--HG-- extra : convert_revision : svn%3A39bc706e-5318-0410-9160-8a85361fbb7c/trunk%401209
		
			
				
	
	
		
			992 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			992 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** 2004 May 26
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| **
 | |
| ** This file contains code use to manipulate "Mem" structure.  A "Mem"
 | |
| ** stores a single value in the VDBE.  Mem is an opaque structure visible
 | |
| ** only within the VDBE.  Interface routines refer to a Mem using the
 | |
| ** name sqlite_value
 | |
| */
 | |
| #include "sqliteInt.h"
 | |
| #include "os.h"
 | |
| #include <math.h>
 | |
| #include <ctype.h>
 | |
| #include "vdbeInt.h"
 | |
| 
 | |
| /*
 | |
| ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
 | |
| ** P if required.
 | |
| */
 | |
| #define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
 | |
| 
 | |
| /*
 | |
| ** If pMem is an object with a valid string representation, this routine
 | |
| ** ensures the internal encoding for the string representation is
 | |
| ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
 | |
| **
 | |
| ** If pMem is not a string object, or the encoding of the string
 | |
| ** representation is already stored using the requested encoding, then this
 | |
| ** routine is a no-op.
 | |
| **
 | |
| ** SQLITE_OK is returned if the conversion is successful (or not required).
 | |
| ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
 | |
| ** between formats.
 | |
| */
 | |
| int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
 | |
|   int rc;
 | |
|   if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| #ifdef SQLITE_OMIT_UTF16
 | |
|   return SQLITE_ERROR;
 | |
| #else
 | |
| 
 | |
| 
 | |
|   /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
 | |
|   ** then the encoding of the value may not have changed.
 | |
|   */
 | |
|   rc = sqlite3VdbeMemTranslate(pMem, desiredEnc);
 | |
|   assert(rc==SQLITE_OK    || rc==SQLITE_NOMEM);
 | |
|   assert(rc==SQLITE_OK    || pMem->enc!=desiredEnc);
 | |
|   assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
 | |
|   return rc;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make the given Mem object MEM_Dyn.
 | |
| **
 | |
| ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
 | |
| */
 | |
| int sqlite3VdbeMemDynamicify(Mem *pMem){
 | |
|   int n;
 | |
|   u8 *z;
 | |
|   expandBlob(pMem);
 | |
|   if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   assert( (pMem->flags & MEM_Dyn)==0 );
 | |
|   n = pMem->n;
 | |
|   assert( pMem->flags & (MEM_Str|MEM_Blob) );
 | |
|   z = sqliteMallocRaw( n+2 );
 | |
|   if( z==0 ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
|   pMem->flags |= MEM_Dyn|MEM_Term;
 | |
|   pMem->xDel = 0;
 | |
|   memcpy(z, pMem->z, n );
 | |
|   z[n] = 0;
 | |
|   z[n+1] = 0;
 | |
|   pMem->z = (char*)z;
 | |
|   pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If the given Mem* has a zero-filled tail, turn it into an ordinary
 | |
| ** blob stored in dynamically allocated space.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_INCRBLOB
 | |
| int sqlite3VdbeMemExpandBlob(Mem *pMem){
 | |
|   if( pMem->flags & MEM_Zero ){
 | |
|     char *pNew;
 | |
|     int nByte;
 | |
|     assert( (pMem->flags & MEM_Blob)!=0 );
 | |
|     nByte = pMem->n + pMem->u.i;
 | |
|     if( nByte<=0 ) nByte = 1;
 | |
|     pNew = sqliteMalloc(nByte);
 | |
|     if( pNew==0 ){ 
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|     memcpy(pNew, pMem->z, pMem->n);
 | |
|     memset(&pNew[pMem->n], 0, pMem->u.i);
 | |
|     sqlite3VdbeMemRelease(pMem);
 | |
|     pMem->z = pNew;
 | |
|     pMem->n += pMem->u.i;
 | |
|     pMem->u.i = 0;
 | |
|     pMem->flags &= ~(MEM_Zero|MEM_Static|MEM_Ephem|MEM_Short|MEM_Term);
 | |
|     pMem->flags |= MEM_Dyn;
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes
 | |
| ** of the Mem.z[] array can be modified.
 | |
| **
 | |
| ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
 | |
| */
 | |
| int sqlite3VdbeMemMakeWriteable(Mem *pMem){
 | |
|   int n;
 | |
|   u8 *z;
 | |
|   expandBlob(pMem);
 | |
|   if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   assert( (pMem->flags & MEM_Dyn)==0 );
 | |
|   assert( pMem->flags & (MEM_Str|MEM_Blob) );
 | |
|   if( (n = pMem->n)+2<sizeof(pMem->zShort) ){
 | |
|     z = (u8*)pMem->zShort;
 | |
|     pMem->flags |= MEM_Short|MEM_Term;
 | |
|   }else{
 | |
|     z = sqliteMallocRaw( n+2 );
 | |
|     if( z==0 ){
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|     pMem->flags |= MEM_Dyn|MEM_Term;
 | |
|     pMem->xDel = 0;
 | |
|   }
 | |
|   memcpy(z, pMem->z, n );
 | |
|   z[n] = 0;
 | |
|   z[n+1] = 0;
 | |
|   pMem->z = (char*)z;
 | |
|   pMem->flags &= ~(MEM_Ephem|MEM_Static);
 | |
|   assert(0==(1&(int)pMem->z));
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make sure the given Mem is \u0000 terminated.
 | |
| */
 | |
| int sqlite3VdbeMemNulTerminate(Mem *pMem){
 | |
|   if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
 | |
|     return SQLITE_OK;   /* Nothing to do */
 | |
|   }
 | |
|   if( pMem->flags & (MEM_Static|MEM_Ephem) ){
 | |
|     return sqlite3VdbeMemMakeWriteable(pMem);
 | |
|   }else{
 | |
|     char *z; 
 | |
|     sqlite3VdbeMemExpandBlob(pMem);
 | |
|     z = sqliteMalloc(pMem->n+2);
 | |
| 
 | |
|     if( !z ) return SQLITE_NOMEM;
 | |
|     memcpy(z, pMem->z, pMem->n);
 | |
|     z[pMem->n] = 0;
 | |
|     z[pMem->n+1] = 0;
 | |
|     if( pMem->xDel ){
 | |
|       pMem->xDel(pMem->z);
 | |
|     }else{
 | |
|       sqliteFree(pMem->z);
 | |
|     }
 | |
|     pMem->xDel = 0;
 | |
|     pMem->z = z;
 | |
|     pMem->flags |= MEM_Term;
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add MEM_Str to the set of representations for the given Mem.  Numbers
 | |
| ** are converted using sqlite3_snprintf().  Converting a BLOB to a string
 | |
| ** is a no-op.
 | |
| **
 | |
| ** Existing representations MEM_Int and MEM_Real are *not* invalidated.
 | |
| **
 | |
| ** A MEM_Null value will never be passed to this function. This function is
 | |
| ** used for converting values to text for returning to the user (i.e. via
 | |
| ** sqlite3_value_text()), or for ensuring that values to be used as btree
 | |
| ** keys are strings. In the former case a NULL pointer is returned the
 | |
| ** user and the later is an internal programming error.
 | |
| */
 | |
| int sqlite3VdbeMemStringify(Mem *pMem, int enc){
 | |
|   int rc = SQLITE_OK;
 | |
|   int fg = pMem->flags;
 | |
|   char *z = pMem->zShort;
 | |
| 
 | |
|   assert( !(fg&MEM_Zero) );
 | |
|   assert( !(fg&(MEM_Str|MEM_Blob)) );
 | |
|   assert( fg&(MEM_Int|MEM_Real) );
 | |
| 
 | |
|   /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
 | |
|   ** string representation of the value. Then, if the required encoding
 | |
|   ** is UTF-16le or UTF-16be do a translation.
 | |
|   ** 
 | |
|   ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
 | |
|   */
 | |
|   if( fg & MEM_Int ){
 | |
|     sqlite3_snprintf(NBFS, z, "%lld", pMem->u.i);
 | |
|   }else{
 | |
|     assert( fg & MEM_Real );
 | |
|     sqlite3_snprintf(NBFS, z, "%!.15g", pMem->r);
 | |
|   }
 | |
|   pMem->n = strlen(z);
 | |
|   pMem->z = z;
 | |
|   pMem->enc = SQLITE_UTF8;
 | |
|   pMem->flags |= MEM_Str | MEM_Short | MEM_Term;
 | |
|   sqlite3VdbeChangeEncoding(pMem, enc);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Memory cell pMem contains the context of an aggregate function.
 | |
| ** This routine calls the finalize method for that function.  The
 | |
| ** result of the aggregate is stored back into pMem.
 | |
| **
 | |
| ** Return SQLITE_ERROR if the finalizer reports an error.  SQLITE_OK
 | |
| ** otherwise.
 | |
| */
 | |
| int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
 | |
|   int rc = SQLITE_OK;
 | |
|   if( pFunc && pFunc->xFinalize ){
 | |
|     sqlite3_context ctx;
 | |
|     assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
 | |
|     ctx.s.flags = MEM_Null;
 | |
|     ctx.s.z = pMem->zShort;
 | |
|     ctx.pMem = pMem;
 | |
|     ctx.pFunc = pFunc;
 | |
|     ctx.isError = 0;
 | |
|     pFunc->xFinalize(&ctx);
 | |
|     if( pMem->z && pMem->z!=pMem->zShort ){
 | |
|       sqliteFree( pMem->z );
 | |
|     }
 | |
|     *pMem = ctx.s;
 | |
|     if( pMem->flags & MEM_Short ){
 | |
|       pMem->z = pMem->zShort;
 | |
|     }
 | |
|     if( ctx.isError ){
 | |
|       rc = SQLITE_ERROR;
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Release any memory held by the Mem. This may leave the Mem in an
 | |
| ** inconsistent state, for example with (Mem.z==0) and
 | |
| ** (Mem.type==SQLITE_TEXT).
 | |
| */
 | |
| void sqlite3VdbeMemRelease(Mem *p){
 | |
|   if( p->flags & (MEM_Dyn|MEM_Agg) ){
 | |
|     if( p->xDel ){
 | |
|       if( p->flags & MEM_Agg ){
 | |
|         sqlite3VdbeMemFinalize(p, p->u.pDef);
 | |
|         assert( (p->flags & MEM_Agg)==0 );
 | |
|         sqlite3VdbeMemRelease(p);
 | |
|       }else{
 | |
|         p->xDel((void *)p->z);
 | |
|       }
 | |
|     }else{
 | |
|       sqliteFree(p->z);
 | |
|     }
 | |
|     p->z = 0;
 | |
|     p->xDel = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return some kind of integer value which is the best we can do
 | |
| ** at representing the value that *pMem describes as an integer.
 | |
| ** If pMem is an integer, then the value is exact.  If pMem is
 | |
| ** a floating-point then the value returned is the integer part.
 | |
| ** If pMem is a string or blob, then we make an attempt to convert
 | |
| ** it into a integer and return that.  If pMem is NULL, return 0.
 | |
| **
 | |
| ** If pMem is a string, its encoding might be changed.
 | |
| */
 | |
| i64 sqlite3VdbeIntValue(Mem *pMem){
 | |
|   int flags = pMem->flags;
 | |
|   if( flags & MEM_Int ){
 | |
|     return pMem->u.i;
 | |
|   }else if( flags & MEM_Real ){
 | |
|     return (i64)pMem->r;
 | |
|   }else if( flags & (MEM_Str|MEM_Blob) ){
 | |
|     i64 value;
 | |
|     pMem->flags |= MEM_Str;
 | |
|     if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
 | |
|        || sqlite3VdbeMemNulTerminate(pMem) ){
 | |
|       return 0;
 | |
|     }
 | |
|     assert( pMem->z );
 | |
|     sqlite3Atoi64(pMem->z, &value);
 | |
|     return value;
 | |
|   }else{
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the best representation of pMem that we can get into a
 | |
| ** double.  If pMem is already a double or an integer, return its
 | |
| ** value.  If it is a string or blob, try to convert it to a double.
 | |
| ** If it is a NULL, return 0.0.
 | |
| */
 | |
| double sqlite3VdbeRealValue(Mem *pMem){
 | |
|   if( pMem->flags & MEM_Real ){
 | |
|     return pMem->r;
 | |
|   }else if( pMem->flags & MEM_Int ){
 | |
|     return (double)pMem->u.i;
 | |
|   }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
 | |
|     double val = 0.0;
 | |
|     pMem->flags |= MEM_Str;
 | |
|     if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
 | |
|        || sqlite3VdbeMemNulTerminate(pMem) ){
 | |
|       return 0.0;
 | |
|     }
 | |
|     assert( pMem->z );
 | |
|     sqlite3AtoF(pMem->z, &val);
 | |
|     return val;
 | |
|   }else{
 | |
|     return 0.0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The MEM structure is already a MEM_Real.  Try to also make it a
 | |
| ** MEM_Int if we can.
 | |
| */
 | |
| void sqlite3VdbeIntegerAffinity(Mem *pMem){
 | |
|   assert( pMem->flags & MEM_Real );
 | |
|   pMem->u.i = pMem->r;
 | |
|   if( ((double)pMem->u.i)==pMem->r ){
 | |
|     pMem->flags |= MEM_Int;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Convert pMem to type integer.  Invalidate any prior representations.
 | |
| */
 | |
| int sqlite3VdbeMemIntegerify(Mem *pMem){
 | |
|   pMem->u.i = sqlite3VdbeIntValue(pMem);
 | |
|   sqlite3VdbeMemRelease(pMem);
 | |
|   pMem->flags = MEM_Int;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Convert pMem so that it is of type MEM_Real.
 | |
| ** Invalidate any prior representations.
 | |
| */
 | |
| int sqlite3VdbeMemRealify(Mem *pMem){
 | |
|   pMem->r = sqlite3VdbeRealValue(pMem);
 | |
|   sqlite3VdbeMemRelease(pMem);
 | |
|   pMem->flags = MEM_Real;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
 | |
| ** Invalidate any prior representations.
 | |
| */
 | |
| int sqlite3VdbeMemNumerify(Mem *pMem){
 | |
|   double r1, r2;
 | |
|   i64 i;
 | |
|   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 );
 | |
|   assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
 | |
|   r1 = sqlite3VdbeRealValue(pMem);
 | |
|   i = (i64)r1;
 | |
|   r2 = (double)i;
 | |
|   if( r1==r2 ){
 | |
|     sqlite3VdbeMemIntegerify(pMem);
 | |
|   }else{
 | |
|     pMem->r = r1;
 | |
|     pMem->flags = MEM_Real;
 | |
|     sqlite3VdbeMemRelease(pMem);
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete any previous value and set the value stored in *pMem to NULL.
 | |
| */
 | |
| void sqlite3VdbeMemSetNull(Mem *pMem){
 | |
|   sqlite3VdbeMemRelease(pMem);
 | |
|   pMem->flags = MEM_Null;
 | |
|   pMem->type = SQLITE_NULL;
 | |
|   pMem->n = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete any previous value and set the value to be a BLOB of length
 | |
| ** n containing all zeros.
 | |
| */
 | |
| void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
 | |
|   sqlite3VdbeMemRelease(pMem);
 | |
|   pMem->flags = MEM_Blob|MEM_Zero|MEM_Short;
 | |
|   pMem->type = SQLITE_BLOB;
 | |
|   pMem->n = 0;
 | |
|   if( n<0 ) n = 0;
 | |
|   pMem->u.i = n;
 | |
|   pMem->z = pMem->zShort;
 | |
|   pMem->enc = SQLITE_UTF8;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete any previous value and set the value stored in *pMem to val,
 | |
| ** manifest type INTEGER.
 | |
| */
 | |
| void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
 | |
|   sqlite3VdbeMemRelease(pMem);
 | |
|   pMem->u.i = val;
 | |
|   pMem->flags = MEM_Int;
 | |
|   pMem->type = SQLITE_INTEGER;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete any previous value and set the value stored in *pMem to val,
 | |
| ** manifest type REAL.
 | |
| */
 | |
| void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
 | |
|   if( sqlite3_isnan(val) ){
 | |
|     sqlite3VdbeMemSetNull(pMem);
 | |
|   }else{
 | |
|     sqlite3VdbeMemRelease(pMem);
 | |
|     pMem->r = val;
 | |
|     pMem->flags = MEM_Real;
 | |
|     pMem->type = SQLITE_FLOAT;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return true if the Mem object contains a TEXT or BLOB that is
 | |
| ** too large - whose size exceeds SQLITE_MAX_LENGTH.
 | |
| */
 | |
| int sqlite3VdbeMemTooBig(Mem *p){
 | |
|   if( p->flags & (MEM_Str|MEM_Blob) ){
 | |
|     int n = p->n;
 | |
|     if( p->flags & MEM_Zero ){
 | |
|       n += p->u.i;
 | |
|     }
 | |
|     return n>SQLITE_MAX_LENGTH;
 | |
|   }
 | |
|   return 0; 
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make an shallow copy of pFrom into pTo.  Prior contents of
 | |
| ** pTo are overwritten.  The pFrom->z field is not duplicated.  If
 | |
| ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
 | |
| ** and flags gets srcType (either MEM_Ephem or MEM_Static).
 | |
| */
 | |
| void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
 | |
|   memcpy(pTo, pFrom, sizeof(*pFrom)-sizeof(pFrom->zShort));
 | |
|   pTo->xDel = 0;
 | |
|   if( pTo->flags & (MEM_Str|MEM_Blob) ){
 | |
|     pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short|MEM_Ephem);
 | |
|     assert( srcType==MEM_Ephem || srcType==MEM_Static );
 | |
|     pTo->flags |= srcType;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make a full copy of pFrom into pTo.  Prior contents of pTo are
 | |
| ** freed before the copy is made.
 | |
| */
 | |
| int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
 | |
|   int rc;
 | |
|   if( pTo->flags & MEM_Dyn ){
 | |
|     sqlite3VdbeMemRelease(pTo);
 | |
|   }
 | |
|   sqlite3VdbeMemShallowCopy(pTo, pFrom, MEM_Ephem);
 | |
|   if( pTo->flags & MEM_Ephem ){
 | |
|     rc = sqlite3VdbeMemMakeWriteable(pTo);
 | |
|   }else{
 | |
|     rc = SQLITE_OK;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
 | |
| ** freed. If pFrom contains ephemeral data, a copy is made.
 | |
| **
 | |
| ** pFrom contains an SQL NULL when this routine returns.  SQLITE_NOMEM
 | |
| ** might be returned if pFrom held ephemeral data and we were unable
 | |
| ** to allocate enough space to make a copy.
 | |
| */
 | |
| int sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
 | |
|   int rc;
 | |
|   if( pTo->flags & MEM_Dyn ){
 | |
|     sqlite3VdbeMemRelease(pTo);
 | |
|   }
 | |
|   memcpy(pTo, pFrom, sizeof(Mem));
 | |
|   if( pFrom->flags & MEM_Short ){
 | |
|     pTo->z = pTo->zShort;
 | |
|   }
 | |
|   pFrom->flags = MEM_Null;
 | |
|   pFrom->xDel = 0;
 | |
|   if( pTo->flags & MEM_Ephem ){
 | |
|     rc = sqlite3VdbeMemMakeWriteable(pTo);
 | |
|   }else{
 | |
|     rc = SQLITE_OK;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the value of a Mem to be a string or a BLOB.
 | |
| */
 | |
| int sqlite3VdbeMemSetStr(
 | |
|   Mem *pMem,          /* Memory cell to set to string value */
 | |
|   const char *z,      /* String pointer */
 | |
|   int n,              /* Bytes in string, or negative */
 | |
|   u8 enc,             /* Encoding of z.  0 for BLOBs */
 | |
|   void (*xDel)(void*) /* Destructor function */
 | |
| ){
 | |
|   sqlite3VdbeMemRelease(pMem);
 | |
|   if( !z ){
 | |
|     pMem->flags = MEM_Null;
 | |
|     pMem->type = SQLITE_NULL;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   pMem->z = (char *)z;
 | |
|   if( xDel==SQLITE_STATIC ){
 | |
|     pMem->flags = MEM_Static;
 | |
|   }else if( xDel==SQLITE_TRANSIENT ){
 | |
|     pMem->flags = MEM_Ephem;
 | |
|   }else{
 | |
|     pMem->flags = MEM_Dyn;
 | |
|     pMem->xDel = xDel;
 | |
|   }
 | |
| 
 | |
|   pMem->enc = enc;
 | |
|   pMem->type = enc==0 ? SQLITE_BLOB : SQLITE_TEXT;
 | |
|   pMem->n = n;
 | |
| 
 | |
|   assert( enc==0 || enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE 
 | |
|       || enc==SQLITE_UTF16BE );
 | |
|   switch( enc ){
 | |
|     case 0:
 | |
|       pMem->flags |= MEM_Blob;
 | |
|       pMem->enc = SQLITE_UTF8;
 | |
|       break;
 | |
| 
 | |
|     case SQLITE_UTF8:
 | |
|       pMem->flags |= MEM_Str;
 | |
|       if( n<0 ){
 | |
|         pMem->n = strlen(z);
 | |
|         pMem->flags |= MEM_Term;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
|     case SQLITE_UTF16LE:
 | |
|     case SQLITE_UTF16BE:
 | |
|       pMem->flags |= MEM_Str;
 | |
|       if( pMem->n<0 ){
 | |
|         pMem->n = sqlite3Utf16ByteLen(pMem->z,-1);
 | |
|         pMem->flags |= MEM_Term;
 | |
|       }
 | |
|       if( sqlite3VdbeMemHandleBom(pMem) ){
 | |
|         return SQLITE_NOMEM;
 | |
|       }
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
|   }
 | |
|   if( pMem->flags&MEM_Ephem ){
 | |
|     return sqlite3VdbeMemMakeWriteable(pMem);
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compare the values contained by the two memory cells, returning
 | |
| ** negative, zero or positive if pMem1 is less than, equal to, or greater
 | |
| ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
 | |
| ** and reals) sorted numerically, followed by text ordered by the collating
 | |
| ** sequence pColl and finally blob's ordered by memcmp().
 | |
| **
 | |
| ** Two NULL values are considered equal by this function.
 | |
| */
 | |
| int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
 | |
|   int rc;
 | |
|   int f1, f2;
 | |
|   int combined_flags;
 | |
| 
 | |
|   /* Interchange pMem1 and pMem2 if the collating sequence specifies
 | |
|   ** DESC order.
 | |
|   */
 | |
|   f1 = pMem1->flags;
 | |
|   f2 = pMem2->flags;
 | |
|   combined_flags = f1|f2;
 | |
|  
 | |
|   /* If one value is NULL, it is less than the other. If both values
 | |
|   ** are NULL, return 0.
 | |
|   */
 | |
|   if( combined_flags&MEM_Null ){
 | |
|     return (f2&MEM_Null) - (f1&MEM_Null);
 | |
|   }
 | |
| 
 | |
|   /* If one value is a number and the other is not, the number is less.
 | |
|   ** If both are numbers, compare as reals if one is a real, or as integers
 | |
|   ** if both values are integers.
 | |
|   */
 | |
|   if( combined_flags&(MEM_Int|MEM_Real) ){
 | |
|     if( !(f1&(MEM_Int|MEM_Real)) ){
 | |
|       return 1;
 | |
|     }
 | |
|     if( !(f2&(MEM_Int|MEM_Real)) ){
 | |
|       return -1;
 | |
|     }
 | |
|     if( (f1 & f2 & MEM_Int)==0 ){
 | |
|       double r1, r2;
 | |
|       if( (f1&MEM_Real)==0 ){
 | |
|         r1 = pMem1->u.i;
 | |
|       }else{
 | |
|         r1 = pMem1->r;
 | |
|       }
 | |
|       if( (f2&MEM_Real)==0 ){
 | |
|         r2 = pMem2->u.i;
 | |
|       }else{
 | |
|         r2 = pMem2->r;
 | |
|       }
 | |
|       if( r1<r2 ) return -1;
 | |
|       if( r1>r2 ) return 1;
 | |
|       return 0;
 | |
|     }else{
 | |
|       assert( f1&MEM_Int );
 | |
|       assert( f2&MEM_Int );
 | |
|       if( pMem1->u.i < pMem2->u.i ) return -1;
 | |
|       if( pMem1->u.i > pMem2->u.i ) return 1;
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If one value is a string and the other is a blob, the string is less.
 | |
|   ** If both are strings, compare using the collating functions.
 | |
|   */
 | |
|   if( combined_flags&MEM_Str ){
 | |
|     if( (f1 & MEM_Str)==0 ){
 | |
|       return 1;
 | |
|     }
 | |
|     if( (f2 & MEM_Str)==0 ){
 | |
|       return -1;
 | |
|     }
 | |
| 
 | |
|     assert( pMem1->enc==pMem2->enc );
 | |
|     assert( pMem1->enc==SQLITE_UTF8 || 
 | |
|             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
 | |
| 
 | |
|     /* The collation sequence must be defined at this point, even if
 | |
|     ** the user deletes the collation sequence after the vdbe program is
 | |
|     ** compiled (this was not always the case).
 | |
|     */
 | |
|     assert( !pColl || pColl->xCmp );
 | |
| 
 | |
|     if( pColl ){
 | |
|       if( pMem1->enc==pColl->enc ){
 | |
|         /* The strings are already in the correct encoding.  Call the
 | |
|         ** comparison function directly */
 | |
|         return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
 | |
|       }else{
 | |
|         u8 origEnc = pMem1->enc;
 | |
|         const void *v1, *v2;
 | |
|         int n1, n2;
 | |
|         /* Convert the strings into the encoding that the comparison
 | |
|         ** function expects */
 | |
|         v1 = sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc);
 | |
|         n1 = v1==0 ? 0 : pMem1->n;
 | |
|         assert( n1==sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc) );
 | |
|         v2 = sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc);
 | |
|         n2 = v2==0 ? 0 : pMem2->n;
 | |
|         assert( n2==sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc) );
 | |
|         /* Do the comparison */
 | |
|         rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
 | |
|         /* Convert the strings back into the database encoding */
 | |
|         sqlite3ValueText((sqlite3_value*)pMem1, origEnc);
 | |
|         sqlite3ValueText((sqlite3_value*)pMem2, origEnc);
 | |
|         return rc;
 | |
|       }
 | |
|     }
 | |
|     /* If a NULL pointer was passed as the collate function, fall through
 | |
|     ** to the blob case and use memcmp().  */
 | |
|   }
 | |
|  
 | |
|   /* Both values must be blobs.  Compare using memcmp().  */
 | |
|   rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
 | |
|   if( rc==0 ){
 | |
|     rc = pMem1->n - pMem2->n;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Move data out of a btree key or data field and into a Mem structure.
 | |
| ** The data or key is taken from the entry that pCur is currently pointing
 | |
| ** to.  offset and amt determine what portion of the data or key to retrieve.
 | |
| ** key is true to get the key or false to get data.  The result is written
 | |
| ** into the pMem element.
 | |
| **
 | |
| ** The pMem structure is assumed to be uninitialized.  Any prior content
 | |
| ** is overwritten without being freed.
 | |
| **
 | |
| ** If this routine fails for any reason (malloc returns NULL or unable
 | |
| ** to read from the disk) then the pMem is left in an inconsistent state.
 | |
| */
 | |
| int sqlite3VdbeMemFromBtree(
 | |
|   BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
 | |
|   int offset,       /* Offset from the start of data to return bytes from. */
 | |
|   int amt,          /* Number of bytes to return. */
 | |
|   int key,          /* If true, retrieve from the btree key, not data. */
 | |
|   Mem *pMem         /* OUT: Return data in this Mem structure. */
 | |
| ){
 | |
|   char *zData;       /* Data from the btree layer */
 | |
|   int available = 0; /* Number of bytes available on the local btree page */
 | |
| 
 | |
|   if( key ){
 | |
|     zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
 | |
|   }else{
 | |
|     zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
 | |
|   }
 | |
|   assert( zData!=0 );
 | |
| 
 | |
|   pMem->n = amt;
 | |
|   if( offset+amt<=available ){
 | |
|     pMem->z = &zData[offset];
 | |
|     pMem->flags = MEM_Blob|MEM_Ephem;
 | |
|   }else{
 | |
|     int rc;
 | |
|     if( amt>NBFS-2 ){
 | |
|       zData = (char *)sqliteMallocRaw(amt+2);
 | |
|       if( !zData ){
 | |
|         return SQLITE_NOMEM;
 | |
|       }
 | |
|       pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
 | |
|       pMem->xDel = 0;
 | |
|     }else{
 | |
|       zData = &(pMem->zShort[0]);
 | |
|       pMem->flags = MEM_Blob|MEM_Short|MEM_Term;
 | |
|     }
 | |
|     pMem->z = zData;
 | |
|     pMem->enc = 0;
 | |
|     pMem->type = SQLITE_BLOB;
 | |
| 
 | |
|     if( key ){
 | |
|       rc = sqlite3BtreeKey(pCur, offset, amt, zData);
 | |
|     }else{
 | |
|       rc = sqlite3BtreeData(pCur, offset, amt, zData);
 | |
|     }
 | |
|     zData[amt] = 0;
 | |
|     zData[amt+1] = 0;
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       if( amt>NBFS-2 ){
 | |
|         assert( zData!=pMem->zShort );
 | |
|         assert( pMem->flags & MEM_Dyn );
 | |
|         sqliteFree(zData);
 | |
|       } else {
 | |
|         assert( zData==pMem->zShort );
 | |
|         assert( pMem->flags & MEM_Short );
 | |
|       }
 | |
|       return rc;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /*
 | |
| ** Perform various checks on the memory cell pMem. An assert() will
 | |
| ** fail if pMem is internally inconsistent.
 | |
| */
 | |
| void sqlite3VdbeMemSanity(Mem *pMem){
 | |
|   int flags = pMem->flags;
 | |
|   assert( flags!=0 );  /* Must define some type */
 | |
|   if( flags & (MEM_Str|MEM_Blob) ){
 | |
|     int x = flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
 | |
|     assert( x!=0 );            /* Strings must define a string subtype */
 | |
|     assert( (x & (x-1))==0 );  /* Only one string subtype can be defined */
 | |
|     assert( pMem->z!=0 );      /* Strings must have a value */
 | |
|     /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
 | |
|     assert( (x & MEM_Short)==0 || pMem->z==pMem->zShort );
 | |
|     assert( (x & MEM_Short)!=0 || pMem->z!=pMem->zShort );
 | |
|     /* No destructor unless there is MEM_Dyn */
 | |
|     assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 );
 | |
| 
 | |
|     if( (flags & MEM_Str) ){
 | |
|       assert( pMem->enc==SQLITE_UTF8 || 
 | |
|               pMem->enc==SQLITE_UTF16BE ||
 | |
|               pMem->enc==SQLITE_UTF16LE 
 | |
|       );
 | |
|       /* If the string is UTF-8 encoded and nul terminated, then pMem->n
 | |
|       ** must be the length of the string.  (Later:)  If the database file
 | |
|       ** has been corrupted, '\000' characters might have been inserted
 | |
|       ** into the middle of the string.  In that case, the strlen() might
 | |
|       ** be less.
 | |
|       */
 | |
|       if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){ 
 | |
|         assert( strlen(pMem->z)<=pMem->n );
 | |
|         assert( pMem->z[pMem->n]==0 );
 | |
|       }
 | |
|     }
 | |
|   }else{
 | |
|     /* Cannot define a string subtype for non-string objects */
 | |
|     assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
 | |
|     assert( pMem->xDel==0 );
 | |
|   }
 | |
|   /* MEM_Null excludes all other types */
 | |
|   assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0
 | |
|           || (pMem->flags&MEM_Null)==0 );
 | |
|   /* If the MEM is both real and integer, the values are equal */
 | |
|   assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) 
 | |
|           || pMem->r==pMem->u.i );
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* This function is only available internally, it is not part of the
 | |
| ** external API. It works in a similar way to sqlite3_value_text(),
 | |
| ** except the data returned is in the encoding specified by the second
 | |
| ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
 | |
| ** SQLITE_UTF8.
 | |
| **
 | |
| ** (2006-02-16:)  The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
 | |
| ** If that is the case, then the result must be aligned on an even byte
 | |
| ** boundary.
 | |
| */
 | |
| const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
 | |
|   if( !pVal ) return 0;
 | |
|   assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
 | |
| 
 | |
|   if( pVal->flags&MEM_Null ){
 | |
|     return 0;
 | |
|   }
 | |
|   assert( (MEM_Blob>>3) == MEM_Str );
 | |
|   pVal->flags |= (pVal->flags & MEM_Blob)>>3;
 | |
|   expandBlob(pVal);
 | |
|   if( pVal->flags&MEM_Str ){
 | |
|     sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
 | |
|     if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&(int)pVal->z) ){
 | |
|       assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
 | |
|       if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
 | |
|         return 0;
 | |
|       }
 | |
|     }
 | |
|     sqlite3VdbeMemNulTerminate(pVal);
 | |
|   }else{
 | |
|     assert( (pVal->flags&MEM_Blob)==0 );
 | |
|     sqlite3VdbeMemStringify(pVal, enc);
 | |
|     assert( 0==(1&(int)pVal->z) );
 | |
|   }
 | |
|   assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || sqlite3MallocFailed() );
 | |
|   if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
 | |
|     return pVal->z;
 | |
|   }else{
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a new sqlite3_value object.
 | |
| */
 | |
| sqlite3_value *sqlite3ValueNew(void){
 | |
|   Mem *p = sqliteMalloc(sizeof(*p));
 | |
|   if( p ){
 | |
|     p->flags = MEM_Null;
 | |
|     p->type = SQLITE_NULL;
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a new sqlite3_value object, containing the value of pExpr.
 | |
| **
 | |
| ** This only works for very simple expressions that consist of one constant
 | |
| ** token (i.e. "5", "5.1", "NULL", "'a string'"). If the expression can
 | |
| ** be converted directly into a value, then the value is allocated and
 | |
| ** a pointer written to *ppVal. The caller is responsible for deallocating
 | |
| ** the value by passing it to sqlite3ValueFree() later on. If the expression
 | |
| ** cannot be converted to a value, then *ppVal is set to NULL.
 | |
| */
 | |
| int sqlite3ValueFromExpr(
 | |
|   Expr *pExpr, 
 | |
|   u8 enc, 
 | |
|   u8 affinity,
 | |
|   sqlite3_value **ppVal
 | |
| ){
 | |
|   int op;
 | |
|   char *zVal = 0;
 | |
|   sqlite3_value *pVal = 0;
 | |
| 
 | |
|   if( !pExpr ){
 | |
|     *ppVal = 0;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   op = pExpr->op;
 | |
| 
 | |
|   if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
 | |
|     zVal = sqliteStrNDup((char*)pExpr->token.z, pExpr->token.n);
 | |
|     pVal = sqlite3ValueNew();
 | |
|     if( !zVal || !pVal ) goto no_mem;
 | |
|     sqlite3Dequote(zVal);
 | |
|     sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3FreeX);
 | |
|     if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
 | |
|       sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc);
 | |
|     }else{
 | |
|       sqlite3ValueApplyAffinity(pVal, affinity, enc);
 | |
|     }
 | |
|   }else if( op==TK_UMINUS ) {
 | |
|     if( SQLITE_OK==sqlite3ValueFromExpr(pExpr->pLeft, enc, affinity, &pVal) ){
 | |
|       pVal->u.i = -1 * pVal->u.i;
 | |
|       pVal->r = -1.0 * pVal->r;
 | |
|     }
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_BLOB_LITERAL
 | |
|   else if( op==TK_BLOB ){
 | |
|     int nVal;
 | |
|     pVal = sqlite3ValueNew();
 | |
|     zVal = sqliteStrNDup((char*)pExpr->token.z+1, pExpr->token.n-1);
 | |
|     if( !zVal || !pVal ) goto no_mem;
 | |
|     sqlite3Dequote(zVal);
 | |
|     nVal = strlen(zVal)/2;
 | |
|     sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(zVal), nVal, 0, sqlite3FreeX);
 | |
|     sqliteFree(zVal);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   *ppVal = pVal;
 | |
|   return SQLITE_OK;
 | |
| 
 | |
| no_mem:
 | |
|   sqliteFree(zVal);
 | |
|   sqlite3ValueFree(pVal);
 | |
|   *ppVal = 0;
 | |
|   return SQLITE_NOMEM;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the string value of an sqlite3_value object
 | |
| */
 | |
| void sqlite3ValueSetStr(
 | |
|   sqlite3_value *v, 
 | |
|   int n, 
 | |
|   const void *z, 
 | |
|   u8 enc,
 | |
|   void (*xDel)(void*)
 | |
| ){
 | |
|   if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Free an sqlite3_value object
 | |
| */
 | |
| void sqlite3ValueFree(sqlite3_value *v){
 | |
|   if( !v ) return;
 | |
|   sqlite3ValueSetStr(v, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
 | |
|   sqliteFree(v);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the number of bytes in the sqlite3_value object assuming
 | |
| ** that it uses the encoding "enc"
 | |
| */
 | |
| int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
 | |
|   Mem *p = (Mem*)pVal;
 | |
|   if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
 | |
|     if( p->flags & MEM_Zero ){
 | |
|       return (int)(p->n+p->u.i);
 | |
|     }else{
 | |
|       return p->n;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 |