sourcemod/sourcepawn/vm/jit/x86/opcode_helpers.cpp
David Anderson f62af67279 small touch-ups
--HG--
extra : convert_revision : svn%3A39bc706e-5318-0410-9160-8a85361fbb7c/trunk%40112
2006-10-10 16:39:55 +00:00

642 lines
21 KiB
C++

#include <limits.h>
#include <string.h>
#include "jit_x86.h"
#include "opcode_helpers.h"
#include "x86_macros.h"
int OpAdvTable[OP_NUM_OPCODES];
#define NUM_INFO_PARAMS 7
jitoffs_t Write_Execute_Function(JitWriter *jit)
{
/**
* The variables we're passed in:
* sp_context_t *ctx, uint32_t code_idx, cell_t *result
*/
/**
* !NOTE!
* Currently, we do not accept ctx->frm as the new frame pointer.
* Instead, we copy the frame from the stack pointer.
* This is because we do not support resuming or sleeping!
*/
//push ebp
//mov ebp, esp
IA32_Push_Reg(jit, REG_EBP);
IA32_Mov_Reg_Rm(jit, REG_EBP, REG_ESP, MOD_REG);
//push esi
//push edi
//push ebx
IA32_Push_Reg(jit, REG_ESI);
IA32_Push_Reg(jit, REG_EDI);
IA32_Push_Reg(jit, REG_EBX);
//sub esp, 4*n - reserve info array
//mov esi, esp - save info pointer
IA32_Sub_Rm_Imm8(jit, REG_ESP, 4*NUM_INFO_PARAMS, MOD_REG);
IA32_Mov_Reg_Rm(jit, AMX_REG_INFO, REG_ESP, MOD_REG);
/* Initial memory setup */
//mov eax, [ebp+16] - get result pointer
//mov [esi+8], eax - store into info pointer
//mov eax, [ebp+8] - get context
//mov [esi+12], eax - store context into info pointer
//mov ecx, [eax+<offs>] - get heap pointer
//mov [esi+4], ecx - store heap into info pointer
//mov ebp, [eax+<offs>] - get data pointer
IA32_Mov_Reg_Rm_Disp8(jit, REG_EAX, REG_EBP, 16);
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_INFO, REG_EAX, AMX_INFO_RETVAL);
IA32_Mov_Reg_Rm_Disp8(jit, REG_EAX, REG_EBP, 8);
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_INFO, REG_EAX, AMX_INFO_CONTEXT);
IA32_Mov_Reg_Rm_Disp8(jit, REG_ECX, REG_EAX, offsetof(sp_context_t, hp));
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_INFO, REG_ECX, AMX_INFO_HEAP);
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_DAT, REG_EAX, offsetof(sp_context_t, data));
/* Frame setup */
//mov edi, [eax+<offs>] - get stack pointer
//add edi, ebp - relocate to data section
//mov ebx, edi - copy sp to frm
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_STK, REG_EAX, offsetof(sp_context_t, sp));
IA32_Add_Rm_Reg(jit, AMX_REG_STK, AMX_REG_DAT, MOD_REG);
IA32_Mov_Reg_Rm(jit, AMX_REG_FRM, AMX_REG_STK, MOD_REG);
/* Info memory setup */
//mov ecx, [eax+<offs>] - copy memsize to temp var
//mov [esi+x], ecx - store unrelocated
//add ecx, ebp - relocate
//mov [esi+x], ecx - store relocated
//mov ecx, [eax+<offs>] - get heap low
//mov [esi+20], ecx - store heap low into info pointer
IA32_Mov_Reg_Rm_Disp8(jit, REG_ECX, REG_EAX, offsetof(sp_context_t, memory));
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_INFO, REG_ECX, AMX_INFO_STACKTOP_U);
IA32_Add_Reg_Rm(jit, AMX_REG_TMP, AMX_REG_DAT, MOD_REG);
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_INFO, REG_ECX, AMX_INFO_STACKTOP);
IA32_Mov_Reg_Rm_Disp8(jit, REG_ECX, REG_EAX, offsetof(sp_context_t, heapbase));
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_INFO, REG_ECX, AMX_INFO_HEAPLOW);
/* Remaining needed vars */
//mov ecx, [esp+(4*(NUM_INFO_PARAMS+3))+12] - get code index (normally esp+12, but we have another array on the stack)
//add ecx, [eax+<offs>] - add code base to index
IA32_Mov_Reg_Esp_Disp8(jit, REG_ECX, 12+(4*(NUM_INFO_PARAMS+3)));
IA32_Add_Reg_Rm_Disp8(jit, REG_ECX, REG_EAX, offsetof(sp_context_t, codebase));
/* by now, everything is set up, so we can call into the plugin */
//call ecx
IA32_Call_Reg(jit, REG_ECX);
/* if the code flow gets to here, there was a normal return */
//mov ecx, [esi+8] - get retval pointer
//mov [ecx], eax - store retval from PRI
//mov eax, SP_ERR_NONE - set no error
IA32_Mov_Reg_Rm_Disp8(jit, REG_ECX, AMX_REG_INFO, AMX_INFO_RETVAL);
IA32_Mov_Rm_Reg(jit, REG_ECX, AMX_REG_PRI, MOD_MEM_REG);
IA32_Mov_Reg_Imm32(jit, REG_EAX, SP_ERR_NONE);
/* save where error checking/halting functions should go to */
jitoffs_t offs_return = jit->get_outputpos();
//mov esp, esi - restore stack pointer
IA32_Mov_Reg_Rm(jit, REG_ESP, REG_ESI, MOD_REG);
/* _FOR NOW_ ...
* We are going to restore SP, HP, and FRM for now. This is for
* debugging only, to check for alignment errors. As such:
* :TODO: probably remove this.
*/
//mov ecx, [esi+context]
//sub edi, ebp
//mov edx, [esi+heap]
//mov [ecx+sp], edi
//mov [ecx+hp], edx
IA32_Mov_Reg_Rm_Disp8(jit, REG_ECX, REG_ESI, AMX_INFO_CONTEXT);
IA32_Sub_Reg_Rm(jit, REG_EDI, REG_EBP, MOD_REG);
IA32_Mov_Reg_Rm_Disp8(jit, REG_EDX, REG_ESI, AMX_INFO_HEAP);
IA32_Mov_Rm_Reg_Disp8(jit, REG_ECX, REG_EDI, offsetof(sp_context_t, sp));
IA32_Mov_Rm_Reg(jit, REG_ECX, REG_EDX, MOD_REG);
//add esp, 4*NUM_INFO_PARAMS
//pop ebx
//pop edi
//pop esi
//pop ebp
//ret
IA32_Add_Rm_Imm8(jit, REG_ESP, 4*NUM_INFO_PARAMS, MOD_REG);
IA32_Pop_Reg(jit, REG_EBX);
IA32_Pop_Reg(jit, REG_EDI);
IA32_Pop_Reg(jit, REG_ESI);
IA32_Pop_Reg(jit, REG_EBP);
IA32_Return(jit);
return offs_return;
}
void Write_BreakDebug(JitWriter *jit)
{
//push ecx
//mov ecx, [esi+ctx]
//cmp [ecx+dbreak], 0
//jnz :nocall
IA32_Push_Reg(jit, AMX_REG_TMP);
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, AMX_REG_INFO, AMX_INFO_CONTEXT);
IA32_Cmp_Rm_Disp8_Imm8(jit, AMX_REG_TMP, offsetof(sp_context_t, dbreak), 0);
jitoffs_t jmp = IA32_Jump_Cond_Imm8(jit, CC_NZ, 0);
//pushad
IA32_Pushad(jit);
//push [esi+frm]
//push [ecx+context]
//mov ecx, [ecx+dbreak]
//call ecx
//add esp, 8
//popad
IA32_Push_Rm_Disp8(jit, AMX_REG_INFO, AMX_INFO_FRAME); //:TODO: move to regs and push? and dont disp for 0
IA32_Push_Rm_Disp8(jit, AMX_REG_TMP, offsetof(sp_context_t, context));
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, AMX_REG_TMP, offsetof(sp_context_t, dbreak));
IA32_Call_Reg(jit, AMX_REG_TMP);
IA32_Add_Rm_Imm8(jit, REG_ESP, 4*2, MOD_REG);
IA32_Popad(jit);
//:nocall
IA32_Send_Jump8_Here(jit, jmp);
IA32_Add_Rm_Imm8(jit, REG_ESP, 4*1, MOD_REG);
IA32_Return(jit);
}
void Write_SetError(JitWriter *jit, bool always_inline, int error)
{
CompData *data = (CompData *)jit->data;
/* These are so small that we always inline them! */
//mov eax, <error>
//jmp [...jit_return]
IA32_Mov_Reg_Imm32(jit, REG_EAX, error);
jitoffs_t jmp = IA32_Jump_Imm32(jit, 0);
IA32_Write_Jump32(jit, jmp, data->jit_return);
}
void Write_Check_DivZero(JitWriter *jit, jit_uint8_t reg)
{
//test reg, reg
//jz :error
IA32_Test_Rm_Reg(jit, reg, reg, MOD_REG);
IA32_Jump_Cond_Imm32_Abs(jit, CC_Z, ((CompData *)jit->data)->jit_error_divzero);
}
void Write_CheckHeap_Min(JitWriter *jit)
{
/* Check if the stack went beyond the heap low.
* This usually means there was a compiler error.
* NOTE: Special optimization here.
* The heap low is always known ahead of time! :)
*/
CompData *data = (CompData *)jit->data;
//cmp [esi+info.heap], <heaplow>
//jb :error
IA32_Cmp_Rm_Imm32_Disp8(jit, AMX_REG_INFO, AMX_INFO_HEAP, data->plugin->data_size);
IA32_Jump_Cond_Imm32_Abs(jit, CC_B, data->jit_error_heapmin);
}
void Write_CheckHeap_Low(JitWriter *jit)
{
/* Check if the heap is trying to grow beyond the stack.
*/
//mov ecx, [esi+info.heap]
//lea ecx, [ebp+ecx+STACK_MARGIN]
//cmp ecx, edi
//ja :error ; I think this is right
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, AMX_REG_INFO, AMX_INFO_HEAP);
IA32_Lea_Reg_DispRegMultImm8(jit, AMX_REG_TMP, AMX_REG_DAT, AMX_REG_TMP, NOSCALE, STACK_MARGIN);
IA32_Cmp_Reg_Rm(jit, AMX_REG_TMP, AMX_REG_STK, MOD_REG);
IA32_Jump_Cond_Imm32_Abs(jit, CC_A, ((CompData *)jit->data)->jit_error_heaplow);
}
void Write_CheckStack_Min(JitWriter *jit)
{
/* Check if the stack went beyond the stack top
* This usually means there was a compiler error.
*/
//cmp edi, [esi+info.stacktop]
//jae :error
IA32_Cmp_Reg_Rm_Disp8(jit, AMX_REG_STK, AMX_REG_INFO, AMX_INFO_STACKTOP);
IA32_Jump_Cond_Imm32_Abs(jit, CC_AE, ((CompData *)jit->data)->jit_error_stackmin);
}
void Write_CheckStack_Low(JitWriter *jit)
{
/* Check if the stack went beyond the heap boundary.
* Unfortunately this one isn't as quick as the other check.
* The stack margin check is important for sysreq.n having space.
*/
//mov ecx, [esi+info.heap]
//lea ecx, [ebp+ecx+STACK_MARGIN]
//cmp edi, ecx
//jb :error ; I think this is right
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, AMX_REG_INFO, AMX_INFO_HEAP);
IA32_Lea_Reg_DispRegMultImm8(jit, AMX_REG_TMP, AMX_REG_DAT, AMX_REG_TMP, NOSCALE, STACK_MARGIN);
IA32_Cmp_Reg_Rm(jit, AMX_REG_STK, AMX_REG_TMP, MOD_REG);
IA32_Jump_Cond_Imm32_Abs(jit, CC_B, ((CompData *)jit->data)->jit_error_stacklow);
}
void Write_Check_VerifyAddr(JitWriter *jit, jit_uint8_t reg)
{
CompData *data = (CompData *)jit->data;
/* :TODO: Should this be checking for below heaplow?
* The old JIT did not.
*/
bool call = false;
if (!(data->inline_level & JIT_INLINE_ERRORCHECKS))
{
/* If we're not in the initial generation phase,
* Write a call to the actual routine instead.
*/
if ((reg == REG_EAX) && data->jit_verify_addr_eax)
{
jitoffs_t call = IA32_Call_Imm32(jit, 0);
IA32_Write_Jump32(jit, call, data->jit_verify_addr_eax);
return;
} else if ((reg == REG_EDX) && data->jit_verify_addr_edx) {
jitoffs_t call = IA32_Call_Imm32(jit, 0);
IA32_Write_Jump32(jit, call, data->jit_verify_addr_edx);
return;
}
call = true;
}
/**
* :TODO: If we can't find a nicer way of doing this,
* then scrap it on high optimizations. The second portion is not needed at all!
*/
/* Part 1: Check if we're in the memory bounds */
//cmp <reg>, [esi+info.stpu]
//jae :error
IA32_Cmp_Reg_Rm_Disp8(jit, reg, AMX_REG_INFO, AMX_INFO_STACKTOP_U);
IA32_Jump_Cond_Imm32_Abs(jit, CC_AE, ((CompData *)jit->data)->jit_error_memaccess);
/* Part 2: Check if we're in the invalid region between HP and SP */
jitoffs_t jmp;
//cmp <reg>, [esi+info.heap]
//jb :continue
//lea ecx, [ebp+<reg>]
//cmp edi, ecx
//jb :error
//:continue
IA32_Cmp_Reg_Rm_Disp8(jit, reg, AMX_REG_INFO, AMX_INFO_HEAP);
jmp = IA32_Jump_Cond_Imm8(jit, CC_B, 0);
IA32_Lea_Reg_DispRegMultImm8(jit, AMX_REG_TMP, AMX_REG_DAT, reg, NOSCALE, 0);
IA32_Cmp_Reg_Rm(jit, AMX_REG_TMP, AMX_REG_STK, MOD_REG);
IA32_Jump_Cond_Imm32_Abs(jit, CC_B, ((CompData *)jit->data)->jit_error_memaccess);
IA32_Send_Jump8_Here(jit, jmp);
if (call)
{
IA32_Return(jit);
}
}
void Macro_PushN_Addr(JitWriter *jit, int i)
{
//push eax
//mov eax, [esi+frm]
//loop i times:
// lea ecx, [eax+<val>]
// mov [edi-4*i], ecx
//sub edi, 4*N
//pop eax
cell_t val;
int n = 1;
IA32_Push_Reg(jit, AMX_REG_PRI);
IA32_Mov_Reg_Rm(jit, AMX_REG_PRI, AMX_REG_INFO, MOD_MEM_REG);
do
{
val = jit->read_cell();
if (val < SCHAR_MAX && val > SCHAR_MIN)
IA32_Lea_DispRegImm8(jit, AMX_REG_TMP, AMX_REG_PRI, (jit_int8_t)val);
else
IA32_Lea_DispRegImm32(jit, AMX_REG_TMP, AMX_REG_PRI, val);
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_STK, AMX_REG_TMP, -4*n);
} while (n++ < i);
IA32_Sub_Rm_Imm8(jit, AMX_REG_STK, 4*i, MOD_REG);
IA32_Pop_Reg(jit, AMX_REG_PRI);
}
void Macro_PushN_S(JitWriter *jit, int i)
{
//loop i times:
// mov ecx, [ebx+<val>]
// mov [edi-4*i], ecx
//sub edi, 4*N
cell_t val;
int n = 1;
do
{
val = jit->read_cell();
if (val < SCHAR_MAX && val > SCHAR_MIN)
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, AMX_REG_FRM, (jit_int8_t)val);
else
IA32_Mov_Reg_Rm_Disp32(jit, AMX_REG_TMP, AMX_REG_FRM, val);
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_STK, AMX_REG_TMP, -4*n);
} while (n++ < i);
IA32_Sub_Rm_Imm8(jit, AMX_REG_STK, 4*i, MOD_REG);
}
void Macro_PushN_C(JitWriter *jit, int i)
{
//loop i times:
// mov [edi-4*i], <val>
//sub edi, 4*N
int n = 1;
do
{
IA32_Mov_Rm_Imm32_Disp8(jit, AMX_REG_STK, jit->read_cell(), -4*n);
} while (n++ < i);
IA32_Sub_Rm_Imm8(jit, AMX_REG_STK, 4*i, MOD_REG);
}
void Macro_PushN(JitWriter *jit, int i)
{
//loop i times:
// mov ecx, [ebp+<val>]
// mov [edi-4*i], ecx
//sub edi, 4*N
cell_t val;
int n = 1;
do
{
val = jit->read_cell();
if (val < SCHAR_MAX && val > SCHAR_MIN)
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, AMX_REG_DAT, (jit_int8_t)val);
else
IA32_Mov_Reg_Rm_Disp32(jit, AMX_REG_TMP, AMX_REG_DAT, val);
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_STK, AMX_REG_TMP, -4*n);
} while (n++ < i);
IA32_Sub_Rm_Imm8(jit, AMX_REG_STK, 4*i, MOD_REG);
}
void WriteOp_Sysreq_N_Function(JitWriter *jit)
{
/* The big daddy of opcodes.
* eax - num_params
* ecx - native index
*/
CompData *data = (CompData *)jit->data;
/* store the number of parameters on the stack */
//mov [edi-4], eax
//sub edi, 4
IA32_Mov_Rm_Reg_Disp8(jit, AMX_REG_STK, REG_EAX, -4);
IA32_Sub_Rm_Imm8(jit, AMX_REG_STK, 4, MOD_REG);
/* save registers we will need */
//push eax ; num_params for stack popping
//push edx
IA32_Push_Reg(jit, REG_EAX);
IA32_Push_Reg(jit, AMX_REG_ALT);
/* push some callback stuff */
//push edi ; stack
//push ecx ; native index
IA32_Push_Reg(jit, AMX_REG_STK);
IA32_Push_Reg(jit, REG_ECX);
/* Relocate stack, heap, frm information, then store back */
//sub edi, ebp
//mov ecx, [esi+hea]
//mov eax, [esi+context]
//mov [eax+hp], ecx
//mov [eax+sp], edi
//mov ecx, [esi+frm]
//mov [eax+frm], ecx
IA32_Sub_Rm_Reg(jit, AMX_REG_STK, AMX_REG_DAT, MOD_REG);
IA32_Mov_Reg_Rm_Disp8(jit, AMX_REG_TMP, AMX_REG_INFO, AMX_INFO_HEAP);
IA32_Mov_Reg_Rm_Disp8(jit, REG_EAX, AMX_REG_INFO, AMX_INFO_CONTEXT);
IA32_Mov_Rm_Reg_Disp8(jit, REG_EAX, AMX_REG_TMP, offsetof(sp_context_t, hp));
IA32_Mov_Rm_Reg_Disp8(jit, REG_EAX, AMX_REG_STK, offsetof(sp_context_t, sp));
IA32_Mov_Reg_Rm(jit, AMX_REG_TMP, AMX_INFO_FRM, MOD_REG);
IA32_Mov_Rm_Reg_Disp8(jit, REG_EAX, AMX_REG_TMP, offsetof(sp_context_t, frm));
/* finally, push the last parameter and make the call */
//push eax ; context
//mov eax, [eax+context]
//call NativeCallback
IA32_Push_Reg(jit, REG_EAX);
jitoffs_t call = IA32_Call_Imm32(jit, 0);
IA32_Write_Jump32(jit, call, (jitoffs_t)(char *)&NativeCallback);
/* restore what we damaged */
//add esp, 4*3
//add edi, ebp
//pop edx
//pop ecx ; num_params
IA32_Add_Rm_Imm8(jit, REG_ESP, 4*3, MOD_REG);
IA32_Add_Rm_Reg(jit, AMX_REG_STK, AMX_REG_DAT, MOD_REG);
IA32_Pop_Reg(jit, AMX_REG_ALT);
IA32_Pop_Reg(jit, REG_ECX);
//Note: always safe, we're in a call
//test eax, eax
//jne :error
IA32_Test_Rm_Reg(jit, REG_EAX, REG_EAX, MOD_REG);
IA32_Jump_Cond_Imm32_Abs(jit, CC_NE, data->jit_return);
/* pop the AMX stack. do not check the margins.
* Note that this is not a true macro - we don't bother to
* set ALT here because nothing will be using it.
*/
//lea edi, [edi+ecx*4+4]
IA32_Lea_Reg_DispRegMultImm8(jit, AMX_REG_STK, AMX_REG_STK, REG_ECX, SCALE4, 4);
//ret
IA32_Return(jit);
}
JITX86::JITX86()
{
memset(OpAdvTable, -1, sizeof(OpAdvTable));
/* instructions with 5 parameters */
OpAdvTable[OP_PUSH5_C] = sizeof(cell_t)*5;
OpAdvTable[OP_PUSH5] = sizeof(cell_t)*5;
OpAdvTable[OP_PUSH5_S] = sizeof(cell_t)*5;
OpAdvTable[OP_PUSH5_ADR] = sizeof(cell_t)*5;
/* instructions with 4 parameters */
OpAdvTable[OP_PUSH4_C] = sizeof(cell_t)*4;
OpAdvTable[OP_PUSH4] = sizeof(cell_t)*4;
OpAdvTable[OP_PUSH4_S] = sizeof(cell_t)*4;
OpAdvTable[OP_PUSH4_ADR] = sizeof(cell_t)*4;
/* instructions with 3 parameters */
OpAdvTable[OP_PUSH3_C] = sizeof(cell_t)*3;
OpAdvTable[OP_PUSH3] = sizeof(cell_t)*3;
OpAdvTable[OP_PUSH3_S] = sizeof(cell_t)*3;
OpAdvTable[OP_PUSH3_ADR] = sizeof(cell_t)*3;
/* instructions with 2 parameters */
OpAdvTable[OP_PUSH2_C] = sizeof(cell_t)*2;
OpAdvTable[OP_PUSH2] = sizeof(cell_t)*2;
OpAdvTable[OP_PUSH2_S] = sizeof(cell_t)*2;
OpAdvTable[OP_PUSH2_ADR] = sizeof(cell_t)*2;
OpAdvTable[OP_LOAD_BOTH] = sizeof(cell_t)*2;
OpAdvTable[OP_LOAD_S_BOTH] = sizeof(cell_t)*2;
OpAdvTable[OP_CONST] = sizeof(cell_t)*2;
OpAdvTable[OP_CONST_S] = sizeof(cell_t)*2;
OpAdvTable[OP_SYSREQ_N] = sizeof(cell_t)*2;
/* instructions with 1 parameter */
OpAdvTable[OP_LOAD_PRI] = sizeof(cell_t);
OpAdvTable[OP_LOAD_ALT] = sizeof(cell_t);
OpAdvTable[OP_LOAD_S_PRI] = sizeof(cell_t);
OpAdvTable[OP_LOAD_S_ALT] = sizeof(cell_t);
OpAdvTable[OP_LREF_PRI] = sizeof(cell_t);
OpAdvTable[OP_LREF_ALT] = sizeof(cell_t);
OpAdvTable[OP_LREF_S_PRI] = sizeof(cell_t);
OpAdvTable[OP_LREF_S_ALT] = sizeof(cell_t);
OpAdvTable[OP_CONST_PRI] = sizeof(cell_t);
OpAdvTable[OP_CONST_ALT] = sizeof(cell_t);
OpAdvTable[OP_ADDR_PRI] = sizeof(cell_t);
OpAdvTable[OP_ADDR_ALT] = sizeof(cell_t);
OpAdvTable[OP_STOR_PRI] = sizeof(cell_t);
OpAdvTable[OP_STOR_ALT] = sizeof(cell_t);
OpAdvTable[OP_STOR_S_PRI] = sizeof(cell_t);
OpAdvTable[OP_STOR_S_ALT] = sizeof(cell_t);
OpAdvTable[OP_SREF_PRI] = sizeof(cell_t);
OpAdvTable[OP_SREF_ALT] = sizeof(cell_t);
OpAdvTable[OP_SREF_S_PRI] = sizeof(cell_t);
OpAdvTable[OP_SREF_S_ALT] = sizeof(cell_t);
OpAdvTable[OP_LIDX_B] = sizeof(cell_t);
OpAdvTable[OP_IDXADDR_B] = sizeof(cell_t);
OpAdvTable[OP_PUSH_C] = sizeof(cell_t);
OpAdvTable[OP_PUSH] = sizeof(cell_t);
OpAdvTable[OP_PUSH_S] = sizeof(cell_t);
OpAdvTable[OP_STACK] = sizeof(cell_t);
OpAdvTable[OP_HEAP] = sizeof(cell_t);
OpAdvTable[OP_SHL_C_PRI] = sizeof(cell_t);
OpAdvTable[OP_SHL_C_ALT] = sizeof(cell_t);
OpAdvTable[OP_SHR_C_PRI] = sizeof(cell_t);
OpAdvTable[OP_SHR_C_ALT] = sizeof(cell_t);
OpAdvTable[OP_ADD_C] = sizeof(cell_t);
OpAdvTable[OP_SMUL_C] = sizeof(cell_t);
OpAdvTable[OP_ZERO] = sizeof(cell_t);
OpAdvTable[OP_ZERO_S] = sizeof(cell_t);
OpAdvTable[OP_EQ_C_PRI] = sizeof(cell_t);
OpAdvTable[OP_EQ_C_ALT] = sizeof(cell_t);
OpAdvTable[OP_INC] = sizeof(cell_t);
OpAdvTable[OP_INC_S] = sizeof(cell_t);
OpAdvTable[OP_DEC] = sizeof(cell_t);
OpAdvTable[OP_DEC_S] = sizeof(cell_t);
OpAdvTable[OP_MOVS] = sizeof(cell_t);
OpAdvTable[OP_FILL] = sizeof(cell_t);
OpAdvTable[OP_HALT] = sizeof(cell_t);
OpAdvTable[OP_BOUNDS] = sizeof(cell_t);
OpAdvTable[OP_PUSH_ADR] = sizeof(cell_t);
OpAdvTable[OP_PUSH_HEAP_C] = sizeof(cell_t);
OpAdvTable[OP_SYSREQ_C] = sizeof(cell_t);
OpAdvTable[OP_CALL] = sizeof(cell_t);
OpAdvTable[OP_JUMP] = sizeof(cell_t);
OpAdvTable[OP_JZER] = sizeof(cell_t);
OpAdvTable[OP_JNZ] = sizeof(cell_t);
OpAdvTable[OP_JEQ] = sizeof(cell_t);
OpAdvTable[OP_JNEQ] = sizeof(cell_t);
OpAdvTable[OP_JSLESS] = sizeof(cell_t);
OpAdvTable[OP_JSLEQ] = sizeof(cell_t);
OpAdvTable[OP_JSGRTR] = sizeof(cell_t);
OpAdvTable[OP_JSGEQ] = sizeof(cell_t);
OpAdvTable[OP_SWITCH] = sizeof(cell_t);
/* instructions with 0 parameters */
OpAdvTable[OP_LOAD_I] = 0;
OpAdvTable[OP_STOR_I] = 0;
OpAdvTable[OP_LIDX] = 0;
OpAdvTable[OP_IDXADDR] = 0;
OpAdvTable[OP_MOVE_PRI] = 0;
OpAdvTable[OP_MOVE_ALT] = 0;
OpAdvTable[OP_XCHG] = 0;
OpAdvTable[OP_PUSH_PRI] = 0;
OpAdvTable[OP_PUSH_ALT] = 0;
OpAdvTable[OP_POP_PRI] = 0;
OpAdvTable[OP_POP_ALT] = 0;
OpAdvTable[OP_PROC] = 0;
OpAdvTable[OP_RET] = 0;
OpAdvTable[OP_RETN] = 0;
OpAdvTable[OP_CALL_PRI] = 0;
OpAdvTable[OP_SHL] = 0;
OpAdvTable[OP_SHR] = 0;
OpAdvTable[OP_SSHR] = 0;
OpAdvTable[OP_SMUL] = 0;
OpAdvTable[OP_SDIV] = 0;
OpAdvTable[OP_SDIV_ALT] = 0;
OpAdvTable[OP_ADD] = 0;
OpAdvTable[OP_SUB] = 0;
OpAdvTable[OP_SUB_ALT] = 0;
OpAdvTable[OP_AND] = 0;
OpAdvTable[OP_OR] = 0;
OpAdvTable[OP_XOR] = 0;
OpAdvTable[OP_NOT] = 0;
OpAdvTable[OP_NEG] = 0;
OpAdvTable[OP_INVERT] = 0;
OpAdvTable[OP_ZERO_PRI] = 0;
OpAdvTable[OP_ZERO_ALT] = 0;
OpAdvTable[OP_SIGN_PRI] = 0;
OpAdvTable[OP_SIGN_ALT] = 0;
OpAdvTable[OP_EQ] = 0;
OpAdvTable[OP_NEQ] = 0;
OpAdvTable[OP_SLESS] = 0;
OpAdvTable[OP_SLEQ] = 0;
OpAdvTable[OP_SGRTR] = 0;
OpAdvTable[OP_SGEQ] = 0;
OpAdvTable[OP_INC_PRI] = 0;
OpAdvTable[OP_INC_ALT] = 0;
OpAdvTable[OP_INC_I] = 0;
OpAdvTable[OP_DEC_PRI] = 0;
OpAdvTable[OP_DEC_ALT] = 0;
OpAdvTable[OP_DEC_I] = 0;
OpAdvTable[OP_JUMP_PRI] = 0;
OpAdvTable[OP_SWAP_PRI] = 0;
OpAdvTable[OP_SWAP_ALT] = 0;
OpAdvTable[OP_NOP] = 0;
OpAdvTable[OP_BREAK] = 0;
OpAdvTable[OP_HEAP_PRI] = 0;
OpAdvTable[OP_POP_HEAP_PRI] = 0;
OpAdvTable[OP_SYSREQ_PRI] = 0;
/* opcodes that are totally invalid */
/* :TODO: make an alternate table if USE_UNGEN_OPCODES is on? */
OpAdvTable[OP_FILE] = -3;
OpAdvTable[OP_SYMBOL] = -3;
OpAdvTable[OP_LINE] = -3;
OpAdvTable[OP_SRANGE] = -3;
OpAdvTable[OP_SYMTAG] = -3;
OpAdvTable[OP_SYSREQ_D] = -3;
OpAdvTable[OP_SYSREQ_ND] = -3;
OpAdvTable[OP_PUSH_R] = -3;
OpAdvTable[OP_LODB_I] = -3;
OpAdvTable[OP_STRB_I] = -3;
OpAdvTable[OP_LCTRL] = -3;
OpAdvTable[OP_SCTRL] = -3;
OpAdvTable[OP_ALIGN_PRI] = -3;
OpAdvTable[OP_ALIGN_ALT] = -3;
OpAdvTable[OP_JREL] = -3;
OpAdvTable[OP_CMPS] = -3;
OpAdvTable[OP_UMUL] = -3;
OpAdvTable[OP_UDIV] = -3;
OpAdvTable[OP_UDIV_ALT] = -3;
OpAdvTable[OP_LESS] = -3;
OpAdvTable[OP_LEQ] = -3;
OpAdvTable[OP_GRTR] = -3;
OpAdvTable[OP_GEQ] = -3;
OpAdvTable[OP_JLESS] = -3;
OpAdvTable[OP_JLEQ] = -3;
OpAdvTable[OP_JGRTR] = -3;
OpAdvTable[OP_JGEQ] = -3;
}