400 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			400 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// MersenneTwister.h
 | 
						|
// Mersenne Twister random number generator -- a C++ class MTRand
 | 
						|
// Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
 | 
						|
// Richard J. Wagner  v1.0  15 May 2003  rjwagner@writeme.com
 | 
						|
 | 
						|
// The Mersenne Twister is an algorithm for generating random numbers.  It
 | 
						|
// was designed with consideration of the flaws in various other generators.
 | 
						|
// The period, 2^19937-1, and the order of equidistribution, 623 dimensions,
 | 
						|
// are far greater.  The generator is also fast; it avoids multiplication and
 | 
						|
// division, and it benefits from caches and pipelines.  For more information
 | 
						|
// see the inventors' web page at http://www.math.keio.ac.jp/~matumoto/emt.html
 | 
						|
 | 
						|
// Reference
 | 
						|
// M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-Dimensionally
 | 
						|
// Equidistributed Uniform Pseudo-Random Number Generator", ACM Transactions on
 | 
						|
// Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.
 | 
						|
 | 
						|
// Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
 | 
						|
// Copyright (C) 2000 - 2003, Richard J. Wagner
 | 
						|
// All rights reserved.                          
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions
 | 
						|
// are met:
 | 
						|
//
 | 
						|
//   1. Redistributions of source code must retain the above copyright
 | 
						|
//      notice, this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   2. Redistributions in binary form must reproduce the above copyright
 | 
						|
//      notice, this list of conditions and the following disclaimer in the
 | 
						|
//      documentation and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   3. The names of its contributors may not be used to endorse or promote 
 | 
						|
//      products derived from this software without specific prior written 
 | 
						|
//      permission.
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
// A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 | 
						|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 | 
						|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 | 
						|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 | 
						|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 | 
						|
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 | 
						|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | 
						|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 | 
						|
// The original code included the following notice:
 | 
						|
//
 | 
						|
//     When you use this, send an email to: matumoto@math.keio.ac.jp
 | 
						|
//     with an appropriate reference to your work.
 | 
						|
//
 | 
						|
// It would be nice to CC: rjwagner@writeme.com and Cokus@math.washington.edu
 | 
						|
// when you write.
 | 
						|
 | 
						|
#ifndef MERSENNETWISTER_H
 | 
						|
#define MERSENNETWISTER_H
 | 
						|
 | 
						|
// Not thread safe (unless auto-initialization is avoided and each thread has
 | 
						|
// its own MTRand object)
 | 
						|
 | 
						|
#include <limits.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <time.h>
 | 
						|
#include <math.h>
 | 
						|
 | 
						|
class MTRand {
 | 
						|
// Data
 | 
						|
public:
 | 
						|
	typedef unsigned long uint32;  // unsigned integer type, at least 32 bits
 | 
						|
	
 | 
						|
	enum { N = 624 };       // length of state vector
 | 
						|
	enum { SAVE = N + 1 };  // length of array for save()
 | 
						|
 | 
						|
protected:
 | 
						|
	enum { M = 397 };  // period parameter
 | 
						|
	
 | 
						|
	uint32 state[N];   // internal state
 | 
						|
	uint32 *pNext;     // next value to get from state
 | 
						|
	int left;          // number of values left before reload needed
 | 
						|
 | 
						|
 | 
						|
//Methods
 | 
						|
public:
 | 
						|
	MTRand( const uint32& oneSeed );  // initialize with a simple uint32
 | 
						|
	MTRand( uint32 *const bigSeed, uint32 const seedLength = N );  // or an array
 | 
						|
	MTRand();  // auto-initialize with /dev/urandom or time() and clock()
 | 
						|
	
 | 
						|
	// Do NOT use for CRYPTOGRAPHY without securely hashing several returned
 | 
						|
	// values together, otherwise the generator state can be learned after
 | 
						|
	// reading 624 consecutive values.
 | 
						|
	
 | 
						|
	// Access to 32-bit random numbers
 | 
						|
	double rand();                          // real number in [0,1]
 | 
						|
	double rand( const double& n );         // real number in [0,n]
 | 
						|
	double randExc();                       // real number in [0,1)
 | 
						|
	double randExc( const double& n );      // real number in [0,n)
 | 
						|
	double randDblExc();                    // real number in (0,1)
 | 
						|
	double randDblExc( const double& n );   // real number in (0,n)
 | 
						|
	uint32 randInt();                       // integer in [0,2^32-1]
 | 
						|
	uint32 randInt( const uint32& n );      // integer in [0,n] for n < 2^32
 | 
						|
	double operator()() { return rand(); }  // same as rand()
 | 
						|
	
 | 
						|
	// Access to 53-bit random numbers (capacity of IEEE double precision)
 | 
						|
	double rand53();  // real number in [0,1)
 | 
						|
	
 | 
						|
	// Access to nonuniform random number distributions
 | 
						|
	double randNorm( const double& mean = 0.0, const double& variance = 0.0 );
 | 
						|
	
 | 
						|
	// Re-seeding functions with same behavior as initializers
 | 
						|
	void seed( const uint32 oneSeed );
 | 
						|
	void seed( uint32 *const bigSeed, const uint32 seedLength = N );
 | 
						|
	void seed();
 | 
						|
	
 | 
						|
	// Saving and loading generator state
 | 
						|
	void save( uint32* saveArray ) const;  // to array of size SAVE
 | 
						|
	void load( uint32 *const loadArray );  // from such array
 | 
						|
protected:
 | 
						|
	void initialize( const uint32 oneSeed );
 | 
						|
	void reload();
 | 
						|
	uint32 hiBit( const uint32& u ) const { return u & 0x80000000UL; }
 | 
						|
	uint32 loBit( const uint32& u ) const { return u & 0x00000001UL; }
 | 
						|
	uint32 loBits( const uint32& u ) const { return u & 0x7fffffffUL; }
 | 
						|
	uint32 mixBits( const uint32& u, const uint32& v ) const
 | 
						|
		{ return hiBit(u) | loBits(v); }
 | 
						|
	uint32 twist( const uint32& m, const uint32& s0, const uint32& s1 ) const
 | 
						|
		{ return m ^ (mixBits(s0,s1)>>1) ^ (-loBit(s1) & 0x9908b0dfUL); }
 | 
						|
	static uint32 hash( time_t t, clock_t c );
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
inline MTRand::MTRand( const uint32& oneSeed )
 | 
						|
	{ seed(oneSeed); }
 | 
						|
 | 
						|
inline MTRand::MTRand( uint32 *const bigSeed, const uint32 seedLength )
 | 
						|
	{ seed(bigSeed,seedLength); }
 | 
						|
 | 
						|
inline MTRand::MTRand()
 | 
						|
	{ seed(); }
 | 
						|
 | 
						|
inline double MTRand::rand()
 | 
						|
	{ return double(randInt()) * (1.0/4294967295.0); }
 | 
						|
 | 
						|
inline double MTRand::rand( const double& n )
 | 
						|
	{ return rand() * n; }
 | 
						|
 | 
						|
inline double MTRand::randExc()
 | 
						|
	{ return double(randInt()) * (1.0/4294967296.0); }
 | 
						|
 | 
						|
inline double MTRand::randExc( const double& n )
 | 
						|
	{ return randExc() * n; }
 | 
						|
 | 
						|
inline double MTRand::randDblExc()
 | 
						|
	{ return ( double(randInt()) + 0.5 ) * (1.0/4294967296.0); }
 | 
						|
 | 
						|
inline double MTRand::randDblExc( const double& n )
 | 
						|
	{ return randDblExc() * n; }
 | 
						|
 | 
						|
inline double MTRand::rand53()
 | 
						|
{
 | 
						|
	uint32 a = randInt() >> 5, b = randInt() >> 6;
 | 
						|
	return ( a * 67108864.0 + b ) * (1.0/9007199254740992.0);  // by Isaku Wada
 | 
						|
}
 | 
						|
 | 
						|
inline double MTRand::randNorm( const double& mean, const double& variance )
 | 
						|
{
 | 
						|
	// Return a real number from a normal (Gaussian) distribution with given
 | 
						|
	// mean and variance by Box-Muller method
 | 
						|
	double r = sqrt( -2.0 * log( 1.0-randDblExc()) ) * variance;
 | 
						|
	double phi = 2.0 * 3.14159265358979323846264338328 * randExc();
 | 
						|
	return mean + r * cos(phi);
 | 
						|
}
 | 
						|
 | 
						|
inline MTRand::uint32 MTRand::randInt()
 | 
						|
{
 | 
						|
	// Pull a 32-bit integer from the generator state
 | 
						|
	// Every other access function simply transforms the numbers extracted here
 | 
						|
	
 | 
						|
	if( left == 0 ) reload();
 | 
						|
	--left;
 | 
						|
		
 | 
						|
	register uint32 s1;
 | 
						|
	s1 = *pNext++;
 | 
						|
	s1 ^= (s1 >> 11);
 | 
						|
	s1 ^= (s1 <<  7) & 0x9d2c5680UL;
 | 
						|
	s1 ^= (s1 << 15) & 0xefc60000UL;
 | 
						|
	return ( s1 ^ (s1 >> 18) );
 | 
						|
}
 | 
						|
 | 
						|
inline MTRand::uint32 MTRand::randInt( const uint32& n )
 | 
						|
{
 | 
						|
	// Find which bits are used in n
 | 
						|
	// Optimized by Magnus Jonsson (magnus@smartelectronix.com)
 | 
						|
	uint32 used = n;
 | 
						|
	used |= used >> 1;
 | 
						|
	used |= used >> 2;
 | 
						|
	used |= used >> 4;
 | 
						|
	used |= used >> 8;
 | 
						|
	used |= used >> 16;
 | 
						|
	
 | 
						|
	// Draw numbers until one is found in [0,n]
 | 
						|
	uint32 i;
 | 
						|
	do
 | 
						|
		i = randInt() & used;  // toss unused bits to shorten search
 | 
						|
	while( i > n );
 | 
						|
	return i;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline void MTRand::seed( const uint32 oneSeed )
 | 
						|
{
 | 
						|
	// Seed the generator with a simple uint32
 | 
						|
	initialize(oneSeed);
 | 
						|
	reload();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline void MTRand::seed( uint32 *const bigSeed, const uint32 seedLength )
 | 
						|
{
 | 
						|
	// Seed the generator with an array of uint32's
 | 
						|
	// There are 2^19937-1 possible initial states.  This function allows
 | 
						|
	// all of those to be accessed by providing at least 19937 bits (with a
 | 
						|
	// default seed length of N = 624 uint32's).  Any bits above the lower 32
 | 
						|
	// in each element are discarded.
 | 
						|
	// Just call seed() if you want to get array from /dev/urandom
 | 
						|
	initialize(19650218UL);
 | 
						|
	register int i = 1;
 | 
						|
	register uint32 j = 0;
 | 
						|
	register int k = ( N > seedLength ? N : seedLength );
 | 
						|
	for( ; k; --k )
 | 
						|
	{
 | 
						|
		state[i] =
 | 
						|
			state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1664525UL );
 | 
						|
		state[i] += ( bigSeed[j] & 0xffffffffUL ) + j;
 | 
						|
		state[i] &= 0xffffffffUL;
 | 
						|
		++i;  ++j;
 | 
						|
		if( i >= N ) { state[0] = state[N-1];  i = 1; }
 | 
						|
		if( j >= seedLength ) j = 0;
 | 
						|
	}
 | 
						|
	for( k = N - 1; k; --k )
 | 
						|
	{
 | 
						|
		state[i] =
 | 
						|
			state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1566083941UL );
 | 
						|
		state[i] -= i;
 | 
						|
		state[i] &= 0xffffffffUL;
 | 
						|
		++i;
 | 
						|
		if( i >= N ) { state[0] = state[N-1];  i = 1; }
 | 
						|
	}
 | 
						|
	state[0] = 0x80000000UL;  // MSB is 1, assuring non-zero initial array
 | 
						|
	reload();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline void MTRand::seed()
 | 
						|
{
 | 
						|
	// Seed the generator with an array from /dev/urandom if available
 | 
						|
	// Otherwise use a hash of time() and clock() values
 | 
						|
	
 | 
						|
	// First try getting an array from /dev/urandom
 | 
						|
	FILE* urandom = fopen( "/dev/urandom", "rb" );
 | 
						|
	if( urandom )
 | 
						|
	{
 | 
						|
		uint32 bigSeed[N];
 | 
						|
		register uint32 *s = bigSeed;
 | 
						|
		register int i = N;
 | 
						|
		register bool success = true;
 | 
						|
		while( success && i-- )
 | 
						|
			success = fread( s++, sizeof(uint32), 1, urandom );
 | 
						|
		fclose(urandom);
 | 
						|
		if( success ) { seed( bigSeed, N );  return; }
 | 
						|
	}
 | 
						|
	
 | 
						|
	// Was not successful, so use time() and clock() instead
 | 
						|
	seed( hash( time(NULL), clock() ) );
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline void MTRand::initialize( const uint32 seed )
 | 
						|
{
 | 
						|
	// Initialize generator state with seed
 | 
						|
	// See Knuth TAOCP Vol 2, 3rd Ed, p.106 for multiplier.
 | 
						|
	// In previous versions, most significant bits (MSBs) of the seed affect
 | 
						|
	// only MSBs of the state array.  Modified 9 Jan 2002 by Makoto Matsumoto.
 | 
						|
	register uint32 *s = state;
 | 
						|
	register uint32 *r = state;
 | 
						|
	register int i = 1;
 | 
						|
	*s++ = seed & 0xffffffffUL;
 | 
						|
	for( ; i < N; ++i )
 | 
						|
	{
 | 
						|
		*s++ = ( 1812433253UL * ( *r ^ (*r >> 30) ) + i ) & 0xffffffffUL;
 | 
						|
		r++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline void MTRand::reload()
 | 
						|
{
 | 
						|
	// Generate N new values in state
 | 
						|
	// Made clearer and faster by Matthew Bellew (matthew.bellew@home.com)
 | 
						|
	register uint32 *p = state;
 | 
						|
	register int i;
 | 
						|
	for( i = N - M; i--; ++p )
 | 
						|
		*p = twist( p[M], p[0], p[1] );
 | 
						|
	for( i = M; --i; ++p )
 | 
						|
		*p = twist( p[M-N], p[0], p[1] );
 | 
						|
	*p = twist( p[M-N], p[0], state[0] );
 | 
						|
 | 
						|
	left = N, pNext = state;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline MTRand::uint32 MTRand::hash( time_t t, clock_t c )
 | 
						|
{
 | 
						|
	// Get a uint32 from t and c
 | 
						|
	// Better than uint32(x) in case x is floating point in [0,1]
 | 
						|
	// Based on code by Lawrence Kirby (fred@genesis.demon.co.uk)
 | 
						|
 | 
						|
	static uint32 differ = 0;  // guarantee time-based seeds will change
 | 
						|
 | 
						|
	uint32 h1 = 0;
 | 
						|
	unsigned char *p = (unsigned char *) &t;
 | 
						|
	for( size_t i = 0; i < sizeof(t); ++i )
 | 
						|
	{
 | 
						|
		h1 *= UCHAR_MAX + 2U;
 | 
						|
		h1 += p[i];
 | 
						|
	}
 | 
						|
	uint32 h2 = 0;
 | 
						|
	p = (unsigned char *) &c;
 | 
						|
	for( size_t j = 0; j < sizeof(c); ++j )
 | 
						|
	{
 | 
						|
		h2 *= UCHAR_MAX + 2U;
 | 
						|
		h2 += p[j];
 | 
						|
	}
 | 
						|
	return ( h1 + differ++ ) ^ h2;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline void MTRand::save( uint32* saveArray ) const
 | 
						|
{
 | 
						|
	register uint32 *sa = saveArray;
 | 
						|
	register const uint32 *s = state;
 | 
						|
	register int i = N;
 | 
						|
	for( ; i--; *sa++ = *s++ ) {}
 | 
						|
	*sa = left;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline void MTRand::load( uint32 *const loadArray )
 | 
						|
{
 | 
						|
	register uint32 *s = state;
 | 
						|
	register uint32 *la = loadArray;
 | 
						|
	register int i = N;
 | 
						|
	for( ; i--; *s++ = *la++ ) {}
 | 
						|
	left = *la;
 | 
						|
	pNext = &state[N-left];
 | 
						|
}
 | 
						|
 | 
						|
#endif  // MERSENNETWISTER_H
 | 
						|
 | 
						|
// Change log:
 | 
						|
//
 | 
						|
// v0.1 - First release on 15 May 2000
 | 
						|
//      - Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
 | 
						|
//      - Translated from C to C++
 | 
						|
//      - Made completely ANSI compliant
 | 
						|
//      - Designed convenient interface for initialization, seeding, and
 | 
						|
//        obtaining numbers in default or user-defined ranges
 | 
						|
//      - Added automatic seeding from /dev/urandom or time() and clock()
 | 
						|
//      - Provided functions for saving and loading generator state
 | 
						|
//
 | 
						|
// v0.2 - Fixed bug which reloaded generator one step too late
 | 
						|
//
 | 
						|
// v0.3 - Switched to clearer, faster reload() code from Matthew Bellew
 | 
						|
//
 | 
						|
// v0.4 - Removed trailing newline in saved generator format to be consistent
 | 
						|
//        with output format of built-in types
 | 
						|
//
 | 
						|
// v0.5 - Improved portability by replacing static const int's with enum's and
 | 
						|
//        clarifying return values in seed(); suggested by Eric Heimburg
 | 
						|
//      - Removed MAXINT constant; use 0xffffffffUL instead
 | 
						|
//
 | 
						|
// v0.6 - Eliminated seed overflow when uint32 is larger than 32 bits
 | 
						|
//      - Changed integer [0,n] generator to give better uniformity
 | 
						|
//
 | 
						|
// v0.7 - Fixed operator precedence ambiguity in reload()
 | 
						|
//      - Added access for real numbers in (0,1) and (0,n)
 | 
						|
//
 | 
						|
// v0.8 - Included time.h header to properly support time_t and clock_t
 | 
						|
//
 | 
						|
// v1.0 - Revised seeding to match 26 Jan 2002 update of Nishimura and Matsumoto
 | 
						|
//      - Allowed for seeding with arrays of any length
 | 
						|
//      - Added access for real numbers in [0,1) with 53-bit resolution
 | 
						|
//      - Added access for real numbers from normal (Gaussian) distributions
 | 
						|
//      - Increased overall speed by optimizing twist()
 | 
						|
//      - Doubled speed of integer [0,n] generation
 | 
						|
//      - Fixed out-of-range number generation on 64-bit machines
 | 
						|
//      - Improved portability by substituting literal constants for long enum's
 | 
						|
//      - Changed license from GNU LGPL to BSD
 |