--HG-- extra : convert_revision : svn%3A39bc706e-5318-0410-9160-8a85361fbb7c/trunk%401209
		
			
				
	
	
		
			5226 lines
		
	
	
		
			158 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5226 lines
		
	
	
		
			158 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** The code in this file implements execution method of the 
 | |
| ** Virtual Database Engine (VDBE).  A separate file ("vdbeaux.c")
 | |
| ** handles housekeeping details such as creating and deleting
 | |
| ** VDBE instances.  This file is solely interested in executing
 | |
| ** the VDBE program.
 | |
| **
 | |
| ** In the external interface, an "sqlite3_stmt*" is an opaque pointer
 | |
| ** to a VDBE.
 | |
| **
 | |
| ** The SQL parser generates a program which is then executed by
 | |
| ** the VDBE to do the work of the SQL statement.  VDBE programs are 
 | |
| ** similar in form to assembly language.  The program consists of
 | |
| ** a linear sequence of operations.  Each operation has an opcode 
 | |
| ** and 3 operands.  Operands P1 and P2 are integers.  Operand P3 
 | |
| ** is a null-terminated string.   The P2 operand must be non-negative.
 | |
| ** Opcodes will typically ignore one or more operands.  Many opcodes
 | |
| ** ignore all three operands.
 | |
| **
 | |
| ** Computation results are stored on a stack.  Each entry on the
 | |
| ** stack is either an integer, a null-terminated string, a floating point
 | |
| ** number, or the SQL "NULL" value.  An inplicit conversion from one
 | |
| ** type to the other occurs as necessary.
 | |
| ** 
 | |
| ** Most of the code in this file is taken up by the sqlite3VdbeExec()
 | |
| ** function which does the work of interpreting a VDBE program.
 | |
| ** But other routines are also provided to help in building up
 | |
| ** a program instruction by instruction.
 | |
| **
 | |
| ** Various scripts scan this source file in order to generate HTML
 | |
| ** documentation, headers files, or other derived files.  The formatting
 | |
| ** of the code in this file is, therefore, important.  See other comments
 | |
| ** in this file for details.  If in doubt, do not deviate from existing
 | |
| ** commenting and indentation practices when changing or adding code.
 | |
| **
 | |
| ** $Id$
 | |
| */
 | |
| #include "sqliteInt.h"
 | |
| #include "os.h"
 | |
| #include <ctype.h>
 | |
| #include <math.h>
 | |
| #include "vdbeInt.h"
 | |
| 
 | |
| /*
 | |
| ** The following global variable is incremented every time a cursor
 | |
| ** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes.  The test
 | |
| ** procedures use this information to make sure that indices are
 | |
| ** working correctly.  This variable has no function other than to
 | |
| ** help verify the correct operation of the library.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| int sqlite3_search_count = 0;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** When this global variable is positive, it gets decremented once before
 | |
| ** each instruction in the VDBE.  When reaches zero, the u1.isInterrupted
 | |
| ** field of the sqlite3 structure is set in order to simulate and interrupt.
 | |
| **
 | |
| ** This facility is used for testing purposes only.  It does not function
 | |
| ** in an ordinary build.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| int sqlite3_interrupt_count = 0;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The next global variable is incremented each type the OP_Sort opcode
 | |
| ** is executed.  The test procedures use this information to make sure that
 | |
| ** sorting is occurring or not occuring at appropriate times.   This variable
 | |
| ** has no function other than to help verify the correct operation of the
 | |
| ** library.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| int sqlite3_sort_count = 0;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The next global variable records the size of the largest MEM_Blob
 | |
| ** or MEM_Str that has appeared on the VDBE stack.  The test procedures
 | |
| ** use this information to make sure that the zero-blob functionality
 | |
| ** is working correctly.   This variable has no function other than to
 | |
| ** help verify the correct operation of the library.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| int sqlite3_max_blobsize = 0;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Release the memory associated with the given stack level.  This
 | |
| ** leaves the Mem.flags field in an inconsistent state.
 | |
| */
 | |
| #define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); }
 | |
| 
 | |
| /*
 | |
| ** Convert the given stack entity into a string if it isn't one
 | |
| ** already. Return non-zero if a malloc() fails.
 | |
| */
 | |
| #define Stringify(P, enc) \
 | |
|    if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
 | |
|      { goto no_mem; }
 | |
| 
 | |
| /*
 | |
| ** Convert the given stack entity into a string that has been obtained
 | |
| ** from sqliteMalloc().  This is different from Stringify() above in that
 | |
| ** Stringify() will use the NBFS bytes of static string space if the string
 | |
| ** will fit but this routine always mallocs for space.
 | |
| ** Return non-zero if we run out of memory.
 | |
| */
 | |
| #define Dynamicify(P,enc) sqlite3VdbeMemDynamicify(P)
 | |
| 
 | |
| /*
 | |
| ** The header of a record consists of a sequence variable-length integers.
 | |
| ** These integers are almost always small and are encoded as a single byte.
 | |
| ** The following macro takes advantage this fact to provide a fast decode
 | |
| ** of the integers in a record header.  It is faster for the common case
 | |
| ** where the integer is a single byte.  It is a little slower when the
 | |
| ** integer is two or more bytes.  But overall it is faster.
 | |
| **
 | |
| ** The following expressions are equivalent:
 | |
| **
 | |
| **     x = sqlite3GetVarint32( A, &B );
 | |
| **
 | |
| **     x = GetVarint( A, B );
 | |
| **
 | |
| */
 | |
| #define GetVarint(A,B)  ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))
 | |
| 
 | |
| /*
 | |
| ** An ephemeral string value (signified by the MEM_Ephem flag) contains
 | |
| ** a pointer to a dynamically allocated string where some other entity
 | |
| ** is responsible for deallocating that string.  Because the stack entry
 | |
| ** does not control the string, it might be deleted without the stack
 | |
| ** entry knowing it.
 | |
| **
 | |
| ** This routine converts an ephemeral string into a dynamically allocated
 | |
| ** string that the stack entry itself controls.  In other words, it
 | |
| ** converts an MEM_Ephem string into an MEM_Dyn string.
 | |
| */
 | |
| #define Deephemeralize(P) \
 | |
|    if( ((P)->flags&MEM_Ephem)!=0 \
 | |
|        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
 | |
| 
 | |
| /*
 | |
| ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
 | |
| ** P if required.
 | |
| */
 | |
| #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
 | |
| 
 | |
| /*
 | |
| ** Argument pMem points at a memory cell that will be passed to a
 | |
| ** user-defined function or returned to the user as the result of a query.
 | |
| ** The second argument, 'db_enc' is the text encoding used by the vdbe for
 | |
| ** stack variables.  This routine sets the pMem->enc and pMem->type
 | |
| ** variables used by the sqlite3_value_*() routines.
 | |
| */
 | |
| #define storeTypeInfo(A,B) _storeTypeInfo(A)
 | |
| static void _storeTypeInfo(Mem *pMem){
 | |
|   int flags = pMem->flags;
 | |
|   if( flags & MEM_Null ){
 | |
|     pMem->type = SQLITE_NULL;
 | |
|   }
 | |
|   else if( flags & MEM_Int ){
 | |
|     pMem->type = SQLITE_INTEGER;
 | |
|   }
 | |
|   else if( flags & MEM_Real ){
 | |
|     pMem->type = SQLITE_FLOAT;
 | |
|   }
 | |
|   else if( flags & MEM_Str ){
 | |
|     pMem->type = SQLITE_TEXT;
 | |
|   }else{
 | |
|     pMem->type = SQLITE_BLOB;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Pop the stack N times.
 | |
| */
 | |
| static void popStack(Mem **ppTos, int N){
 | |
|   Mem *pTos = *ppTos;
 | |
|   while( N>0 ){
 | |
|     N--;
 | |
|     Release(pTos);
 | |
|     pTos--;
 | |
|   }
 | |
|   *ppTos = pTos;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate cursor number iCur.  Return a pointer to it.  Return NULL
 | |
| ** if we run out of memory.
 | |
| */
 | |
| static Cursor *allocateCursor(Vdbe *p, int iCur, int iDb){
 | |
|   Cursor *pCx;
 | |
|   assert( iCur<p->nCursor );
 | |
|   if( p->apCsr[iCur] ){
 | |
|     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
 | |
|   }
 | |
|   p->apCsr[iCur] = pCx = sqliteMalloc( sizeof(Cursor) );
 | |
|   if( pCx ){
 | |
|     pCx->iDb = iDb;
 | |
|   }
 | |
|   return pCx;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Try to convert a value into a numeric representation if we can
 | |
| ** do so without loss of information.  In other words, if the string
 | |
| ** looks like a number, convert it into a number.  If it does not
 | |
| ** look like a number, leave it alone.
 | |
| */
 | |
| static void applyNumericAffinity(Mem *pRec){
 | |
|   if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
 | |
|     int realnum;
 | |
|     sqlite3VdbeMemNulTerminate(pRec);
 | |
|     if( (pRec->flags&MEM_Str)
 | |
|          && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){
 | |
|       i64 value;
 | |
|       sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8);
 | |
|       if( !realnum && sqlite3Atoi64(pRec->z, &value) ){
 | |
|         sqlite3VdbeMemRelease(pRec);
 | |
|         pRec->u.i = value;
 | |
|         pRec->flags = MEM_Int;
 | |
|       }else{
 | |
|         sqlite3VdbeMemRealify(pRec);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Processing is determine by the affinity parameter:
 | |
| **
 | |
| ** SQLITE_AFF_INTEGER:
 | |
| ** SQLITE_AFF_REAL:
 | |
| ** SQLITE_AFF_NUMERIC:
 | |
| **    Try to convert pRec to an integer representation or a 
 | |
| **    floating-point representation if an integer representation
 | |
| **    is not possible.  Note that the integer representation is
 | |
| **    always preferred, even if the affinity is REAL, because
 | |
| **    an integer representation is more space efficient on disk.
 | |
| **
 | |
| ** SQLITE_AFF_TEXT:
 | |
| **    Convert pRec to a text representation.
 | |
| **
 | |
| ** SQLITE_AFF_NONE:
 | |
| **    No-op.  pRec is unchanged.
 | |
| */
 | |
| static void applyAffinity(Mem *pRec, char affinity, u8 enc){
 | |
|   if( affinity==SQLITE_AFF_TEXT ){
 | |
|     /* Only attempt the conversion to TEXT if there is an integer or real
 | |
|     ** representation (blob and NULL do not get converted) but no string
 | |
|     ** representation.
 | |
|     */
 | |
|     if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
 | |
|       sqlite3VdbeMemStringify(pRec, enc);
 | |
|     }
 | |
|     pRec->flags &= ~(MEM_Real|MEM_Int);
 | |
|   }else if( affinity!=SQLITE_AFF_NONE ){
 | |
|     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
 | |
|              || affinity==SQLITE_AFF_NUMERIC );
 | |
|     applyNumericAffinity(pRec);
 | |
|     if( pRec->flags & MEM_Real ){
 | |
|       sqlite3VdbeIntegerAffinity(pRec);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Try to convert the type of a function argument or a result column
 | |
| ** into a numeric representation.  Use either INTEGER or REAL whichever
 | |
| ** is appropriate.  But only do the conversion if it is possible without
 | |
| ** loss of information and return the revised type of the argument.
 | |
| **
 | |
| ** This is an EXPERIMENTAL api and is subject to change or removal.
 | |
| */
 | |
| int sqlite3_value_numeric_type(sqlite3_value *pVal){
 | |
|   Mem *pMem = (Mem*)pVal;
 | |
|   applyNumericAffinity(pMem);
 | |
|   storeTypeInfo(pMem, 0);
 | |
|   return pMem->type;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Exported version of applyAffinity(). This one works on sqlite3_value*, 
 | |
| ** not the internal Mem* type.
 | |
| */
 | |
| void sqlite3ValueApplyAffinity(sqlite3_value *pVal, u8 affinity, u8 enc){
 | |
|   applyAffinity((Mem *)pVal, affinity, enc);
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| /*
 | |
| ** Write a nice string representation of the contents of cell pMem
 | |
| ** into buffer zBuf, length nBuf.
 | |
| */
 | |
| void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
 | |
|   char *zCsr = zBuf;
 | |
|   int f = pMem->flags;
 | |
| 
 | |
|   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
 | |
| 
 | |
|   if( f&MEM_Blob ){
 | |
|     int i;
 | |
|     char c;
 | |
|     if( f & MEM_Dyn ){
 | |
|       c = 'z';
 | |
|       assert( (f & (MEM_Static|MEM_Ephem))==0 );
 | |
|     }else if( f & MEM_Static ){
 | |
|       c = 't';
 | |
|       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
 | |
|     }else if( f & MEM_Ephem ){
 | |
|       c = 'e';
 | |
|       assert( (f & (MEM_Static|MEM_Dyn))==0 );
 | |
|     }else{
 | |
|       c = 's';
 | |
|     }
 | |
| 
 | |
|     sqlite3_snprintf(100, zCsr, "%c", c);
 | |
|     zCsr += strlen(zCsr);
 | |
|     sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
 | |
|     zCsr += strlen(zCsr);
 | |
|     for(i=0; i<16 && i<pMem->n; i++){
 | |
|       sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
 | |
|       zCsr += strlen(zCsr);
 | |
|     }
 | |
|     for(i=0; i<16 && i<pMem->n; i++){
 | |
|       char z = pMem->z[i];
 | |
|       if( z<32 || z>126 ) *zCsr++ = '.';
 | |
|       else *zCsr++ = z;
 | |
|     }
 | |
| 
 | |
|     sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
 | |
|     zCsr += strlen(zCsr);
 | |
|     if( f & MEM_Zero ){
 | |
|       sqlite3_snprintf(100, zCsr,"+%lldz",pMem->u.i);
 | |
|       zCsr += strlen(zCsr);
 | |
|     }
 | |
|     *zCsr = '\0';
 | |
|   }else if( f & MEM_Str ){
 | |
|     int j, k;
 | |
|     zBuf[0] = ' ';
 | |
|     if( f & MEM_Dyn ){
 | |
|       zBuf[1] = 'z';
 | |
|       assert( (f & (MEM_Static|MEM_Ephem))==0 );
 | |
|     }else if( f & MEM_Static ){
 | |
|       zBuf[1] = 't';
 | |
|       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
 | |
|     }else if( f & MEM_Ephem ){
 | |
|       zBuf[1] = 'e';
 | |
|       assert( (f & (MEM_Static|MEM_Dyn))==0 );
 | |
|     }else{
 | |
|       zBuf[1] = 's';
 | |
|     }
 | |
|     k = 2;
 | |
|     sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
 | |
|     k += strlen(&zBuf[k]);
 | |
|     zBuf[k++] = '[';
 | |
|     for(j=0; j<15 && j<pMem->n; j++){
 | |
|       u8 c = pMem->z[j];
 | |
|       if( c>=0x20 && c<0x7f ){
 | |
|         zBuf[k++] = c;
 | |
|       }else{
 | |
|         zBuf[k++] = '.';
 | |
|       }
 | |
|     }
 | |
|     zBuf[k++] = ']';
 | |
|     sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
 | |
|     k += strlen(&zBuf[k]);
 | |
|     zBuf[k++] = 0;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifdef VDBE_PROFILE
 | |
| /*
 | |
| ** The following routine only works on pentium-class processors.
 | |
| ** It uses the RDTSC opcode to read the cycle count value out of the
 | |
| ** processor and returns that value.  This can be used for high-res
 | |
| ** profiling.
 | |
| */
 | |
| __inline__ unsigned long long int hwtime(void){
 | |
|   unsigned long long int x;
 | |
|   __asm__("rdtsc\n\t"
 | |
|           "mov %%edx, %%ecx\n\t"
 | |
|           :"=A" (x));
 | |
|   return x;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
 | |
| ** sqlite3_interrupt() routine has been called.  If it has been, then
 | |
| ** processing of the VDBE program is interrupted.
 | |
| **
 | |
| ** This macro added to every instruction that does a jump in order to
 | |
| ** implement a loop.  This test used to be on every single instruction,
 | |
| ** but that meant we more testing that we needed.  By only testing the
 | |
| ** flag on jump instructions, we get a (small) speed improvement.
 | |
| */
 | |
| #define CHECK_FOR_INTERRUPT \
 | |
|    if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Execute as much of a VDBE program as we can then return.
 | |
| **
 | |
| ** sqlite3VdbeMakeReady() must be called before this routine in order to
 | |
| ** close the program with a final OP_Halt and to set up the callbacks
 | |
| ** and the error message pointer.
 | |
| **
 | |
| ** Whenever a row or result data is available, this routine will either
 | |
| ** invoke the result callback (if there is one) or return with
 | |
| ** SQLITE_ROW.
 | |
| **
 | |
| ** If an attempt is made to open a locked database, then this routine
 | |
| ** will either invoke the busy callback (if there is one) or it will
 | |
| ** return SQLITE_BUSY.
 | |
| **
 | |
| ** If an error occurs, an error message is written to memory obtained
 | |
| ** from sqliteMalloc() and p->zErrMsg is made to point to that memory.
 | |
| ** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
 | |
| **
 | |
| ** If the callback ever returns non-zero, then the program exits
 | |
| ** immediately.  There will be no error message but the p->rc field is
 | |
| ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
 | |
| **
 | |
| ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
 | |
| ** routine to return SQLITE_ERROR.
 | |
| **
 | |
| ** Other fatal errors return SQLITE_ERROR.
 | |
| **
 | |
| ** After this routine has finished, sqlite3VdbeFinalize() should be
 | |
| ** used to clean up the mess that was left behind.
 | |
| */
 | |
| int sqlite3VdbeExec(
 | |
|   Vdbe *p                    /* The VDBE */
 | |
| ){
 | |
|   int pc;                    /* The program counter */
 | |
|   Op *pOp;                   /* Current operation */
 | |
|   int rc = SQLITE_OK;        /* Value to return */
 | |
|   sqlite3 *db = p->db;       /* The database */
 | |
|   u8 encoding = ENC(db);     /* The database encoding */
 | |
|   Mem *pTos;                 /* Top entry in the operand stack */
 | |
| #ifdef VDBE_PROFILE
 | |
|   unsigned long long start;  /* CPU clock count at start of opcode */
 | |
|   int origPc;                /* Program counter at start of opcode */
 | |
| #endif
 | |
| #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
 | |
|   int nProgressOps = 0;      /* Opcodes executed since progress callback. */
 | |
| #endif
 | |
| #ifndef NDEBUG
 | |
|   Mem *pStackLimit;
 | |
| #endif
 | |
| 
 | |
|   if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
 | |
|   assert( db->magic==SQLITE_MAGIC_BUSY );
 | |
|   pTos = p->pTos;
 | |
|   if( p->rc==SQLITE_NOMEM ){
 | |
|     /* This happens if a malloc() inside a call to sqlite3_column_text() or
 | |
|     ** sqlite3_column_text16() failed.  */
 | |
|     goto no_mem;
 | |
|   }
 | |
|   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
 | |
|   p->rc = SQLITE_OK;
 | |
|   assert( p->explain==0 );
 | |
|   if( p->popStack ){
 | |
|     popStack(&pTos, p->popStack);
 | |
|     p->popStack = 0;
 | |
|   }
 | |
|   p->resOnStack = 0;
 | |
|   db->busyHandler.nBusy = 0;
 | |
|   CHECK_FOR_INTERRUPT;
 | |
|   sqlite3VdbeIOTraceSql(p);
 | |
| #ifdef SQLITE_DEBUG
 | |
|   if( (p->db->flags & SQLITE_VdbeListing)!=0
 | |
|     || sqlite3OsFileExists("vdbe_explain")
 | |
|   ){
 | |
|     int i;
 | |
|     printf("VDBE Program Listing:\n");
 | |
|     sqlite3VdbePrintSql(p);
 | |
|     for(i=0; i<p->nOp; i++){
 | |
|       sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
 | |
|     }
 | |
|   }
 | |
|   if( sqlite3OsFileExists("vdbe_trace") ){
 | |
|     p->trace = stdout;
 | |
|   }
 | |
| #endif
 | |
|   for(pc=p->pc; rc==SQLITE_OK; pc++){
 | |
|     assert( pc>=0 && pc<p->nOp );
 | |
|     assert( pTos<=&p->aStack[pc] );
 | |
|     if( sqlite3MallocFailed() ) goto no_mem;
 | |
| #ifdef VDBE_PROFILE
 | |
|     origPc = pc;
 | |
|     start = hwtime();
 | |
| #endif
 | |
|     pOp = &p->aOp[pc];
 | |
| 
 | |
|     /* Only allow tracing if SQLITE_DEBUG is defined.
 | |
|     */
 | |
| #ifdef SQLITE_DEBUG
 | |
|     if( p->trace ){
 | |
|       if( pc==0 ){
 | |
|         printf("VDBE Execution Trace:\n");
 | |
|         sqlite3VdbePrintSql(p);
 | |
|       }
 | |
|       sqlite3VdbePrintOp(p->trace, pc, pOp);
 | |
|     }
 | |
|     if( p->trace==0 && pc==0 && sqlite3OsFileExists("vdbe_sqltrace") ){
 | |
|       sqlite3VdbePrintSql(p);
 | |
|     }
 | |
| #endif
 | |
|       
 | |
| 
 | |
|     /* Check to see if we need to simulate an interrupt.  This only happens
 | |
|     ** if we have a special test build.
 | |
|     */
 | |
| #ifdef SQLITE_TEST
 | |
|     if( sqlite3_interrupt_count>0 ){
 | |
|       sqlite3_interrupt_count--;
 | |
|       if( sqlite3_interrupt_count==0 ){
 | |
|         sqlite3_interrupt(db);
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
 | |
|     /* Call the progress callback if it is configured and the required number
 | |
|     ** of VDBE ops have been executed (either since this invocation of
 | |
|     ** sqlite3VdbeExec() or since last time the progress callback was called).
 | |
|     ** If the progress callback returns non-zero, exit the virtual machine with
 | |
|     ** a return code SQLITE_ABORT.
 | |
|     */
 | |
|     if( db->xProgress ){
 | |
|       if( db->nProgressOps==nProgressOps ){
 | |
|         int prc;
 | |
|         if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
 | |
|         prc =db->xProgress(db->pProgressArg);
 | |
|         if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
 | |
|         if( prc!=0 ){
 | |
|           rc = SQLITE_INTERRUPT;
 | |
|           goto vdbe_halt;
 | |
|         }
 | |
|         nProgressOps = 0;
 | |
|       }
 | |
|       nProgressOps++;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     /* This is to check that the return value of static function
 | |
|     ** opcodeNoPush() (see vdbeaux.c) returns values that match the
 | |
|     ** implementation of the virtual machine in this file. If
 | |
|     ** opcodeNoPush() returns non-zero, then the stack is guarenteed
 | |
|     ** not to grow when the opcode is executed. If it returns zero, then
 | |
|     ** the stack may grow by at most 1.
 | |
|     **
 | |
|     ** The global wrapper function sqlite3VdbeOpcodeUsesStack() is not 
 | |
|     ** available if NDEBUG is defined at build time.
 | |
|     */ 
 | |
|     pStackLimit = pTos;
 | |
|     if( !sqlite3VdbeOpcodeNoPush(pOp->opcode) ){
 | |
|       pStackLimit++;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     switch( pOp->opcode ){
 | |
| 
 | |
| /*****************************************************************************
 | |
| ** What follows is a massive switch statement where each case implements a
 | |
| ** separate instruction in the virtual machine.  If we follow the usual
 | |
| ** indentation conventions, each case should be indented by 6 spaces.  But
 | |
| ** that is a lot of wasted space on the left margin.  So the code within
 | |
| ** the switch statement will break with convention and be flush-left. Another
 | |
| ** big comment (similar to this one) will mark the point in the code where
 | |
| ** we transition back to normal indentation.
 | |
| **
 | |
| ** The formatting of each case is important.  The makefile for SQLite
 | |
| ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
 | |
| ** file looking for lines that begin with "case OP_".  The opcodes.h files
 | |
| ** will be filled with #defines that give unique integer values to each
 | |
| ** opcode and the opcodes.c file is filled with an array of strings where
 | |
| ** each string is the symbolic name for the corresponding opcode.  If the
 | |
| ** case statement is followed by a comment of the form "/# same as ... #/"
 | |
| ** that comment is used to determine the particular value of the opcode.
 | |
| **
 | |
| ** If a comment on the same line as the "case OP_" construction contains
 | |
| ** the word "no-push", then the opcode is guarenteed not to grow the 
 | |
| ** vdbe stack when it is executed. See function opcode() in
 | |
| ** vdbeaux.c for details.
 | |
| **
 | |
| ** Documentation about VDBE opcodes is generated by scanning this file
 | |
| ** for lines of that contain "Opcode:".  That line and all subsequent
 | |
| ** comment lines are used in the generation of the opcode.html documentation
 | |
| ** file.
 | |
| **
 | |
| ** SUMMARY:
 | |
| **
 | |
| **     Formatting is important to scripts that scan this file.
 | |
| **     Do not deviate from the formatting style currently in use.
 | |
| **
 | |
| *****************************************************************************/
 | |
| 
 | |
| /* Opcode:  Goto * P2 *
 | |
| **
 | |
| ** An unconditional jump to address P2.
 | |
| ** The next instruction executed will be 
 | |
| ** the one at index P2 from the beginning of
 | |
| ** the program.
 | |
| */
 | |
| case OP_Goto: {             /* no-push */
 | |
|   CHECK_FOR_INTERRUPT;
 | |
|   pc = pOp->p2 - 1;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode:  Gosub * P2 *
 | |
| **
 | |
| ** Push the current address plus 1 onto the return address stack
 | |
| ** and then jump to address P2.
 | |
| **
 | |
| ** The return address stack is of limited depth.  If too many
 | |
| ** OP_Gosub operations occur without intervening OP_Returns, then
 | |
| ** the return address stack will fill up and processing will abort
 | |
| ** with a fatal error.
 | |
| */
 | |
| case OP_Gosub: {            /* no-push */
 | |
|   assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) );
 | |
|   p->returnStack[p->returnDepth++] = pc+1;
 | |
|   pc = pOp->p2 - 1;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode:  Return * * *
 | |
| **
 | |
| ** Jump immediately to the next instruction after the last unreturned
 | |
| ** OP_Gosub.  If an OP_Return has occurred for all OP_Gosubs, then
 | |
| ** processing aborts with a fatal error.
 | |
| */
 | |
| case OP_Return: {           /* no-push */
 | |
|   assert( p->returnDepth>0 );
 | |
|   p->returnDepth--;
 | |
|   pc = p->returnStack[p->returnDepth] - 1;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode:  Halt P1 P2 P3
 | |
| **
 | |
| ** Exit immediately.  All open cursors, Fifos, etc are closed
 | |
| ** automatically.
 | |
| **
 | |
| ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
 | |
| ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
 | |
| ** For errors, it can be some other value.  If P1!=0 then P2 will determine
 | |
| ** whether or not to rollback the current transaction.  Do not rollback
 | |
| ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
 | |
| ** then back out all changes that have occurred during this execution of the
 | |
| ** VDBE, but do not rollback the transaction. 
 | |
| **
 | |
| ** If P3 is not null then it is an error message string.
 | |
| **
 | |
| ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
 | |
| ** every program.  So a jump past the last instruction of the program
 | |
| ** is the same as executing Halt.
 | |
| */
 | |
| case OP_Halt: {            /* no-push */
 | |
|   p->pTos = pTos;
 | |
|   p->rc = pOp->p1;
 | |
|   p->pc = pc;
 | |
|   p->errorAction = pOp->p2;
 | |
|   if( pOp->p3 ){
 | |
|     sqlite3SetString(&p->zErrMsg, pOp->p3, (char*)0);
 | |
|   }
 | |
|   rc = sqlite3VdbeHalt(p);
 | |
|   assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
 | |
|   if( rc==SQLITE_BUSY ){
 | |
|     p->rc = SQLITE_BUSY;
 | |
|     return SQLITE_BUSY;
 | |
|   }
 | |
|   return p->rc ? SQLITE_ERROR : SQLITE_DONE;
 | |
| }
 | |
| 
 | |
| /* Opcode: Integer P1 * *
 | |
| **
 | |
| ** The 32-bit integer value P1 is pushed onto the stack.
 | |
| */
 | |
| case OP_Integer: {
 | |
|   pTos++;
 | |
|   pTos->flags = MEM_Int;
 | |
|   pTos->u.i = pOp->p1;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Int64 * * P3
 | |
| **
 | |
| ** P3 is a string representation of an integer.  Convert that integer
 | |
| ** to a 64-bit value and push it onto the stack.
 | |
| */
 | |
| case OP_Int64: {
 | |
|   pTos++;
 | |
|   assert( pOp->p3!=0 );
 | |
|   pTos->flags = MEM_Str|MEM_Static|MEM_Term;
 | |
|   pTos->z = pOp->p3;
 | |
|   pTos->n = strlen(pTos->z);
 | |
|   pTos->enc = SQLITE_UTF8;
 | |
|   pTos->u.i = sqlite3VdbeIntValue(pTos);
 | |
|   pTos->flags |= MEM_Int;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Real * * P3
 | |
| **
 | |
| ** The string value P3 is converted to a real and pushed on to the stack.
 | |
| */
 | |
| case OP_Real: {            /* same as TK_FLOAT, */
 | |
|   pTos++;
 | |
|   pTos->flags = MEM_Str|MEM_Static|MEM_Term;
 | |
|   pTos->z = pOp->p3;
 | |
|   pTos->n = strlen(pTos->z);
 | |
|   pTos->enc = SQLITE_UTF8;
 | |
|   pTos->r = sqlite3VdbeRealValue(pTos);
 | |
|   pTos->flags |= MEM_Real;
 | |
|   sqlite3VdbeChangeEncoding(pTos, encoding);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: String8 * * P3
 | |
| **
 | |
| ** P3 points to a nul terminated UTF-8 string. This opcode is transformed 
 | |
| ** into an OP_String before it is executed for the first time.
 | |
| */
 | |
| case OP_String8: {         /* same as TK_STRING */
 | |
|   assert( pOp->p3!=0 );
 | |
|   pOp->opcode = OP_String;
 | |
|   pOp->p1 = strlen(pOp->p3);
 | |
|   assert( SQLITE_MAX_SQL_LENGTH < SQLITE_MAX_LENGTH );
 | |
|   assert( pOp->p1 < SQLITE_MAX_LENGTH );
 | |
| 
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
|   if( encoding!=SQLITE_UTF8 ){
 | |
|     pTos++;
 | |
|     sqlite3VdbeMemSetStr(pTos, pOp->p3, -1, SQLITE_UTF8, SQLITE_STATIC);
 | |
|     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pTos, encoding) ) goto no_mem;
 | |
|     if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pTos) ) goto no_mem;
 | |
|     pTos->flags &= ~(MEM_Dyn);
 | |
|     pTos->flags |= MEM_Static;
 | |
|     if( pOp->p3type==P3_DYNAMIC ){
 | |
|       sqliteFree(pOp->p3);
 | |
|     }
 | |
|     pOp->p3type = P3_DYNAMIC;
 | |
|     pOp->p3 = pTos->z;
 | |
|     pOp->p1 = pTos->n;
 | |
|     assert( pOp->p1 < SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */
 | |
|     break;
 | |
|   }
 | |
| #endif
 | |
|   /* Otherwise fall through to the next case, OP_String */
 | |
| }
 | |
|   
 | |
| /* Opcode: String P1 * P3
 | |
| **
 | |
| ** The string value P3 of length P1 (bytes) is pushed onto the stack.
 | |
| */
 | |
| case OP_String: {
 | |
|   assert( pOp->p1 < SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */
 | |
|   pTos++;
 | |
|   assert( pOp->p3!=0 );
 | |
|   pTos->flags = MEM_Str|MEM_Static|MEM_Term;
 | |
|   pTos->z = pOp->p3;
 | |
|   pTos->n = pOp->p1;
 | |
|   pTos->enc = encoding;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Null * * *
 | |
| **
 | |
| ** Push a NULL onto the stack.
 | |
| */
 | |
| case OP_Null: {
 | |
|   pTos++;
 | |
|   pTos->flags = MEM_Null;
 | |
|   pTos->n = 0;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifndef SQLITE_OMIT_BLOB_LITERAL
 | |
| /* Opcode: HexBlob * * P3
 | |
| **
 | |
| ** P3 is an UTF-8 SQL hex encoding of a blob. The blob is pushed onto the
 | |
| ** vdbe stack.
 | |
| **
 | |
| ** The first time this instruction executes, in transforms itself into a
 | |
| ** 'Blob' opcode with a binary blob as P3.
 | |
| */
 | |
| case OP_HexBlob: {            /* same as TK_BLOB */
 | |
|   pOp->opcode = OP_Blob;
 | |
|   pOp->p1 = strlen(pOp->p3)/2;
 | |
|   assert( SQLITE_MAX_SQL_LENGTH < SQLITE_MAX_LENGTH );
 | |
|   assert( pOp->p1 < SQLITE_MAX_LENGTH );
 | |
|   if( pOp->p1 ){
 | |
|     char *zBlob = sqlite3HexToBlob(pOp->p3);
 | |
|     if( !zBlob ) goto no_mem;
 | |
|     if( pOp->p3type==P3_DYNAMIC ){
 | |
|       sqliteFree(pOp->p3);
 | |
|     }
 | |
|     pOp->p3 = zBlob;
 | |
|     pOp->p3type = P3_DYNAMIC;
 | |
|   }else{
 | |
|     if( pOp->p3type==P3_DYNAMIC ){
 | |
|       sqliteFree(pOp->p3);
 | |
|     }
 | |
|     pOp->p3type = P3_STATIC;
 | |
|     pOp->p3 = "";
 | |
|   }
 | |
| 
 | |
|   /* Fall through to the next case, OP_Blob. */
 | |
| }
 | |
| 
 | |
| /* Opcode: Blob P1 * P3
 | |
| **
 | |
| ** P3 points to a blob of data P1 bytes long. Push this
 | |
| ** value onto the stack. This instruction is not coded directly
 | |
| ** by the compiler. Instead, the compiler layer specifies
 | |
| ** an OP_HexBlob opcode, with the hex string representation of
 | |
| ** the blob as P3. This opcode is transformed to an OP_Blob
 | |
| ** the first time it is executed.
 | |
| */
 | |
| case OP_Blob: {
 | |
|   pTos++;
 | |
|   assert( pOp->p1 < SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */
 | |
|   sqlite3VdbeMemSetStr(pTos, pOp->p3, pOp->p1, 0, 0);
 | |
|   pTos->enc = encoding;
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_BLOB_LITERAL */
 | |
| 
 | |
| /* Opcode: Variable P1 * *
 | |
| **
 | |
| ** Push the value of variable P1 onto the stack.  A variable is
 | |
| ** an unknown in the original SQL string as handed to sqlite3_compile().
 | |
| ** Any occurance of the '?' character in the original SQL is considered
 | |
| ** a variable.  Variables in the SQL string are number from left to
 | |
| ** right beginning with 1.  The values of variables are set using the
 | |
| ** sqlite3_bind() API.
 | |
| */
 | |
| case OP_Variable: {
 | |
|   int j = pOp->p1 - 1;
 | |
|   Mem *pVar;
 | |
|   assert( j>=0 && j<p->nVar );
 | |
| 
 | |
|   pVar = &p->aVar[j];
 | |
|   if( sqlite3VdbeMemTooBig(pVar) ){
 | |
|     goto too_big;
 | |
|   }
 | |
|   pTos++;
 | |
|   sqlite3VdbeMemShallowCopy(pTos, &p->aVar[j], MEM_Static);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Pop P1 * *
 | |
| **
 | |
| ** P1 elements are popped off of the top of stack and discarded.
 | |
| */
 | |
| case OP_Pop: {            /* no-push */
 | |
|   assert( pOp->p1>=0 );
 | |
|   popStack(&pTos, pOp->p1);
 | |
|   assert( pTos>=&p->aStack[-1] );
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Dup P1 P2 *
 | |
| **
 | |
| ** A copy of the P1-th element of the stack 
 | |
| ** is made and pushed onto the top of the stack.
 | |
| ** The top of the stack is element 0.  So the
 | |
| ** instruction "Dup 0 0 0" will make a copy of the
 | |
| ** top of the stack.
 | |
| **
 | |
| ** If the content of the P1-th element is a dynamically
 | |
| ** allocated string, then a new copy of that string
 | |
| ** is made if P2==0.  If P2!=0, then just a pointer
 | |
| ** to the string is copied.
 | |
| **
 | |
| ** Also see the Pull instruction.
 | |
| */
 | |
| case OP_Dup: {
 | |
|   Mem *pFrom = &pTos[-pOp->p1];
 | |
|   assert( pFrom<=pTos && pFrom>=p->aStack );
 | |
|   pTos++;
 | |
|   sqlite3VdbeMemShallowCopy(pTos, pFrom, MEM_Ephem);
 | |
|   if( pOp->p2 ){
 | |
|     Deephemeralize(pTos);
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Pull P1 * *
 | |
| **
 | |
| ** The P1-th element is removed from its current location on 
 | |
| ** the stack and pushed back on top of the stack.  The
 | |
| ** top of the stack is element 0, so "Pull 0 0 0" is
 | |
| ** a no-op.  "Pull 1 0 0" swaps the top two elements of
 | |
| ** the stack.
 | |
| **
 | |
| ** See also the Dup instruction.
 | |
| */
 | |
| case OP_Pull: {            /* no-push */
 | |
|   Mem *pFrom = &pTos[-pOp->p1];
 | |
|   int i;
 | |
|   Mem ts;
 | |
| 
 | |
|   ts = *pFrom;
 | |
|   Deephemeralize(pTos);
 | |
|   for(i=0; i<pOp->p1; i++, pFrom++){
 | |
|     Deephemeralize(&pFrom[1]);
 | |
|     assert( (pFrom[1].flags & MEM_Ephem)==0 );
 | |
|     *pFrom = pFrom[1];
 | |
|     if( pFrom->flags & MEM_Short ){
 | |
|       assert( pFrom->flags & (MEM_Str|MEM_Blob) );
 | |
|       assert( pFrom->z==pFrom[1].zShort );
 | |
|       pFrom->z = pFrom->zShort;
 | |
|     }
 | |
|   }
 | |
|   *pTos = ts;
 | |
|   if( pTos->flags & MEM_Short ){
 | |
|     assert( pTos->flags & (MEM_Str|MEM_Blob) );
 | |
|     assert( pTos->z==pTos[-pOp->p1].zShort );
 | |
|     pTos->z = pTos->zShort;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Push P1 * *
 | |
| **
 | |
| ** Overwrite the value of the P1-th element down on the
 | |
| ** stack (P1==0 is the top of the stack) with the value
 | |
| ** of the top of the stack.  Then pop the top of the stack.
 | |
| */
 | |
| case OP_Push: {            /* no-push */
 | |
|   Mem *pTo = &pTos[-pOp->p1];
 | |
| 
 | |
|   assert( pTo>=p->aStack );
 | |
|   sqlite3VdbeMemMove(pTo, pTos);
 | |
|   pTos--;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Callback P1 * *
 | |
| **
 | |
| ** The top P1 values on the stack represent a single result row from
 | |
| ** a query.  This opcode causes the sqlite3_step() call to terminate
 | |
| ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
 | |
| ** structure to provide access to the top P1 values as the result
 | |
| ** row.  When the sqlite3_step() function is run again, the top P1
 | |
| ** values will be automatically popped from the stack before the next
 | |
| ** instruction executes.
 | |
| */
 | |
| case OP_Callback: {            /* no-push */
 | |
|   Mem *pMem;
 | |
|   Mem *pFirstColumn;
 | |
|   assert( p->nResColumn==pOp->p1 );
 | |
| 
 | |
|   /* Data in the pager might be moved or changed out from under us
 | |
|   ** in between the return from this sqlite3_step() call and the
 | |
|   ** next call to sqlite3_step().  So deephermeralize everything on 
 | |
|   ** the stack.  Note that ephemeral data is never stored in memory 
 | |
|   ** cells so we do not have to worry about them.
 | |
|   */
 | |
|   pFirstColumn = &pTos[0-pOp->p1];
 | |
|   for(pMem = p->aStack; pMem<pFirstColumn; pMem++){
 | |
|     Deephemeralize(pMem);
 | |
|   }
 | |
| 
 | |
|   /* Invalidate all ephemeral cursor row caches */
 | |
|   p->cacheCtr = (p->cacheCtr + 2)|1;
 | |
| 
 | |
|   /* Make sure the results of the current row are \000 terminated
 | |
|   ** and have an assigned type.  The results are deephemeralized as
 | |
|   ** as side effect.
 | |
|   */
 | |
|   for(; pMem<=pTos; pMem++ ){
 | |
|     sqlite3VdbeMemNulTerminate(pMem);
 | |
|     storeTypeInfo(pMem, encoding);
 | |
|   }
 | |
| 
 | |
|   /* Set up the statement structure so that it will pop the current
 | |
|   ** results from the stack when the statement returns.
 | |
|   */
 | |
|   p->resOnStack = 1;
 | |
|   p->nCallback++;
 | |
|   p->popStack = pOp->p1;
 | |
|   p->pc = pc + 1;
 | |
|   p->pTos = pTos;
 | |
|   return SQLITE_ROW;
 | |
| }
 | |
| 
 | |
| /* Opcode: Concat P1 P2 *
 | |
| **
 | |
| ** Look at the first P1+2 elements of the stack.  Append them all 
 | |
| ** together with the lowest element first.  The original P1+2 elements
 | |
| ** are popped from the stack if P2==0 and retained if P2==1.  If
 | |
| ** any element of the stack is NULL, then the result is NULL.
 | |
| **
 | |
| ** When P1==1, this routine makes a copy of the top stack element
 | |
| ** into memory obtained from sqliteMalloc().
 | |
| */
 | |
| case OP_Concat: {           /* same as TK_CONCAT */
 | |
|   char *zNew;
 | |
|   i64 nByte;
 | |
|   int nField;
 | |
|   int i, j;
 | |
|   Mem *pTerm;
 | |
| 
 | |
|   /* Loop through the stack elements to see how long the result will be. */
 | |
|   nField = pOp->p1 + 2;
 | |
|   pTerm = &pTos[1-nField];
 | |
|   nByte = 0;
 | |
|   for(i=0; i<nField; i++, pTerm++){
 | |
|     assert( pOp->p2==0 || (pTerm->flags&MEM_Str) );
 | |
|     if( pTerm->flags&MEM_Null ){
 | |
|       nByte = -1;
 | |
|       break;
 | |
|     }
 | |
|     ExpandBlob(pTerm);
 | |
|     Stringify(pTerm, encoding);
 | |
|     nByte += pTerm->n;
 | |
|   }
 | |
| 
 | |
|   if( nByte<0 ){
 | |
|     /* If nByte is less than zero, then there is a NULL value on the stack.
 | |
|     ** In this case just pop the values off the stack (if required) and
 | |
|     ** push on a NULL.
 | |
|     */
 | |
|     if( pOp->p2==0 ){
 | |
|       popStack(&pTos, nField);
 | |
|     }
 | |
|     pTos++;
 | |
|     pTos->flags = MEM_Null;
 | |
|   }else{
 | |
|     /* Otherwise malloc() space for the result and concatenate all the
 | |
|     ** stack values.
 | |
|     */
 | |
|     if( nByte+2>SQLITE_MAX_LENGTH ){
 | |
|       goto too_big;
 | |
|     }
 | |
|     zNew = sqliteMallocRaw( nByte+2 );
 | |
|     if( zNew==0 ) goto no_mem;
 | |
|     j = 0;
 | |
|     pTerm = &pTos[1-nField];
 | |
|     for(i=j=0; i<nField; i++, pTerm++){
 | |
|       int n = pTerm->n;
 | |
|       assert( pTerm->flags & (MEM_Str|MEM_Blob) );
 | |
|       memcpy(&zNew[j], pTerm->z, n);
 | |
|       j += n;
 | |
|     }
 | |
|     zNew[j] = 0;
 | |
|     zNew[j+1] = 0;
 | |
|     assert( j==nByte );
 | |
| 
 | |
|     if( pOp->p2==0 ){
 | |
|       popStack(&pTos, nField);
 | |
|     }
 | |
|     pTos++;
 | |
|     pTos->n = j;
 | |
|     pTos->flags = MEM_Str|MEM_Dyn|MEM_Term;
 | |
|     pTos->xDel = 0;
 | |
|     pTos->enc = encoding;
 | |
|     pTos->z = zNew;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Add * * *
 | |
| **
 | |
| ** Pop the top two elements from the stack, add them together,
 | |
| ** and push the result back onto the stack.  If either element
 | |
| ** is a string then it is converted to a double using the atof()
 | |
| ** function before the addition.
 | |
| ** If either operand is NULL, the result is NULL.
 | |
| */
 | |
| /* Opcode: Multiply * * *
 | |
| **
 | |
| ** Pop the top two elements from the stack, multiply them together,
 | |
| ** and push the result back onto the stack.  If either element
 | |
| ** is a string then it is converted to a double using the atof()
 | |
| ** function before the multiplication.
 | |
| ** If either operand is NULL, the result is NULL.
 | |
| */
 | |
| /* Opcode: Subtract * * *
 | |
| **
 | |
| ** Pop the top two elements from the stack, subtract the
 | |
| ** first (what was on top of the stack) from the second (the
 | |
| ** next on stack)
 | |
| ** and push the result back onto the stack.  If either element
 | |
| ** is a string then it is converted to a double using the atof()
 | |
| ** function before the subtraction.
 | |
| ** If either operand is NULL, the result is NULL.
 | |
| */
 | |
| /* Opcode: Divide * * *
 | |
| **
 | |
| ** Pop the top two elements from the stack, divide the
 | |
| ** first (what was on top of the stack) from the second (the
 | |
| ** next on stack)
 | |
| ** and push the result back onto the stack.  If either element
 | |
| ** is a string then it is converted to a double using the atof()
 | |
| ** function before the division.  Division by zero returns NULL.
 | |
| ** If either operand is NULL, the result is NULL.
 | |
| */
 | |
| /* Opcode: Remainder * * *
 | |
| **
 | |
| ** Pop the top two elements from the stack, divide the
 | |
| ** first (what was on top of the stack) from the second (the
 | |
| ** next on stack)
 | |
| ** and push the remainder after division onto the stack.  If either element
 | |
| ** is a string then it is converted to a double using the atof()
 | |
| ** function before the division.  Division by zero returns NULL.
 | |
| ** If either operand is NULL, the result is NULL.
 | |
| */
 | |
| case OP_Add:                   /* same as TK_PLUS, no-push */
 | |
| case OP_Subtract:              /* same as TK_MINUS, no-push */
 | |
| case OP_Multiply:              /* same as TK_STAR, no-push */
 | |
| case OP_Divide:                /* same as TK_SLASH, no-push */
 | |
| case OP_Remainder: {           /* same as TK_REM, no-push */
 | |
|   Mem *pNos = &pTos[-1];
 | |
|   int flags;
 | |
|   assert( pNos>=p->aStack );
 | |
|   flags = pTos->flags | pNos->flags;
 | |
|   if( (flags & MEM_Null)!=0 ){
 | |
|     Release(pTos);
 | |
|     pTos--;
 | |
|     Release(pTos);
 | |
|     pTos->flags = MEM_Null;
 | |
|   }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){
 | |
|     i64 a, b;
 | |
|     a = pTos->u.i;
 | |
|     b = pNos->u.i;
 | |
|     switch( pOp->opcode ){
 | |
|       case OP_Add:         b += a;       break;
 | |
|       case OP_Subtract:    b -= a;       break;
 | |
|       case OP_Multiply:    b *= a;       break;
 | |
|       case OP_Divide: {
 | |
|         if( a==0 ) goto divide_by_zero;
 | |
|         /* Dividing the largest possible negative 64-bit integer (1<<63) by 
 | |
|         ** -1 returns an integer to large to store in a 64-bit data-type. On
 | |
|         ** some architectures, the value overflows to (1<<63). On others,
 | |
|         ** a SIGFPE is issued. The following statement normalizes this
 | |
|         ** behaviour so that all architectures behave as if integer 
 | |
|         ** overflow occured.
 | |
|         */
 | |
|         if( a==-1 && b==(((i64)1)<<63) ) a = 1;
 | |
|         b /= a;
 | |
|         break;
 | |
|       }
 | |
|       default: {
 | |
|         if( a==0 ) goto divide_by_zero;
 | |
|         if( a==-1 ) a = 1;
 | |
|         b %= a;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     Release(pTos);
 | |
|     pTos--;
 | |
|     Release(pTos);
 | |
|     pTos->u.i = b;
 | |
|     pTos->flags = MEM_Int;
 | |
|   }else{
 | |
|     double a, b;
 | |
|     a = sqlite3VdbeRealValue(pTos);
 | |
|     b = sqlite3VdbeRealValue(pNos);
 | |
|     switch( pOp->opcode ){
 | |
|       case OP_Add:         b += a;       break;
 | |
|       case OP_Subtract:    b -= a;       break;
 | |
|       case OP_Multiply:    b *= a;       break;
 | |
|       case OP_Divide: {
 | |
|         if( a==0.0 ) goto divide_by_zero;
 | |
|         b /= a;
 | |
|         break;
 | |
|       }
 | |
|       default: {
 | |
|         i64 ia = (i64)a;
 | |
|         i64 ib = (i64)b;
 | |
|         if( ia==0 ) goto divide_by_zero;
 | |
|         if( ia==-1 ) ia = 1;
 | |
|         b = ib % ia;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if( sqlite3_isnan(b) ){
 | |
|       goto divide_by_zero;
 | |
|     }
 | |
|     Release(pTos);
 | |
|     pTos--;
 | |
|     Release(pTos);
 | |
|     pTos->r = b;
 | |
|     pTos->flags = MEM_Real;
 | |
|     if( (flags & MEM_Real)==0 ){
 | |
|       sqlite3VdbeIntegerAffinity(pTos);
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| 
 | |
| divide_by_zero:
 | |
|   Release(pTos);
 | |
|   pTos--;
 | |
|   Release(pTos);
 | |
|   pTos->flags = MEM_Null;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: CollSeq * * P3
 | |
| **
 | |
| ** P3 is a pointer to a CollSeq struct. If the next call to a user function
 | |
| ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
 | |
| ** be returned. This is used by the built-in min(), max() and nullif()
 | |
| ** functions.
 | |
| **
 | |
| ** The interface used by the implementation of the aforementioned functions
 | |
| ** to retrieve the collation sequence set by this opcode is not available
 | |
| ** publicly, only to user functions defined in func.c.
 | |
| */
 | |
| case OP_CollSeq: {             /* no-push */
 | |
|   assert( pOp->p3type==P3_COLLSEQ );
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Function P1 P2 P3
 | |
| **
 | |
| ** Invoke a user function (P3 is a pointer to a Function structure that
 | |
| ** defines the function) with P2 arguments taken from the stack.  Pop all
 | |
| ** arguments from the stack and push back the result.
 | |
| **
 | |
| ** P1 is a 32-bit bitmask indicating whether or not each argument to the 
 | |
| ** function was determined to be constant at compile time. If the first
 | |
| ** argument was constant then bit 0 of P1 is set. This is used to determine
 | |
| ** whether meta data associated with a user function argument using the
 | |
| ** sqlite3_set_auxdata() API may be safely retained until the next
 | |
| ** invocation of this opcode.
 | |
| **
 | |
| ** See also: AggStep and AggFinal
 | |
| */
 | |
| case OP_Function: {
 | |
|   int i;
 | |
|   Mem *pArg;
 | |
|   sqlite3_context ctx;
 | |
|   sqlite3_value **apVal;
 | |
|   int n = pOp->p2;
 | |
| 
 | |
|   apVal = p->apArg;
 | |
|   assert( apVal || n==0 );
 | |
| 
 | |
|   pArg = &pTos[1-n];
 | |
|   for(i=0; i<n; i++, pArg++){
 | |
|     apVal[i] = pArg;
 | |
|     storeTypeInfo(pArg, encoding);
 | |
|   }
 | |
| 
 | |
|   assert( pOp->p3type==P3_FUNCDEF || pOp->p3type==P3_VDBEFUNC );
 | |
|   if( pOp->p3type==P3_FUNCDEF ){
 | |
|     ctx.pFunc = (FuncDef*)pOp->p3;
 | |
|     ctx.pVdbeFunc = 0;
 | |
|   }else{
 | |
|     ctx.pVdbeFunc = (VdbeFunc*)pOp->p3;
 | |
|     ctx.pFunc = ctx.pVdbeFunc->pFunc;
 | |
|   }
 | |
| 
 | |
|   ctx.s.flags = MEM_Null;
 | |
|   ctx.s.z = 0;
 | |
|   ctx.s.xDel = 0;
 | |
|   ctx.isError = 0;
 | |
|   if( ctx.pFunc->needCollSeq ){
 | |
|     assert( pOp>p->aOp );
 | |
|     assert( pOp[-1].p3type==P3_COLLSEQ );
 | |
|     assert( pOp[-1].opcode==OP_CollSeq );
 | |
|     ctx.pColl = (CollSeq *)pOp[-1].p3;
 | |
|   }
 | |
|   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
 | |
|   (*ctx.pFunc->xFunc)(&ctx, n, apVal);
 | |
|   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
 | |
|   if( sqlite3MallocFailed() ) goto no_mem;
 | |
|   popStack(&pTos, n);
 | |
| 
 | |
|   /* If any auxilary data functions have been called by this user function,
 | |
|   ** immediately call the destructor for any non-static values.
 | |
|   */
 | |
|   if( ctx.pVdbeFunc ){
 | |
|     sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
 | |
|     pOp->p3 = (char *)ctx.pVdbeFunc;
 | |
|     pOp->p3type = P3_VDBEFUNC;
 | |
|   }
 | |
| 
 | |
|   /* If the function returned an error, throw an exception */
 | |
|   if( ctx.isError ){
 | |
|     sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
 | |
|     rc = SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   /* Copy the result of the function to the top of the stack */
 | |
|   sqlite3VdbeChangeEncoding(&ctx.s, encoding);
 | |
|   pTos++;
 | |
|   pTos->flags = 0;
 | |
|   sqlite3VdbeMemMove(pTos, &ctx.s);
 | |
|   if( sqlite3VdbeMemTooBig(pTos) ){
 | |
|     goto too_big;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: BitAnd * * *
 | |
| **
 | |
| ** Pop the top two elements from the stack.  Convert both elements
 | |
| ** to integers.  Push back onto the stack the bit-wise AND of the
 | |
| ** two elements.
 | |
| ** If either operand is NULL, the result is NULL.
 | |
| */
 | |
| /* Opcode: BitOr * * *
 | |
| **
 | |
| ** Pop the top two elements from the stack.  Convert both elements
 | |
| ** to integers.  Push back onto the stack the bit-wise OR of the
 | |
| ** two elements.
 | |
| ** If either operand is NULL, the result is NULL.
 | |
| */
 | |
| /* Opcode: ShiftLeft * * *
 | |
| **
 | |
| ** Pop the top two elements from the stack.  Convert both elements
 | |
| ** to integers.  Push back onto the stack the second element shifted
 | |
| ** left by N bits where N is the top element on the stack.
 | |
| ** If either operand is NULL, the result is NULL.
 | |
| */
 | |
| /* Opcode: ShiftRight * * *
 | |
| **
 | |
| ** Pop the top two elements from the stack.  Convert both elements
 | |
| ** to integers.  Push back onto the stack the second element shifted
 | |
| ** right by N bits where N is the top element on the stack.
 | |
| ** If either operand is NULL, the result is NULL.
 | |
| */
 | |
| case OP_BitAnd:                 /* same as TK_BITAND, no-push */
 | |
| case OP_BitOr:                  /* same as TK_BITOR, no-push */
 | |
| case OP_ShiftLeft:              /* same as TK_LSHIFT, no-push */
 | |
| case OP_ShiftRight: {           /* same as TK_RSHIFT, no-push */
 | |
|   Mem *pNos = &pTos[-1];
 | |
|   i64 a, b;
 | |
| 
 | |
|   assert( pNos>=p->aStack );
 | |
|   if( (pTos->flags | pNos->flags) & MEM_Null ){
 | |
|     popStack(&pTos, 2);
 | |
|     pTos++;
 | |
|     pTos->flags = MEM_Null;
 | |
|     break;
 | |
|   }
 | |
|   a = sqlite3VdbeIntValue(pNos);
 | |
|   b = sqlite3VdbeIntValue(pTos);
 | |
|   switch( pOp->opcode ){
 | |
|     case OP_BitAnd:      a &= b;     break;
 | |
|     case OP_BitOr:       a |= b;     break;
 | |
|     case OP_ShiftLeft:   a <<= b;    break;
 | |
|     case OP_ShiftRight:  a >>= b;    break;
 | |
|     default:   /* CANT HAPPEN */     break;
 | |
|   }
 | |
|   Release(pTos);
 | |
|   pTos--;
 | |
|   Release(pTos);
 | |
|   pTos->u.i = a;
 | |
|   pTos->flags = MEM_Int;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: AddImm  P1 * *
 | |
| ** 
 | |
| ** Add the value P1 to whatever is on top of the stack.  The result
 | |
| ** is always an integer.
 | |
| **
 | |
| ** To force the top of the stack to be an integer, just add 0.
 | |
| */
 | |
| case OP_AddImm: {            /* no-push */
 | |
|   assert( pTos>=p->aStack );
 | |
|   sqlite3VdbeMemIntegerify(pTos);
 | |
|   pTos->u.i += pOp->p1;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: ForceInt P1 P2 *
 | |
| **
 | |
| ** Convert the top of the stack into an integer.  If the current top of
 | |
| ** the stack is not numeric (meaning that is is a NULL or a string that
 | |
| ** does not look like an integer or floating point number) then pop the
 | |
| ** stack and jump to P2.  If the top of the stack is numeric then
 | |
| ** convert it into the least integer that is greater than or equal to its
 | |
| ** current value if P1==0, or to the least integer that is strictly
 | |
| ** greater than its current value if P1==1.
 | |
| */
 | |
| case OP_ForceInt: {            /* no-push */
 | |
|   i64 v;
 | |
|   assert( pTos>=p->aStack );
 | |
|   applyAffinity(pTos, SQLITE_AFF_NUMERIC, encoding);
 | |
|   if( (pTos->flags & (MEM_Int|MEM_Real))==0 ){
 | |
|     Release(pTos);
 | |
|     pTos--;
 | |
|     pc = pOp->p2 - 1;
 | |
|     break;
 | |
|   }
 | |
|   if( pTos->flags & MEM_Int ){
 | |
|     v = pTos->u.i + (pOp->p1!=0);
 | |
|   }else{
 | |
|     /* FIX ME:  should this not be assert( pTos->flags & MEM_Real ) ??? */
 | |
|     sqlite3VdbeMemRealify(pTos);
 | |
|     v = (int)pTos->r;
 | |
|     if( pTos->r>(double)v ) v++;
 | |
|     if( pOp->p1 && pTos->r==(double)v ) v++;
 | |
|   }
 | |
|   Release(pTos);
 | |
|   pTos->u.i = v;
 | |
|   pTos->flags = MEM_Int;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: MustBeInt P1 P2 *
 | |
| ** 
 | |
| ** Force the top of the stack to be an integer.  If the top of the
 | |
| ** stack is not an integer and cannot be converted into an integer
 | |
| ** with out data loss, then jump immediately to P2, or if P2==0
 | |
| ** raise an SQLITE_MISMATCH exception.
 | |
| **
 | |
| ** If the top of the stack is not an integer and P2 is not zero and
 | |
| ** P1 is 1, then the stack is popped.  In all other cases, the depth
 | |
| ** of the stack is unchanged.
 | |
| */
 | |
| case OP_MustBeInt: {            /* no-push */
 | |
|   assert( pTos>=p->aStack );
 | |
|   applyAffinity(pTos, SQLITE_AFF_NUMERIC, encoding);
 | |
|   if( (pTos->flags & MEM_Int)==0 ){
 | |
|     if( pOp->p2==0 ){
 | |
|       rc = SQLITE_MISMATCH;
 | |
|       goto abort_due_to_error;
 | |
|     }else{
 | |
|       if( pOp->p1 ) popStack(&pTos, 1);
 | |
|       pc = pOp->p2 - 1;
 | |
|     }
 | |
|   }else{
 | |
|     Release(pTos);
 | |
|     pTos->flags = MEM_Int;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: RealAffinity * * *
 | |
| **
 | |
| ** If the top of the stack is an integer, convert it to a real value.
 | |
| **
 | |
| ** This opcode is used when extracting information from a column that
 | |
| ** has REAL affinity.  Such column values may still be stored as
 | |
| ** integers, for space efficiency, but after extraction we want them
 | |
| ** to have only a real value.
 | |
| */
 | |
| case OP_RealAffinity: {                  /* no-push */
 | |
|   assert( pTos>=p->aStack );
 | |
|   if( pTos->flags & MEM_Int ){
 | |
|     sqlite3VdbeMemRealify(pTos);
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_CAST
 | |
| /* Opcode: ToText * * *
 | |
| **
 | |
| ** Force the value on the top of the stack to be text.
 | |
| ** If the value is numeric, convert it to a string using the
 | |
| ** equivalent of printf().  Blob values are unchanged and
 | |
| ** are afterwards simply interpreted as text.
 | |
| **
 | |
| ** A NULL value is not changed by this routine.  It remains NULL.
 | |
| */
 | |
| case OP_ToText: {                  /* same as TK_TO_TEXT, no-push */
 | |
|   assert( pTos>=p->aStack );
 | |
|   if( pTos->flags & MEM_Null ) break;
 | |
|   assert( MEM_Str==(MEM_Blob>>3) );
 | |
|   pTos->flags |= (pTos->flags&MEM_Blob)>>3;
 | |
|   applyAffinity(pTos, SQLITE_AFF_TEXT, encoding);
 | |
|   rc = ExpandBlob(pTos);
 | |
|   assert( pTos->flags & MEM_Str );
 | |
|   pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Blob);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: ToBlob * * *
 | |
| **
 | |
| ** Force the value on the top of the stack to be a BLOB.
 | |
| ** If the value is numeric, convert it to a string first.
 | |
| ** Strings are simply reinterpreted as blobs with no change
 | |
| ** to the underlying data.
 | |
| **
 | |
| ** A NULL value is not changed by this routine.  It remains NULL.
 | |
| */
 | |
| case OP_ToBlob: {                  /* same as TK_TO_BLOB, no-push */
 | |
|   assert( pTos>=p->aStack );
 | |
|   if( pTos->flags & MEM_Null ) break;
 | |
|   if( (pTos->flags & MEM_Blob)==0 ){
 | |
|     applyAffinity(pTos, SQLITE_AFF_TEXT, encoding);
 | |
|     assert( pTos->flags & MEM_Str );
 | |
|     pTos->flags |= MEM_Blob;
 | |
|   }
 | |
|   pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Str);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: ToNumeric * * *
 | |
| **
 | |
| ** Force the value on the top of the stack to be numeric (either an
 | |
| ** integer or a floating-point number.)
 | |
| ** If the value is text or blob, try to convert it to an using the
 | |
| ** equivalent of atoi() or atof() and store 0 if no such conversion 
 | |
| ** is possible.
 | |
| **
 | |
| ** A NULL value is not changed by this routine.  It remains NULL.
 | |
| */
 | |
| case OP_ToNumeric: {                  /* same as TK_TO_NUMERIC, no-push */
 | |
|   assert( pTos>=p->aStack );
 | |
|   if( (pTos->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
 | |
|     sqlite3VdbeMemNumerify(pTos);
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_CAST */
 | |
| 
 | |
| /* Opcode: ToInt * * *
 | |
| **
 | |
| ** Force the value on the top of the stack to be an integer.  If
 | |
| ** The value is currently a real number, drop its fractional part.
 | |
| ** If the value is text or blob, try to convert it to an integer using the
 | |
| ** equivalent of atoi() and store 0 if no such conversion is possible.
 | |
| **
 | |
| ** A NULL value is not changed by this routine.  It remains NULL.
 | |
| */
 | |
| case OP_ToInt: {                  /* same as TK_TO_INT, no-push */
 | |
|   assert( pTos>=p->aStack );
 | |
|   if( (pTos->flags & MEM_Null)==0 ){
 | |
|     sqlite3VdbeMemIntegerify(pTos);
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_CAST
 | |
| /* Opcode: ToReal * * *
 | |
| **
 | |
| ** Force the value on the top of the stack to be a floating point number.
 | |
| ** If The value is currently an integer, convert it.
 | |
| ** If the value is text or blob, try to convert it to an integer using the
 | |
| ** equivalent of atoi() and store 0 if no such conversion is possible.
 | |
| **
 | |
| ** A NULL value is not changed by this routine.  It remains NULL.
 | |
| */
 | |
| case OP_ToReal: {                  /* same as TK_TO_REAL, no-push */
 | |
|   assert( pTos>=p->aStack );
 | |
|   if( (pTos->flags & MEM_Null)==0 ){
 | |
|     sqlite3VdbeMemRealify(pTos);
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_CAST */
 | |
| 
 | |
| /* Opcode: Eq P1 P2 P3
 | |
| **
 | |
| ** Pop the top two elements from the stack.  If they are equal, then
 | |
| ** jump to instruction P2.  Otherwise, continue to the next instruction.
 | |
| **
 | |
| ** If the 0x100 bit of P1 is true and either operand is NULL then take the
 | |
| ** jump.  If the 0x100 bit of P1 is clear then fall thru if either operand
 | |
| ** is NULL.
 | |
| **
 | |
| ** If the 0x200 bit of P1 is set and either operand is NULL then
 | |
| ** both operands are converted to integers prior to comparison.
 | |
| ** NULL operands are converted to zero and non-NULL operands are
 | |
| ** converted to 1.  Thus, for example, with 0x200 set,  NULL==NULL is true
 | |
| ** whereas it would normally be NULL.  Similarly,  NULL==123 is false when
 | |
| ** 0x200 is set but is NULL when the 0x200 bit of P1 is clear.
 | |
| **
 | |
| ** The least significant byte of P1 (mask 0xff) must be an affinity character -
 | |
| ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 
 | |
| ** to coerce both values
 | |
| ** according to the affinity before the comparison is made. If the byte is
 | |
| ** 0x00, then numeric affinity is used.
 | |
| **
 | |
| ** Once any conversions have taken place, and neither value is NULL, 
 | |
| ** the values are compared. If both values are blobs, or both are text,
 | |
| ** then memcmp() is used to determine the results of the comparison. If
 | |
| ** both values are numeric, then a numeric comparison is used. If the
 | |
| ** two values are of different types, then they are inequal.
 | |
| **
 | |
| ** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
 | |
| ** stack if the jump would have been taken, or a 0 if not.  Push a
 | |
| ** NULL if either operand was NULL.
 | |
| **
 | |
| ** If P3 is not NULL it is a pointer to a collating sequence (a CollSeq
 | |
| ** structure) that defines how to compare text.
 | |
| */
 | |
| /* Opcode: Ne P1 P2 P3
 | |
| **
 | |
| ** This works just like the Eq opcode except that the jump is taken if
 | |
| ** the operands from the stack are not equal.  See the Eq opcode for
 | |
| ** additional information.
 | |
| */
 | |
| /* Opcode: Lt P1 P2 P3
 | |
| **
 | |
| ** This works just like the Eq opcode except that the jump is taken if
 | |
| ** the 2nd element down on the stack is less than the top of the stack.
 | |
| ** See the Eq opcode for additional information.
 | |
| */
 | |
| /* Opcode: Le P1 P2 P3
 | |
| **
 | |
| ** This works just like the Eq opcode except that the jump is taken if
 | |
| ** the 2nd element down on the stack is less than or equal to the
 | |
| ** top of the stack.  See the Eq opcode for additional information.
 | |
| */
 | |
| /* Opcode: Gt P1 P2 P3
 | |
| **
 | |
| ** This works just like the Eq opcode except that the jump is taken if
 | |
| ** the 2nd element down on the stack is greater than the top of the stack.
 | |
| ** See the Eq opcode for additional information.
 | |
| */
 | |
| /* Opcode: Ge P1 P2 P3
 | |
| **
 | |
| ** This works just like the Eq opcode except that the jump is taken if
 | |
| ** the 2nd element down on the stack is greater than or equal to the
 | |
| ** top of the stack.  See the Eq opcode for additional information.
 | |
| */
 | |
| case OP_Eq:               /* same as TK_EQ, no-push */
 | |
| case OP_Ne:               /* same as TK_NE, no-push */
 | |
| case OP_Lt:               /* same as TK_LT, no-push */
 | |
| case OP_Le:               /* same as TK_LE, no-push */
 | |
| case OP_Gt:               /* same as TK_GT, no-push */
 | |
| case OP_Ge: {             /* same as TK_GE, no-push */
 | |
|   Mem *pNos;
 | |
|   int flags;
 | |
|   int res;
 | |
|   char affinity;
 | |
| 
 | |
|   pNos = &pTos[-1];
 | |
|   flags = pTos->flags|pNos->flags;
 | |
| 
 | |
|   /* If either value is a NULL P2 is not zero, take the jump if the least
 | |
|   ** significant byte of P1 is true. If P2 is zero, then push a NULL onto
 | |
|   ** the stack.
 | |
|   */
 | |
|   if( flags&MEM_Null ){
 | |
|     if( (pOp->p1 & 0x200)!=0 ){
 | |
|       /* The 0x200 bit of P1 means, roughly "do not treat NULL as the
 | |
|       ** magic SQL value it normally is - treat it as if it were another
 | |
|       ** integer".
 | |
|       **
 | |
|       ** With 0x200 set, if either operand is NULL then both operands
 | |
|       ** are converted to integers prior to being passed down into the
 | |
|       ** normal comparison logic below.  NULL operands are converted to
 | |
|       ** zero and non-NULL operands are converted to 1.  Thus, for example,
 | |
|       ** with 0x200 set,  NULL==NULL is true whereas it would normally
 | |
|       ** be NULL.  Similarly,  NULL!=123 is true.
 | |
|       */
 | |
|       sqlite3VdbeMemSetInt64(pTos, (pTos->flags & MEM_Null)==0);
 | |
|       sqlite3VdbeMemSetInt64(pNos, (pNos->flags & MEM_Null)==0);
 | |
|     }else{
 | |
|       /* If the 0x200 bit of P1 is clear and either operand is NULL then
 | |
|       ** the result is always NULL.  The jump is taken if the 0x100 bit
 | |
|       ** of P1 is set.
 | |
|       */
 | |
|       popStack(&pTos, 2);
 | |
|       if( pOp->p2 ){
 | |
|         if( pOp->p1 & 0x100 ){
 | |
|           pc = pOp->p2-1;
 | |
|         }
 | |
|       }else{
 | |
|         pTos++;
 | |
|         pTos->flags = MEM_Null;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   affinity = pOp->p1 & 0xFF;
 | |
|   if( affinity ){
 | |
|     applyAffinity(pNos, affinity, encoding);
 | |
|     applyAffinity(pTos, affinity, encoding);
 | |
|   }
 | |
| 
 | |
|   assert( pOp->p3type==P3_COLLSEQ || pOp->p3==0 );
 | |
|   ExpandBlob(pNos);
 | |
|   ExpandBlob(pTos);
 | |
|   res = sqlite3MemCompare(pNos, pTos, (CollSeq*)pOp->p3);
 | |
|   switch( pOp->opcode ){
 | |
|     case OP_Eq:    res = res==0;     break;
 | |
|     case OP_Ne:    res = res!=0;     break;
 | |
|     case OP_Lt:    res = res<0;      break;
 | |
|     case OP_Le:    res = res<=0;     break;
 | |
|     case OP_Gt:    res = res>0;      break;
 | |
|     default:       res = res>=0;     break;
 | |
|   }
 | |
| 
 | |
|   popStack(&pTos, 2);
 | |
|   if( pOp->p2 ){
 | |
|     if( res ){
 | |
|       pc = pOp->p2-1;
 | |
|     }
 | |
|   }else{
 | |
|     pTos++;
 | |
|     pTos->flags = MEM_Int;
 | |
|     pTos->u.i = res;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: And * * *
 | |
| **
 | |
| ** Pop two values off the stack.  Take the logical AND of the
 | |
| ** two values and push the resulting boolean value back onto the
 | |
| ** stack. 
 | |
| */
 | |
| /* Opcode: Or * * *
 | |
| **
 | |
| ** Pop two values off the stack.  Take the logical OR of the
 | |
| ** two values and push the resulting boolean value back onto the
 | |
| ** stack. 
 | |
| */
 | |
| case OP_And:              /* same as TK_AND, no-push */
 | |
| case OP_Or: {             /* same as TK_OR, no-push */
 | |
|   Mem *pNos = &pTos[-1];
 | |
|   int v1, v2;    /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
 | |
| 
 | |
|   assert( pNos>=p->aStack );
 | |
|   if( pTos->flags & MEM_Null ){
 | |
|     v1 = 2;
 | |
|   }else{
 | |
|     sqlite3VdbeMemIntegerify(pTos);
 | |
|     v1 = pTos->u.i==0;
 | |
|   }
 | |
|   if( pNos->flags & MEM_Null ){
 | |
|     v2 = 2;
 | |
|   }else{
 | |
|     sqlite3VdbeMemIntegerify(pNos);
 | |
|     v2 = pNos->u.i==0;
 | |
|   }
 | |
|   if( pOp->opcode==OP_And ){
 | |
|     static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
 | |
|     v1 = and_logic[v1*3+v2];
 | |
|   }else{
 | |
|     static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
 | |
|     v1 = or_logic[v1*3+v2];
 | |
|   }
 | |
|   popStack(&pTos, 2);
 | |
|   pTos++;
 | |
|   if( v1==2 ){
 | |
|     pTos->flags = MEM_Null;
 | |
|   }else{
 | |
|     pTos->u.i = v1==0;
 | |
|     pTos->flags = MEM_Int;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Negative * * *
 | |
| **
 | |
| ** Treat the top of the stack as a numeric quantity.  Replace it
 | |
| ** with its additive inverse.  If the top of the stack is NULL
 | |
| ** its value is unchanged.
 | |
| */
 | |
| /* Opcode: AbsValue * * *
 | |
| **
 | |
| ** Treat the top of the stack as a numeric quantity.  Replace it
 | |
| ** with its absolute value. If the top of the stack is NULL
 | |
| ** its value is unchanged.
 | |
| */
 | |
| case OP_Negative:              /* same as TK_UMINUS, no-push */
 | |
| case OP_AbsValue: {
 | |
|   assert( pTos>=p->aStack );
 | |
|   if( (pTos->flags & (MEM_Real|MEM_Int|MEM_Null))==0 ){
 | |
|     sqlite3VdbeMemNumerify(pTos);
 | |
|   }
 | |
|   if( pTos->flags & MEM_Real ){
 | |
|     Release(pTos);
 | |
|     if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
 | |
|       pTos->r = -pTos->r;
 | |
|     }
 | |
|     pTos->flags = MEM_Real;
 | |
|   }else if( pTos->flags & MEM_Int ){
 | |
|     Release(pTos);
 | |
|     if( pOp->opcode==OP_Negative || pTos->u.i<0 ){
 | |
|       pTos->u.i = -pTos->u.i;
 | |
|     }
 | |
|     pTos->flags = MEM_Int;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Not * * *
 | |
| **
 | |
| ** Interpret the top of the stack as a boolean value.  Replace it
 | |
| ** with its complement.  If the top of the stack is NULL its value
 | |
| ** is unchanged.
 | |
| */
 | |
| case OP_Not: {                /* same as TK_NOT, no-push */
 | |
|   assert( pTos>=p->aStack );
 | |
|   if( pTos->flags & MEM_Null ) break;  /* Do nothing to NULLs */
 | |
|   sqlite3VdbeMemIntegerify(pTos);
 | |
|   assert( (pTos->flags & MEM_Dyn)==0 );
 | |
|   pTos->u.i = !pTos->u.i;
 | |
|   pTos->flags = MEM_Int;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: BitNot * * *
 | |
| **
 | |
| ** Interpret the top of the stack as an value.  Replace it
 | |
| ** with its ones-complement.  If the top of the stack is NULL its
 | |
| ** value is unchanged.
 | |
| */
 | |
| case OP_BitNot: {             /* same as TK_BITNOT, no-push */
 | |
|   assert( pTos>=p->aStack );
 | |
|   if( pTos->flags & MEM_Null ) break;  /* Do nothing to NULLs */
 | |
|   sqlite3VdbeMemIntegerify(pTos);
 | |
|   assert( (pTos->flags & MEM_Dyn)==0 );
 | |
|   pTos->u.i = ~pTos->u.i;
 | |
|   pTos->flags = MEM_Int;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Noop * * *
 | |
| **
 | |
| ** Do nothing.  This instruction is often useful as a jump
 | |
| ** destination.
 | |
| */
 | |
| /*
 | |
| ** The magic Explain opcode are only inserted when explain==2 (which
 | |
| ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
 | |
| ** This opcode records information from the optimizer.  It is the
 | |
| ** the same as a no-op.  This opcodesnever appears in a real VM program.
 | |
| */
 | |
| case OP_Explain:
 | |
| case OP_Noop: {            /* no-push */
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: If P1 P2 *
 | |
| **
 | |
| ** Pop a single boolean from the stack.  If the boolean popped is
 | |
| ** true, then jump to p2.  Otherwise continue to the next instruction.
 | |
| ** An integer is false if zero and true otherwise.  A string is
 | |
| ** false if it has zero length and true otherwise.
 | |
| **
 | |
| ** If the value popped of the stack is NULL, then take the jump if P1
 | |
| ** is true and fall through if P1 is false.
 | |
| */
 | |
| /* Opcode: IfNot P1 P2 *
 | |
| **
 | |
| ** Pop a single boolean from the stack.  If the boolean popped is
 | |
| ** false, then jump to p2.  Otherwise continue to the next instruction.
 | |
| ** An integer is false if zero and true otherwise.  A string is
 | |
| ** false if it has zero length and true otherwise.
 | |
| **
 | |
| ** If the value popped of the stack is NULL, then take the jump if P1
 | |
| ** is true and fall through if P1 is false.
 | |
| */
 | |
| case OP_If:                 /* no-push */
 | |
| case OP_IfNot: {            /* no-push */
 | |
|   int c;
 | |
|   assert( pTos>=p->aStack );
 | |
|   if( pTos->flags & MEM_Null ){
 | |
|     c = pOp->p1;
 | |
|   }else{
 | |
| #ifdef SQLITE_OMIT_FLOATING_POINT
 | |
|     c = sqlite3VdbeIntValue(pTos);
 | |
| #else
 | |
|     c = sqlite3VdbeRealValue(pTos)!=0.0;
 | |
| #endif
 | |
|     if( pOp->opcode==OP_IfNot ) c = !c;
 | |
|   }
 | |
|   Release(pTos);
 | |
|   pTos--;
 | |
|   if( c ) pc = pOp->p2-1;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: IsNull P1 P2 *
 | |
| **
 | |
| ** Check the top of the stack and jump to P2 if the top of the stack
 | |
| ** is NULL.  If P1 is positive, then pop P1 elements from the stack
 | |
| ** regardless of whether or not the jump is taken.  If P1 is negative,
 | |
| ** pop -P1 elements from the stack only if the jump is taken and leave
 | |
| ** the stack unchanged if the jump is not taken.
 | |
| */
 | |
| case OP_IsNull: {            /* same as TK_ISNULL, no-push */
 | |
|   if( pTos->flags & MEM_Null ){
 | |
|     pc = pOp->p2-1;
 | |
|     if( pOp->p1<0 ){
 | |
|       popStack(&pTos, -pOp->p1);
 | |
|     }
 | |
|   }
 | |
|   if( pOp->p1>0 ){
 | |
|     popStack(&pTos, pOp->p1);
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: NotNull P1 P2 *
 | |
| **
 | |
| ** Jump to P2 if the top abs(P1) values on the stack are all not NULL.  
 | |
| ** Regardless of whether or not the jump is taken, pop the stack
 | |
| ** P1 times if P1 is greater than zero.  But if P1 is negative,
 | |
| ** leave the stack unchanged.
 | |
| */
 | |
| case OP_NotNull: {            /* same as TK_NOTNULL, no-push */
 | |
|   int i, cnt;
 | |
|   cnt = pOp->p1;
 | |
|   if( cnt<0 ) cnt = -cnt;
 | |
|   assert( &pTos[1-cnt] >= p->aStack );
 | |
|   for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
 | |
|   if( i>=cnt ) pc = pOp->p2-1;
 | |
|   if( pOp->p1>0 ) popStack(&pTos, cnt);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: SetNumColumns P1 P2 *
 | |
| **
 | |
| ** Before the OP_Column opcode can be executed on a cursor, this
 | |
| ** opcode must be called to set the number of fields in the table.
 | |
| **
 | |
| ** This opcode sets the number of columns for cursor P1 to P2.
 | |
| **
 | |
| ** If OP_KeyAsData is to be applied to cursor P1, it must be executed
 | |
| ** before this op-code.
 | |
| */
 | |
| case OP_SetNumColumns: {       /* no-push */
 | |
|   Cursor *pC;
 | |
|   assert( (pOp->p1)<p->nCursor );
 | |
|   assert( p->apCsr[pOp->p1]!=0 );
 | |
|   pC = p->apCsr[pOp->p1];
 | |
|   pC->nField = pOp->p2;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Column P1 P2 P3
 | |
| **
 | |
| ** Interpret the data that cursor P1 points to as a structure built using
 | |
| ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
 | |
| ** information about the format of the data.) Push onto the stack the value
 | |
| ** of the P2-th column contained in the data. If there are less that (P2+1) 
 | |
| ** values in the record, push a NULL onto the stack.
 | |
| **
 | |
| ** If the KeyAsData opcode has previously executed on this cursor, then the
 | |
| ** field might be extracted from the key rather than the data.
 | |
| **
 | |
| ** If the column contains fewer than P2 fields, then push a NULL.  Or
 | |
| ** if P3 is of type P3_MEM, then push the P3 value.  The P3 value will
 | |
| ** be default value for a column that has been added using the ALTER TABLE
 | |
| ** ADD COLUMN command.  If P3 is an ordinary string, just push a NULL.
 | |
| ** When P3 is a string it is really just a comment describing the value
 | |
| ** to be pushed, not a default value.
 | |
| */
 | |
| case OP_Column: {
 | |
|   u32 payloadSize;   /* Number of bytes in the record */
 | |
|   int p1 = pOp->p1;  /* P1 value of the opcode */
 | |
|   int p2 = pOp->p2;  /* column number to retrieve */
 | |
|   Cursor *pC = 0;    /* The VDBE cursor */
 | |
|   char *zRec;        /* Pointer to complete record-data */
 | |
|   BtCursor *pCrsr;   /* The BTree cursor */
 | |
|   u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
 | |
|   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
 | |
|   u32 nField;        /* number of fields in the record */
 | |
|   int len;           /* The length of the serialized data for the column */
 | |
|   int i;             /* Loop counter */
 | |
|   char *zData;       /* Part of the record being decoded */
 | |
|   Mem sMem;          /* For storing the record being decoded */
 | |
| 
 | |
|   sMem.flags = 0;
 | |
|   assert( p1<p->nCursor );
 | |
|   pTos++;
 | |
|   pTos->flags = MEM_Null;
 | |
| 
 | |
|   /* This block sets the variable payloadSize to be the total number of
 | |
|   ** bytes in the record.
 | |
|   **
 | |
|   ** zRec is set to be the complete text of the record if it is available.
 | |
|   ** The complete record text is always available for pseudo-tables
 | |
|   ** If the record is stored in a cursor, the complete record text
 | |
|   ** might be available in the  pC->aRow cache.  Or it might not be.
 | |
|   ** If the data is unavailable,  zRec is set to NULL.
 | |
|   **
 | |
|   ** We also compute the number of columns in the record.  For cursors,
 | |
|   ** the number of columns is stored in the Cursor.nField element.  For
 | |
|   ** records on the stack, the next entry down on the stack is an integer
 | |
|   ** which is the number of records.
 | |
|   */
 | |
|   pC = p->apCsr[p1];
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   assert( pC->pVtabCursor==0 );
 | |
| #endif
 | |
|   assert( pC!=0 );
 | |
|   if( pC->pCursor!=0 ){
 | |
|     /* The record is stored in a B-Tree */
 | |
|     rc = sqlite3VdbeCursorMoveto(pC);
 | |
|     if( rc ) goto abort_due_to_error;
 | |
|     zRec = 0;
 | |
|     pCrsr = pC->pCursor;
 | |
|     if( pC->nullRow ){
 | |
|       payloadSize = 0;
 | |
|     }else if( pC->cacheStatus==p->cacheCtr ){
 | |
|       payloadSize = pC->payloadSize;
 | |
|       zRec = (char*)pC->aRow;
 | |
|     }else if( pC->isIndex ){
 | |
|       i64 payloadSize64;
 | |
|       sqlite3BtreeKeySize(pCrsr, &payloadSize64);
 | |
|       payloadSize = payloadSize64;
 | |
|     }else{
 | |
|       sqlite3BtreeDataSize(pCrsr, &payloadSize);
 | |
|     }
 | |
|     nField = pC->nField;
 | |
|   }else if( pC->pseudoTable ){
 | |
|     /* The record is the sole entry of a pseudo-table */
 | |
|     payloadSize = pC->nData;
 | |
|     zRec = pC->pData;
 | |
|     pC->cacheStatus = CACHE_STALE;
 | |
|     assert( payloadSize==0 || zRec!=0 );
 | |
|     nField = pC->nField;
 | |
|     pCrsr = 0;
 | |
|   }else{
 | |
|     zRec = 0;
 | |
|     payloadSize = 0;
 | |
|     pCrsr = 0;
 | |
|     nField = 0;
 | |
|   }
 | |
| 
 | |
|   /* If payloadSize is 0, then just push a NULL onto the stack. */
 | |
|   if( payloadSize==0 ){
 | |
|     assert( pTos->flags==MEM_Null );
 | |
|     break;
 | |
|   }
 | |
|   if( payloadSize>SQLITE_MAX_LENGTH ){
 | |
|     goto too_big;
 | |
|   }
 | |
| 
 | |
|   assert( p2<nField );
 | |
| 
 | |
|   /* Read and parse the table header.  Store the results of the parse
 | |
|   ** into the record header cache fields of the cursor.
 | |
|   */
 | |
|   if( pC && pC->cacheStatus==p->cacheCtr ){
 | |
|     aType = pC->aType;
 | |
|     aOffset = pC->aOffset;
 | |
|   }else{
 | |
|     u8 *zIdx;        /* Index into header */
 | |
|     u8 *zEndHdr;     /* Pointer to first byte after the header */
 | |
|     u32 offset;      /* Offset into the data */
 | |
|     int szHdrSz;     /* Size of the header size field at start of record */
 | |
|     int avail;       /* Number of bytes of available data */
 | |
| 
 | |
|     aType = pC->aType;
 | |
|     if( aType==0 ){
 | |
|       pC->aType = aType = sqliteMallocRaw( 2*nField*sizeof(aType) );
 | |
|     }
 | |
|     if( aType==0 ){
 | |
|       goto no_mem;
 | |
|     }
 | |
|     pC->aOffset = aOffset = &aType[nField];
 | |
|     pC->payloadSize = payloadSize;
 | |
|     pC->cacheStatus = p->cacheCtr;
 | |
| 
 | |
|     /* Figure out how many bytes are in the header */
 | |
|     if( zRec ){
 | |
|       zData = zRec;
 | |
|     }else{
 | |
|       if( pC->isIndex ){
 | |
|         zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
 | |
|       }else{
 | |
|         zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
 | |
|       }
 | |
|       /* If KeyFetch()/DataFetch() managed to get the entire payload,
 | |
|       ** save the payload in the pC->aRow cache.  That will save us from
 | |
|       ** having to make additional calls to fetch the content portion of
 | |
|       ** the record.
 | |
|       */
 | |
|       if( avail>=payloadSize ){
 | |
|         zRec = zData;
 | |
|         pC->aRow = (u8*)zData;
 | |
|       }else{
 | |
|         pC->aRow = 0;
 | |
|       }
 | |
|     }
 | |
|     /* The following assert is true in all cases accept when
 | |
|     ** the database file has been corrupted externally.
 | |
|     **    assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
 | |
|     szHdrSz = GetVarint((u8*)zData, offset);
 | |
| 
 | |
|     /* The KeyFetch() or DataFetch() above are fast and will get the entire
 | |
|     ** record header in most cases.  But they will fail to get the complete
 | |
|     ** record header if the record header does not fit on a single page
 | |
|     ** in the B-Tree.  When that happens, use sqlite3VdbeMemFromBtree() to
 | |
|     ** acquire the complete header text.
 | |
|     */
 | |
|     if( !zRec && avail<offset ){
 | |
|       rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         goto op_column_out;
 | |
|       }
 | |
|       zData = sMem.z;
 | |
|     }
 | |
|     zEndHdr = (u8 *)&zData[offset];
 | |
|     zIdx = (u8 *)&zData[szHdrSz];
 | |
| 
 | |
|     /* Scan the header and use it to fill in the aType[] and aOffset[]
 | |
|     ** arrays.  aType[i] will contain the type integer for the i-th
 | |
|     ** column and aOffset[i] will contain the offset from the beginning
 | |
|     ** of the record to the start of the data for the i-th column
 | |
|     */
 | |
|     for(i=0; i<nField; i++){
 | |
|       if( zIdx<zEndHdr ){
 | |
|         aOffset[i] = offset;
 | |
|         zIdx += GetVarint(zIdx, aType[i]);
 | |
|         offset += sqlite3VdbeSerialTypeLen(aType[i]);
 | |
|       }else{
 | |
|         /* If i is less that nField, then there are less fields in this
 | |
|         ** record than SetNumColumns indicated there are columns in the
 | |
|         ** table. Set the offset for any extra columns not present in
 | |
|         ** the record to 0. This tells code below to push a NULL onto the
 | |
|         ** stack instead of deserializing a value from the record.
 | |
|         */
 | |
|         aOffset[i] = 0;
 | |
|       }
 | |
|     }
 | |
|     Release(&sMem);
 | |
|     sMem.flags = MEM_Null;
 | |
| 
 | |
|     /* If we have read more header data than was contained in the header,
 | |
|     ** or if the end of the last field appears to be past the end of the
 | |
|     ** record, then we must be dealing with a corrupt database.
 | |
|     */
 | |
|     if( zIdx>zEndHdr || offset>payloadSize ){
 | |
|       rc = SQLITE_CORRUPT_BKPT;
 | |
|       goto op_column_out;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Get the column information. If aOffset[p2] is non-zero, then 
 | |
|   ** deserialize the value from the record. If aOffset[p2] is zero,
 | |
|   ** then there are not enough fields in the record to satisfy the
 | |
|   ** request.  In this case, set the value NULL or to P3 if P3 is
 | |
|   ** a pointer to a Mem object.
 | |
|   */
 | |
|   if( aOffset[p2] ){
 | |
|     assert( rc==SQLITE_OK );
 | |
|     if( zRec ){
 | |
|       zData = &zRec[aOffset[p2]];
 | |
|     }else{
 | |
|       len = sqlite3VdbeSerialTypeLen(aType[p2]);
 | |
|       rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex,&sMem);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         goto op_column_out;
 | |
|       }
 | |
|       zData = sMem.z;
 | |
|     }
 | |
|     sqlite3VdbeSerialGet((u8*)zData, aType[p2], pTos);
 | |
|     pTos->enc = encoding;
 | |
|   }else{
 | |
|     if( pOp->p3type==P3_MEM ){
 | |
|       sqlite3VdbeMemShallowCopy(pTos, (Mem *)(pOp->p3), MEM_Static);
 | |
|     }else{
 | |
|       pTos->flags = MEM_Null;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If we dynamically allocated space to hold the data (in the
 | |
|   ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
 | |
|   ** dynamically allocated space over to the pTos structure.
 | |
|   ** This prevents a memory copy.
 | |
|   */
 | |
|   if( (sMem.flags & MEM_Dyn)!=0 ){
 | |
|     assert( pTos->flags & MEM_Ephem );
 | |
|     assert( pTos->flags & (MEM_Str|MEM_Blob) );
 | |
|     assert( pTos->z==sMem.z );
 | |
|     assert( sMem.flags & MEM_Term );
 | |
|     pTos->flags &= ~MEM_Ephem;
 | |
|     pTos->flags |= MEM_Dyn|MEM_Term;
 | |
|   }
 | |
| 
 | |
|   /* pTos->z might be pointing to sMem.zShort[].  Fix that so that we
 | |
|   ** can abandon sMem */
 | |
|   rc = sqlite3VdbeMemMakeWriteable(pTos);
 | |
| 
 | |
| op_column_out:
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: MakeRecord P1 P2 P3
 | |
| **
 | |
| ** Convert the top abs(P1) entries of the stack into a single entry
 | |
| ** suitable for use as a data record in a database table or as a key
 | |
| ** in an index.  The details of the format are irrelavant as long as
 | |
| ** the OP_Column opcode can decode the record later and as long as the
 | |
| ** sqlite3VdbeRecordCompare function will correctly compare two encoded
 | |
| ** records.  Refer to source code comments for the details of the record
 | |
| ** format.
 | |
| **
 | |
| ** The original stack entries are popped from the stack if P1>0 but
 | |
| ** remain on the stack if P1<0.
 | |
| **
 | |
| ** If P2 is not zero and one or more of the entries are NULL, then jump
 | |
| ** to the address given by P2.  This feature can be used to skip a
 | |
| ** uniqueness test on indices.
 | |
| **
 | |
| ** P3 may be a string that is P1 characters long.  The nth character of the
 | |
| ** string indicates the column affinity that should be used for the nth
 | |
| ** field of the index key (i.e. the first character of P3 corresponds to the
 | |
| ** lowest element on the stack).
 | |
| **
 | |
| ** The mapping from character to affinity is given by the SQLITE_AFF_
 | |
| ** macros defined in sqliteInt.h.
 | |
| **
 | |
| ** If P3 is NULL then all index fields have the affinity NONE.
 | |
| **
 | |
| ** See also OP_MakeIdxRec
 | |
| */
 | |
| /* Opcode: MakeIdxRec P1 P2 P3
 | |
| **
 | |
| ** This opcode works just OP_MakeRecord except that it reads an extra
 | |
| ** integer from the stack (thus reading a total of abs(P1+1) entries)
 | |
| ** and appends that extra integer to the end of the record as a varint.
 | |
| ** This results in an index key.
 | |
| */
 | |
| case OP_MakeIdxRec:
 | |
| case OP_MakeRecord: {
 | |
|   /* Assuming the record contains N fields, the record format looks
 | |
|   ** like this:
 | |
|   **
 | |
|   ** ------------------------------------------------------------------------
 | |
|   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 
 | |
|   ** ------------------------------------------------------------------------
 | |
|   **
 | |
|   ** Data(0) is taken from the lowest element of the stack and data(N-1) is
 | |
|   ** the top of the stack.
 | |
|   **
 | |
|   ** Each type field is a varint representing the serial type of the 
 | |
|   ** corresponding data element (see sqlite3VdbeSerialType()). The
 | |
|   ** hdr-size field is also a varint which is the offset from the beginning
 | |
|   ** of the record to data0.
 | |
|   */
 | |
|   u8 *zNewRecord;        /* A buffer to hold the data for the new record */
 | |
|   Mem *pRec;             /* The new record */
 | |
|   Mem *pRowid = 0;       /* Rowid appended to the new record */
 | |
|   u64 nData = 0;         /* Number of bytes of data space */
 | |
|   int nHdr = 0;          /* Number of bytes of header space */
 | |
|   u64 nByte = 0;         /* Data space required for this record */
 | |
|   int nZero = 0;         /* Number of zero bytes at the end of the record */
 | |
|   int nVarint;           /* Number of bytes in a varint */
 | |
|   u32 serial_type;       /* Type field */
 | |
|   int containsNull = 0;  /* True if any of the data fields are NULL */
 | |
|   Mem *pData0;           /* Bottom of the stack */
 | |
|   int leaveOnStack;      /* If true, leave the entries on the stack */
 | |
|   int nField;            /* Number of fields in the record */
 | |
|   int jumpIfNull;        /* Jump here if non-zero and any entries are NULL. */
 | |
|   int addRowid;          /* True to append a rowid column at the end */
 | |
|   char *zAffinity;       /* The affinity string for the record */
 | |
|   int file_format;       /* File format to use for encoding */
 | |
|   int i;                 /* Space used in zNewRecord[] */
 | |
|   char zTemp[NBFS];      /* Space to hold small records */
 | |
| 
 | |
|   leaveOnStack = ((pOp->p1<0)?1:0);
 | |
|   nField = pOp->p1 * (leaveOnStack?-1:1);
 | |
|   jumpIfNull = pOp->p2;
 | |
|   addRowid = pOp->opcode==OP_MakeIdxRec;
 | |
|   zAffinity = pOp->p3;
 | |
| 
 | |
|   pData0 = &pTos[1-nField];
 | |
|   assert( pData0>=p->aStack );
 | |
|   containsNull = 0;
 | |
|   file_format = p->minWriteFileFormat;
 | |
| 
 | |
|   /* Loop through the elements that will make up the record to figure
 | |
|   ** out how much space is required for the new record.
 | |
|   */
 | |
|   for(pRec=pData0; pRec<=pTos; pRec++){
 | |
|     int len;
 | |
|     if( zAffinity ){
 | |
|       applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
 | |
|     }
 | |
|     if( pRec->flags&MEM_Null ){
 | |
|       containsNull = 1;
 | |
|     }
 | |
|     if( pRec->flags&MEM_Zero && pRec->n>0 ){
 | |
|       ExpandBlob(pRec);
 | |
|     }
 | |
|     serial_type = sqlite3VdbeSerialType(pRec, file_format);
 | |
|     len = sqlite3VdbeSerialTypeLen(serial_type);
 | |
|     nData += len;
 | |
|     nHdr += sqlite3VarintLen(serial_type);
 | |
|     if( pRec->flags & MEM_Zero ){
 | |
|       /* Only pure zero-filled BLOBs can be input to this Opcode.
 | |
|       ** We do not allow blobs with a prefix and a zero-filled tail. */
 | |
|       nZero += pRec->u.i;
 | |
|     }else if( len ){
 | |
|       nZero = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If we have to append a varint rowid to this record, set pRowid
 | |
|   ** to the value of the rowid and increase nByte by the amount of space
 | |
|   ** required to store it.
 | |
|   */
 | |
|   if( addRowid ){
 | |
|     pRowid = &pTos[0-nField];
 | |
|     assert( pRowid>=p->aStack );
 | |
|     sqlite3VdbeMemIntegerify(pRowid);
 | |
|     serial_type = sqlite3VdbeSerialType(pRowid, 0);
 | |
|     nData += sqlite3VdbeSerialTypeLen(serial_type);
 | |
|     nHdr += sqlite3VarintLen(serial_type);
 | |
|     nZero = 0;
 | |
|   }
 | |
| 
 | |
|   /* Add the initial header varint and total the size */
 | |
|   nHdr += nVarint = sqlite3VarintLen(nHdr);
 | |
|   if( nVarint<sqlite3VarintLen(nHdr) ){
 | |
|     nHdr++;
 | |
|   }
 | |
|   nByte = nHdr+nData-nZero;
 | |
|   if( nByte>SQLITE_MAX_LENGTH ){
 | |
|     goto too_big;
 | |
|   }
 | |
| 
 | |
|   /* Allocate space for the new record. */
 | |
|   if( nByte>sizeof(zTemp) ){
 | |
|     zNewRecord = sqliteMallocRaw(nByte);
 | |
|     if( !zNewRecord ){
 | |
|       goto no_mem;
 | |
|     }
 | |
|   }else{
 | |
|     zNewRecord = (u8*)zTemp;
 | |
|   }
 | |
| 
 | |
|   /* Write the record */
 | |
|   i = sqlite3PutVarint(zNewRecord, nHdr);
 | |
|   for(pRec=pData0; pRec<=pTos; pRec++){
 | |
|     serial_type = sqlite3VdbeSerialType(pRec, file_format);
 | |
|     i += sqlite3PutVarint(&zNewRecord[i], serial_type);      /* serial type */
 | |
|   }
 | |
|   if( addRowid ){
 | |
|     i += sqlite3PutVarint(&zNewRecord[i], sqlite3VdbeSerialType(pRowid, 0));
 | |
|   }
 | |
|   for(pRec=pData0; pRec<=pTos; pRec++){  /* serial data */
 | |
|     i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRec, file_format);
 | |
|   }
 | |
|   if( addRowid ){
 | |
|     i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRowid, 0);
 | |
|   }
 | |
|   assert( i==nByte );
 | |
| 
 | |
|   /* Pop entries off the stack if required. Push the new record on. */
 | |
|   if( !leaveOnStack ){
 | |
|     popStack(&pTos, nField+addRowid);
 | |
|   }
 | |
|   pTos++;
 | |
|   pTos->n = nByte;
 | |
|   if( nByte<=sizeof(zTemp) ){
 | |
|     assert( zNewRecord==(unsigned char *)zTemp );
 | |
|     pTos->z = pTos->zShort;
 | |
|     memcpy(pTos->zShort, zTemp, nByte);
 | |
|     pTos->flags = MEM_Blob | MEM_Short;
 | |
|   }else{
 | |
|     assert( zNewRecord!=(unsigned char *)zTemp );
 | |
|     pTos->z = (char*)zNewRecord;
 | |
|     pTos->flags = MEM_Blob | MEM_Dyn;
 | |
|     pTos->xDel = 0;
 | |
|   }
 | |
|   if( nZero ){
 | |
|     pTos->u.i = nZero;
 | |
|     pTos->flags |= MEM_Zero;
 | |
|   }
 | |
|   pTos->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
 | |
| 
 | |
|   /* If a NULL was encountered and jumpIfNull is non-zero, take the jump. */
 | |
|   if( jumpIfNull && containsNull ){
 | |
|     pc = jumpIfNull - 1;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Statement P1 * *
 | |
| **
 | |
| ** Begin an individual statement transaction which is part of a larger
 | |
| ** BEGIN..COMMIT transaction.  This is needed so that the statement
 | |
| ** can be rolled back after an error without having to roll back the
 | |
| ** entire transaction.  The statement transaction will automatically
 | |
| ** commit when the VDBE halts.
 | |
| **
 | |
| ** The statement is begun on the database file with index P1.  The main
 | |
| ** database file has an index of 0 and the file used for temporary tables
 | |
| ** has an index of 1.
 | |
| */
 | |
| case OP_Statement: {       /* no-push */
 | |
|   int i = pOp->p1;
 | |
|   Btree *pBt;
 | |
|   if( i>=0 && i<db->nDb && (pBt = db->aDb[i].pBt)!=0 && !(db->autoCommit) ){
 | |
|     assert( sqlite3BtreeIsInTrans(pBt) );
 | |
|     if( !sqlite3BtreeIsInStmt(pBt) ){
 | |
|       rc = sqlite3BtreeBeginStmt(pBt);
 | |
|       p->openedStatement = 1;
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: AutoCommit P1 P2 *
 | |
| **
 | |
| ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
 | |
| ** back any currently active btree transactions. If there are any active
 | |
| ** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
 | |
| **
 | |
| ** This instruction causes the VM to halt.
 | |
| */
 | |
| case OP_AutoCommit: {       /* no-push */
 | |
|   u8 i = pOp->p1;
 | |
|   u8 rollback = pOp->p2;
 | |
| 
 | |
|   assert( i==1 || i==0 );
 | |
|   assert( i==1 || rollback==0 );
 | |
| 
 | |
|   assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */
 | |
| 
 | |
|   if( db->activeVdbeCnt>1 && i && !db->autoCommit ){
 | |
|     /* If this instruction implements a COMMIT or ROLLBACK, other VMs are
 | |
|     ** still running, and a transaction is active, return an error indicating
 | |
|     ** that the other VMs must complete first. 
 | |
|     */
 | |
|     sqlite3SetString(&p->zErrMsg, "cannot ", rollback?"rollback":"commit", 
 | |
|         " transaction - SQL statements in progress", (char*)0);
 | |
|     rc = SQLITE_ERROR;
 | |
|   }else if( i!=db->autoCommit ){
 | |
|     if( pOp->p2 ){
 | |
|       assert( i==1 );
 | |
|       sqlite3RollbackAll(db);
 | |
|       db->autoCommit = 1;
 | |
|     }else{
 | |
|       db->autoCommit = i;
 | |
|       if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
 | |
|         p->pTos = pTos;
 | |
|         p->pc = pc;
 | |
|         db->autoCommit = 1-i;
 | |
|         p->rc = SQLITE_BUSY;
 | |
|         return SQLITE_BUSY;
 | |
|       }
 | |
|     }
 | |
|     if( p->rc==SQLITE_OK ){
 | |
|       return SQLITE_DONE;
 | |
|     }else{
 | |
|       return SQLITE_ERROR;
 | |
|     }
 | |
|   }else{
 | |
|     sqlite3SetString(&p->zErrMsg,
 | |
|         (!i)?"cannot start a transaction within a transaction":(
 | |
|         (rollback)?"cannot rollback - no transaction is active":
 | |
|                    "cannot commit - no transaction is active"), (char*)0);
 | |
|          
 | |
|     rc = SQLITE_ERROR;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Transaction P1 P2 *
 | |
| **
 | |
| ** Begin a transaction.  The transaction ends when a Commit or Rollback
 | |
| ** opcode is encountered.  Depending on the ON CONFLICT setting, the
 | |
| ** transaction might also be rolled back if an error is encountered.
 | |
| **
 | |
| ** P1 is the index of the database file on which the transaction is
 | |
| ** started.  Index 0 is the main database file and index 1 is the
 | |
| ** file used for temporary tables.
 | |
| **
 | |
| ** If P2 is non-zero, then a write-transaction is started.  A RESERVED lock is
 | |
| ** obtained on the database file when a write-transaction is started.  No
 | |
| ** other process can start another write transaction while this transaction is
 | |
| ** underway.  Starting a write transaction also creates a rollback journal. A
 | |
| ** write transaction must be started before any changes can be made to the
 | |
| ** database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
 | |
| ** on the file.
 | |
| **
 | |
| ** If P2 is zero, then a read-lock is obtained on the database file.
 | |
| */
 | |
| case OP_Transaction: {       /* no-push */
 | |
|   int i = pOp->p1;
 | |
|   Btree *pBt;
 | |
| 
 | |
|   assert( i>=0 && i<db->nDb );
 | |
|   pBt = db->aDb[i].pBt;
 | |
| 
 | |
|   if( pBt ){
 | |
|     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
 | |
|     if( rc==SQLITE_BUSY ){
 | |
|       p->pc = pc;
 | |
|       p->rc = SQLITE_BUSY;
 | |
|       p->pTos = pTos;
 | |
|       return SQLITE_BUSY;
 | |
|     }
 | |
|     if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){
 | |
|       goto abort_due_to_error;
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: ReadCookie P1 P2 *
 | |
| **
 | |
| ** Read cookie number P2 from database P1 and push it onto the stack.
 | |
| ** P2==0 is the schema version.  P2==1 is the database format.
 | |
| ** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
 | |
| ** the main database file and P1==1 is the database file used to store
 | |
| ** temporary tables.
 | |
| **
 | |
| ** If P1 is negative, then this is a request to read the size of a
 | |
| ** databases free-list. P2 must be set to 1 in this case. The actual
 | |
| ** database accessed is ((P1+1)*-1). For example, a P1 parameter of -1
 | |
| ** corresponds to database 0 ("main"), a P1 of -2 is database 1 ("temp").
 | |
| **
 | |
| ** There must be a read-lock on the database (either a transaction
 | |
| ** must be started or there must be an open cursor) before
 | |
| ** executing this instruction.
 | |
| */
 | |
| case OP_ReadCookie: {
 | |
|   int iMeta;
 | |
|   int iDb = pOp->p1;
 | |
|   int iCookie = pOp->p2;
 | |
| 
 | |
|   assert( pOp->p2<SQLITE_N_BTREE_META );
 | |
|   if( iDb<0 ){
 | |
|     iDb = (-1*(iDb+1));
 | |
|     iCookie *= -1;
 | |
|   }
 | |
|   assert( iDb>=0 && iDb<db->nDb );
 | |
|   assert( db->aDb[iDb].pBt!=0 );
 | |
|   /* The indexing of meta values at the schema layer is off by one from
 | |
|   ** the indexing in the btree layer.  The btree considers meta[0] to
 | |
|   ** be the number of free pages in the database (a read-only value)
 | |
|   ** and meta[1] to be the schema cookie.  The schema layer considers
 | |
|   ** meta[1] to be the schema cookie.  So we have to shift the index
 | |
|   ** by one in the following statement.
 | |
|   */
 | |
|   rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta);
 | |
|   pTos++;
 | |
|   pTos->u.i = iMeta;
 | |
|   pTos->flags = MEM_Int;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: SetCookie P1 P2 *
 | |
| **
 | |
| ** Write the top of the stack into cookie number P2 of database P1.
 | |
| ** P2==0 is the schema version.  P2==1 is the database format.
 | |
| ** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
 | |
| ** the main database file and P1==1 is the database file used to store
 | |
| ** temporary tables.
 | |
| **
 | |
| ** A transaction must be started before executing this opcode.
 | |
| */
 | |
| case OP_SetCookie: {       /* no-push */
 | |
|   Db *pDb;
 | |
|   assert( pOp->p2<SQLITE_N_BTREE_META );
 | |
|   assert( pOp->p1>=0 && pOp->p1<db->nDb );
 | |
|   pDb = &db->aDb[pOp->p1];
 | |
|   assert( pDb->pBt!=0 );
 | |
|   assert( pTos>=p->aStack );
 | |
|   sqlite3VdbeMemIntegerify(pTos);
 | |
|   /* See note about index shifting on OP_ReadCookie */
 | |
|   rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pTos->u.i);
 | |
|   if( pOp->p2==0 ){
 | |
|     /* When the schema cookie changes, record the new cookie internally */
 | |
|     pDb->pSchema->schema_cookie = pTos->u.i;
 | |
|     db->flags |= SQLITE_InternChanges;
 | |
|   }else if( pOp->p2==1 ){
 | |
|     /* Record changes in the file format */
 | |
|     pDb->pSchema->file_format = pTos->u.i;
 | |
|   }
 | |
|   assert( (pTos->flags & MEM_Dyn)==0 );
 | |
|   pTos--;
 | |
|   if( pOp->p1==1 ){
 | |
|     /* Invalidate all prepared statements whenever the TEMP database
 | |
|     ** schema is changed.  Ticket #1644 */
 | |
|     sqlite3ExpirePreparedStatements(db);
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: VerifyCookie P1 P2 *
 | |
| **
 | |
| ** Check the value of global database parameter number 0 (the
 | |
| ** schema version) and make sure it is equal to P2.  
 | |
| ** P1 is the database number which is 0 for the main database file
 | |
| ** and 1 for the file holding temporary tables and some higher number
 | |
| ** for auxiliary databases.
 | |
| **
 | |
| ** The cookie changes its value whenever the database schema changes.
 | |
| ** This operation is used to detect when that the cookie has changed
 | |
| ** and that the current process needs to reread the schema.
 | |
| **
 | |
| ** Either a transaction needs to have been started or an OP_Open needs
 | |
| ** to be executed (to establish a read lock) before this opcode is
 | |
| ** invoked.
 | |
| */
 | |
| case OP_VerifyCookie: {       /* no-push */
 | |
|   int iMeta;
 | |
|   Btree *pBt;
 | |
|   assert( pOp->p1>=0 && pOp->p1<db->nDb );
 | |
|   pBt = db->aDb[pOp->p1].pBt;
 | |
|   if( pBt ){
 | |
|     rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta);
 | |
|   }else{
 | |
|     rc = SQLITE_OK;
 | |
|     iMeta = 0;
 | |
|   }
 | |
|   if( rc==SQLITE_OK && iMeta!=pOp->p2 ){
 | |
|     sqlite3SetString(&p->zErrMsg, "database schema has changed", (char*)0);
 | |
|     /* If the schema-cookie from the database file matches the cookie 
 | |
|     ** stored with the in-memory representation of the schema, do
 | |
|     ** not reload the schema from the database file.
 | |
|     **
 | |
|     ** If virtual-tables are in use, this is not just an optimisation.
 | |
|     ** Often, v-tables store their data in other SQLite tables, which
 | |
|     ** are queried from within xNext() and other v-table methods using
 | |
|     ** prepared queries. If such a query is out-of-date, we do not want to
 | |
|     ** discard the database schema, as the user code implementing the
 | |
|     ** v-table would have to be ready for the sqlite3_vtab structure itself
 | |
|     ** to be invalidated whenever sqlite3_step() is called from within 
 | |
|     ** a v-table method.
 | |
|     */
 | |
|     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
 | |
|       sqlite3ResetInternalSchema(db, pOp->p1);
 | |
|     }
 | |
| 
 | |
|     sqlite3ExpirePreparedStatements(db);
 | |
|     rc = SQLITE_SCHEMA;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: OpenRead P1 P2 P3
 | |
| **
 | |
| ** Open a read-only cursor for the database table whose root page is
 | |
| ** P2 in a database file.  The database file is determined by an 
 | |
| ** integer from the top of the stack.  0 means the main database and
 | |
| ** 1 means the database used for temporary tables.  Give the new 
 | |
| ** cursor an identifier of P1.  The P1 values need not be contiguous
 | |
| ** but all P1 values should be small integers.  It is an error for
 | |
| ** P1 to be negative.
 | |
| **
 | |
| ** If P2==0 then take the root page number from the next of the stack.
 | |
| **
 | |
| ** There will be a read lock on the database whenever there is an
 | |
| ** open cursor.  If the database was unlocked prior to this instruction
 | |
| ** then a read lock is acquired as part of this instruction.  A read
 | |
| ** lock allows other processes to read the database but prohibits
 | |
| ** any other process from modifying the database.  The read lock is
 | |
| ** released when all cursors are closed.  If this instruction attempts
 | |
| ** to get a read lock but fails, the script terminates with an
 | |
| ** SQLITE_BUSY error code.
 | |
| **
 | |
| ** The P3 value is a pointer to a KeyInfo structure that defines the
 | |
| ** content and collating sequence of indices.  P3 is NULL for cursors
 | |
| ** that are not pointing to indices.
 | |
| **
 | |
| ** See also OpenWrite.
 | |
| */
 | |
| /* Opcode: OpenWrite P1 P2 P3
 | |
| **
 | |
| ** Open a read/write cursor named P1 on the table or index whose root
 | |
| ** page is P2.  If P2==0 then take the root page number from the stack.
 | |
| **
 | |
| ** The P3 value is a pointer to a KeyInfo structure that defines the
 | |
| ** content and collating sequence of indices.  P3 is NULL for cursors
 | |
| ** that are not pointing to indices.
 | |
| **
 | |
| ** This instruction works just like OpenRead except that it opens the cursor
 | |
| ** in read/write mode.  For a given table, there can be one or more read-only
 | |
| ** cursors or a single read/write cursor but not both.
 | |
| **
 | |
| ** See also OpenRead.
 | |
| */
 | |
| case OP_OpenRead:          /* no-push */
 | |
| case OP_OpenWrite: {       /* no-push */
 | |
|   int i = pOp->p1;
 | |
|   int p2 = pOp->p2;
 | |
|   int wrFlag;
 | |
|   Btree *pX;
 | |
|   int iDb;
 | |
|   Cursor *pCur;
 | |
|   Db *pDb;
 | |
|   
 | |
|   assert( pTos>=p->aStack );
 | |
|   sqlite3VdbeMemIntegerify(pTos);
 | |
|   iDb = pTos->u.i;
 | |
|   assert( (pTos->flags & MEM_Dyn)==0 );
 | |
|   pTos--;
 | |
|   assert( iDb>=0 && iDb<db->nDb );
 | |
|   pDb = &db->aDb[iDb];
 | |
|   pX = pDb->pBt;
 | |
|   assert( pX!=0 );
 | |
|   if( pOp->opcode==OP_OpenWrite ){
 | |
|     wrFlag = 1;
 | |
|     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
 | |
|       p->minWriteFileFormat = pDb->pSchema->file_format;
 | |
|     }
 | |
|   }else{
 | |
|     wrFlag = 0;
 | |
|   }
 | |
|   if( p2<=0 ){
 | |
|     assert( pTos>=p->aStack );
 | |
|     sqlite3VdbeMemIntegerify(pTos);
 | |
|     p2 = pTos->u.i;
 | |
|     assert( (pTos->flags & MEM_Dyn)==0 );
 | |
|     pTos--;
 | |
|     assert( p2>=2 );
 | |
|   }
 | |
|   assert( i>=0 );
 | |
|   pCur = allocateCursor(p, i, iDb);
 | |
|   if( pCur==0 ) goto no_mem;
 | |
|   pCur->nullRow = 1;
 | |
|   if( pX==0 ) break;
 | |
|   /* We always provide a key comparison function.  If the table being
 | |
|   ** opened is of type INTKEY, the comparision function will be ignored. */
 | |
|   rc = sqlite3BtreeCursor(pX, p2, wrFlag,
 | |
|            sqlite3VdbeRecordCompare, pOp->p3,
 | |
|            &pCur->pCursor);
 | |
|   if( pOp->p3type==P3_KEYINFO ){
 | |
|     pCur->pKeyInfo = (KeyInfo*)pOp->p3;
 | |
|     pCur->pIncrKey = &pCur->pKeyInfo->incrKey;
 | |
|     pCur->pKeyInfo->enc = ENC(p->db);
 | |
|   }else{
 | |
|     pCur->pKeyInfo = 0;
 | |
|     pCur->pIncrKey = &pCur->bogusIncrKey;
 | |
|   }
 | |
|   switch( rc ){
 | |
|     case SQLITE_BUSY: {
 | |
|       p->pc = pc;
 | |
|       p->rc = SQLITE_BUSY;
 | |
|       p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
 | |
|       return SQLITE_BUSY;
 | |
|     }
 | |
|     case SQLITE_OK: {
 | |
|       int flags = sqlite3BtreeFlags(pCur->pCursor);
 | |
|       /* Sanity checking.  Only the lower four bits of the flags byte should
 | |
|       ** be used.  Bit 3 (mask 0x08) is unpreditable.  The lower 3 bits
 | |
|       ** (mask 0x07) should be either 5 (intkey+leafdata for tables) or
 | |
|       ** 2 (zerodata for indices).  If these conditions are not met it can
 | |
|       ** only mean that we are dealing with a corrupt database file
 | |
|       */
 | |
|       if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){
 | |
|         rc = SQLITE_CORRUPT_BKPT;
 | |
|         goto abort_due_to_error;
 | |
|       }
 | |
|       pCur->isTable = (flags & BTREE_INTKEY)!=0;
 | |
|       pCur->isIndex = (flags & BTREE_ZERODATA)!=0;
 | |
|       /* If P3==0 it means we are expected to open a table.  If P3!=0 then
 | |
|       ** we expect to be opening an index.  If this is not what happened,
 | |
|       ** then the database is corrupt
 | |
|       */
 | |
|       if( (pCur->isTable && pOp->p3type==P3_KEYINFO)
 | |
|        || (pCur->isIndex && pOp->p3type!=P3_KEYINFO) ){
 | |
|         rc = SQLITE_CORRUPT_BKPT;
 | |
|         goto abort_due_to_error;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case SQLITE_EMPTY: {
 | |
|       pCur->isTable = pOp->p3type!=P3_KEYINFO;
 | |
|       pCur->isIndex = !pCur->isTable;
 | |
|       rc = SQLITE_OK;
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       goto abort_due_to_error;
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: OpenEphemeral P1 P2 P3
 | |
| **
 | |
| ** Open a new cursor P1 to a transient table.
 | |
| ** The cursor is always opened read/write even if 
 | |
| ** the main database is read-only.  The transient or virtual
 | |
| ** table is deleted automatically when the cursor is closed.
 | |
| **
 | |
| ** P2 is the number of columns in the virtual table.
 | |
| ** The cursor points to a BTree table if P3==0 and to a BTree index
 | |
| ** if P3 is not 0.  If P3 is not NULL, it points to a KeyInfo structure
 | |
| ** that defines the format of keys in the index.
 | |
| **
 | |
| ** This opcode was once called OpenTemp.  But that created
 | |
| ** confusion because the term "temp table", might refer either
 | |
| ** to a TEMP table at the SQL level, or to a table opened by
 | |
| ** this opcode.  Then this opcode was call OpenVirtual.  But
 | |
| ** that created confusion with the whole virtual-table idea.
 | |
| */
 | |
| case OP_OpenEphemeral: {       /* no-push */
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pCx;
 | |
|   assert( i>=0 );
 | |
|   pCx = allocateCursor(p, i, -1);
 | |
|   if( pCx==0 ) goto no_mem;
 | |
|   pCx->nullRow = 1;
 | |
|   rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, &pCx->pBt);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
 | |
|   }
 | |
|   if( rc==SQLITE_OK ){
 | |
|     /* If a transient index is required, create it by calling
 | |
|     ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
 | |
|     ** opening it. If a transient table is required, just use the
 | |
|     ** automatically created table with root-page 1 (an INTKEY table).
 | |
|     */
 | |
|     if( pOp->p3 ){
 | |
|       int pgno;
 | |
|       assert( pOp->p3type==P3_KEYINFO );
 | |
|       rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA); 
 | |
|       if( rc==SQLITE_OK ){
 | |
|         assert( pgno==MASTER_ROOT+1 );
 | |
|         rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, sqlite3VdbeRecordCompare,
 | |
|             pOp->p3, &pCx->pCursor);
 | |
|         pCx->pKeyInfo = (KeyInfo*)pOp->p3;
 | |
|         pCx->pKeyInfo->enc = ENC(p->db);
 | |
|         pCx->pIncrKey = &pCx->pKeyInfo->incrKey;
 | |
|       }
 | |
|       pCx->isTable = 0;
 | |
|     }else{
 | |
|       rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, 0, &pCx->pCursor);
 | |
|       pCx->isTable = 1;
 | |
|       pCx->pIncrKey = &pCx->bogusIncrKey;
 | |
|     }
 | |
|   }
 | |
|   pCx->nField = pOp->p2;
 | |
|   pCx->isIndex = !pCx->isTable;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: OpenPseudo P1 * *
 | |
| **
 | |
| ** Open a new cursor that points to a fake table that contains a single
 | |
| ** row of data.  Any attempt to write a second row of data causes the
 | |
| ** first row to be deleted.  All data is deleted when the cursor is
 | |
| ** closed.
 | |
| **
 | |
| ** A pseudo-table created by this opcode is useful for holding the
 | |
| ** NEW or OLD tables in a trigger.  Also used to hold the a single
 | |
| ** row output from the sorter so that the row can be decomposed into
 | |
| ** individual columns using the OP_Column opcode.
 | |
| */
 | |
| case OP_OpenPseudo: {       /* no-push */
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pCx;
 | |
|   assert( i>=0 );
 | |
|   pCx = allocateCursor(p, i, -1);
 | |
|   if( pCx==0 ) goto no_mem;
 | |
|   pCx->nullRow = 1;
 | |
|   pCx->pseudoTable = 1;
 | |
|   pCx->pIncrKey = &pCx->bogusIncrKey;
 | |
|   pCx->isTable = 1;
 | |
|   pCx->isIndex = 0;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Close P1 * *
 | |
| **
 | |
| ** Close a cursor previously opened as P1.  If P1 is not
 | |
| ** currently open, this instruction is a no-op.
 | |
| */
 | |
| case OP_Close: {       /* no-push */
 | |
|   int i = pOp->p1;
 | |
|   if( i>=0 && i<p->nCursor ){
 | |
|     sqlite3VdbeFreeCursor(p, p->apCsr[i]);
 | |
|     p->apCsr[i] = 0;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: MoveGe P1 P2 *
 | |
| **
 | |
| ** Pop the top of the stack and use its value as a key.  Reposition
 | |
| ** cursor P1 so that it points to the smallest entry that is greater
 | |
| ** than or equal to the key that was popped ffrom the stack.
 | |
| ** If there are no records greater than or equal to the key and P2 
 | |
| ** is not zero, then jump to P2.
 | |
| **
 | |
| ** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe
 | |
| */
 | |
| /* Opcode: MoveGt P1 P2 *
 | |
| **
 | |
| ** Pop the top of the stack and use its value as a key.  Reposition
 | |
| ** cursor P1 so that it points to the smallest entry that is greater
 | |
| ** than the key from the stack.
 | |
| ** If there are no records greater than the key and P2 is not zero,
 | |
| ** then jump to P2.
 | |
| **
 | |
| ** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe
 | |
| */
 | |
| /* Opcode: MoveLt P1 P2 *
 | |
| **
 | |
| ** Pop the top of the stack and use its value as a key.  Reposition
 | |
| ** cursor P1 so that it points to the largest entry that is less
 | |
| ** than the key from the stack.
 | |
| ** If there are no records less than the key and P2 is not zero,
 | |
| ** then jump to P2.
 | |
| **
 | |
| ** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe
 | |
| */
 | |
| /* Opcode: MoveLe P1 P2 *
 | |
| **
 | |
| ** Pop the top of the stack and use its value as a key.  Reposition
 | |
| ** cursor P1 so that it points to the largest entry that is less than
 | |
| ** or equal to the key that was popped from the stack.
 | |
| ** If there are no records less than or eqal to the key and P2 is not zero,
 | |
| ** then jump to P2.
 | |
| **
 | |
| ** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
 | |
| */
 | |
| case OP_MoveLt:         /* no-push */
 | |
| case OP_MoveLe:         /* no-push */
 | |
| case OP_MoveGe:         /* no-push */
 | |
| case OP_MoveGt: {       /* no-push */
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
| 
 | |
|   assert( pTos>=p->aStack );
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   pC = p->apCsr[i];
 | |
|   assert( pC!=0 );
 | |
|   if( pC->pCursor!=0 ){
 | |
|     int res, oc;
 | |
|     oc = pOp->opcode;
 | |
|     pC->nullRow = 0;
 | |
|     *pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe;
 | |
|     if( pC->isTable ){
 | |
|       i64 iKey;
 | |
|       sqlite3VdbeMemIntegerify(pTos);
 | |
|       iKey = intToKey(pTos->u.i);
 | |
|       if( pOp->p2==0 && pOp->opcode==OP_MoveGe ){
 | |
|         pC->movetoTarget = iKey;
 | |
|         pC->deferredMoveto = 1;
 | |
|         assert( (pTos->flags & MEM_Dyn)==0 );
 | |
|         pTos--;
 | |
|         break;
 | |
|       }
 | |
|       rc = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)iKey, 0, &res);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         goto abort_due_to_error;
 | |
|       }
 | |
|       pC->lastRowid = pTos->u.i;
 | |
|       pC->rowidIsValid = res==0;
 | |
|     }else{
 | |
|       assert( pTos->flags & MEM_Blob );
 | |
|       ExpandBlob(pTos);
 | |
|       rc = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         goto abort_due_to_error;
 | |
|       }
 | |
|       pC->rowidIsValid = 0;
 | |
|     }
 | |
|     pC->deferredMoveto = 0;
 | |
|     pC->cacheStatus = CACHE_STALE;
 | |
|     *pC->pIncrKey = 0;
 | |
| #ifdef SQLITE_TEST
 | |
|     sqlite3_search_count++;
 | |
| #endif
 | |
|     if( oc==OP_MoveGe || oc==OP_MoveGt ){
 | |
|       if( res<0 ){
 | |
|         rc = sqlite3BtreeNext(pC->pCursor, &res);
 | |
|         if( rc!=SQLITE_OK ) goto abort_due_to_error;
 | |
|         pC->rowidIsValid = 0;
 | |
|       }else{
 | |
|         res = 0;
 | |
|       }
 | |
|     }else{
 | |
|       assert( oc==OP_MoveLt || oc==OP_MoveLe );
 | |
|       if( res>=0 ){
 | |
|         rc = sqlite3BtreePrevious(pC->pCursor, &res);
 | |
|         if( rc!=SQLITE_OK ) goto abort_due_to_error;
 | |
|         pC->rowidIsValid = 0;
 | |
|       }else{
 | |
|         /* res might be negative because the table is empty.  Check to
 | |
|         ** see if this is the case.
 | |
|         */
 | |
|         res = sqlite3BtreeEof(pC->pCursor);
 | |
|       }
 | |
|     }
 | |
|     if( res ){
 | |
|       if( pOp->p2>0 ){
 | |
|         pc = pOp->p2 - 1;
 | |
|       }else{
 | |
|         pC->nullRow = 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   Release(pTos);
 | |
|   pTos--;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Distinct P1 P2 *
 | |
| **
 | |
| ** Use the top of the stack as a record created using MakeRecord.  P1 is a
 | |
| ** cursor on a table that declared as an index.  If that table contains an
 | |
| ** entry that matches the top of the stack fall thru.  If the top of the stack
 | |
| ** matches no entry in P1 then jump to P2.
 | |
| **
 | |
| ** The cursor is left pointing at the matching entry if it exists.  The
 | |
| ** record on the top of the stack is not popped.
 | |
| **
 | |
| ** This instruction is similar to NotFound except that this operation
 | |
| ** does not pop the key from the stack.
 | |
| **
 | |
| ** The instruction is used to implement the DISTINCT operator on SELECT
 | |
| ** statements.  The P1 table is not a true index but rather a record of
 | |
| ** all results that have produced so far.  
 | |
| **
 | |
| ** See also: Found, NotFound, MoveTo, IsUnique, NotExists
 | |
| */
 | |
| /* Opcode: Found P1 P2 *
 | |
| **
 | |
| ** Top of the stack holds a blob constructed by MakeRecord.  P1 is an index.
 | |
| ** If an entry that matches the top of the stack exists in P1 then
 | |
| ** jump to P2.  If the top of the stack does not match any entry in P1
 | |
| ** then fall thru.  The P1 cursor is left pointing at the matching entry
 | |
| ** if it exists.  The blob is popped off the top of the stack.
 | |
| **
 | |
| ** This instruction is used to implement the IN operator where the
 | |
| ** left-hand side is a SELECT statement.  P1 is not a true index but
 | |
| ** is instead a temporary index that holds the results of the SELECT
 | |
| ** statement.  This instruction just checks to see if the left-hand side
 | |
| ** of the IN operator (stored on the top of the stack) exists in the
 | |
| ** result of the SELECT statement.
 | |
| **
 | |
| ** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
 | |
| */
 | |
| /* Opcode: NotFound P1 P2 *
 | |
| **
 | |
| ** The top of the stack holds a blob constructed by MakeRecord.  P1 is
 | |
| ** an index.  If no entry exists in P1 that matches the blob then jump
 | |
| ** to P2.  If an entry does existing, fall through.  The cursor is left
 | |
| ** pointing to the entry that matches.  The blob is popped from the stack.
 | |
| **
 | |
| ** The difference between this operation and Distinct is that
 | |
| ** Distinct does not pop the key from the stack.
 | |
| **
 | |
| ** See also: Distinct, Found, MoveTo, NotExists, IsUnique
 | |
| */
 | |
| case OP_Distinct:       /* no-push */
 | |
| case OP_NotFound:       /* no-push */
 | |
| case OP_Found: {        /* no-push */
 | |
|   int i = pOp->p1;
 | |
|   int alreadyExists = 0;
 | |
|   Cursor *pC;
 | |
|   assert( pTos>=p->aStack );
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   assert( p->apCsr[i]!=0 );
 | |
|   if( (pC = p->apCsr[i])->pCursor!=0 ){
 | |
|     int res, rx;
 | |
|     assert( pC->isTable==0 );
 | |
|     assert( pTos->flags & MEM_Blob );
 | |
|     Stringify(pTos, encoding);
 | |
|     rx = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res);
 | |
|     alreadyExists = rx==SQLITE_OK && res==0;
 | |
|     pC->deferredMoveto = 0;
 | |
|     pC->cacheStatus = CACHE_STALE;
 | |
|   }
 | |
|   if( pOp->opcode==OP_Found ){
 | |
|     if( alreadyExists ) pc = pOp->p2 - 1;
 | |
|   }else{
 | |
|     if( !alreadyExists ) pc = pOp->p2 - 1;
 | |
|   }
 | |
|   if( pOp->opcode!=OP_Distinct ){
 | |
|     Release(pTos);
 | |
|     pTos--;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: IsUnique P1 P2 *
 | |
| **
 | |
| ** The top of the stack is an integer record number.  Call this
 | |
| ** record number R.  The next on the stack is an index key created
 | |
| ** using MakeIdxRec.  Call it K.  This instruction pops R from the
 | |
| ** stack but it leaves K unchanged.
 | |
| **
 | |
| ** P1 is an index.  So it has no data and its key consists of a
 | |
| ** record generated by OP_MakeRecord where the last field is the 
 | |
| ** rowid of the entry that the index refers to.
 | |
| ** 
 | |
| ** This instruction asks if there is an entry in P1 where the
 | |
| ** fields matches K but the rowid is different from R.
 | |
| ** If there is no such entry, then there is an immediate
 | |
| ** jump to P2.  If any entry does exist where the index string
 | |
| ** matches K but the record number is not R, then the record
 | |
| ** number for that entry is pushed onto the stack and control
 | |
| ** falls through to the next instruction.
 | |
| **
 | |
| ** See also: Distinct, NotFound, NotExists, Found
 | |
| */
 | |
| case OP_IsUnique: {        /* no-push */
 | |
|   int i = pOp->p1;
 | |
|   Mem *pNos = &pTos[-1];
 | |
|   Cursor *pCx;
 | |
|   BtCursor *pCrsr;
 | |
|   i64 R;
 | |
| 
 | |
|   /* Pop the value R off the top of the stack
 | |
|   */
 | |
|   assert( pNos>=p->aStack );
 | |
|   sqlite3VdbeMemIntegerify(pTos);
 | |
|   R = pTos->u.i;
 | |
|   assert( (pTos->flags & MEM_Dyn)==0 );
 | |
|   pTos--;
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   pCx = p->apCsr[i];
 | |
|   assert( pCx!=0 );
 | |
|   pCrsr = pCx->pCursor;
 | |
|   if( pCrsr!=0 ){
 | |
|     int res;
 | |
|     i64 v;         /* The record number on the P1 entry that matches K */
 | |
|     char *zKey;    /* The value of K */
 | |
|     int nKey;      /* Number of bytes in K */
 | |
|     int len;       /* Number of bytes in K without the rowid at the end */
 | |
|     int szRowid;   /* Size of the rowid column at the end of zKey */
 | |
| 
 | |
|     /* Make sure K is a string and make zKey point to K
 | |
|     */
 | |
|     assert( pNos->flags & MEM_Blob );
 | |
|     Stringify(pNos, encoding);
 | |
|     zKey = pNos->z;
 | |
|     nKey = pNos->n;
 | |
| 
 | |
|     szRowid = sqlite3VdbeIdxRowidLen((u8*)zKey);
 | |
|     len = nKey-szRowid;
 | |
| 
 | |
|     /* Search for an entry in P1 where all but the last four bytes match K.
 | |
|     ** If there is no such entry, jump immediately to P2.
 | |
|     */
 | |
|     assert( pCx->deferredMoveto==0 );
 | |
|     pCx->cacheStatus = CACHE_STALE;
 | |
|     rc = sqlite3BtreeMoveto(pCrsr, zKey, len, 0, &res);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       goto abort_due_to_error;
 | |
|     }
 | |
|     if( res<0 ){
 | |
|       rc = sqlite3BtreeNext(pCrsr, &res);
 | |
|       if( res ){
 | |
|         pc = pOp->p2 - 1;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     rc = sqlite3VdbeIdxKeyCompare(pCx, len, (u8*)zKey, &res); 
 | |
|     if( rc!=SQLITE_OK ) goto abort_due_to_error;
 | |
|     if( res>0 ){
 | |
|       pc = pOp->p2 - 1;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     /* At this point, pCrsr is pointing to an entry in P1 where all but
 | |
|     ** the final entry (the rowid) matches K.  Check to see if the
 | |
|     ** final rowid column is different from R.  If it equals R then jump
 | |
|     ** immediately to P2.
 | |
|     */
 | |
|     rc = sqlite3VdbeIdxRowid(pCrsr, &v);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       goto abort_due_to_error;
 | |
|     }
 | |
|     if( v==R ){
 | |
|       pc = pOp->p2 - 1;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     /* The final varint of the key is different from R.  Push it onto
 | |
|     ** the stack.  (The record number of an entry that violates a UNIQUE
 | |
|     ** constraint.)
 | |
|     */
 | |
|     pTos++;
 | |
|     pTos->u.i = v;
 | |
|     pTos->flags = MEM_Int;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: NotExists P1 P2 *
 | |
| **
 | |
| ** Use the top of the stack as a integer key.  If a record with that key
 | |
| ** does not exist in table of P1, then jump to P2.  If the record
 | |
| ** does exist, then fall thru.  The cursor is left pointing to the
 | |
| ** record if it exists.  The integer key is popped from the stack.
 | |
| **
 | |
| ** The difference between this operation and NotFound is that this
 | |
| ** operation assumes the key is an integer and that P1 is a table whereas
 | |
| ** NotFound assumes key is a blob constructed from MakeRecord and
 | |
| ** P1 is an index.
 | |
| **
 | |
| ** See also: Distinct, Found, MoveTo, NotFound, IsUnique
 | |
| */
 | |
| case OP_NotExists: {        /* no-push */
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
|   BtCursor *pCrsr;
 | |
|   assert( pTos>=p->aStack );
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   assert( p->apCsr[i]!=0 );
 | |
|   if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
 | |
|     int res;
 | |
|     u64 iKey;
 | |
|     assert( pTos->flags & MEM_Int );
 | |
|     assert( p->apCsr[i]->isTable );
 | |
|     iKey = intToKey(pTos->u.i);
 | |
|     rc = sqlite3BtreeMoveto(pCrsr, 0, iKey, 0,&res);
 | |
|     pC->lastRowid = pTos->u.i;
 | |
|     pC->rowidIsValid = res==0;
 | |
|     pC->nullRow = 0;
 | |
|     pC->cacheStatus = CACHE_STALE;
 | |
|     /* res might be uninitialized if rc!=SQLITE_OK.  But if rc!=SQLITE_OK
 | |
|     ** processing is about to abort so we really do not care whether or not
 | |
|     ** the following jump is taken.  (In other words, do not stress over
 | |
|     ** the error that valgrind sometimes shows on the next statement when
 | |
|     ** running ioerr.test and similar failure-recovery test scripts.) */
 | |
|     if( res!=0 ){
 | |
|       pc = pOp->p2 - 1;
 | |
|       pC->rowidIsValid = 0;
 | |
|     }
 | |
|   }
 | |
|   Release(pTos);
 | |
|   pTos--;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Sequence P1 * *
 | |
| **
 | |
| ** Push an integer onto the stack which is the next available
 | |
| ** sequence number for cursor P1.  The sequence number on the
 | |
| ** cursor is incremented after the push.
 | |
| */
 | |
| case OP_Sequence: {
 | |
|   int i = pOp->p1;
 | |
|   assert( pTos>=p->aStack );
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   assert( p->apCsr[i]!=0 );
 | |
|   pTos++;
 | |
|   pTos->u.i = p->apCsr[i]->seqCount++;
 | |
|   pTos->flags = MEM_Int;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Opcode: NewRowid P1 P2 *
 | |
| **
 | |
| ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
 | |
| ** The record number is not previously used as a key in the database
 | |
| ** table that cursor P1 points to.  The new record number is pushed 
 | |
| ** onto the stack.
 | |
| **
 | |
| ** If P2>0 then P2 is a memory cell that holds the largest previously
 | |
| ** generated record number.  No new record numbers are allowed to be less
 | |
| ** than this value.  When this value reaches its maximum, a SQLITE_FULL
 | |
| ** error is generated.  The P2 memory cell is updated with the generated
 | |
| ** record number.  This P2 mechanism is used to help implement the
 | |
| ** AUTOINCREMENT feature.
 | |
| */
 | |
| case OP_NewRowid: {
 | |
|   int i = pOp->p1;
 | |
|   i64 v = 0;
 | |
|   Cursor *pC;
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   assert( p->apCsr[i]!=0 );
 | |
|   if( (pC = p->apCsr[i])->pCursor==0 ){
 | |
|     /* The zero initialization above is all that is needed */
 | |
|   }else{
 | |
|     /* The next rowid or record number (different terms for the same
 | |
|     ** thing) is obtained in a two-step algorithm.
 | |
|     **
 | |
|     ** First we attempt to find the largest existing rowid and add one
 | |
|     ** to that.  But if the largest existing rowid is already the maximum
 | |
|     ** positive integer, we have to fall through to the second
 | |
|     ** probabilistic algorithm
 | |
|     **
 | |
|     ** The second algorithm is to select a rowid at random and see if
 | |
|     ** it already exists in the table.  If it does not exist, we have
 | |
|     ** succeeded.  If the random rowid does exist, we select a new one
 | |
|     ** and try again, up to 1000 times.
 | |
|     **
 | |
|     ** For a table with less than 2 billion entries, the probability
 | |
|     ** of not finding a unused rowid is about 1.0e-300.  This is a 
 | |
|     ** non-zero probability, but it is still vanishingly small and should
 | |
|     ** never cause a problem.  You are much, much more likely to have a
 | |
|     ** hardware failure than for this algorithm to fail.
 | |
|     **
 | |
|     ** The analysis in the previous paragraph assumes that you have a good
 | |
|     ** source of random numbers.  Is a library function like lrand48()
 | |
|     ** good enough?  Maybe. Maybe not. It's hard to know whether there
 | |
|     ** might be subtle bugs is some implementations of lrand48() that
 | |
|     ** could cause problems. To avoid uncertainty, SQLite uses its own 
 | |
|     ** random number generator based on the RC4 algorithm.
 | |
|     **
 | |
|     ** To promote locality of reference for repetitive inserts, the
 | |
|     ** first few attempts at chosing a random rowid pick values just a little
 | |
|     ** larger than the previous rowid.  This has been shown experimentally
 | |
|     ** to double the speed of the COPY operation.
 | |
|     */
 | |
|     int res, rx=SQLITE_OK, cnt;
 | |
|     i64 x;
 | |
|     cnt = 0;
 | |
|     if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) !=
 | |
|           BTREE_INTKEY ){
 | |
|       rc = SQLITE_CORRUPT_BKPT;
 | |
|       goto abort_due_to_error;
 | |
|     }
 | |
|     assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 );
 | |
|     assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 );
 | |
| 
 | |
| #ifdef SQLITE_32BIT_ROWID
 | |
| #   define MAX_ROWID 0x7fffffff
 | |
| #else
 | |
|     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
 | |
|     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
 | |
|     ** to provide the constant while making all compilers happy.
 | |
|     */
 | |
| #   define MAX_ROWID  ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
 | |
| #endif
 | |
| 
 | |
|     if( !pC->useRandomRowid ){
 | |
|       if( pC->nextRowidValid ){
 | |
|         v = pC->nextRowid;
 | |
|       }else{
 | |
|         rc = sqlite3BtreeLast(pC->pCursor, &res);
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           goto abort_due_to_error;
 | |
|         }
 | |
|         if( res ){
 | |
|           v = 1;
 | |
|         }else{
 | |
|           sqlite3BtreeKeySize(pC->pCursor, &v);
 | |
|           v = keyToInt(v);
 | |
|           if( v==MAX_ROWID ){
 | |
|             pC->useRandomRowid = 1;
 | |
|           }else{
 | |
|             v++;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOINCREMENT
 | |
|       if( pOp->p2 ){
 | |
|         Mem *pMem;
 | |
|         assert( pOp->p2>0 && pOp->p2<p->nMem );  /* P2 is a valid memory cell */
 | |
|         pMem = &p->aMem[pOp->p2];
 | |
|         sqlite3VdbeMemIntegerify(pMem);
 | |
|         assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P2) holds an integer */
 | |
|         if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
 | |
|           rc = SQLITE_FULL;
 | |
|           goto abort_due_to_error;
 | |
|         }
 | |
|         if( v<pMem->u.i+1 ){
 | |
|           v = pMem->u.i + 1;
 | |
|         }
 | |
|         pMem->u.i = v;
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       if( v<MAX_ROWID ){
 | |
|         pC->nextRowidValid = 1;
 | |
|         pC->nextRowid = v+1;
 | |
|       }else{
 | |
|         pC->nextRowidValid = 0;
 | |
|       }
 | |
|     }
 | |
|     if( pC->useRandomRowid ){
 | |
|       assert( pOp->p2==0 );  /* SQLITE_FULL must have occurred prior to this */
 | |
|       v = db->priorNewRowid;
 | |
|       cnt = 0;
 | |
|       do{
 | |
|         if( v==0 || cnt>2 ){
 | |
|           sqlite3Randomness(sizeof(v), &v);
 | |
|           if( cnt<5 ) v &= 0xffffff;
 | |
|         }else{
 | |
|           unsigned char r;
 | |
|           sqlite3Randomness(1, &r);
 | |
|           v += r + 1;
 | |
|         }
 | |
|         if( v==0 ) continue;
 | |
|         x = intToKey(v);
 | |
|         rx = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)x, 0, &res);
 | |
|         cnt++;
 | |
|       }while( cnt<1000 && rx==SQLITE_OK && res==0 );
 | |
|       db->priorNewRowid = v;
 | |
|       if( rx==SQLITE_OK && res==0 ){
 | |
|         rc = SQLITE_FULL;
 | |
|         goto abort_due_to_error;
 | |
|       }
 | |
|     }
 | |
|     pC->rowidIsValid = 0;
 | |
|     pC->deferredMoveto = 0;
 | |
|     pC->cacheStatus = CACHE_STALE;
 | |
|   }
 | |
|   pTos++;
 | |
|   pTos->u.i = v;
 | |
|   pTos->flags = MEM_Int;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Insert P1 P2 P3
 | |
| **
 | |
| ** Write an entry into the table of cursor P1.  A new entry is
 | |
| ** created if it doesn't already exist or the data for an existing
 | |
| ** entry is overwritten.  The data is the value on the top of the
 | |
| ** stack.  The key is the next value down on the stack.  The key must
 | |
| ** be an integer.  The stack is popped twice by this instruction.
 | |
| **
 | |
| ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
 | |
| ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P2 is set,
 | |
| ** then rowid is stored for subsequent return by the
 | |
| ** sqlite3_last_insert_rowid() function (otherwise it's unmodified).
 | |
| **
 | |
| ** Parameter P3 may point to a string containing the table-name, or
 | |
| ** may be NULL. If it is not NULL, then the update-hook 
 | |
| ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
 | |
| **
 | |
| ** This instruction only works on tables.  The equivalent instruction
 | |
| ** for indices is OP_IdxInsert.
 | |
| */
 | |
| case OP_Insert: {         /* no-push */
 | |
|   Mem *pNos = &pTos[-1];
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
|   assert( pNos>=p->aStack );
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   assert( p->apCsr[i]!=0 );
 | |
|   if( ((pC = p->apCsr[i])->pCursor!=0 || pC->pseudoTable) ){
 | |
|     i64 iKey;   /* The integer ROWID or key for the record to be inserted */
 | |
| 
 | |
|     assert( pNos->flags & MEM_Int );
 | |
|     assert( pC->isTable );
 | |
|     iKey = intToKey(pNos->u.i);
 | |
| 
 | |
|     if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
 | |
|     if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->u.i;
 | |
|     if( pC->nextRowidValid && pNos->u.i>=pC->nextRowid ){
 | |
|       pC->nextRowidValid = 0;
 | |
|     }
 | |
|     if( pTos->flags & MEM_Null ){
 | |
|       pTos->z = 0;
 | |
|       pTos->n = 0;
 | |
|     }else{
 | |
|       assert( pTos->flags & (MEM_Blob|MEM_Str) );
 | |
|     }
 | |
|     if( pC->pseudoTable ){
 | |
|       sqliteFree(pC->pData);
 | |
|       pC->iKey = iKey;
 | |
|       pC->nData = pTos->n;
 | |
|       if( pTos->flags & MEM_Dyn ){
 | |
|         pC->pData = pTos->z;
 | |
|         pTos->flags = MEM_Null;
 | |
|       }else{
 | |
|         pC->pData = sqliteMallocRaw( pC->nData+2 );
 | |
|         if( !pC->pData ) goto no_mem;
 | |
|         memcpy(pC->pData, pTos->z, pC->nData);
 | |
|         pC->pData[pC->nData] = 0;
 | |
|         pC->pData[pC->nData+1] = 0;
 | |
|       }
 | |
|       pC->nullRow = 0;
 | |
|     }else{
 | |
|       int nZero;
 | |
|       if( pTos->flags & MEM_Zero ){
 | |
|         nZero = pTos->u.i;
 | |
|       }else{
 | |
|         nZero = 0;
 | |
|       }
 | |
|       rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
 | |
|                               pTos->z, pTos->n, nZero,
 | |
|                               pOp->p2 & OPFLAG_APPEND);
 | |
|     }
 | |
|     
 | |
|     pC->rowidIsValid = 0;
 | |
|     pC->deferredMoveto = 0;
 | |
|     pC->cacheStatus = CACHE_STALE;
 | |
| 
 | |
|     /* Invoke the update-hook if required. */
 | |
|     if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p3 ){
 | |
|       const char *zDb = db->aDb[pC->iDb].zName;
 | |
|       const char *zTbl = pOp->p3;
 | |
|       int op = ((pOp->p2 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
 | |
|       assert( pC->isTable );
 | |
|       db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
 | |
|       assert( pC->iDb>=0 );
 | |
|     }
 | |
|   }
 | |
|   popStack(&pTos, 2);
 | |
| 
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Delete P1 P2 P3
 | |
| **
 | |
| ** Delete the record at which the P1 cursor is currently pointing.
 | |
| **
 | |
| ** The cursor will be left pointing at either the next or the previous
 | |
| ** record in the table. If it is left pointing at the next record, then
 | |
| ** the next Next instruction will be a no-op.  Hence it is OK to delete
 | |
| ** a record from within an Next loop.
 | |
| **
 | |
| ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
 | |
| ** incremented (otherwise not).
 | |
| **
 | |
| ** If P1 is a pseudo-table, then this instruction is a no-op.
 | |
| */
 | |
| case OP_Delete: {        /* no-push */
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   pC = p->apCsr[i];
 | |
|   assert( pC!=0 );
 | |
|   if( pC->pCursor!=0 ){
 | |
|     i64 iKey;
 | |
| 
 | |
|     /* If the update-hook will be invoked, set iKey to the rowid of the
 | |
|     ** row being deleted.
 | |
|     */
 | |
|     if( db->xUpdateCallback && pOp->p3 ){
 | |
|       assert( pC->isTable );
 | |
|       if( pC->rowidIsValid ){
 | |
|         iKey = pC->lastRowid;
 | |
|       }else{
 | |
|         rc = sqlite3BtreeKeySize(pC->pCursor, &iKey);
 | |
|         if( rc ){
 | |
|           goto abort_due_to_error;
 | |
|         }
 | |
|         iKey = keyToInt(iKey);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     rc = sqlite3VdbeCursorMoveto(pC);
 | |
|     if( rc ) goto abort_due_to_error;
 | |
|     rc = sqlite3BtreeDelete(pC->pCursor);
 | |
|     pC->nextRowidValid = 0;
 | |
|     pC->cacheStatus = CACHE_STALE;
 | |
| 
 | |
|     /* Invoke the update-hook if required. */
 | |
|     if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p3 ){
 | |
|       const char *zDb = db->aDb[pC->iDb].zName;
 | |
|       const char *zTbl = pOp->p3;
 | |
|       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
 | |
|       assert( pC->iDb>=0 );
 | |
|     }
 | |
|   }
 | |
|   if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: ResetCount P1 * *
 | |
| **
 | |
| ** This opcode resets the VMs internal change counter to 0. If P1 is true,
 | |
| ** then the value of the change counter is copied to the database handle
 | |
| ** change counter (returned by subsequent calls to sqlite3_changes())
 | |
| ** before it is reset. This is used by trigger programs.
 | |
| */
 | |
| case OP_ResetCount: {        /* no-push */
 | |
|   if( pOp->p1 ){
 | |
|     sqlite3VdbeSetChanges(db, p->nChange);
 | |
|   }
 | |
|   p->nChange = 0;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: RowData P1 * *
 | |
| **
 | |
| ** Push onto the stack the complete row data for cursor P1.
 | |
| ** There is no interpretation of the data.  It is just copied
 | |
| ** onto the stack exactly as it is found in the database file.
 | |
| **
 | |
| ** If the cursor is not pointing to a valid row, a NULL is pushed
 | |
| ** onto the stack.
 | |
| */
 | |
| /* Opcode: RowKey P1 * *
 | |
| **
 | |
| ** Push onto the stack the complete row key for cursor P1.
 | |
| ** There is no interpretation of the key.  It is just copied
 | |
| ** onto the stack exactly as it is found in the database file.
 | |
| **
 | |
| ** If the cursor is not pointing to a valid row, a NULL is pushed
 | |
| ** onto the stack.
 | |
| */
 | |
| case OP_RowKey:
 | |
| case OP_RowData: {
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
|   u32 n;
 | |
| 
 | |
|   /* Note that RowKey and RowData are really exactly the same instruction */
 | |
|   pTos++;
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   pC = p->apCsr[i];
 | |
|   assert( pC->isTable || pOp->opcode==OP_RowKey );
 | |
|   assert( pC->isIndex || pOp->opcode==OP_RowData );
 | |
|   assert( pC!=0 );
 | |
|   if( pC->nullRow ){
 | |
|     pTos->flags = MEM_Null;
 | |
|   }else if( pC->pCursor!=0 ){
 | |
|     BtCursor *pCrsr = pC->pCursor;
 | |
|     rc = sqlite3VdbeCursorMoveto(pC);
 | |
|     if( rc ) goto abort_due_to_error;
 | |
|     if( pC->nullRow ){
 | |
|       pTos->flags = MEM_Null;
 | |
|       break;
 | |
|     }else if( pC->isIndex ){
 | |
|       i64 n64;
 | |
|       assert( !pC->isTable );
 | |
|       sqlite3BtreeKeySize(pCrsr, &n64);
 | |
|       if( n64>SQLITE_MAX_LENGTH ){
 | |
|         goto too_big;
 | |
|       }
 | |
|       n = n64;
 | |
|     }else{
 | |
|       sqlite3BtreeDataSize(pCrsr, &n);
 | |
|     }
 | |
|     if( n>SQLITE_MAX_LENGTH ){
 | |
|       goto too_big;
 | |
|     }
 | |
|     pTos->n = n;
 | |
|     if( n<=NBFS ){
 | |
|       pTos->flags = MEM_Blob | MEM_Short;
 | |
|       pTos->z = pTos->zShort;
 | |
|     }else{
 | |
|       char *z = sqliteMallocRaw( n );
 | |
|       if( z==0 ) goto no_mem;
 | |
|       pTos->flags = MEM_Blob | MEM_Dyn;
 | |
|       pTos->xDel = 0;
 | |
|       pTos->z = z;
 | |
|     }
 | |
|     if( pC->isIndex ){
 | |
|       rc = sqlite3BtreeKey(pCrsr, 0, n, pTos->z);
 | |
|     }else{
 | |
|       rc = sqlite3BtreeData(pCrsr, 0, n, pTos->z);
 | |
|     }
 | |
|   }else if( pC->pseudoTable ){
 | |
|     pTos->n = pC->nData;
 | |
|     assert( pC->nData<=SQLITE_MAX_LENGTH );
 | |
|     pTos->z = pC->pData;
 | |
|     pTos->flags = MEM_Blob|MEM_Ephem;
 | |
|   }else{
 | |
|     pTos->flags = MEM_Null;
 | |
|   }
 | |
|   pTos->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Rowid P1 * *
 | |
| **
 | |
| ** Push onto the stack an integer which is the key of the table entry that
 | |
| ** P1 is currently point to.
 | |
| */
 | |
| case OP_Rowid: {
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
|   i64 v;
 | |
| 
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   pC = p->apCsr[i];
 | |
|   assert( pC!=0 );
 | |
|   rc = sqlite3VdbeCursorMoveto(pC);
 | |
|   if( rc ) goto abort_due_to_error;
 | |
|   pTos++;
 | |
|   if( pC->rowidIsValid ){
 | |
|     v = pC->lastRowid;
 | |
|   }else if( pC->pseudoTable ){
 | |
|     v = keyToInt(pC->iKey);
 | |
|   }else if( pC->nullRow || pC->pCursor==0 ){
 | |
|     pTos->flags = MEM_Null;
 | |
|     break;
 | |
|   }else{
 | |
|     assert( pC->pCursor!=0 );
 | |
|     sqlite3BtreeKeySize(pC->pCursor, &v);
 | |
|     v = keyToInt(v);
 | |
|   }
 | |
|   pTos->u.i = v;
 | |
|   pTos->flags = MEM_Int;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: NullRow P1 * *
 | |
| **
 | |
| ** Move the cursor P1 to a null row.  Any OP_Column operations
 | |
| ** that occur while the cursor is on the null row will always push 
 | |
| ** a NULL onto the stack.
 | |
| */
 | |
| case OP_NullRow: {        /* no-push */
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
| 
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   pC = p->apCsr[i];
 | |
|   assert( pC!=0 );
 | |
|   pC->nullRow = 1;
 | |
|   pC->rowidIsValid = 0;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Last P1 P2 *
 | |
| **
 | |
| ** The next use of the Rowid or Column or Next instruction for P1 
 | |
| ** will refer to the last entry in the database table or index.
 | |
| ** If the table or index is empty and P2>0, then jump immediately to P2.
 | |
| ** If P2 is 0 or if the table or index is not empty, fall through
 | |
| ** to the following instruction.
 | |
| */
 | |
| case OP_Last: {        /* no-push */
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
|   BtCursor *pCrsr;
 | |
| 
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   pC = p->apCsr[i];
 | |
|   assert( pC!=0 );
 | |
|   if( (pCrsr = pC->pCursor)!=0 ){
 | |
|     int res;
 | |
|     rc = sqlite3BtreeLast(pCrsr, &res);
 | |
|     pC->nullRow = res;
 | |
|     pC->deferredMoveto = 0;
 | |
|     pC->cacheStatus = CACHE_STALE;
 | |
|     if( res && pOp->p2>0 ){
 | |
|       pc = pOp->p2 - 1;
 | |
|     }
 | |
|   }else{
 | |
|     pC->nullRow = 0;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Opcode: Sort P1 P2 *
 | |
| **
 | |
| ** This opcode does exactly the same thing as OP_Rewind except that
 | |
| ** it increments an undocumented global variable used for testing.
 | |
| **
 | |
| ** Sorting is accomplished by writing records into a sorting index,
 | |
| ** then rewinding that index and playing it back from beginning to
 | |
| ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
 | |
| ** rewinding so that the global variable will be incremented and
 | |
| ** regression tests can determine whether or not the optimizer is
 | |
| ** correctly optimizing out sorts.
 | |
| */
 | |
| case OP_Sort: {        /* no-push */
 | |
| #ifdef SQLITE_TEST
 | |
|   sqlite3_sort_count++;
 | |
|   sqlite3_search_count--;
 | |
| #endif
 | |
|   /* Fall through into OP_Rewind */
 | |
| }
 | |
| /* Opcode: Rewind P1 P2 *
 | |
| **
 | |
| ** The next use of the Rowid or Column or Next instruction for P1 
 | |
| ** will refer to the first entry in the database table or index.
 | |
| ** If the table or index is empty and P2>0, then jump immediately to P2.
 | |
| ** If P2 is 0 or if the table or index is not empty, fall through
 | |
| ** to the following instruction.
 | |
| */
 | |
| case OP_Rewind: {        /* no-push */
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
|   BtCursor *pCrsr;
 | |
|   int res;
 | |
| 
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   pC = p->apCsr[i];
 | |
|   assert( pC!=0 );
 | |
|   if( (pCrsr = pC->pCursor)!=0 ){
 | |
|     rc = sqlite3BtreeFirst(pCrsr, &res);
 | |
|     pC->atFirst = res==0;
 | |
|     pC->deferredMoveto = 0;
 | |
|     pC->cacheStatus = CACHE_STALE;
 | |
|   }else{
 | |
|     res = 1;
 | |
|   }
 | |
|   pC->nullRow = res;
 | |
|   if( res && pOp->p2>0 ){
 | |
|     pc = pOp->p2 - 1;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Next P1 P2 *
 | |
| **
 | |
| ** Advance cursor P1 so that it points to the next key/data pair in its
 | |
| ** table or index.  If there are no more key/value pairs then fall through
 | |
| ** to the following instruction.  But if the cursor advance was successful,
 | |
| ** jump immediately to P2.
 | |
| **
 | |
| ** See also: Prev
 | |
| */
 | |
| /* Opcode: Prev P1 P2 *
 | |
| **
 | |
| ** Back up cursor P1 so that it points to the previous key/data pair in its
 | |
| ** table or index.  If there is no previous key/value pairs then fall through
 | |
| ** to the following instruction.  But if the cursor backup was successful,
 | |
| ** jump immediately to P2.
 | |
| */
 | |
| case OP_Prev:          /* no-push */
 | |
| case OP_Next: {        /* no-push */
 | |
|   Cursor *pC;
 | |
|   BtCursor *pCrsr;
 | |
| 
 | |
|   CHECK_FOR_INTERRUPT;
 | |
|   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | |
|   pC = p->apCsr[pOp->p1];
 | |
|   if( pC==0 ){
 | |
|     break;  /* See ticket #2273 */
 | |
|   }
 | |
|   if( (pCrsr = pC->pCursor)!=0 ){
 | |
|     int res;
 | |
|     if( pC->nullRow ){
 | |
|       res = 1;
 | |
|     }else{
 | |
|       assert( pC->deferredMoveto==0 );
 | |
|       rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
 | |
|                                   sqlite3BtreePrevious(pCrsr, &res);
 | |
|       pC->nullRow = res;
 | |
|       pC->cacheStatus = CACHE_STALE;
 | |
|     }
 | |
|     if( res==0 ){
 | |
|       pc = pOp->p2 - 1;
 | |
| #ifdef SQLITE_TEST
 | |
|       sqlite3_search_count++;
 | |
| #endif
 | |
|     }
 | |
|   }else{
 | |
|     pC->nullRow = 1;
 | |
|   }
 | |
|   pC->rowidIsValid = 0;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: IdxInsert P1 P2 *
 | |
| **
 | |
| ** The top of the stack holds a SQL index key made using either the
 | |
| ** MakeIdxRec or MakeRecord instructions.  This opcode writes that key
 | |
| ** into the index P1.  Data for the entry is nil.
 | |
| **
 | |
| ** P2 is a flag that provides a hint to the b-tree layer that this
 | |
| ** insert is likely to be an append.
 | |
| **
 | |
| ** This instruction only works for indices.  The equivalent instruction
 | |
| ** for tables is OP_Insert.
 | |
| */
 | |
| case OP_IdxInsert: {        /* no-push */
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
|   BtCursor *pCrsr;
 | |
|   assert( pTos>=p->aStack );
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   assert( p->apCsr[i]!=0 );
 | |
|   assert( pTos->flags & MEM_Blob );
 | |
|   if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
 | |
|     assert( pC->isTable==0 );
 | |
|     rc = ExpandBlob(pTos);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       int nKey = pTos->n;
 | |
|       const char *zKey = pTos->z;
 | |
|       rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p2);
 | |
|       assert( pC->deferredMoveto==0 );
 | |
|       pC->cacheStatus = CACHE_STALE;
 | |
|     }
 | |
|   }
 | |
|   Release(pTos);
 | |
|   pTos--;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: IdxDelete P1 * *
 | |
| **
 | |
| ** The top of the stack is an index key built using the either the
 | |
| ** MakeIdxRec or MakeRecord opcodes.
 | |
| ** This opcode removes that entry from the index.
 | |
| */
 | |
| case OP_IdxDelete: {        /* no-push */
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
|   BtCursor *pCrsr;
 | |
|   assert( pTos>=p->aStack );
 | |
|   assert( pTos->flags & MEM_Blob );
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   assert( p->apCsr[i]!=0 );
 | |
|   if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
 | |
|     int res;
 | |
|     rc = sqlite3BtreeMoveto(pCrsr, pTos->z, pTos->n, 0, &res);
 | |
|     if( rc==SQLITE_OK && res==0 ){
 | |
|       rc = sqlite3BtreeDelete(pCrsr);
 | |
|     }
 | |
|     assert( pC->deferredMoveto==0 );
 | |
|     pC->cacheStatus = CACHE_STALE;
 | |
|   }
 | |
|   Release(pTos);
 | |
|   pTos--;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: IdxRowid P1 * *
 | |
| **
 | |
| ** Push onto the stack an integer which is the last entry in the record at
 | |
| ** the end of the index key pointed to by cursor P1.  This integer should be
 | |
| ** the rowid of the table entry to which this index entry points.
 | |
| **
 | |
| ** See also: Rowid, MakeIdxRec.
 | |
| */
 | |
| case OP_IdxRowid: {
 | |
|   int i = pOp->p1;
 | |
|   BtCursor *pCrsr;
 | |
|   Cursor *pC;
 | |
| 
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   assert( p->apCsr[i]!=0 );
 | |
|   pTos++;
 | |
|   pTos->flags = MEM_Null;
 | |
|   if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
 | |
|     i64 rowid;
 | |
| 
 | |
|     assert( pC->deferredMoveto==0 );
 | |
|     assert( pC->isTable==0 );
 | |
|     if( pC->nullRow ){
 | |
|       pTos->flags = MEM_Null;
 | |
|     }else{
 | |
|       rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         goto abort_due_to_error;
 | |
|       }
 | |
|       pTos->flags = MEM_Int;
 | |
|       pTos->u.i = rowid;
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: IdxGT P1 P2 *
 | |
| **
 | |
| ** The top of the stack is an index entry that omits the ROWID.  Compare
 | |
| ** the top of stack against the index that P1 is currently pointing to.
 | |
| ** Ignore the ROWID on the P1 index.
 | |
| **
 | |
| ** The top of the stack might have fewer columns that P1.
 | |
| **
 | |
| ** If the P1 index entry is greater than the top of the stack
 | |
| ** then jump to P2.  Otherwise fall through to the next instruction.
 | |
| ** In either case, the stack is popped once.
 | |
| */
 | |
| /* Opcode: IdxGE P1 P2 P3
 | |
| **
 | |
| ** The top of the stack is an index entry that omits the ROWID.  Compare
 | |
| ** the top of stack against the index that P1 is currently pointing to.
 | |
| ** Ignore the ROWID on the P1 index.
 | |
| **
 | |
| ** If the P1 index entry is greater than or equal to the top of the stack
 | |
| ** then jump to P2.  Otherwise fall through to the next instruction.
 | |
| ** In either case, the stack is popped once.
 | |
| **
 | |
| ** If P3 is the "+" string (or any other non-NULL string) then the
 | |
| ** index taken from the top of the stack is temporarily increased by
 | |
| ** an epsilon prior to the comparison.  This make the opcode work
 | |
| ** like IdxGT except that if the key from the stack is a prefix of
 | |
| ** the key in the cursor, the result is false whereas it would be
 | |
| ** true with IdxGT.
 | |
| */
 | |
| /* Opcode: IdxLT P1 P2 P3
 | |
| **
 | |
| ** The top of the stack is an index entry that omits the ROWID.  Compare
 | |
| ** the top of stack against the index that P1 is currently pointing to.
 | |
| ** Ignore the ROWID on the P1 index.
 | |
| **
 | |
| ** If the P1 index entry is less than  the top of the stack
 | |
| ** then jump to P2.  Otherwise fall through to the next instruction.
 | |
| ** In either case, the stack is popped once.
 | |
| **
 | |
| ** If P3 is the "+" string (or any other non-NULL string) then the
 | |
| ** index taken from the top of the stack is temporarily increased by
 | |
| ** an epsilon prior to the comparison.  This makes the opcode work
 | |
| ** like IdxLE.
 | |
| */
 | |
| case OP_IdxLT:          /* no-push */
 | |
| case OP_IdxGT:          /* no-push */
 | |
| case OP_IdxGE: {        /* no-push */
 | |
|   int i= pOp->p1;
 | |
|   Cursor *pC;
 | |
| 
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   assert( p->apCsr[i]!=0 );
 | |
|   assert( pTos>=p->aStack );
 | |
|   if( (pC = p->apCsr[i])->pCursor!=0 ){
 | |
|     int res;
 | |
|  
 | |
|     assert( pTos->flags & MEM_Blob );  /* Created using OP_MakeRecord */
 | |
|     assert( pC->deferredMoveto==0 );
 | |
|     ExpandBlob(pTos);
 | |
|     *pC->pIncrKey = pOp->p3!=0;
 | |
|     assert( pOp->p3==0 || pOp->opcode!=OP_IdxGT );
 | |
|     rc = sqlite3VdbeIdxKeyCompare(pC, pTos->n, (u8*)pTos->z, &res);
 | |
|     *pC->pIncrKey = 0;
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       break;
 | |
|     }
 | |
|     if( pOp->opcode==OP_IdxLT ){
 | |
|       res = -res;
 | |
|     }else if( pOp->opcode==OP_IdxGE ){
 | |
|       res++;
 | |
|     }
 | |
|     if( res>0 ){
 | |
|       pc = pOp->p2 - 1 ;
 | |
|     }
 | |
|   }
 | |
|   Release(pTos);
 | |
|   pTos--;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Destroy P1 P2 *
 | |
| **
 | |
| ** Delete an entire database table or index whose root page in the database
 | |
| ** file is given by P1.
 | |
| **
 | |
| ** The table being destroyed is in the main database file if P2==0.  If
 | |
| ** P2==1 then the table to be clear is in the auxiliary database file
 | |
| ** that is used to store tables create using CREATE TEMPORARY TABLE.
 | |
| **
 | |
| ** If AUTOVACUUM is enabled then it is possible that another root page
 | |
| ** might be moved into the newly deleted root page in order to keep all
 | |
| ** root pages contiguous at the beginning of the database.  The former
 | |
| ** value of the root page that moved - its value before the move occurred -
 | |
| ** is pushed onto the stack.  If no page movement was required (because
 | |
| ** the table being dropped was already the last one in the database) then
 | |
| ** a zero is pushed onto the stack.  If AUTOVACUUM is disabled
 | |
| ** then a zero is pushed onto the stack.
 | |
| **
 | |
| ** See also: Clear
 | |
| */
 | |
| case OP_Destroy: {
 | |
|   int iMoved;
 | |
|   int iCnt;
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   Vdbe *pVdbe;
 | |
|   iCnt = 0;
 | |
|   for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
 | |
|     if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
 | |
|       iCnt++;
 | |
|     }
 | |
|   }
 | |
| #else
 | |
|   iCnt = db->activeVdbeCnt;
 | |
| #endif
 | |
|   if( iCnt>1 ){
 | |
|     rc = SQLITE_LOCKED;
 | |
|   }else{
 | |
|     assert( iCnt==1 );
 | |
|     rc = sqlite3BtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1, &iMoved);
 | |
|     pTos++;
 | |
|     pTos->flags = MEM_Int;
 | |
|     pTos->u.i = iMoved;
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|     if( rc==SQLITE_OK && iMoved!=0 ){
 | |
|       sqlite3RootPageMoved(&db->aDb[pOp->p2], iMoved, pOp->p1);
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Clear P1 P2 *
 | |
| **
 | |
| ** Delete all contents of the database table or index whose root page
 | |
| ** in the database file is given by P1.  But, unlike Destroy, do not
 | |
| ** remove the table or index from the database file.
 | |
| **
 | |
| ** The table being clear is in the main database file if P2==0.  If
 | |
| ** P2==1 then the table to be clear is in the auxiliary database file
 | |
| ** that is used to store tables create using CREATE TEMPORARY TABLE.
 | |
| **
 | |
| ** See also: Destroy
 | |
| */
 | |
| case OP_Clear: {        /* no-push */
 | |
| 
 | |
|   /* For consistency with the way other features of SQLite operate
 | |
|   ** with a truncate, we will also skip the update callback.
 | |
|   */
 | |
| #if 0
 | |
|   Btree *pBt = db->aDb[pOp->p2].pBt;
 | |
|   if( db->xUpdateCallback && pOp->p3 ){
 | |
|     const char *zDb = db->aDb[pOp->p2].zName;
 | |
|     const char *zTbl = pOp->p3;
 | |
|     BtCursor *pCur = 0;
 | |
|     int fin = 0;
 | |
| 
 | |
|     rc = sqlite3BtreeCursor(pBt, pOp->p1, 0, 0, 0, &pCur);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       goto abort_due_to_error;
 | |
|     }
 | |
|     for(
 | |
|       rc=sqlite3BtreeFirst(pCur, &fin); 
 | |
|       rc==SQLITE_OK && !fin; 
 | |
|       rc=sqlite3BtreeNext(pCur, &fin)
 | |
|     ){
 | |
|       i64 iKey;
 | |
|       rc = sqlite3BtreeKeySize(pCur, &iKey);
 | |
|       if( rc ){
 | |
|         break;
 | |
|       }
 | |
|       iKey = keyToInt(iKey);
 | |
|       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
 | |
|     }
 | |
|     sqlite3BtreeCloseCursor(pCur);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       goto abort_due_to_error;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: CreateTable P1 * *
 | |
| **
 | |
| ** Allocate a new table in the main database file if P2==0 or in the
 | |
| ** auxiliary database file if P2==1.  Push the page number
 | |
| ** for the root page of the new table onto the stack.
 | |
| **
 | |
| ** The difference between a table and an index is this:  A table must
 | |
| ** have a 4-byte integer key and can have arbitrary data.  An index
 | |
| ** has an arbitrary key but no data.
 | |
| **
 | |
| ** See also: CreateIndex
 | |
| */
 | |
| /* Opcode: CreateIndex P1 * *
 | |
| **
 | |
| ** Allocate a new index in the main database file if P2==0 or in the
 | |
| ** auxiliary database file if P2==1.  Push the page number of the
 | |
| ** root page of the new index onto the stack.
 | |
| **
 | |
| ** See documentation on OP_CreateTable for additional information.
 | |
| */
 | |
| case OP_CreateIndex:
 | |
| case OP_CreateTable: {
 | |
|   int pgno;
 | |
|   int flags;
 | |
|   Db *pDb;
 | |
|   assert( pOp->p1>=0 && pOp->p1<db->nDb );
 | |
|   pDb = &db->aDb[pOp->p1];
 | |
|   assert( pDb->pBt!=0 );
 | |
|   if( pOp->opcode==OP_CreateTable ){
 | |
|     /* flags = BTREE_INTKEY; */
 | |
|     flags = BTREE_LEAFDATA|BTREE_INTKEY;
 | |
|   }else{
 | |
|     flags = BTREE_ZERODATA;
 | |
|   }
 | |
|   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
 | |
|   pTos++;
 | |
|   if( rc==SQLITE_OK ){
 | |
|     pTos->u.i = pgno;
 | |
|     pTos->flags = MEM_Int;
 | |
|   }else{
 | |
|     pTos->flags = MEM_Null;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: ParseSchema P1 P2 P3
 | |
| **
 | |
| ** Read and parse all entries from the SQLITE_MASTER table of database P1
 | |
| ** that match the WHERE clause P3.  P2 is the "force" flag.   Always do
 | |
| ** the parsing if P2 is true.  If P2 is false, then this routine is a
 | |
| ** no-op if the schema is not currently loaded.  In other words, if P2
 | |
| ** is false, the SQLITE_MASTER table is only parsed if the rest of the
 | |
| ** schema is already loaded into the symbol table.
 | |
| **
 | |
| ** This opcode invokes the parser to create a new virtual machine,
 | |
| ** then runs the new virtual machine.  It is thus a reentrant opcode.
 | |
| */
 | |
| case OP_ParseSchema: {        /* no-push */
 | |
|   char *zSql;
 | |
|   int iDb = pOp->p1;
 | |
|   const char *zMaster;
 | |
|   InitData initData;
 | |
| 
 | |
|   assert( iDb>=0 && iDb<db->nDb );
 | |
|   if( !pOp->p2 && !DbHasProperty(db, iDb, DB_SchemaLoaded) ){
 | |
|     break;
 | |
|   }
 | |
|   zMaster = SCHEMA_TABLE(iDb);
 | |
|   initData.db = db;
 | |
|   initData.iDb = pOp->p1;
 | |
|   initData.pzErrMsg = &p->zErrMsg;
 | |
|   zSql = sqlite3MPrintf(
 | |
|      "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
 | |
|      db->aDb[iDb].zName, zMaster, pOp->p3);
 | |
|   if( zSql==0 ) goto no_mem;
 | |
|   sqlite3SafetyOff(db);
 | |
|   assert( db->init.busy==0 );
 | |
|   db->init.busy = 1;
 | |
|   assert( !sqlite3MallocFailed() );
 | |
|   rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
 | |
|   if( rc==SQLITE_ABORT ) rc = initData.rc;
 | |
|   sqliteFree(zSql);
 | |
|   db->init.busy = 0;
 | |
|   sqlite3SafetyOn(db);
 | |
|   if( rc==SQLITE_NOMEM ){
 | |
|     sqlite3FailedMalloc();
 | |
|     goto no_mem;
 | |
|   }
 | |
|   break;  
 | |
| }
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)
 | |
| /* Opcode: LoadAnalysis P1 * *
 | |
| **
 | |
| ** Read the sqlite_stat1 table for database P1 and load the content
 | |
| ** of that table into the internal index hash table.  This will cause
 | |
| ** the analysis to be used when preparing all subsequent queries.
 | |
| */
 | |
| case OP_LoadAnalysis: {        /* no-push */
 | |
|   int iDb = pOp->p1;
 | |
|   assert( iDb>=0 && iDb<db->nDb );
 | |
|   rc = sqlite3AnalysisLoad(db, iDb);
 | |
|   break;  
 | |
| }
 | |
| #endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)  */
 | |
| 
 | |
| /* Opcode: DropTable P1 * P3
 | |
| **
 | |
| ** Remove the internal (in-memory) data structures that describe
 | |
| ** the table named P3 in database P1.  This is called after a table
 | |
| ** is dropped in order to keep the internal representation of the
 | |
| ** schema consistent with what is on disk.
 | |
| */
 | |
| case OP_DropTable: {        /* no-push */
 | |
|   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p3);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: DropIndex P1 * P3
 | |
| **
 | |
| ** Remove the internal (in-memory) data structures that describe
 | |
| ** the index named P3 in database P1.  This is called after an index
 | |
| ** is dropped in order to keep the internal representation of the
 | |
| ** schema consistent with what is on disk.
 | |
| */
 | |
| case OP_DropIndex: {        /* no-push */
 | |
|   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p3);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: DropTrigger P1 * P3
 | |
| **
 | |
| ** Remove the internal (in-memory) data structures that describe
 | |
| ** the trigger named P3 in database P1.  This is called after a trigger
 | |
| ** is dropped in order to keep the internal representation of the
 | |
| ** schema consistent with what is on disk.
 | |
| */
 | |
| case OP_DropTrigger: {        /* no-push */
 | |
|   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p3);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifndef SQLITE_OMIT_INTEGRITY_CHECK
 | |
| /* Opcode: IntegrityCk P1 P2 *
 | |
| **
 | |
| ** Do an analysis of the currently open database.  Push onto the
 | |
| ** stack the text of an error message describing any problems.
 | |
| ** If no problems are found, push a NULL onto the stack.
 | |
| **
 | |
| ** P1 is the address of a memory cell that contains the maximum
 | |
| ** number of allowed errors.  At most mem[P1] errors will be reported.
 | |
| ** In other words, the analysis stops as soon as mem[P1] errors are 
 | |
| ** seen.  Mem[P1] is updated with the number of errors remaining.
 | |
| **
 | |
| ** The root page numbers of all tables in the database are integer
 | |
| ** values on the stack.  This opcode pulls as many integers as it
 | |
| ** can off of the stack and uses those numbers as the root pages.
 | |
| **
 | |
| ** If P2 is not zero, the check is done on the auxiliary database
 | |
| ** file, not the main database file.
 | |
| **
 | |
| ** This opcode is used to implement the integrity_check pragma.
 | |
| */
 | |
| case OP_IntegrityCk: {
 | |
|   int nRoot;
 | |
|   int *aRoot;
 | |
|   int j;
 | |
|   int nErr;
 | |
|   char *z;
 | |
|   Mem *pnErr;
 | |
| 
 | |
|   for(nRoot=0; &pTos[-nRoot]>=p->aStack; nRoot++){
 | |
|     if( (pTos[-nRoot].flags & MEM_Int)==0 ) break;
 | |
|   }
 | |
|   assert( nRoot>0 );
 | |
|   aRoot = sqliteMallocRaw( sizeof(int*)*(nRoot+1) );
 | |
|   if( aRoot==0 ) goto no_mem;
 | |
|   j = pOp->p1;
 | |
|   assert( j>=0 && j<p->nMem );
 | |
|   pnErr = &p->aMem[j];
 | |
|   assert( (pnErr->flags & MEM_Int)!=0 );
 | |
|   for(j=0; j<nRoot; j++){
 | |
|     aRoot[j] = pTos[-j].u.i;
 | |
|   }
 | |
|   aRoot[j] = 0;
 | |
|   popStack(&pTos, nRoot);
 | |
|   pTos++;
 | |
|   z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot,
 | |
|                                  pnErr->u.i, &nErr);
 | |
|   pnErr->u.i -= nErr;
 | |
|   if( nErr==0 ){
 | |
|     assert( z==0 );
 | |
|     pTos->flags = MEM_Null;
 | |
|   }else{
 | |
|     pTos->z = z;
 | |
|     pTos->n = strlen(z);
 | |
|     pTos->flags = MEM_Str | MEM_Dyn | MEM_Term;
 | |
|     pTos->xDel = 0;
 | |
|   }
 | |
|   pTos->enc = SQLITE_UTF8;
 | |
|   sqlite3VdbeChangeEncoding(pTos, encoding);
 | |
|   sqliteFree(aRoot);
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
 | |
| 
 | |
| /* Opcode: FifoWrite * * *
 | |
| **
 | |
| ** Write the integer on the top of the stack
 | |
| ** into the Fifo.
 | |
| */
 | |
| case OP_FifoWrite: {        /* no-push */
 | |
|   assert( pTos>=p->aStack );
 | |
|   sqlite3VdbeMemIntegerify(pTos);
 | |
|   sqlite3VdbeFifoPush(&p->sFifo, pTos->u.i);
 | |
|   assert( (pTos->flags & MEM_Dyn)==0 );
 | |
|   pTos--;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: FifoRead * P2 *
 | |
| **
 | |
| ** Attempt to read a single integer from the Fifo
 | |
| ** and push it onto the stack.  If the Fifo is empty
 | |
| ** push nothing but instead jump to P2.
 | |
| */
 | |
| case OP_FifoRead: {
 | |
|   i64 v;
 | |
|   CHECK_FOR_INTERRUPT;
 | |
|   if( sqlite3VdbeFifoPop(&p->sFifo, &v)==SQLITE_DONE ){
 | |
|     pc = pOp->p2 - 1;
 | |
|   }else{
 | |
|     pTos++;
 | |
|     pTos->u.i = v;
 | |
|     pTos->flags = MEM_Int;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
| /* Opcode: ContextPush * * * 
 | |
| **
 | |
| ** Save the current Vdbe context such that it can be restored by a ContextPop
 | |
| ** opcode. The context stores the last insert row id, the last statement change
 | |
| ** count, and the current statement change count.
 | |
| */
 | |
| case OP_ContextPush: {        /* no-push */
 | |
|   int i = p->contextStackTop++;
 | |
|   Context *pContext;
 | |
| 
 | |
|   assert( i>=0 );
 | |
|   /* FIX ME: This should be allocated as part of the vdbe at compile-time */
 | |
|   if( i>=p->contextStackDepth ){
 | |
|     p->contextStackDepth = i+1;
 | |
|     p->contextStack = sqliteReallocOrFree(p->contextStack,
 | |
|                                           sizeof(Context)*(i+1));
 | |
|     if( p->contextStack==0 ) goto no_mem;
 | |
|   }
 | |
|   pContext = &p->contextStack[i];
 | |
|   pContext->lastRowid = db->lastRowid;
 | |
|   pContext->nChange = p->nChange;
 | |
|   pContext->sFifo = p->sFifo;
 | |
|   sqlite3VdbeFifoInit(&p->sFifo);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: ContextPop * * * 
 | |
| **
 | |
| ** Restore the Vdbe context to the state it was in when contextPush was last
 | |
| ** executed. The context stores the last insert row id, the last statement
 | |
| ** change count, and the current statement change count.
 | |
| */
 | |
| case OP_ContextPop: {        /* no-push */
 | |
|   Context *pContext = &p->contextStack[--p->contextStackTop];
 | |
|   assert( p->contextStackTop>=0 );
 | |
|   db->lastRowid = pContext->lastRowid;
 | |
|   p->nChange = pContext->nChange;
 | |
|   sqlite3VdbeFifoClear(&p->sFifo);
 | |
|   p->sFifo = pContext->sFifo;
 | |
|   break;
 | |
| }
 | |
| #endif /* #ifndef SQLITE_OMIT_TRIGGER */
 | |
| 
 | |
| /* Opcode: MemStore P1 P2 *
 | |
| **
 | |
| ** Write the top of the stack into memory location P1.
 | |
| ** P1 should be a small integer since space is allocated
 | |
| ** for all memory locations between 0 and P1 inclusive.
 | |
| **
 | |
| ** After the data is stored in the memory location, the
 | |
| ** stack is popped once if P2 is 1.  If P2 is zero, then
 | |
| ** the original data remains on the stack.
 | |
| */
 | |
| case OP_MemStore: {        /* no-push */
 | |
|   assert( pTos>=p->aStack );
 | |
|   assert( pOp->p1>=0 && pOp->p1<p->nMem );
 | |
|   rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], pTos);
 | |
|   pTos--;
 | |
| 
 | |
|   /* If P2 is 0 then fall thru to the next opcode, OP_MemLoad, that will
 | |
|   ** restore the top of the stack to its original value.
 | |
|   */
 | |
|   if( pOp->p2 ){
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| /* Opcode: MemLoad P1 * *
 | |
| **
 | |
| ** Push a copy of the value in memory location P1 onto the stack.
 | |
| **
 | |
| ** If the value is a string, then the value pushed is a pointer to
 | |
| ** the string that is stored in the memory location.  If the memory
 | |
| ** location is subsequently changed (using OP_MemStore) then the
 | |
| ** value pushed onto the stack will change too.
 | |
| */
 | |
| case OP_MemLoad: {
 | |
|   int i = pOp->p1;
 | |
|   assert( i>=0 && i<p->nMem );
 | |
|   pTos++;
 | |
|   sqlite3VdbeMemShallowCopy(pTos, &p->aMem[i], MEM_Ephem);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOINCREMENT
 | |
| /* Opcode: MemMax P1 * *
 | |
| **
 | |
| ** Set the value of memory cell P1 to the maximum of its current value
 | |
| ** and the value on the top of the stack.  The stack is unchanged.
 | |
| **
 | |
| ** This instruction throws an error if the memory cell is not initially
 | |
| ** an integer.
 | |
| */
 | |
| case OP_MemMax: {        /* no-push */
 | |
|   int i = pOp->p1;
 | |
|   Mem *pMem;
 | |
|   assert( pTos>=p->aStack );
 | |
|   assert( i>=0 && i<p->nMem );
 | |
|   pMem = &p->aMem[i];
 | |
|   sqlite3VdbeMemIntegerify(pMem);
 | |
|   sqlite3VdbeMemIntegerify(pTos);
 | |
|   if( pMem->u.i<pTos->u.i){
 | |
|     pMem->u.i = pTos->u.i;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_AUTOINCREMENT */
 | |
| 
 | |
| /* Opcode: MemIncr P1 P2 *
 | |
| **
 | |
| ** Increment the integer valued memory cell P2 by the value in P1.
 | |
| **
 | |
| ** It is illegal to use this instruction on a memory cell that does
 | |
| ** not contain an integer.  An assertion fault will result if you try.
 | |
| */
 | |
| case OP_MemIncr: {        /* no-push */
 | |
|   int i = pOp->p2;
 | |
|   Mem *pMem;
 | |
|   assert( i>=0 && i<p->nMem );
 | |
|   pMem = &p->aMem[i];
 | |
|   assert( pMem->flags==MEM_Int );
 | |
|   pMem->u.i += pOp->p1;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: IfMemPos P1 P2 *
 | |
| **
 | |
| ** If the value of memory cell P1 is 1 or greater, jump to P2.
 | |
| **
 | |
| ** It is illegal to use this instruction on a memory cell that does
 | |
| ** not contain an integer.  An assertion fault will result if you try.
 | |
| */
 | |
| case OP_IfMemPos: {        /* no-push */
 | |
|   int i = pOp->p1;
 | |
|   Mem *pMem;
 | |
|   assert( i>=0 && i<p->nMem );
 | |
|   pMem = &p->aMem[i];
 | |
|   assert( pMem->flags==MEM_Int );
 | |
|   if( pMem->u.i>0 ){
 | |
|      pc = pOp->p2 - 1;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: IfMemNeg P1 P2 *
 | |
| **
 | |
| ** If the value of memory cell P1 is less than zero, jump to P2. 
 | |
| **
 | |
| ** It is illegal to use this instruction on a memory cell that does
 | |
| ** not contain an integer.  An assertion fault will result if you try.
 | |
| */
 | |
| case OP_IfMemNeg: {        /* no-push */
 | |
|   int i = pOp->p1;
 | |
|   Mem *pMem;
 | |
|   assert( i>=0 && i<p->nMem );
 | |
|   pMem = &p->aMem[i];
 | |
|   assert( pMem->flags==MEM_Int );
 | |
|   if( pMem->u.i<0 ){
 | |
|      pc = pOp->p2 - 1;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: IfMemZero P1 P2 *
 | |
| **
 | |
| ** If the value of memory cell P1 is exactly 0, jump to P2. 
 | |
| **
 | |
| ** It is illegal to use this instruction on a memory cell that does
 | |
| ** not contain an integer.  An assertion fault will result if you try.
 | |
| */
 | |
| case OP_IfMemZero: {        /* no-push */
 | |
|   int i = pOp->p1;
 | |
|   Mem *pMem;
 | |
|   assert( i>=0 && i<p->nMem );
 | |
|   pMem = &p->aMem[i];
 | |
|   assert( pMem->flags==MEM_Int );
 | |
|   if( pMem->u.i==0 ){
 | |
|      pc = pOp->p2 - 1;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: MemNull P1 * *
 | |
| **
 | |
| ** Store a NULL in memory cell P1
 | |
| */
 | |
| case OP_MemNull: {
 | |
|   assert( pOp->p1>=0 && pOp->p1<p->nMem );
 | |
|   sqlite3VdbeMemSetNull(&p->aMem[pOp->p1]);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: MemInt P1 P2 *
 | |
| **
 | |
| ** Store the integer value P1 in memory cell P2.
 | |
| */
 | |
| case OP_MemInt: {
 | |
|   assert( pOp->p2>=0 && pOp->p2<p->nMem );
 | |
|   sqlite3VdbeMemSetInt64(&p->aMem[pOp->p2], pOp->p1);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: MemMove P1 P2 *
 | |
| **
 | |
| ** Move the content of memory cell P2 over to memory cell P1.
 | |
| ** Any prior content of P1 is erased.  Memory cell P2 is left
 | |
| ** containing a NULL.
 | |
| */
 | |
| case OP_MemMove: {
 | |
|   assert( pOp->p1>=0 && pOp->p1<p->nMem );
 | |
|   assert( pOp->p2>=0 && pOp->p2<p->nMem );
 | |
|   rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], &p->aMem[pOp->p2]);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: AggStep P1 P2 P3
 | |
| **
 | |
| ** Execute the step function for an aggregate.  The
 | |
| ** function has P2 arguments.  P3 is a pointer to the FuncDef
 | |
| ** structure that specifies the function.  Use memory location
 | |
| ** P1 as the accumulator.
 | |
| **
 | |
| ** The P2 arguments are popped from the stack.
 | |
| */
 | |
| case OP_AggStep: {        /* no-push */
 | |
|   int n = pOp->p2;
 | |
|   int i;
 | |
|   Mem *pMem, *pRec;
 | |
|   sqlite3_context ctx;
 | |
|   sqlite3_value **apVal;
 | |
| 
 | |
|   assert( n>=0 );
 | |
|   pRec = &pTos[1-n];
 | |
|   assert( pRec>=p->aStack );
 | |
|   apVal = p->apArg;
 | |
|   assert( apVal || n==0 );
 | |
|   for(i=0; i<n; i++, pRec++){
 | |
|     apVal[i] = pRec;
 | |
|     storeTypeInfo(pRec, encoding);
 | |
|   }
 | |
|   ctx.pFunc = (FuncDef*)pOp->p3;
 | |
|   assert( pOp->p1>=0 && pOp->p1<p->nMem );
 | |
|   ctx.pMem = pMem = &p->aMem[pOp->p1];
 | |
|   pMem->n++;
 | |
|   ctx.s.flags = MEM_Null;
 | |
|   ctx.s.z = 0;
 | |
|   ctx.s.xDel = 0;
 | |
|   ctx.isError = 0;
 | |
|   ctx.pColl = 0;
 | |
|   if( ctx.pFunc->needCollSeq ){
 | |
|     assert( pOp>p->aOp );
 | |
|     assert( pOp[-1].p3type==P3_COLLSEQ );
 | |
|     assert( pOp[-1].opcode==OP_CollSeq );
 | |
|     ctx.pColl = (CollSeq *)pOp[-1].p3;
 | |
|   }
 | |
|   (ctx.pFunc->xStep)(&ctx, n, apVal);
 | |
|   popStack(&pTos, n);
 | |
|   if( ctx.isError ){
 | |
|     sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
 | |
|     rc = SQLITE_ERROR;
 | |
|   }
 | |
|   sqlite3VdbeMemRelease(&ctx.s);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: AggFinal P1 P2 P3
 | |
| **
 | |
| ** Execute the finalizer function for an aggregate.  P1 is
 | |
| ** the memory location that is the accumulator for the aggregate.
 | |
| **
 | |
| ** P2 is the number of arguments that the step function takes and
 | |
| ** P3 is a pointer to the FuncDef for this function.  The P2
 | |
| ** argument is not used by this opcode.  It is only there to disambiguate
 | |
| ** functions that can take varying numbers of arguments.  The
 | |
| ** P3 argument is only needed for the degenerate case where
 | |
| ** the step function was not previously called.
 | |
| */
 | |
| case OP_AggFinal: {        /* no-push */
 | |
|   Mem *pMem;
 | |
|   assert( pOp->p1>=0 && pOp->p1<p->nMem );
 | |
|   pMem = &p->aMem[pOp->p1];
 | |
|   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
 | |
|   rc = sqlite3VdbeMemFinalize(pMem, (FuncDef*)pOp->p3);
 | |
|   if( rc==SQLITE_ERROR ){
 | |
|     sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pMem), (char*)0);
 | |
|   }
 | |
|   if( sqlite3VdbeMemTooBig(pMem) ){
 | |
|     goto too_big;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
 | |
| /* Opcode: Vacuum * * *
 | |
| **
 | |
| ** Vacuum the entire database.  This opcode will cause other virtual
 | |
| ** machines to be created and run.  It may not be called from within
 | |
| ** a transaction.
 | |
| */
 | |
| case OP_Vacuum: {        /* no-push */
 | |
|   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 
 | |
|   rc = sqlite3RunVacuum(&p->zErrMsg, db);
 | |
|   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
 | |
|   break;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_AUTOVACUUM)
 | |
| /* Opcode: IncrVacuum P1 P2 *
 | |
| **
 | |
| ** Perform a single step of the incremental vacuum procedure on
 | |
| ** the P1 database. If the vacuum has finished, jump to instruction
 | |
| ** P2. Otherwise, fall through to the next instruction.
 | |
| */
 | |
| case OP_IncrVacuum: {        /* no-push */
 | |
|   Btree *pBt;
 | |
| 
 | |
|   assert( pOp->p1>=0 && pOp->p1<db->nDb );
 | |
|   pBt = db->aDb[pOp->p1].pBt;
 | |
|   rc = sqlite3BtreeIncrVacuum(pBt);
 | |
|   if( rc==SQLITE_DONE ){
 | |
|     pc = pOp->p2 - 1;
 | |
|     rc = SQLITE_OK;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Opcode: Expire P1 * *
 | |
| **
 | |
| ** Cause precompiled statements to become expired. An expired statement
 | |
| ** fails with an error code of SQLITE_SCHEMA if it is ever executed 
 | |
| ** (via sqlite3_step()).
 | |
| ** 
 | |
| ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
 | |
| ** then only the currently executing statement is affected. 
 | |
| */
 | |
| case OP_Expire: {        /* no-push */
 | |
|   if( !pOp->p1 ){
 | |
|     sqlite3ExpirePreparedStatements(db);
 | |
|   }else{
 | |
|     p->expired = 1;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_SHARED_CACHE
 | |
| /* Opcode: TableLock P1 P2 P3
 | |
| **
 | |
| ** Obtain a lock on a particular table. This instruction is only used when
 | |
| ** the shared-cache feature is enabled. 
 | |
| **
 | |
| ** If P1 is not negative, then it is the index of the database
 | |
| ** in sqlite3.aDb[] and a read-lock is required. If P1 is negative, a 
 | |
| ** write-lock is required. In this case the index of the database is the 
 | |
| ** absolute value of P1 minus one (iDb = abs(P1) - 1;) and a write-lock is
 | |
| ** required. 
 | |
| **
 | |
| ** P2 contains the root-page of the table to lock.
 | |
| **
 | |
| ** P3 contains a pointer to the name of the table being locked. This is only
 | |
| ** used to generate an error message if the lock cannot be obtained.
 | |
| */
 | |
| case OP_TableLock: {        /* no-push */
 | |
|   int p1 = pOp->p1; 
 | |
|   u8 isWriteLock = (p1<0);
 | |
|   if( isWriteLock ){
 | |
|     p1 = (-1*p1)-1;
 | |
|   }
 | |
|   rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
 | |
|   if( rc==SQLITE_LOCKED ){
 | |
|     const char *z = (const char *)pOp->p3;
 | |
|     sqlite3SetString(&p->zErrMsg, "database table is locked: ", z, (char*)0);
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_SHARED_CACHE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Opcode: VBegin * * P3
 | |
| **
 | |
| ** P3 a pointer to an sqlite3_vtab structure. Call the xBegin method 
 | |
| ** for that table.
 | |
| */
 | |
| case OP_VBegin: {   /* no-push */
 | |
|   rc = sqlite3VtabBegin(db, (sqlite3_vtab *)pOp->p3);
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Opcode: VCreate P1 * P3
 | |
| **
 | |
| ** P3 is the name of a virtual table in database P1. Call the xCreate method
 | |
| ** for that table.
 | |
| */
 | |
| case OP_VCreate: {   /* no-push */
 | |
|   rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p3, &p->zErrMsg);
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Opcode: VDestroy P1 * P3
 | |
| **
 | |
| ** P3 is the name of a virtual table in database P1.  Call the xDestroy method
 | |
| ** of that table.
 | |
| */
 | |
| case OP_VDestroy: {   /* no-push */
 | |
|   p->inVtabMethod = 2;
 | |
|   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p3);
 | |
|   p->inVtabMethod = 0;
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Opcode: VOpen P1 * P3
 | |
| **
 | |
| ** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
 | |
| ** P1 is a cursor number.  This opcode opens a cursor to the virtual
 | |
| ** table and stores that cursor in P1.
 | |
| */
 | |
| case OP_VOpen: {   /* no-push */
 | |
|   Cursor *pCur = 0;
 | |
|   sqlite3_vtab_cursor *pVtabCursor = 0;
 | |
| 
 | |
|   sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
 | |
|   sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
 | |
| 
 | |
|   assert(pVtab && pModule);
 | |
|   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
 | |
|   rc = pModule->xOpen(pVtab, &pVtabCursor);
 | |
|   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
 | |
|   if( SQLITE_OK==rc ){
 | |
|     /* Initialise sqlite3_vtab_cursor base class */
 | |
|     pVtabCursor->pVtab = pVtab;
 | |
| 
 | |
|     /* Initialise vdbe cursor object */
 | |
|     pCur = allocateCursor(p, pOp->p1, -1);
 | |
|     if( pCur ){
 | |
|       pCur->pVtabCursor = pVtabCursor;
 | |
|       pCur->pModule = pVtabCursor->pVtab->pModule;
 | |
|     }else{
 | |
|       pModule->xClose(pVtabCursor);
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Opcode: VFilter P1 P2 P3
 | |
| **
 | |
| ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
 | |
| ** the filtered result set is empty.
 | |
| **
 | |
| ** P3 is either NULL or a string that was generated by the xBestIndex
 | |
| ** method of the module.  The interpretation of the P3 string is left
 | |
| ** to the module implementation.
 | |
| **
 | |
| ** This opcode invokes the xFilter method on the virtual table specified
 | |
| ** by P1.  The integer query plan parameter to xFilter is the top of the
 | |
| ** stack.  Next down on the stack is the argc parameter.  Beneath the
 | |
| ** next of stack are argc additional parameters which are passed to
 | |
| ** xFilter as argv. The topmost parameter (i.e. 3rd element popped from
 | |
| ** the stack) becomes argv[argc-1] when passed to xFilter.
 | |
| **
 | |
| ** The integer query plan parameter, argc, and all argv stack values 
 | |
| ** are popped from the stack before this instruction completes.
 | |
| **
 | |
| ** A jump is made to P2 if the result set after filtering would be 
 | |
| ** empty.
 | |
| */
 | |
| case OP_VFilter: {   /* no-push */
 | |
|   int nArg;
 | |
| 
 | |
|   const sqlite3_module *pModule;
 | |
| 
 | |
|   Cursor *pCur = p->apCsr[pOp->p1];
 | |
|   assert( pCur->pVtabCursor );
 | |
|   pModule = pCur->pVtabCursor->pVtab->pModule;
 | |
| 
 | |
|   /* Grab the index number and argc parameters off the top of the stack. */
 | |
|   assert( (&pTos[-1])>=p->aStack );
 | |
|   assert( (pTos[0].flags&MEM_Int)!=0 && pTos[-1].flags==MEM_Int );
 | |
|   nArg = pTos[-1].u.i;
 | |
| 
 | |
|   /* Invoke the xFilter method */
 | |
|   {
 | |
|     int res = 0;
 | |
|     int i;
 | |
|     Mem **apArg = p->apArg;
 | |
|     for(i = 0; i<nArg; i++){
 | |
|       apArg[i] = &pTos[i+1-2-nArg];
 | |
|       storeTypeInfo(apArg[i], 0);
 | |
|     }
 | |
| 
 | |
|     if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
 | |
|     p->inVtabMethod = 1;
 | |
|     rc = pModule->xFilter(pCur->pVtabCursor, pTos->u.i, pOp->p3, nArg, apArg);
 | |
|     p->inVtabMethod = 0;
 | |
|     if( rc==SQLITE_OK ){
 | |
|       res = pModule->xEof(pCur->pVtabCursor);
 | |
|     }
 | |
|     if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
 | |
| 
 | |
|     if( res ){
 | |
|       pc = pOp->p2 - 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Pop the index number, argc value and parameters off the stack */
 | |
|   popStack(&pTos, 2+nArg);
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Opcode: VRowid P1 * *
 | |
| **
 | |
| ** Push an integer onto the stack which is the rowid of
 | |
| ** the virtual-table that the P1 cursor is pointing to.
 | |
| */
 | |
| case OP_VRowid: {
 | |
|   const sqlite3_module *pModule;
 | |
| 
 | |
|   Cursor *pCur = p->apCsr[pOp->p1];
 | |
|   assert( pCur->pVtabCursor );
 | |
|   pModule = pCur->pVtabCursor->pVtab->pModule;
 | |
|   if( pModule->xRowid==0 ){
 | |
|     sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xRowid", 0);
 | |
|     rc = SQLITE_ERROR;
 | |
|   } else {
 | |
|     sqlite_int64 iRow;
 | |
| 
 | |
|     if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
 | |
|     rc = pModule->xRowid(pCur->pVtabCursor, &iRow);
 | |
|     if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
 | |
| 
 | |
|     pTos++;
 | |
|     pTos->flags = MEM_Int;
 | |
|     pTos->u.i = iRow;
 | |
|   }
 | |
| 
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Opcode: VColumn P1 P2 *
 | |
| **
 | |
| ** Push onto the stack the value of the P2-th column of
 | |
| ** the row of the virtual-table that the P1 cursor is pointing to.
 | |
| */
 | |
| case OP_VColumn: {
 | |
|   const sqlite3_module *pModule;
 | |
| 
 | |
|   Cursor *pCur = p->apCsr[pOp->p1];
 | |
|   assert( pCur->pVtabCursor );
 | |
|   pModule = pCur->pVtabCursor->pVtab->pModule;
 | |
|   if( pModule->xColumn==0 ){
 | |
|     sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xColumn", 0);
 | |
|     rc = SQLITE_ERROR;
 | |
|   } else {
 | |
|     sqlite3_context sContext;
 | |
|     memset(&sContext, 0, sizeof(sContext));
 | |
|     sContext.s.flags = MEM_Null;
 | |
|     if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
 | |
|     rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
 | |
| 
 | |
|     /* Copy the result of the function to the top of the stack. We
 | |
|     ** do this regardless of whether or not an error occured to ensure any
 | |
|     ** dynamic allocation in sContext.s (a Mem struct) is  released.
 | |
|     */
 | |
|     sqlite3VdbeChangeEncoding(&sContext.s, encoding);
 | |
|     pTos++;
 | |
|     pTos->flags = 0;
 | |
|     sqlite3VdbeMemMove(pTos, &sContext.s);
 | |
| 
 | |
|     if( sqlite3SafetyOn(db) ){
 | |
|       goto abort_due_to_misuse;
 | |
|     }
 | |
|     if( sqlite3VdbeMemTooBig(pTos) ){
 | |
|       goto too_big;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Opcode: VNext P1 P2 *
 | |
| **
 | |
| ** Advance virtual table P1 to the next row in its result set and
 | |
| ** jump to instruction P2.  Or, if the virtual table has reached
 | |
| ** the end of its result set, then fall through to the next instruction.
 | |
| */
 | |
| case OP_VNext: {   /* no-push */
 | |
|   const sqlite3_module *pModule;
 | |
|   int res = 0;
 | |
| 
 | |
|   Cursor *pCur = p->apCsr[pOp->p1];
 | |
|   assert( pCur->pVtabCursor );
 | |
|   pModule = pCur->pVtabCursor->pVtab->pModule;
 | |
|   if( pModule->xNext==0 ){
 | |
|     sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xNext", 0);
 | |
|     rc = SQLITE_ERROR;
 | |
|   } else {
 | |
|     /* Invoke the xNext() method of the module. There is no way for the
 | |
|     ** underlying implementation to return an error if one occurs during
 | |
|     ** xNext(). Instead, if an error occurs, true is returned (indicating that 
 | |
|     ** data is available) and the error code returned when xColumn or
 | |
|     ** some other method is next invoked on the save virtual table cursor.
 | |
|     */
 | |
|     if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
 | |
|     p->inVtabMethod = 1;
 | |
|     rc = pModule->xNext(pCur->pVtabCursor);
 | |
|     p->inVtabMethod = 0;
 | |
|     if( rc==SQLITE_OK ){
 | |
|       res = pModule->xEof(pCur->pVtabCursor);
 | |
|     }
 | |
|     if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
 | |
| 
 | |
|     if( !res ){
 | |
|       /* If there is data, jump to P2 */
 | |
|       pc = pOp->p2 - 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Opcode: VRename * * P3
 | |
| **
 | |
| ** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
 | |
| ** This opcode invokes the corresponding xRename method. The value
 | |
| ** on the top of the stack is popped and passed as the zName argument
 | |
| ** to the xRename method.
 | |
| */
 | |
| case OP_VRename: {   /* no-push */
 | |
|   sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
 | |
|   assert( pVtab->pModule->xRename );
 | |
| 
 | |
|   Stringify(pTos, encoding);
 | |
| 
 | |
|   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
 | |
|   sqlite3VtabLock(pVtab);
 | |
|   rc = pVtab->pModule->xRename(pVtab, pTos->z);
 | |
|   sqlite3VtabUnlock(db, pVtab);
 | |
|   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
 | |
| 
 | |
|   popStack(&pTos, 1);
 | |
|   break;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Opcode: VUpdate P1 P2 P3
 | |
| **
 | |
| ** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
 | |
| ** This opcode invokes the corresponding xUpdate method. P2 values
 | |
| ** are taken from the stack to pass to the xUpdate invocation. The
 | |
| ** value on the top of the stack corresponds to the p2th element 
 | |
| ** of the argv array passed to xUpdate.
 | |
| **
 | |
| ** The xUpdate method will do a DELETE or an INSERT or both.
 | |
| ** The argv[0] element (which corresponds to the P2-th element down
 | |
| ** on the stack) is the rowid of a row to delete.  If argv[0] is
 | |
| ** NULL then no deletion occurs.  The argv[1] element is the rowid
 | |
| ** of the new row.  This can be NULL to have the virtual table
 | |
| ** select the new rowid for itself.  The higher elements in the
 | |
| ** stack are the values of columns in the new row.
 | |
| **
 | |
| ** If P2==1 then no insert is performed.  argv[0] is the rowid of
 | |
| ** a row to delete.
 | |
| **
 | |
| ** P1 is a boolean flag. If it is set to true and the xUpdate call
 | |
| ** is successful, then the value returned by sqlite3_last_insert_rowid() 
 | |
| ** is set to the value of the rowid for the row just inserted.
 | |
| */
 | |
| case OP_VUpdate: {   /* no-push */
 | |
|   sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
 | |
|   sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
 | |
|   int nArg = pOp->p2;
 | |
|   assert( pOp->p3type==P3_VTAB );
 | |
|   if( pModule->xUpdate==0 ){
 | |
|     sqlite3SetString(&p->zErrMsg, "read-only table", 0);
 | |
|     rc = SQLITE_ERROR;
 | |
|   }else{
 | |
|     int i;
 | |
|     sqlite_int64 rowid;
 | |
|     Mem **apArg = p->apArg;
 | |
|     Mem *pX = &pTos[1-nArg];
 | |
|     for(i = 0; i<nArg; i++, pX++){
 | |
|       storeTypeInfo(pX, 0);
 | |
|       apArg[i] = pX;
 | |
|     }
 | |
|     if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
 | |
|     sqlite3VtabLock(pVtab);
 | |
|     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
 | |
|     sqlite3VtabUnlock(db, pVtab);
 | |
|     if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
 | |
|     if( pOp->p1 && rc==SQLITE_OK ){
 | |
|       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
 | |
|       db->lastRowid = rowid;
 | |
|     }
 | |
|   }
 | |
|   popStack(&pTos, nArg);
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| /* An other opcode is illegal...
 | |
| */
 | |
| default: {
 | |
|   assert( 0 );
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /*****************************************************************************
 | |
| ** The cases of the switch statement above this line should all be indented
 | |
| ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
 | |
| ** readability.  From this point on down, the normal indentation rules are
 | |
| ** restored.
 | |
| *****************************************************************************/
 | |
|     }
 | |
| 
 | |
|     /* Make sure the stack limit was not exceeded */
 | |
|     assert( pTos<=pStackLimit );
 | |
| 
 | |
| #ifdef VDBE_PROFILE
 | |
|     {
 | |
|       long long elapse = hwtime() - start;
 | |
|       pOp->cycles += elapse;
 | |
|       pOp->cnt++;
 | |
| #if 0
 | |
|         fprintf(stdout, "%10lld ", elapse);
 | |
|         sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]);
 | |
| #endif
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
|     /* Keep track of the size of the largest BLOB or STR that has appeared
 | |
|     ** on the top of the VDBE stack.
 | |
|     */
 | |
|     if( pTos>=p->aStack && (pTos->flags & (MEM_Blob|MEM_Str))!=0
 | |
|          && pTos->n>sqlite3_max_blobsize ){
 | |
|       sqlite3_max_blobsize = pTos->n;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* The following code adds nothing to the actual functionality
 | |
|     ** of the program.  It is only here for testing and debugging.
 | |
|     ** On the other hand, it does burn CPU cycles every time through
 | |
|     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
 | |
|     */
 | |
| #ifndef NDEBUG
 | |
|     /* Sanity checking on the top element of the stack. If the previous
 | |
|     ** instruction was VNoChange, then the flags field of the top
 | |
|     ** of the stack is set to 0. This is technically invalid for a memory
 | |
|     ** cell, so avoid calling MemSanity() in this case.
 | |
|     */
 | |
|     if( pTos>=p->aStack && pTos->flags ){
 | |
|       sqlite3VdbeMemSanity(pTos);
 | |
|       assert( !sqlite3VdbeMemTooBig(pTos) );
 | |
|     }
 | |
|     assert( pc>=-1 && pc<p->nOp );
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
|     /* Code for tracing the vdbe stack. */
 | |
|     if( p->trace && pTos>=p->aStack ){
 | |
|       int i;
 | |
|       fprintf(p->trace, "Stack:");
 | |
|       for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
 | |
|         if( pTos[i].flags & MEM_Null ){
 | |
|           fprintf(p->trace, " NULL");
 | |
|         }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
 | |
|           fprintf(p->trace, " si:%lld", pTos[i].u.i);
 | |
|         }else if( pTos[i].flags & MEM_Int ){
 | |
|           fprintf(p->trace, " i:%lld", pTos[i].u.i);
 | |
|         }else if( pTos[i].flags & MEM_Real ){
 | |
|           fprintf(p->trace, " r:%g", pTos[i].r);
 | |
|         }else{
 | |
|           char zBuf[200];
 | |
|           sqlite3VdbeMemPrettyPrint(&pTos[i], zBuf);
 | |
|           fprintf(p->trace, " ");
 | |
|           fprintf(p->trace, "%s", zBuf);
 | |
|         }
 | |
|       }
 | |
|       if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
 | |
|       fprintf(p->trace,"\n");
 | |
|     }
 | |
| #endif  /* SQLITE_DEBUG */
 | |
| #endif  /* NDEBUG */
 | |
|   }  /* The end of the for(;;) loop the loops through opcodes */
 | |
| 
 | |
|   /* If we reach this point, it means that execution is finished.
 | |
|   */
 | |
| vdbe_halt:
 | |
|   if( rc ){
 | |
|     p->rc = rc;
 | |
|     rc = SQLITE_ERROR;
 | |
|   }else{
 | |
|     rc = SQLITE_DONE;
 | |
|   }
 | |
|   sqlite3VdbeHalt(p);
 | |
|   p->pTos = pTos;
 | |
|   return rc;
 | |
| 
 | |
|   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
 | |
|   ** is encountered.
 | |
|   */
 | |
| too_big:
 | |
|   sqlite3SetString(&p->zErrMsg, "string or blob too big", (char*)0);
 | |
|   rc = SQLITE_TOOBIG;
 | |
|   goto vdbe_halt;
 | |
| 
 | |
|   /* Jump to here if a malloc() fails.
 | |
|   */
 | |
| no_mem:
 | |
|   sqlite3SetString(&p->zErrMsg, "out of memory", (char*)0);
 | |
|   rc = SQLITE_NOMEM;
 | |
|   goto vdbe_halt;
 | |
| 
 | |
|   /* Jump to here for an SQLITE_MISUSE error.
 | |
|   */
 | |
| abort_due_to_misuse:
 | |
|   rc = SQLITE_MISUSE;
 | |
|   /* Fall thru into abort_due_to_error */
 | |
| 
 | |
|   /* Jump to here for any other kind of fatal error.  The "rc" variable
 | |
|   ** should hold the error number.
 | |
|   */
 | |
| abort_due_to_error:
 | |
|   if( p->zErrMsg==0 ){
 | |
|     if( sqlite3MallocFailed() ) rc = SQLITE_NOMEM;
 | |
|     sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
 | |
|   }
 | |
|   goto vdbe_halt;
 | |
| 
 | |
|   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
 | |
|   ** flag.
 | |
|   */
 | |
| abort_due_to_interrupt:
 | |
|   assert( db->u1.isInterrupted );
 | |
|   if( db->magic!=SQLITE_MAGIC_BUSY ){
 | |
|     rc = SQLITE_MISUSE;
 | |
|   }else{
 | |
|     rc = SQLITE_INTERRUPT;
 | |
|   }
 | |
|   p->rc = rc;
 | |
|   sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
 | |
|   goto vdbe_halt;
 | |
| }
 |