/* Save registers that may be damaged by the call */
//push eax
//push edx
IA32_Push_Reg(jit, AMX_REG_PRI);
IA32_Push_Reg(jit, AMX_REG_ALT);
/* Get the context ptr, push it and call the check */
//mov eax, [esi+context]
//push eax
//call JIT_VerifyOrAllocateTracker
IA32_Mov_Reg_Rm_Disp8(jit, REG_EAX, AMX_REG_INFO, AMX_INFO_CONTEXT);
IA32_Push_Reg(jit, REG_EAX);
jitoffs_t call = IA32_Call_Imm32(jit, 0);
IA32_Write_Jump32_Abs(jit, call, (void *)JIT_VerifyOrAllocateTracker);
/* Check for errors */
//cmp eax, 0
//jnz :error
IA32_Cmp_Rm_Imm8(jit, MOD_REG, REG_EAX, 0);
IA32_Jump_Cond_Imm32_Abs(jit, CC_NZ, g_Jit.GetReturnPoint());
/* Restore */
//pop eax
IA32_Pop_Reg(jit, REG_EAX);
/* Push the value into the stack and increment pCur */
//mov edx, [eax+vm[]]
//mov ecx, [edx+pcur]
//add [edx+pcur], 4
//mov [ecx], <val>*4 ; we want the count in bytes not in cells
IA32_Mov_Reg_Rm_Disp8(jit, REG_EDX, REG_EAX, offsetof(sp_context_t, vm[JITVARS_TRACKER]));
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, REG_EDX, offsetof(tracker_t, pCur));
IA32_Add_Rm_Imm8_Disp8(jit, REG_EDX, 4, offsetof(tracker_t, pCur));
IA32_Mov_Rm_Imm32(jit, AMX_REG_TMP, val*4, MOD_MEM_REG);
/* Restore PRI & ALT */
//pop edx
//pop eax
IA32_Pop_Reg(jit, AMX_REG_ALT);
IA32_Pop_Reg(jit, AMX_REG_PRI);
}
inline void WriteOp_Tracker_Pop_SetHeap(JitWriter *jit)
{
/* Save registers that may be damaged by the call */
//push eax
//push edx
IA32_Push_Reg(jit, AMX_REG_PRI);
IA32_Push_Reg(jit, AMX_REG_ALT);
/* Get the context ptr, push it and call the check */
//mov eax, [esi+context]
//push eax
//call JIT_VerifyLowBoundTracker
IA32_Mov_Reg_Rm_Disp8(jit, REG_EAX, AMX_REG_INFO, AMX_INFO_CONTEXT);
IA32_Push_Reg(jit, REG_EAX);
jitoffs_t call = IA32_Call_Imm32(jit, 0);
IA32_Write_Jump32_Abs(jit, call, (void *)JIT_VerifyLowBoundTracker);
/* Check for errors */
//cmp eax, 0
//jnz :error
IA32_Cmp_Rm_Imm8(jit, MOD_REG, REG_EAX, 0);
IA32_Jump_Cond_Imm32_Abs(jit, CC_NZ, g_Jit.GetReturnPoint());
/* Restore */
//pop eax
IA32_Pop_Reg(jit, REG_EAX);
/* Pop the value from the stack and decrease the heap by it*/
//mov edx, [eax+vm[]]
//sub [edx+pcur], 4
//mov ecx, [edx+pcur]
//mov ecx, [ecx]
//sub [esi+hea], ecx
IA32_Mov_Reg_Rm_Disp8(jit, REG_EDX, REG_EAX, offsetof(sp_context_t, vm[JITVARS_TRACKER]));
IA32_Sub_Rm_Imm8_Disp8(jit, REG_EDX, 4, offsetof(tracker_t, pCur));
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, REG_EDX, offsetof(tracker_t, pCur));
IA32_Mov_Reg_Rm(jit, AMX_REG_TMP, AMX_REG_TMP, MOD_MEM_REG);
IA32_Sub_Rm_Reg_Disp8(jit, AMX_REG_INFO, AMX_REG_TMP, AMX_INFO_HEAP);
Write_CheckHeap_Min(jit);
/* Restore PRI & ALT */
//pop edx
//pop eax
IA32_Pop_Reg(jit, AMX_REG_ALT);
IA32_Pop_Reg(jit, AMX_REG_PRI);
}
inline void WriteOp_Stradjust_Pri(JitWriter *jit)
{
//add eax, 4
//sar eax, 2
IA32_Add_Rm_Imm8(jit, AMX_REG_PRI, 4, MOD_REG);
IA32_Sar_Rm_Imm8(jit, AMX_REG_PRI, 2, MOD_REG);
}
inline void WriteOp_FloatAbs(JitWriter *jit)
{
//mov eax, [edi]
//and eax, 0x7FFFFFFF
IA32_Mov_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_STK, MOD_MEM_REG);
IA32_And_Eax_Imm32(jit, 0x7FFFFFFF);
/* Rectify the stack */
//add edi, 4
IA32_Add_Rm_Imm8(jit, AMX_REG_STK, 4, MOD_REG);
}
inline void WriteOp_Float(JitWriter *jit)
{
//fild [edi]
//push eax
//fstp [esp]
//pop eax
IA32_Fild_Mem32(jit, AMX_REG_STK);
IA32_Push_Reg(jit, AMX_REG_PRI);
IA32_Fstp_Mem32_ESP(jit);
IA32_Pop_Reg(jit, AMX_REG_PRI);
/* Rectify the stack */
//add edi, 4
IA32_Add_Rm_Imm8(jit, AMX_REG_STK, 4, MOD_REG);
}
inline void WriteOp_FloatAdd(JitWriter *jit)
{
//push eax
//fld [edi]
//fadd [edi+4]
//fstp [esp]
//pop eax
IA32_Push_Reg(jit, AMX_REG_PRI);
IA32_Fld_Mem32(jit, AMX_REG_STK);
IA32_Fadd_Mem32_Disp8(jit, AMX_REG_STK, 4);
IA32_Fstp_Mem32_ESP(jit);
IA32_Pop_Reg(jit, AMX_REG_PRI);
/* Rectify the stack */
//add edi, 8
IA32_Add_Rm_Imm8(jit, AMX_REG_STK, 8, MOD_REG);
}
inline void WriteOp_FloatSub(JitWriter *jit)
{
//push eax
//fld [edi]
//fsub [edi+4]
//fstp [esp]
//pop eax
IA32_Push_Reg(jit, AMX_REG_PRI);
IA32_Fld_Mem32(jit, AMX_REG_STK);
IA32_Fsub_Mem32_Disp8(jit, AMX_REG_STK, 4);
IA32_Fstp_Mem32_ESP(jit);
IA32_Pop_Reg(jit, AMX_REG_PRI);
/* Rectify the stack */
//add edi, 8
IA32_Add_Rm_Imm8(jit, AMX_REG_STK, 8, MOD_REG);
}
inline void WriteOp_FloatMul(JitWriter *jit)
{
//push eax
//fld [edi]
//fmul [edi+4]
//fstp [esp]
//pop eax
IA32_Push_Reg(jit, AMX_REG_PRI);
IA32_Fld_Mem32(jit, AMX_REG_STK);
IA32_Fmul_Mem32_Disp8(jit, AMX_REG_STK, 4);
IA32_Fstp_Mem32_ESP(jit);
IA32_Pop_Reg(jit, AMX_REG_PRI);
/* Rectify the stack */
//add edi, 8
IA32_Add_Rm_Imm8(jit, AMX_REG_STK, 8, MOD_REG);
}
inline void WriteOp_FloatDiv(JitWriter *jit)
{
//push eax
//fld [edi]
//fdiv [edi+4]
//fstp [esp]
//pop eax
IA32_Push_Reg(jit, AMX_REG_PRI);
IA32_Fld_Mem32(jit, AMX_REG_STK);
IA32_Fdiv_Mem32_Disp8(jit, AMX_REG_STK, 4);
IA32_Fstp_Mem32_ESP(jit);
IA32_Pop_Reg(jit, AMX_REG_PRI);
/* Rectify the stack */
//add edi, 8
IA32_Add_Rm_Imm8(jit, AMX_REG_STK, 8, MOD_REG);
}
inline void WriteOp_RountToNearest(JitWriter *jit)
{
//push eax
//fld [edi]
//fstcw [esp]
//mov eax, [esp]
//push eax
//mov [esp+4], 0x3FF
//fadd st(0), st(0)
//fldcw [esp+4]
//push eax
//push 0x3F000000 ; 0.5f
//fadd [esp]
//fistp [esp+4]
//pop eax
//pop eax
//pop ecx
//sar eax, 1
//mov [esp], ecx
//fldcw [esp]
//add esp, 4
IA32_Push_Reg(jit, REG_EAX);
IA32_Fld_Mem32(jit, AMX_REG_STK);
IA32_Fstcw_Mem16_ESP(jit);
IA32_Mov_Reg_RmESP(jit, REG_EAX);
IA32_Push_Reg(jit, REG_EAX);
IA32_Mov_ESP_Disp8_Imm32(jit, 4, 0x3FF);
IA32_Fadd_FPUreg_ST0(jit, 0);
IA32_Fldcw_Mem16_Disp8_ESP(jit, 4);
IA32_Push_Reg(jit, REG_EAX);
IA32_Push_Imm32(jit, 0x3F000000);
IA32_Fadd_Mem32_ESP(jit);
IA32_Fistp_Mem32_Disp8_Esp(jit, 4);
IA32_Pop_Reg(jit, REG_EAX);
IA32_Pop_Reg(jit, AMX_REG_PRI);
IA32_Pop_Reg(jit, REG_ECX);
IA32_Sar_Rm_1(jit, REG_EAX, MOD_REG);
IA32_Mov_RmESP_Reg(jit, REG_ECX);
IA32_Fldcw_Mem16_ESP(jit);
IA32_Add_Rm_Imm8(jit, REG_ESP, 4, MOD_REG);
/* Rectify the stack */
//add edi, 4
IA32_Add_Rm_Imm8(jit, AMX_REG_STK, 4, MOD_REG);
}
inline void WriteOp_RoundToFloor(JitWriter *jit)
{
//push eax
//fld [edi]
//fstcw [esp]
//mov eax, [esp]
//push eax
//mov [esp+4], 0x7FF
//fldcw [esp+4]
//push eax
//fistp [esp]
//pop eax
//pop ecx
//mov [esp], ecx
//fldcw [esp]
//add esp, 4
IA32_Push_Reg(jit, REG_EAX);
IA32_Fld_Mem32(jit, AMX_REG_STK);
IA32_Fstcw_Mem16_ESP(jit);
IA32_Mov_Reg_RmESP(jit, REG_EAX);
IA32_Push_Reg(jit, REG_EAX);
IA32_Mov_ESP_Disp8_Imm32(jit, 4, 0x7FF);
IA32_Fldcw_Mem16_Disp8_ESP(jit, 4);
IA32_Push_Reg(jit, REG_EAX);
IA32_Fistp_Mem32_ESP(jit);
IA32_Pop_Reg(jit, REG_EAX);
IA32_Pop_Reg(jit, REG_ECX);
IA32_Mov_RmESP_Reg(jit, REG_ECX);
IA32_Fldcw_Mem16_ESP(jit);
IA32_Add_Rm_Imm8(jit, REG_ESP, 4, MOD_REG);
/* Rectify the stack */
//add edi, 4
IA32_Add_Rm_Imm8(jit, AMX_REG_STK, 4, MOD_REG);
}
inline void WriteOp_RoundToCeil(JitWriter *jit)
{
//push eax
//fld [edi]
//fstcw [esp]
//mov eax, [esp]
//push eax
//mov [esp+4], 0xBFF
//fldcw [esp+4]
//push eax
//fistp [esp]
//pop eax
//pop ecx
//mov [esp], ecx
//fldcw [esp]
//add esp, 4
IA32_Push_Reg(jit, REG_EAX);
IA32_Fld_Mem32(jit, AMX_REG_STK);
IA32_Fstcw_Mem16_ESP(jit);
IA32_Mov_Reg_RmESP(jit, REG_EAX);
IA32_Push_Reg(jit, REG_EAX);
IA32_Mov_ESP_Disp8_Imm32(jit, 4, 0xBFF);
IA32_Fldcw_Mem16_Disp8_ESP(jit, 4);
IA32_Push_Reg(jit, REG_EAX);
IA32_Fistp_Mem32_ESP(jit);
IA32_Pop_Reg(jit, REG_EAX);
IA32_Pop_Reg(jit, REG_ECX);
IA32_Mov_RmESP_Reg(jit, REG_ECX);
IA32_Fldcw_Mem16_ESP(jit);
IA32_Add_Rm_Imm8(jit, REG_ESP, 4, MOD_REG);
/* Rectify the stack */
//add edi, 4
IA32_Add_Rm_Imm8(jit, AMX_REG_STK, 4, MOD_REG);
}
inline void WriteOp_RoundToZero(JitWriter *jit)
{
//push eax
//fld [edi]
//fstcw [esp]
//mov eax, [esp]
//push eax
//mov [esp+4], 0xFFF
//fldcw [esp+4]
//push eax
//fistp [esp]
//pop eax
//pop ecx
//mov [esp], ecx
//fldcw [esp]
//add esp, 4
IA32_Push_Reg(jit, REG_EAX);
IA32_Fld_Mem32(jit, AMX_REG_STK);
IA32_Fstcw_Mem16_ESP(jit);
IA32_Mov_Reg_RmESP(jit, REG_EAX);
IA32_Push_Reg(jit, REG_EAX);
IA32_Mov_ESP_Disp8_Imm32(jit, 4, 0xFFF);
IA32_Fldcw_Mem16_Disp8_ESP(jit, 4);
IA32_Push_Reg(jit, REG_EAX);
IA32_Fistp_Mem32_ESP(jit);
IA32_Pop_Reg(jit, REG_EAX);
IA32_Pop_Reg(jit, REG_ECX);
IA32_Mov_RmESP_Reg(jit, REG_ECX);
IA32_Fldcw_Mem16_ESP(jit);
IA32_Add_Rm_Imm8(jit, REG_ESP, 4, MOD_REG);
/* Rectify the stack */
//add edi, 4
IA32_Add_Rm_Imm8(jit, AMX_REG_STK, 4, MOD_REG);
}
inline void WriteOp_FloatCompare(JitWriter *jit)
{
//fld [edi]
//fld [edi+4]
//fucomip st(0), st(1)
//mov ecx, <round_table>
//cmovz eax, [ecx+4]
//cmovb eax, [ecx+8]
//cmova eax, [ecx]
//fstp st(0)
IA32_Fld_Mem32(jit, AMX_REG_STK);
IA32_Fld_Mem32_Disp8(jit, AMX_REG_STK, 4);
IA32_Fucomip_ST0_FPUreg(jit, 1);
IA32_Mov_Reg_Imm32(jit, AMX_REG_TMP, (jit_int32_t)g_Jit.GetRoundingTable());
IA32_CmovCC_Rm_Disp8(jit, AMX_REG_TMP, CC_Z, 4);
IA32_CmovCC_Rm_Disp8(jit, AMX_REG_TMP, CC_B, 8);
IA32_CmovCC_Rm(jit, AMX_REG_TMP, CC_A);
IA32_Fstp_FPUreg(jit, 0);
/* Rectify the stack */
//add edi, 8
IA32_Add_Rm_Imm8(jit, AMX_REG_STK, 8, MOD_REG);
}
inline void WriteOp_EndProc(JitWriter *jit)
{
}
void Write_CallThunk(JitWriter *jit, jitoffs_t jmploc, cell_t pcode_offs)
{
CompData *data;
jitoffs_t call;
data = (CompData *)jit->data;
//push <jmploc_addr>
//push <pcode_offs>
//push <runtime>
//call CompileFromThunk
//add esp, 4*3
//test eax, eax
//jz :error
//call eax
//ret
IA32_Push_Imm32(jit, (jit_int32_t)(jit->outbase + jmploc));
IA32_Push_Imm32(jit, pcode_offs);
IA32_Push_Imm32(jit, (jit_int32_t)(data->runtime));
call = IA32_Call_Imm32(jit, 0);
IA32_Write_Jump32_Abs(jit, call, (void *)CompileThunk);
IA32_Add_Rm_Imm32(jit, REG_ESP, 4*3, MOD_REG);
IA32_Test_Rm_Reg(jit, REG_EAX, REG_EAX, MOD_REG);
call = IA32_Jump_Cond_Imm8(jit, CC_Z, 0);
IA32_Call_Reg(jit, REG_EAX);
IA32_Return(jit);
/* We decrement the frame and store the target cip. */
//:error
//mov [esi+cip], pcode_offs
//goto error
IA32_Send_Jump8_Here(jit, call);
Write_SetError(jit, SP_ERROR_INVALID_INSTRUCTION);
}
/*************************************************
*************************************************
* JIT PROPER ************************************
* The rest from now on is the JIT engine *
*************************************************
*************************************************/
void *CompileThunk(BaseRuntime *runtime, cell_t pcode_offs, void *jmploc_addr)
{
int err;
JitFunction *fn;
uint32_t func_idx;
void *target_addr;
if ((func_idx = FuncLookup((CompData *)runtime->m_pCo, pcode_offs)) == 0)
{
fn = g_Jit.CompileFunction(runtime, pcode_offs, &err);
}
else
{
fn = runtime->GetJittedFunction(func_idx);
#if defined _DEBUG
g_engine1.GetDebugHook()->OnDebugSpew("Patching thunk to %s::%s", runtime->m_pPlugin->name, find_func_name(runtime->m_pPlugin, pcode_offs));
#endif
}
if (fn == NULL)
{
return NULL;
}
target_addr = fn->GetEntryAddress();
/* Right now, we always keep the code RWE */
*(intptr_t *)((char *)jmploc_addr) =
intptr_t(target_addr) - (intptr_t(jmploc_addr) + 4);
return target_addr;
}
cell_t NativeCallback(sp_context_t *ctx, ucell_t native_idx, cell_t *params)
{
sp_native_t *native;
cell_t save_sp = ctx->sp;
cell_t save_hp = ctx->hp;
sp_plugin_t *pl = GETPLUGIN(ctx);
ctx->n_idx = native_idx;
if (ctx->hp < (cell_t)pl->data_size)
{
ctx->n_err = SP_ERROR_HEAPMIN;
return 0;
}
if (ctx->hp + STACK_MARGIN > ctx->sp)
{
ctx->n_err = SP_ERROR_STACKLOW;
return 0;
}
if ((uint32_t)ctx->sp >= pl->mem_size)
{
ctx->n_err = SP_ERROR_STACKMIN;
return 0;
}
native = &pl->natives[native_idx];
if (native->status == SP_NATIVE_UNBOUND)
{
ctx->n_err = SP_ERROR_INVALID_NATIVE;
return 0;
}
cell_t result = native->pfn(GET_CONTEXT(ctx), params);
if (ctx->n_err != SP_ERROR_NONE)
{
return result;
}
if (save_sp != ctx->sp)
{
ctx->n_err = SP_ERROR_STACKLEAK;
return result;
}
else if (save_hp != ctx->hp)
{
ctx->n_err = SP_ERROR_HEAPLEAK;
return result;
}
return result;
}
cell_t NativeCallback_Profile(sp_context_t *ctx, ucell_t native_idx, cell_t *params)
{
/* :TODO: */
return NativeCallback(ctx, native_idx, params);
}
uint32_t FuncLookup(CompData *data, cell_t pcode_offs)
{
/* Offset must always be 1)positive and 2)less than or equal to the codesize */
assert(pcode_offs >= 0 && (uint32_t)pcode_offs <= data->plugin->pcode_size);
/* Do the lookup in the native dictionary. */
return *(jitoffs_t *)(data->rebase + pcode_offs);
}
jitoffs_t RelocLookup(JitWriter *jit, cell_t pcode_offs, bool relative)
{
if (jit->outptr)
{
CompData *data = (CompData *)jit->data;
if (relative)
{
/* The actual offset is EIP relative. We need to relocate it.
* Note that this assumes that we're pointing to the next op.
*/
pcode_offs += jit->get_inputpos();
}
/* Offset must always be 1)positive and 2)less than or equal to the codesize */
assert(pcode_offs >= 0 && (uint32_t)pcode_offs <= data->plugin->pcode_size);
/* Do the lookup in the native dictionary. */
#if defined _DEBUG
if (jit->outbase != NULL)
{
assert(*(jitoffs_t *)(data->rebase + pcode_offs) != 0);
}
#endif
return *(jitoffs_t *)(data->rebase + pcode_offs);
}
else
{
return 0;
}
}
void WriteErrorRoutines(CompData *data, JitWriter *jit)
{
AlignMe(jit);
data->jit_error_divzero = jit->get_outputpos();
Write_SetError(jit, SP_ERROR_DIVIDE_BY_ZERO);
data->jit_error_stacklow = jit->get_outputpos();
Write_SetError(jit, SP_ERROR_STACKLOW);
data->jit_error_stackmin = jit->get_outputpos();
Write_SetError(jit, SP_ERROR_STACKMIN);
data->jit_error_bounds = jit->get_outputpos();
Write_SetError(jit, SP_ERROR_ARRAY_BOUNDS);
data->jit_error_memaccess = jit->get_outputpos();
Write_SetError(jit, SP_ERROR_MEMACCESS);
data->jit_error_heaplow = jit->get_outputpos();
Write_SetError(jit, SP_ERROR_HEAPLOW);
data->jit_error_heapmin = jit->get_outputpos();
Write_SetError(jit, SP_ERROR_HEAPMIN);
data->jit_extern_error = jit->get_outputpos();
Write_GetError(jit);
}
ICompilation *JITX86::ApplyOptions(ICompilation *_IN, ICompilation *_OUT)
{
if (_IN == NULL)
{
return _OUT;
}
CompData *_in = (CompData * )_IN;
CompData *_out = (CompData * )_OUT;
_in->inline_level = _out->inline_level;
_in->profile = _out->profile;
_out->Abort();
return _in;
}
JITX86::JITX86()
{
m_pJitEntry = NULL;
m_pJitReturn = NULL;
m_RoundTable[0] = -1;
m_RoundTable[1] = 0;
m_RoundTable[2] = 1;
m_pJitGenArray = NULL;
}
bool JITX86::InitializeJIT()
{
jitoffs_t offs;
JitWriter writer, *jit;
g_pCodeCache = KE_CreateCodeCache();
jit = &writer;
/* Build the genarray intrinsic */
jit->outbase = NULL;
jit->outptr = NULL;
WriteIntrinsic_GenArray(jit);
m_pJitGenArray = Knight::KE_AllocCode(g_pCodeCache, jit->get_outputpos());
jit->outbase = (jitcode_t)m_pJitGenArray;
jit->outptr = jit->outbase;
WriteIntrinsic_GenArray(jit);
/* Build the entry point */
writer = JitWriter();
jit->outbase = NULL;
jit->outptr = NULL;
Write_Execute_Function(jit);
m_pJitEntry = Knight::KE_AllocCode(g_pCodeCache, jit->get_outputpos());
jit->outbase = (jitcode_t)m_pJitEntry;
jit->outptr = jit->outbase;
offs = Write_Execute_Function(jit);
m_pJitReturn = (uint8_t *)m_pJitEntry + offs;
return true;
}
void JITX86::ShutdownJIT()
{
KE_DestroyCodeCache(g_pCodeCache);
}
JitFunction *JITX86::CompileFunction(BaseRuntime *prt, cell_t pcode_offs, int *err)
{
CompData *data = (CompData *)prt->m_pCo;
sp_plugin_t *plugin = data->plugin;
uint8_t *code = plugin->pcode + pcode_offs;
uint8_t *end_code = plugin->pcode + plugin->pcode_size;
assert(FuncLookup(data, pcode_offs) == 0);
if (code >= end_code || *(cell_t *)code != OP_PROC)
{
*err = SP_ERROR_INVALID_INSTRUCTION;
return NULL;
}
#if defined _DEBUG
g_engine1.GetDebugHook()->OnDebugSpew("Compiling function %s::%s", prt->m_pPlugin->name, find_func_name(prt->m_pPlugin, pcode_offs));
#endif
code += sizeof(cell_t);
OPCODE op;
uint32_t code_size;
cell_t *cip, *end_cip;
JitWriter writer, *jit;
jit = &writer;
cip = (cell_t *)code;
end_cip = (cell_t *)end_code;
writer.data = data;
writer.inbase = cip;
writer.outptr = NULL;
writer.outbase = NULL;
data->cur_func = pcode_offs;
jit_rewind:
data->num_thunks = 0;
writer.inptr = writer.inbase;
WriteOp_Proc(jit);
/* Actual code generation! */
if (writer.outbase == NULL)
{
/* First Pass - find codesize and resolve relocation */
jitoffs_t jpcode_offs;
jitoffs_t native_offs;
for (; writer.inptr < end_cip;)
{
op = (OPCODE)writer.peek_cell();
/* If we hit another function, we must stop. */
if (op == OP_PROC || op == OP_ENDPROC)
{
break;
}
/* Store the native offset into the rebase memory.
* This large chunk of memory lets us do an instant lookup
* based on an original pcode offset.
*/
jpcode_offs = (jitoffs_t)((uint8_t *)writer.inptr - plugin->pcode);
native_offs = jit->get_outputpos();
*((jitoffs_t *)(data->rebase + jpcode_offs)) = native_offs;
/* Read past the opcode. */
writer.read_cell();
/* Patch the floating point natives with our opcodes */
if (op == OP_SYSREQ_N)
{
cell_t idx = writer.read_cell();
if (data->jit_float_table[idx].found)
{
writer.inptr -= 2;
*(writer.inptr++) = data->jit_float_table[idx].index;
*(writer.inptr++) = OP_NOP;
*(writer.inptr++) = OP_NOP;
op = (OPCODE)data->jit_float_table[idx].index;
}
else
{
writer.inptr--;
}
}
switch (op)
{
#include "opcode_switch.inc"
}
/* Check for errors. This should only happen in the first pass. */
if (data->error_set != SP_ERROR_NONE)
{
*err = data->error_set;
return NULL;
}
}
/* Write these last because error jumps should be predicted forwardly (not taken) */
WriteErrorRoutines(data, jit);
AlignMe(jit);
data->jit_sysreq_c = jit->get_outputpos();
WriteOp_Sysreq_C_Function(jit);
/* Build thunk tables */
if (data->num_thunks > data->max_thunks)
{
data->max_thunks = data->num_thunks;
data->thunks = (call_thunk_t *)realloc(
data->thunks,
data->max_thunks * sizeof(call_thunk_t));
}
/* Write the thunk offsets.
* :TODO: we can emit all but one call to Write_CallThunk().
*/
for (unsigned int i = 0; i < data->num_thunks; i++)
{
data->thunks[i].thunk_addr = jit->get_outputpos();
Write_CallThunk(jit, 0, 0);
}
/**
* I don't understand the purpose of this code.
* Why do we want to know about the last opcode?
* It should already have gotten written.
*/
#if 0
/* Write the final CIP to the last position in the reloc array */
pcode_offs = (jitoffs_t)((uint8_t *)writer.inptr - code);
native_offs = jit->get_outputpos();
*((jitoffs_t *)(data->rebase + pcode_offs)) = native_offs;
#endif
/* the total codesize is now known! */
code_size = writer.get_outputpos();
writer.outbase = (jitcode_t)Knight::KE_AllocCode(g_pCodeCache, code_size);
writer.outptr = writer.outbase;
/* go back for second pass */
goto jit_rewind;
}
else
{
/*******
* SECOND PASS - write opcode info
*******/
for (; writer.inptr < end_cip;)
{
op = (OPCODE)writer.read_cell();
/* If we hit another function, we must stop. */
if (op == OP_PROC || op == OP_ENDPROC)
{
break;
}
switch (op)
{
#include "opcode_switch.inc"
}
}
/* Write these last because error jumps should be predicted as not taken (forward) */
WriteErrorRoutines(data, jit);
AlignMe(jit);
data->jit_sysreq_c = jit->get_outputpos();
WriteOp_Sysreq_C_Function(jit);
/* Write the thunk offsets. */
for (unsigned int i = 0; i < data->num_thunks; i++)
{
Write_CallThunk(jit, data->thunks[i].patch_addr, data->thunks[i].pcode_offs);
}
}
*err = SP_ERROR_NONE;
JitFunction *fn;
uint32_t func_idx;
fn = new JitFunction(writer.outbase, pcode_offs);
func_idx = prt->AddJittedFunction(fn);
*(cell_t *)(data->rebase + pcode_offs) = func_idx;
return fn;
}
void JITX86::SetupContextVars(BaseRuntime *runtime, BaseContext *pCtx, sp_context_t *ctx)
{
tracker_t *trk = new tracker_t;
ctx->vm[JITVARS_TRACKER] = trk;
ctx->vm[JITVARS_BASECTX] = pCtx; /* GetDefaultContext() is not constructed yet */
ctx->vm[JITVARS_PROFILER] = g_engine2.GetProfiler();
ctx->vm[JITVARS_PLUGIN] = runtime->m_pPlugin;
trk->pBase = (ucell_t *)malloc(1024);
trk->pCur = trk->pBase;
trk->size = 1024 / sizeof(cell_t);
}
SPVM_NATIVE_FUNC JITX86::CreateFakeNative(SPVM_FAKENATIVE_FUNC callback, void *pData)
{
JitWriter jw;
JitWriter *jit = &jw;
jw.outbase = NULL;
jw.outptr = NULL;
jw.data = NULL;
/* First pass, calculate size */
rewind:
/* Align the stack to 16 bytes */
//push ebx
//push edi
//push esi
//mov edi, [esp+16] ;store ctx
//mov esi, [esp+20] ;store params
//mov ebx, esp
//and esp, 0xFFFFFF0
//sub esp, 4
IA32_Push_Reg(jit, REG_EBX);
IA32_Push_Reg(jit, REG_EDI);
IA32_Push_Reg(jit, REG_ESI);
IA32_Mov_Reg_Esp_Disp8(jit, REG_EDI, 16);
IA32_Mov_Reg_Esp_Disp8(jit, REG_ESI, 20);
IA32_Mov_Reg_Rm(jit, REG_EBX, REG_ESP, MOD_REG);
IA32_And_Rm_Imm8(jit, REG_ESP, MOD_REG, -16);
IA32_Sub_Rm_Imm8(jit, REG_ESP, 4, MOD_REG);
//push pData ;push pData
//push esi ;push params
//push edi ;push ctx
//call [callback] ;invoke the meta-callback
//mov esp, ebx ;restore the stack
//pop esi ;restore esi
//pop edi ;restore edi
//pop ebx ;restore ebx
//ret ;return
IA32_Push_Imm32(jit, (jit_int32_t)pData);
IA32_Push_Reg(jit, REG_ESI);
IA32_Push_Reg(jit, REG_EDI);
uint32_t call = IA32_Call_Imm32(jit, 0);
IA32_Write_Jump32_Abs(jit, call, (void *)callback);
IA32_Mov_Reg_Rm(jit, REG_ESP, REG_EBX, MOD_REG);
IA32_Pop_Reg(jit, REG_ESI);
IA32_Pop_Reg(jit, REG_EDI);
IA32_Pop_Reg(jit, REG_EBX);
IA32_Return(jit);
if (jw.outbase == NULL)
{
/* Second pass: Actually write */
jw.outbase = (jitcode_t)KE_AllocCode(g_pCodeCache, jw.get_outputpos());
if (!jw.outbase)
{
return NULL;
}
jw.outptr = jw.outbase;
goto rewind;
}
return (SPVM_NATIVE_FUNC)jw.outbase;
}
void JITX86::DestroyFakeNative(SPVM_NATIVE_FUNC func)
{
KE_FreeCode(g_pCodeCache, (void *)func);
}
ICompilation *JITX86::StartCompilation()
{
CompData *data = new CompData;
data->jit_float_table = NULL;
return data;
}
void CompData::SetRuntime(BaseRuntime *runtime)
{
plugin = runtime->m_pPlugin;
uint32_t max_natives = plugin->num_natives;
this->runtime = runtime;
this->plugin = runtime->m_pPlugin;
inline_level = JIT_INLINE_ERRORCHECKS|JIT_INLINE_NATIVES;
error_set = SP_ERROR_NONE;
jit_float_table = new floattbl_t[max_natives];
for (uint32_t i=0; i<max_natives; i++)
{
const char *name = plugin->natives[i].name;
if (!strcmp(name, "FloatAbs"))
{
jit_float_table[i].found = true;
jit_float_table[i].index = OP_FABS;
}
else if (!strcmp(name, "FloatAdd"))
{
jit_float_table[i].found = true;
jit_float_table[i].index = OP_FLOATADD;
}
else if (!strcmp(name, "FloatSub"))
{
jit_float_table[i].found = true;
jit_float_table[i].index = OP_FLOATSUB;
}
else if (!strcmp(name, "FloatMul"))
{
jit_float_table[i].found = true;
jit_float_table[i].index = OP_FLOATMUL;
}
else if (!strcmp(name, "FloatDiv"))
{
jit_float_table[i].found = true;
jit_float_table[i].index = OP_FLOATDIV;
}
else if (!strcmp(name, "float"))
{
jit_float_table[i].found = true;
jit_float_table[i].index = OP_FLOAT;
}
else if (!strcmp(name, "FloatCompare"))
{
jit_float_table[i].found = true;
jit_float_table[i].index = OP_FLOATCMP;
}
else if (!strcmp(name, "RoundToZero"))
{
jit_float_table[i].found = true;
jit_float_table[i].index = OP_RND_TO_ZERO;
}
else if (!strcmp(name, "RoundToCeil"))
{
jit_float_table[i].found = true;
jit_float_table[i].index = OP_RND_TO_CEIL;
}
else if (!strcmp(name, "RoundToFloor"))
{
jit_float_table[i].found = true;
jit_float_table[i].index = OP_RND_TO_FLOOR;
}
else if (!strcmp(name, "RoundToNearest"))
{
jit_float_table[i].found = true;
jit_float_table[i].index = OP_RND_TO_NEAREST;
}
}
/* We need a relocation table. This is the relocation table we'll use for jumps
* and calls alike. One extra cell for final CIP.
*/
this->rebase = (uint8_t *)engine->BaseAlloc(plugin->pcode_size + sizeof(cell_t));
memset(this->rebase, 0, plugin->pcode_size + sizeof(cell_t));
}
ICompilation *JITX86::StartCompilation(BaseRuntime *runtime)
{
CompData *data = new CompData;
data->SetRuntime(runtime);
return data;
}
void CompData::Abort()
{
if (rebase)
{
engine->BaseFree(rebase);
}
delete [] thunks;
delete [] jit_float_table;
delete this;
}
void JITX86::FreeContextVars(sp_context_t *ctx)
{
free(((tracker_t *)(ctx->vm[JITVARS_TRACKER]))->pBase);
delete (tracker_t *)ctx->vm[JITVARS_TRACKER];
}
bool CompData::SetOption(const char *key, const char *val)
{
if (strcmp(key, SP_JITCONF_DEBUG) == 0)
{
return true;
}
else if (strcmp(key, SP_JITCONF_PROFILE) == 0)
{
profile = atoi(val);
/** Callbacks must be profiled to profile functions! */
if ((profile & SP_PROF_FUNCTIONS) == SP_PROF_FUNCTIONS)
{
profile |= SP_PROF_CALLBACKS;
}
return true;
}
return false;
}
void *JITX86::GetGenArrayIntrinsic()
{
return m_pJitGenArray;
}
void *JITX86::GetReturnPoint()
{
return m_pJitReturn;
}
void *JITX86::GetRoundingTable()
{
return m_RoundTable;
}
typedef int (*JIT_EXECUTE)(cell_t *vars, void *addr);
int JITX86::InvokeFunction(BaseRuntime *runtime, JitFunction *fn, cell_t *result)
{
int err;
JIT_EXECUTE pfn;
sp_context_t *ctx;
cell_t vars[AMX_NUM_INFO_VARS];
ctx = runtime->GetBaseContext()->GetCtx();
vars[0] = ctx->sp;
vars[1] = ctx->hp;
vars[2] = (cell_t)result;
vars[3] = (cell_t)ctx;
vars[4] = (cell_t)(runtime->m_pPlugin->memory + runtime->m_pPlugin->mem_size);
vars[5] = fn->GetPCodeAddress();
vars[6] = runtime->m_pPlugin->data_size;
vars[7] = (cell_t)(runtime->m_pPlugin->memory);
/* vars[8] will be set to ESP */
pfn = (JIT_EXECUTE)m_pJitEntry;
err = pfn(vars, fn->GetEntryAddress());
ctx->hp = vars[1];
ctx->err_cip = vars[5];
return err;
}
void *JITX86::AllocCode(size_t size)
{
return Knight::KE_AllocCode(g_pCodeCache, size);
}
void JITX86::FreeCode(void *code)
{
KE_FreeCode(g_pCodeCache, code);
}