sourcemod/extensions/sqlite/sqlite-source/vdbeaux.c
Scott Ehlert 251cced1f8 Spring Cleaning, Part Ichi (1)
Various minor things done to project files
Updated sample extension project file and updated makefile to the new unified version (more changes likely on the way)
Updated regex project file and makefile

--HG--
extra : convert_revision : svn%3A39bc706e-5318-0410-9160-8a85361fbb7c/trunk%401971
2008-03-30 07:00:22 +00:00

2244 lines
65 KiB
C

/*
** 2003 September 6
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used for creating, destroying, and populating
** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
** to version 2.8.7, all this code was combined into the vdbe.c source file.
** But that file was getting too big so this subroutines were split out.
*/
#include "sqliteInt.h"
#include <ctype.h>
#include "vdbeInt.h"
/*
** When debugging the code generator in a symbolic debugger, one can
** set the sqlite3_vdbe_addop_trace to 1 and all opcodes will be printed
** as they are added to the instruction stream.
*/
#ifdef SQLITE_DEBUG
int sqlite3_vdbe_addop_trace = 0;
#endif
/*
** Create a new virtual database engine.
*/
Vdbe *sqlite3VdbeCreate(sqlite3 *db){
Vdbe *p;
p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
if( p==0 ) return 0;
p->db = db;
if( db->pVdbe ){
db->pVdbe->pPrev = p;
}
p->pNext = db->pVdbe;
p->pPrev = 0;
db->pVdbe = p;
p->magic = VDBE_MAGIC_INIT;
return p;
}
/*
** Remember the SQL string for a prepared statement.
*/
void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){
if( p==0 ) return;
assert( p->zSql==0 );
p->zSql = sqlite3DbStrNDup(p->db, z, n);
}
/*
** Return the SQL associated with a prepared statement
*/
const char *sqlite3VdbeGetSql(Vdbe *p){
return p->zSql;
}
/*
** Swap all content between two VDBE structures.
*/
void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
Vdbe tmp, *pTmp;
char *zTmp;
int nTmp;
tmp = *pA;
*pA = *pB;
*pB = tmp;
pTmp = pA->pNext;
pA->pNext = pB->pNext;
pB->pNext = pTmp;
pTmp = pA->pPrev;
pA->pPrev = pB->pPrev;
pB->pPrev = pTmp;
zTmp = pA->zSql;
pA->zSql = pB->zSql;
pB->zSql = zTmp;
nTmp = pA->nSql;
pA->nSql = pB->nSql;
pB->nSql = nTmp;
}
#ifdef SQLITE_DEBUG
/*
** Turn tracing on or off
*/
void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
p->trace = trace;
}
#endif
/*
** Resize the Vdbe.aOp array so that it contains at least N
** elements. If the Vdbe is in VDBE_MAGIC_RUN state, then
** the Vdbe.aOp array will be sized to contain exactly N
** elements. Vdbe.nOpAlloc is set to reflect the new size of
** the array.
**
** If an out-of-memory error occurs while resizing the array,
** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that
** any opcodes already allocated can be correctly deallocated
** along with the rest of the Vdbe).
*/
static void resizeOpArray(Vdbe *p, int N){
int runMode = p->magic==VDBE_MAGIC_RUN;
if( runMode || p->nOpAlloc<N ){
VdbeOp *pNew;
int nNew = N + 100*(!runMode);
int oldSize = p->nOpAlloc;
pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op));
if( pNew ){
p->nOpAlloc = nNew;
p->aOp = pNew;
if( nNew>oldSize ){
memset(&p->aOp[oldSize], 0, (nNew-oldSize)*sizeof(Op));
}
}
}
}
/*
** Add a new instruction to the list of instructions current in the
** VDBE. Return the address of the new instruction.
**
** Parameters:
**
** p Pointer to the VDBE
**
** op The opcode for this instruction
**
** p1, p2 First two of the three possible operands.
**
** Use the sqlite3VdbeResolveLabel() function to fix an address and
** the sqlite3VdbeChangeP3() function to change the value of the P3
** operand.
*/
int sqlite3VdbeAddOp(Vdbe *p, int op, int p1, int p2){
int i;
VdbeOp *pOp;
i = p->nOp;
assert( p->magic==VDBE_MAGIC_INIT );
if( p->nOpAlloc<=i ){
resizeOpArray(p, i+1);
if( p->db->mallocFailed ){
return 0;
}
}
p->nOp++;
pOp = &p->aOp[i];
pOp->opcode = op;
pOp->p1 = p1;
pOp->p2 = p2;
pOp->p3 = 0;
pOp->p3type = P3_NOTUSED;
p->expired = 0;
#ifdef SQLITE_DEBUG
if( sqlite3_vdbe_addop_trace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
#endif
return i;
}
/*
** Add an opcode that includes the p3 value.
*/
int sqlite3VdbeOp3(Vdbe *p, int op, int p1, int p2, const char *zP3,int p3type){
int addr = sqlite3VdbeAddOp(p, op, p1, p2);
sqlite3VdbeChangeP3(p, addr, zP3, p3type);
return addr;
}
/*
** Create a new symbolic label for an instruction that has yet to be
** coded. The symbolic label is really just a negative number. The
** label can be used as the P2 value of an operation. Later, when
** the label is resolved to a specific address, the VDBE will scan
** through its operation list and change all values of P2 which match
** the label into the resolved address.
**
** The VDBE knows that a P2 value is a label because labels are
** always negative and P2 values are suppose to be non-negative.
** Hence, a negative P2 value is a label that has yet to be resolved.
**
** Zero is returned if a malloc() fails.
*/
int sqlite3VdbeMakeLabel(Vdbe *p){
int i;
i = p->nLabel++;
assert( p->magic==VDBE_MAGIC_INIT );
if( i>=p->nLabelAlloc ){
p->nLabelAlloc = p->nLabelAlloc*2 + 10;
p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
p->nLabelAlloc*sizeof(p->aLabel[0]));
}
if( p->aLabel ){
p->aLabel[i] = -1;
}
return -1-i;
}
/*
** Resolve label "x" to be the address of the next instruction to
** be inserted. The parameter "x" must have been obtained from
** a prior call to sqlite3VdbeMakeLabel().
*/
void sqlite3VdbeResolveLabel(Vdbe *p, int x){
int j = -1-x;
assert( p->magic==VDBE_MAGIC_INIT );
assert( j>=0 && j<p->nLabel );
if( p->aLabel ){
p->aLabel[j] = p->nOp;
}
}
/*
** Return non-zero if opcode 'op' is guarenteed not to push more values
** onto the VDBE stack than it pops off.
*/
static int opcodeNoPush(u8 op){
/* The 10 NOPUSH_MASK_n constants are defined in the automatically
** generated header file opcodes.h. Each is a 16-bit bitmask, one
** bit corresponding to each opcode implemented by the virtual
** machine in vdbe.c. The bit is true if the word "no-push" appears
** in a comment on the same line as the "case OP_XXX:" in
** sqlite3VdbeExec() in vdbe.c.
**
** If the bit is true, then the corresponding opcode is guarenteed not
** to grow the stack when it is executed. Otherwise, it may grow the
** stack by at most one entry.
**
** NOPUSH_MASK_0 corresponds to opcodes 0 to 15. NOPUSH_MASK_1 contains
** one bit for opcodes 16 to 31, and so on.
**
** 16-bit bitmasks (rather than 32-bit) are specified in opcodes.h
** because the file is generated by an awk program. Awk manipulates
** all numbers as floating-point and we don't want to risk a rounding
** error if someone builds with an awk that uses (for example) 32-bit
** IEEE floats.
*/
static const u32 masks[5] = {
NOPUSH_MASK_0 + (((unsigned)NOPUSH_MASK_1)<<16),
NOPUSH_MASK_2 + (((unsigned)NOPUSH_MASK_3)<<16),
NOPUSH_MASK_4 + (((unsigned)NOPUSH_MASK_5)<<16),
NOPUSH_MASK_6 + (((unsigned)NOPUSH_MASK_7)<<16),
NOPUSH_MASK_8 + (((unsigned)NOPUSH_MASK_9)<<16)
};
assert( op<32*5 );
return (masks[op>>5] & (1<<(op&0x1F)));
}
#ifndef NDEBUG
int sqlite3VdbeOpcodeNoPush(u8 op){
return opcodeNoPush(op);
}
#endif
/*
** Loop through the program looking for P2 values that are negative.
** Each such value is a label. Resolve the label by setting the P2
** value to its correct non-zero value.
**
** This routine is called once after all opcodes have been inserted.
**
** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
**
** The integer *pMaxStack is set to the maximum number of vdbe stack
** entries that static analysis reveals this program might need.
**
** This routine also does the following optimization: It scans for
** Halt instructions where P1==SQLITE_CONSTRAINT or P2==OE_Abort or for
** IdxInsert instructions where P2!=0. If no such instruction is
** found, then every Statement instruction is changed to a Noop. In
** this way, we avoid creating the statement journal file unnecessarily.
*/
static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs, int *pMaxStack){
int i;
int nMaxArgs = 0;
int nMaxStack = p->nOp;
Op *pOp;
int *aLabel = p->aLabel;
int doesStatementRollback = 0;
int hasStatementBegin = 0;
for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
u8 opcode = pOp->opcode;
if( opcode==OP_Function || opcode==OP_AggStep
#ifndef SQLITE_OMIT_VIRTUALTABLE
|| opcode==OP_VUpdate
#endif
){
if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
}
if( opcode==OP_Halt ){
if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
doesStatementRollback = 1;
}
}else if( opcode==OP_Statement ){
hasStatementBegin = 1;
#ifndef SQLITE_OMIT_VIRTUALTABLE
}else if( opcode==OP_VUpdate || opcode==OP_VRename ){
doesStatementRollback = 1;
}else if( opcode==OP_VFilter ){
int n;
assert( p->nOp - i >= 3 );
assert( pOp[-2].opcode==OP_Integer );
n = pOp[-2].p1;
if( n>nMaxArgs ) nMaxArgs = n;
#endif
}
if( opcodeNoPush(opcode) ){
nMaxStack--;
}
if( pOp->p2>=0 ) continue;
assert( -1-pOp->p2<p->nLabel );
pOp->p2 = aLabel[-1-pOp->p2];
}
sqlite3_free(p->aLabel);
p->aLabel = 0;
*pMaxFuncArgs = nMaxArgs;
*pMaxStack = nMaxStack;
/* If we never rollback a statement transaction, then statement
** transactions are not needed. So change every OP_Statement
** opcode into an OP_Noop. This avoid a call to sqlite3OsOpenExclusive()
** which can be expensive on some platforms.
*/
if( hasStatementBegin && !doesStatementRollback ){
for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
if( pOp->opcode==OP_Statement ){
pOp->opcode = OP_Noop;
}
}
}
}
/*
** Return the address of the next instruction to be inserted.
*/
int sqlite3VdbeCurrentAddr(Vdbe *p){
assert( p->magic==VDBE_MAGIC_INIT );
return p->nOp;
}
/*
** Add a whole list of operations to the operation stack. Return the
** address of the first operation added.
*/
int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
int addr;
assert( p->magic==VDBE_MAGIC_INIT );
resizeOpArray(p, p->nOp + nOp);
if( p->db->mallocFailed ){
return 0;
}
addr = p->nOp;
if( nOp>0 ){
int i;
VdbeOpList const *pIn = aOp;
for(i=0; i<nOp; i++, pIn++){
int p2 = pIn->p2;
VdbeOp *pOut = &p->aOp[i+addr];
pOut->opcode = pIn->opcode;
pOut->p1 = pIn->p1;
pOut->p2 = p2<0 ? addr + ADDR(p2) : p2;
pOut->p3 = pIn->p3;
pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED;
#ifdef SQLITE_DEBUG
if( sqlite3_vdbe_addop_trace ){
sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
}
#endif
}
p->nOp += nOp;
}
return addr;
}
/*
** Change the value of the P1 operand for a specific instruction.
** This routine is useful when a large program is loaded from a
** static array using sqlite3VdbeAddOpList but we want to make a
** few minor changes to the program.
*/
void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
assert( p==0 || p->magic==VDBE_MAGIC_INIT );
if( p && addr>=0 && p->nOp>addr && p->aOp ){
p->aOp[addr].p1 = val;
}
}
/*
** Change the value of the P2 operand for a specific instruction.
** This routine is useful for setting a jump destination.
*/
void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
assert( val>=0 );
assert( p==0 || p->magic==VDBE_MAGIC_INIT );
if( p && addr>=0 && p->nOp>addr && p->aOp ){
p->aOp[addr].p2 = val;
}
}
/*
** Change the P2 operand of instruction addr so that it points to
** the address of the next instruction to be coded.
*/
void sqlite3VdbeJumpHere(Vdbe *p, int addr){
sqlite3VdbeChangeP2(p, addr, p->nOp);
}
/*
** If the input FuncDef structure is ephemeral, then free it. If
** the FuncDef is not ephermal, then do nothing.
*/
static void freeEphemeralFunction(FuncDef *pDef){
if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
sqlite3_free(pDef);
}
}
/*
** Delete a P3 value if necessary.
*/
static void freeP3(int p3type, void *p3){
if( p3 ){
switch( p3type ){
case P3_DYNAMIC:
case P3_KEYINFO:
case P3_KEYINFO_HANDOFF: {
sqlite3_free(p3);
break;
}
case P3_MPRINTF: {
sqlite3_free(p3);
break;
}
case P3_VDBEFUNC: {
VdbeFunc *pVdbeFunc = (VdbeFunc *)p3;
freeEphemeralFunction(pVdbeFunc->pFunc);
sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
sqlite3_free(pVdbeFunc);
break;
}
case P3_FUNCDEF: {
freeEphemeralFunction((FuncDef*)p3);
break;
}
case P3_MEM: {
sqlite3ValueFree((sqlite3_value*)p3);
break;
}
}
}
}
/*
** Change N opcodes starting at addr to No-ops.
*/
void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
if( p && p->aOp ){
VdbeOp *pOp = &p->aOp[addr];
while( N-- ){
freeP3(pOp->p3type, pOp->p3);
memset(pOp, 0, sizeof(pOp[0]));
pOp->opcode = OP_Noop;
pOp++;
}
}
}
/*
** Change the value of the P3 operand for a specific instruction.
** This routine is useful when a large program is loaded from a
** static array using sqlite3VdbeAddOpList but we want to make a
** few minor changes to the program.
**
** If n>=0 then the P3 operand is dynamic, meaning that a copy of
** the string is made into memory obtained from sqlite3_malloc().
** A value of n==0 means copy bytes of zP3 up to and including the
** first null byte. If n>0 then copy n+1 bytes of zP3.
**
** If n==P3_KEYINFO it means that zP3 is a pointer to a KeyInfo structure.
** A copy is made of the KeyInfo structure into memory obtained from
** sqlite3_malloc, to be freed when the Vdbe is finalized.
** n==P3_KEYINFO_HANDOFF indicates that zP3 points to a KeyInfo structure
** stored in memory that the caller has obtained from sqlite3_malloc. The
** caller should not free the allocation, it will be freed when the Vdbe is
** finalized.
**
** Other values of n (P3_STATIC, P3_COLLSEQ etc.) indicate that zP3 points
** to a string or structure that is guaranteed to exist for the lifetime of
** the Vdbe. In these cases we can just copy the pointer.
**
** If addr<0 then change P3 on the most recently inserted instruction.
*/
void sqlite3VdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
Op *pOp;
assert( p==0 || p->magic==VDBE_MAGIC_INIT );
if( p==0 || p->aOp==0 || p->db->mallocFailed ){
if (n != P3_KEYINFO) {
freeP3(n, (void*)*(char**)&zP3);
}
return;
}
if( addr<0 || addr>=p->nOp ){
addr = p->nOp - 1;
if( addr<0 ) return;
}
pOp = &p->aOp[addr];
freeP3(pOp->p3type, pOp->p3);
pOp->p3 = 0;
if( zP3==0 ){
pOp->p3 = 0;
pOp->p3type = P3_NOTUSED;
}else if( n==P3_KEYINFO ){
KeyInfo *pKeyInfo;
int nField, nByte;
nField = ((KeyInfo*)zP3)->nField;
nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
pKeyInfo = sqlite3_malloc( nByte );
pOp->p3 = (char*)pKeyInfo;
if( pKeyInfo ){
unsigned char *aSortOrder;
memcpy(pKeyInfo, zP3, nByte);
aSortOrder = pKeyInfo->aSortOrder;
if( aSortOrder ){
pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
}
pOp->p3type = P3_KEYINFO;
}else{
p->db->mallocFailed = 1;
pOp->p3type = P3_NOTUSED;
}
}else if( n==P3_KEYINFO_HANDOFF ){
pOp->p3 = (char*)zP3;
pOp->p3type = P3_KEYINFO;
}else if( n<0 ){
pOp->p3 = (char*)zP3;
pOp->p3type = n;
}else{
if( n==0 ) n = strlen(zP3);
pOp->p3 = sqlite3DbStrNDup(p->db, zP3, n);
pOp->p3type = P3_DYNAMIC;
}
}
#ifndef NDEBUG
/*
** Replace the P3 field of the most recently coded instruction with
** comment text.
*/
void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
va_list ap;
assert( p->nOp>0 || p->aOp==0 );
assert( p->aOp==0 || p->aOp[p->nOp-1].p3==0 || p->db->mallocFailed );
va_start(ap, zFormat);
sqlite3VdbeChangeP3(p, -1, sqlite3VMPrintf(p->db, zFormat, ap), P3_DYNAMIC);
va_end(ap);
}
#endif
/*
** Return the opcode for a given address.
*/
VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
assert( p->magic==VDBE_MAGIC_INIT );
assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0);
}
#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
|| defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
/*
** Compute a string that describes the P3 parameter for an opcode.
** Use zTemp for any required temporary buffer space.
*/
static char *displayP3(Op *pOp, char *zTemp, int nTemp){
char *zP3;
assert( nTemp>=20 );
switch( pOp->p3type ){
case P3_KEYINFO: {
int i, j;
KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3;
sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
i = strlen(zTemp);
for(j=0; j<pKeyInfo->nField; j++){
CollSeq *pColl = pKeyInfo->aColl[j];
if( pColl ){
int n = strlen(pColl->zName);
if( i+n>nTemp-6 ){
memcpy(&zTemp[i],",...",4);
break;
}
zTemp[i++] = ',';
if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
zTemp[i++] = '-';
}
memcpy(&zTemp[i], pColl->zName,n+1);
i += n;
}else if( i+4<nTemp-6 ){
memcpy(&zTemp[i],",nil",4);
i += 4;
}
}
zTemp[i++] = ')';
zTemp[i] = 0;
assert( i<nTemp );
zP3 = zTemp;
break;
}
case P3_COLLSEQ: {
CollSeq *pColl = (CollSeq*)pOp->p3;
sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
zP3 = zTemp;
break;
}
case P3_FUNCDEF: {
FuncDef *pDef = (FuncDef*)pOp->p3;
sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
zP3 = zTemp;
break;
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
case P3_VTAB: {
sqlite3_vtab *pVtab = (sqlite3_vtab*)pOp->p3;
sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
zP3 = zTemp;
break;
}
#endif
default: {
zP3 = pOp->p3;
if( zP3==0 || pOp->opcode==OP_Noop ){
zP3 = "";
}
}
}
assert( zP3!=0 );
return zP3;
}
#endif
/*
** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
**
*/
void sqlite3VdbeUsesBtree(Vdbe *p, int i){
int mask;
assert( i>=0 && i<p->db->nDb );
assert( i<sizeof(p->btreeMask)*8 );
mask = 1<<i;
if( (p->btreeMask & mask)==0 ){
p->btreeMask |= mask;
sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
}
}
#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
/*
** Print a single opcode. This routine is used for debugging only.
*/
void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
char *zP3;
char zPtr[50];
static const char *zFormat1 = "%4d %-13s %4d %4d %s\n";
if( pOut==0 ) pOut = stdout;
zP3 = displayP3(pOp, zPtr, sizeof(zPtr));
fprintf(pOut, zFormat1,
pc, sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, zP3);
fflush(pOut);
}
#endif
/*
** Release an array of N Mem elements
*/
static void releaseMemArray(Mem *p, int N){
if( p ){
while( N-->0 ){
assert( N<2 || p[0].db==p[1].db );
sqlite3VdbeMemRelease(p++);
}
}
}
#ifndef SQLITE_OMIT_EXPLAIN
/*
** Give a listing of the program in the virtual machine.
**
** The interface is the same as sqlite3VdbeExec(). But instead of
** running the code, it invokes the callback once for each instruction.
** This feature is used to implement "EXPLAIN".
*/
int sqlite3VdbeList(
Vdbe *p /* The VDBE */
){
sqlite3 *db = p->db;
int i;
int rc = SQLITE_OK;
assert( p->explain );
if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
assert( db->magic==SQLITE_MAGIC_BUSY );
assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
/* Even though this opcode does not put dynamic strings onto the
** the stack, they may become dynamic if the user calls
** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
*/
if( p->pTos==&p->aStack[4] ){
releaseMemArray(p->aStack, 5);
}
p->resOnStack = 0;
do{
i = p->pc++;
}while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
if( i>=p->nOp ){
p->rc = SQLITE_OK;
rc = SQLITE_DONE;
}else if( db->u1.isInterrupted ){
p->rc = SQLITE_INTERRUPT;
rc = SQLITE_ERROR;
sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0);
}else{
Op *pOp = &p->aOp[i];
Mem *pMem = p->aStack;
pMem->flags = MEM_Int;
pMem->type = SQLITE_INTEGER;
pMem->u.i = i; /* Program counter */
pMem++;
pMem->flags = MEM_Static|MEM_Str|MEM_Term;
pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
assert( pMem->z!=0 );
pMem->n = strlen(pMem->z);
pMem->type = SQLITE_TEXT;
pMem->enc = SQLITE_UTF8;
pMem++;
pMem->flags = MEM_Int;
pMem->u.i = pOp->p1; /* P1 */
pMem->type = SQLITE_INTEGER;
pMem++;
pMem->flags = MEM_Int;
pMem->u.i = pOp->p2; /* P2 */
pMem->type = SQLITE_INTEGER;
pMem++;
pMem->flags = MEM_Ephem|MEM_Str|MEM_Term; /* P3 */
pMem->z = displayP3(pOp, pMem->zShort, sizeof(pMem->zShort));
assert( pMem->z!=0 );
pMem->n = strlen(pMem->z);
pMem->type = SQLITE_TEXT;
pMem->enc = SQLITE_UTF8;
p->nResColumn = 5 - 2*(p->explain-1);
p->pTos = pMem;
p->rc = SQLITE_OK;
p->resOnStack = 1;
rc = SQLITE_ROW;
}
return rc;
}
#endif /* SQLITE_OMIT_EXPLAIN */
#ifdef SQLITE_DEBUG
/*
** Print the SQL that was used to generate a VDBE program.
*/
void sqlite3VdbePrintSql(Vdbe *p){
int nOp = p->nOp;
VdbeOp *pOp;
if( nOp<1 ) return;
pOp = &p->aOp[nOp-1];
if( pOp->opcode==OP_Noop && pOp->p3!=0 ){
const char *z = pOp->p3;
while( isspace(*(u8*)z) ) z++;
printf("SQL: [%s]\n", z);
}
}
#endif
#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
/*
** Print an IOTRACE message showing SQL content.
*/
void sqlite3VdbeIOTraceSql(Vdbe *p){
int nOp = p->nOp;
VdbeOp *pOp;
if( sqlite3_io_trace==0 ) return;
if( nOp<1 ) return;
pOp = &p->aOp[nOp-1];
if( pOp->opcode==OP_Noop && pOp->p3!=0 ){
int i, j;
char z[1000];
sqlite3_snprintf(sizeof(z), z, "%s", pOp->p3);
for(i=0; isspace((unsigned char)z[i]); i++){}
for(j=0; z[i]; i++){
if( isspace((unsigned char)z[i]) ){
if( z[i-1]!=' ' ){
z[j++] = ' ';
}
}else{
z[j++] = z[i];
}
}
z[j] = 0;
sqlite3_io_trace("SQL %s\n", z);
}
}
#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
/*
** Prepare a virtual machine for execution. This involves things such
** as allocating stack space and initializing the program counter.
** After the VDBE has be prepped, it can be executed by one or more
** calls to sqlite3VdbeExec().
**
** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
** VDBE_MAGIC_RUN.
*/
void sqlite3VdbeMakeReady(
Vdbe *p, /* The VDBE */
int nVar, /* Number of '?' see in the SQL statement */
int nMem, /* Number of memory cells to allocate */
int nCursor, /* Number of cursors to allocate */
int isExplain /* True if the EXPLAIN keywords is present */
){
int n;
sqlite3 *db = p->db;
assert( p!=0 );
assert( p->magic==VDBE_MAGIC_INIT );
/* There should be at least one opcode.
*/
assert( p->nOp>0 );
/* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
* is because the call to resizeOpArray() below may shrink the
* p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN
* state.
*/
p->magic = VDBE_MAGIC_RUN;
/* No instruction ever pushes more than a single element onto the
** stack. And the stack never grows on successive executions of the
** same loop. So the total number of instructions is an upper bound
** on the maximum stack depth required. (Added later:) The
** resolveP2Values() call computes a tighter upper bound on the
** stack size.
**
** Allocation all the stack space we will ever need.
*/
if( p->aStack==0 ){
int nArg; /* Maximum number of args passed to a user function. */
int nStack; /* Maximum number of stack entries required */
resolveP2Values(p, &nArg, &nStack);
resizeOpArray(p, p->nOp);
assert( nVar>=0 );
assert( nStack<p->nOp );
if( isExplain ){
nStack = 10;
}
p->aStack = sqlite3DbMallocZero(db,
nStack*sizeof(p->aStack[0]) /* aStack */
+ nArg*sizeof(Mem*) /* apArg */
+ nVar*sizeof(Mem) /* aVar */
+ nVar*sizeof(char*) /* azVar */
+ nMem*sizeof(Mem) /* aMem */
+ nCursor*sizeof(Cursor*) /* apCsr */
);
if( !db->mallocFailed ){
p->aMem = &p->aStack[nStack];
p->nMem = nMem;
p->aVar = &p->aMem[nMem];
p->nVar = nVar;
p->okVar = 0;
p->apArg = (Mem**)&p->aVar[nVar];
p->azVar = (char**)&p->apArg[nArg];
p->apCsr = (Cursor**)&p->azVar[nVar];
p->nCursor = nCursor;
for(n=0; n<nVar; n++){
p->aVar[n].flags = MEM_Null;
p->aVar[n].db = db;
}
for(n=0; n<nStack; n++){
p->aStack[n].db = db;
}
}
}
for(n=0; n<p->nMem; n++){
p->aMem[n].flags = MEM_Null;
p->aMem[n].db = db;
}
p->pTos = &p->aStack[-1];
p->pc = -1;
p->rc = SQLITE_OK;
p->uniqueCnt = 0;
p->returnDepth = 0;
p->errorAction = OE_Abort;
p->popStack = 0;
p->explain |= isExplain;
p->magic = VDBE_MAGIC_RUN;
p->nChange = 0;
p->cacheCtr = 1;
p->minWriteFileFormat = 255;
p->openedStatement = 0;
#ifdef VDBE_PROFILE
{
int i;
for(i=0; i<p->nOp; i++){
p->aOp[i].cnt = 0;
p->aOp[i].cycles = 0;
}
}
#endif
}
/*
** Close a VDBE cursor and release all the resources that cursor happens
** to hold.
*/
void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){
if( pCx==0 ){
return;
}
if( pCx->pCursor ){
sqlite3BtreeCloseCursor(pCx->pCursor);
}
if( pCx->pBt ){
sqlite3BtreeClose(pCx->pBt);
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( pCx->pVtabCursor ){
sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
const sqlite3_module *pModule = pCx->pModule;
p->inVtabMethod = 1;
sqlite3SafetyOff(p->db);
pModule->xClose(pVtabCursor);
sqlite3SafetyOn(p->db);
p->inVtabMethod = 0;
}
#endif
sqlite3_free(pCx->pData);
sqlite3_free(pCx->aType);
sqlite3_free(pCx);
}
/*
** Close all cursors except for VTab cursors that are currently
** in use.
*/
static void closeAllCursorsExceptActiveVtabs(Vdbe *p){
int i;
if( p->apCsr==0 ) return;
for(i=0; i<p->nCursor; i++){
Cursor *pC = p->apCsr[i];
if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){
sqlite3VdbeFreeCursor(p, pC);
p->apCsr[i] = 0;
}
}
}
/*
** Clean up the VM after execution.
**
** This routine will automatically close any cursors, lists, and/or
** sorters that were left open. It also deletes the values of
** variables in the aVar[] array.
*/
static void Cleanup(Vdbe *p){
int i;
if( p->aStack ){
releaseMemArray(p->aStack, 1 + (p->pTos - p->aStack));
p->pTos = &p->aStack[-1];
}
closeAllCursorsExceptActiveVtabs(p);
releaseMemArray(p->aMem, p->nMem);
sqlite3VdbeFifoClear(&p->sFifo);
if( p->contextStack ){
for(i=0; i<p->contextStackTop; i++){
sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
}
sqlite3_free(p->contextStack);
}
p->contextStack = 0;
p->contextStackDepth = 0;
p->contextStackTop = 0;
sqlite3_free(p->zErrMsg);
p->zErrMsg = 0;
p->resOnStack = 0;
}
/*
** Set the number of result columns that will be returned by this SQL
** statement. This is now set at compile time, rather than during
** execution of the vdbe program so that sqlite3_column_count() can
** be called on an SQL statement before sqlite3_step().
*/
void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
Mem *pColName;
int n;
releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
sqlite3_free(p->aColName);
n = nResColumn*COLNAME_N;
p->nResColumn = nResColumn;
p->aColName = pColName = (Mem*)sqlite3DbMallocZero(p->db, sizeof(Mem)*n );
if( p->aColName==0 ) return;
while( n-- > 0 ){
pColName->flags = MEM_Null;
pColName->db = p->db;
pColName++;
}
}
/*
** Set the name of the idx'th column to be returned by the SQL statement.
** zName must be a pointer to a nul terminated string.
**
** This call must be made after a call to sqlite3VdbeSetNumCols().
**
** If N==P3_STATIC it means that zName is a pointer to a constant static
** string and we can just copy the pointer. If it is P3_DYNAMIC, then
** the string is freed using sqlite3_free() when the vdbe is finished with
** it. Otherwise, N bytes of zName are copied.
*/
int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
int rc;
Mem *pColName;
assert( idx<p->nResColumn );
assert( var<COLNAME_N );
if( p->db->mallocFailed ) return SQLITE_NOMEM;
assert( p->aColName!=0 );
pColName = &(p->aColName[idx+var*p->nResColumn]);
if( N==P3_DYNAMIC || N==P3_STATIC ){
rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
}else{
rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
}
if( rc==SQLITE_OK && N==P3_DYNAMIC ){
pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn;
pColName->xDel = 0;
}
return rc;
}
/*
** A read or write transaction may or may not be active on database handle
** db. If a transaction is active, commit it. If there is a
** write-transaction spanning more than one database file, this routine
** takes care of the master journal trickery.
*/
static int vdbeCommit(sqlite3 *db){
int i;
int nTrans = 0; /* Number of databases with an active write-transaction */
int rc = SQLITE_OK;
int needXcommit = 0;
/* Before doing anything else, call the xSync() callback for any
** virtual module tables written in this transaction. This has to
** be done before determining whether a master journal file is
** required, as an xSync() callback may add an attached database
** to the transaction.
*/
rc = sqlite3VtabSync(db, rc);
if( rc!=SQLITE_OK ){
return rc;
}
/* This loop determines (a) if the commit hook should be invoked and
** (b) how many database files have open write transactions, not
** including the temp database. (b) is important because if more than
** one database file has an open write transaction, a master journal
** file is required for an atomic commit.
*/
for(i=0; i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( sqlite3BtreeIsInTrans(pBt) ){
needXcommit = 1;
if( i!=1 ) nTrans++;
}
}
/* If there are any write-transactions at all, invoke the commit hook */
if( needXcommit && db->xCommitCallback ){
sqlite3SafetyOff(db);
rc = db->xCommitCallback(db->pCommitArg);
sqlite3SafetyOn(db);
if( rc ){
return SQLITE_CONSTRAINT;
}
}
/* The simple case - no more than one database file (not counting the
** TEMP database) has a transaction active. There is no need for the
** master-journal.
**
** If the return value of sqlite3BtreeGetFilename() is a zero length
** string, it means the main database is :memory:. In that case we do
** not support atomic multi-file commits, so use the simple case then
** too.
*/
if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
}
}
/* Do the commit only if all databases successfully complete phase 1.
** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
** IO error while deleting or truncating a journal file. It is unlikely,
** but could happen. In this case abandon processing and return the error.
*/
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
rc = sqlite3BtreeCommitPhaseTwo(pBt);
}
}
if( rc==SQLITE_OK ){
sqlite3VtabCommit(db);
}
}
/* The complex case - There is a multi-file write-transaction active.
** This requires a master journal file to ensure the transaction is
** committed atomicly.
*/
#ifndef SQLITE_OMIT_DISKIO
else{
sqlite3_vfs *pVfs = db->pVfs;
int needSync = 0;
char *zMaster = 0; /* File-name for the master journal */
char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
sqlite3_file *pMaster = 0;
i64 offset = 0;
/* Select a master journal file name */
do {
u32 random;
sqlite3_free(zMaster);
sqlite3Randomness(sizeof(random), &random);
zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff);
if( !zMaster ){
return SQLITE_NOMEM;
}
}while( sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS) );
/* Open the master journal. */
rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
);
if( rc!=SQLITE_OK ){
sqlite3_free(zMaster);
return rc;
}
/* Write the name of each database file in the transaction into the new
** master journal file. If an error occurs at this point close
** and delete the master journal file. All the individual journal files
** still have 'null' as the master journal pointer, so they will roll
** back independently if a failure occurs.
*/
for(i=0; i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( i==1 ) continue; /* Ignore the TEMP database */
if( sqlite3BtreeIsInTrans(pBt) ){
char const *zFile = sqlite3BtreeGetJournalname(pBt);
if( zFile[0]==0 ) continue; /* Ignore :memory: databases */
if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
needSync = 1;
}
rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset);
offset += strlen(zFile)+1;
if( rc!=SQLITE_OK ){
sqlite3OsCloseFree(pMaster);
sqlite3OsDelete(pVfs, zMaster, 0);
sqlite3_free(zMaster);
return rc;
}
}
}
/* Sync the master journal file. If the IOCAP_SEQUENTIAL device
** flag is set this is not required.
*/
zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
if( (needSync
&& (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL))
&& (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){
sqlite3OsCloseFree(pMaster);
sqlite3OsDelete(pVfs, zMaster, 0);
sqlite3_free(zMaster);
return rc;
}
/* Sync all the db files involved in the transaction. The same call
** sets the master journal pointer in each individual journal. If
** an error occurs here, do not delete the master journal file.
**
** If the error occurs during the first call to
** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
** master journal file will be orphaned. But we cannot delete it,
** in case the master journal file name was written into the journal
** file before the failure occured.
*/
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
}
}
sqlite3OsCloseFree(pMaster);
if( rc!=SQLITE_OK ){
sqlite3_free(zMaster);
return rc;
}
/* Delete the master journal file. This commits the transaction. After
** doing this the directory is synced again before any individual
** transaction files are deleted.
*/
rc = sqlite3OsDelete(pVfs, zMaster, 1);
sqlite3_free(zMaster);
zMaster = 0;
if( rc ){
return rc;
}
/* All files and directories have already been synced, so the following
** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
** deleting or truncating journals. If something goes wrong while
** this is happening we don't really care. The integrity of the
** transaction is already guaranteed, but some stray 'cold' journals
** may be lying around. Returning an error code won't help matters.
*/
disable_simulated_io_errors();
for(i=0; i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
sqlite3BtreeCommitPhaseTwo(pBt);
}
}
enable_simulated_io_errors();
sqlite3VtabCommit(db);
}
#endif
return rc;
}
/*
** This routine checks that the sqlite3.activeVdbeCnt count variable
** matches the number of vdbe's in the list sqlite3.pVdbe that are
** currently active. An assertion fails if the two counts do not match.
** This is an internal self-check only - it is not an essential processing
** step.
**
** This is a no-op if NDEBUG is defined.
*/
#ifndef NDEBUG
static void checkActiveVdbeCnt(sqlite3 *db){
Vdbe *p;
int cnt = 0;
p = db->pVdbe;
while( p ){
if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
cnt++;
}
p = p->pNext;
}
assert( cnt==db->activeVdbeCnt );
}
#else
#define checkActiveVdbeCnt(x)
#endif
/*
** For every Btree that in database connection db which
** has been modified, "trip" or invalidate each cursor in
** that Btree might have been modified so that the cursor
** can never be used again. This happens when a rollback
*** occurs. We have to trip all the other cursors, even
** cursor from other VMs in different database connections,
** so that none of them try to use the data at which they
** were pointing and which now may have been changed due
** to the rollback.
**
** Remember that a rollback can delete tables complete and
** reorder rootpages. So it is not sufficient just to save
** the state of the cursor. We have to invalidate the cursor
** so that it is never used again.
*/
void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
int i;
for(i=0; i<db->nDb; i++){
Btree *p = db->aDb[i].pBt;
if( p && sqlite3BtreeIsInTrans(p) ){
sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
}
}
}
/*
** This routine is called the when a VDBE tries to halt. If the VDBE
** has made changes and is in autocommit mode, then commit those
** changes. If a rollback is needed, then do the rollback.
**
** This routine is the only way to move the state of a VM from
** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
** call this on a VM that is in the SQLITE_MAGIC_HALT state.
**
** Return an error code. If the commit could not complete because of
** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
** means the close did not happen and needs to be repeated.
*/
int sqlite3VdbeHalt(Vdbe *p){
sqlite3 *db = p->db;
int i;
int (*xFunc)(Btree *pBt) = 0; /* Function to call on each btree backend */
int isSpecialError; /* Set to true if SQLITE_NOMEM or IOERR */
/* This function contains the logic that determines if a statement or
** transaction will be committed or rolled back as a result of the
** execution of this virtual machine.
**
** If any of the following errors occur:
**
** SQLITE_NOMEM
** SQLITE_IOERR
** SQLITE_FULL
** SQLITE_INTERRUPT
**
** Then the internal cache might have been left in an inconsistent
** state. We need to rollback the statement transaction, if there is
** one, or the complete transaction if there is no statement transaction.
*/
if( p->db->mallocFailed ){
p->rc = SQLITE_NOMEM;
}
closeAllCursorsExceptActiveVtabs(p);
if( p->magic!=VDBE_MAGIC_RUN ){
return SQLITE_OK;
}
checkActiveVdbeCnt(db);
/* No commit or rollback needed if the program never started */
if( p->pc>=0 ){
int mrc; /* Primary error code from p->rc */
/* Lock all btrees used by the statement */
sqlite3BtreeMutexArrayEnter(&p->aMutex);
/* Check for one of the special errors */
mrc = p->rc & 0xff;
isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
|| mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL ;
if( isSpecialError ){
/* This loop does static analysis of the query to see which of the
** following three categories it falls into:
**
** Read-only
** Query with statement journal
** Query without statement journal
**
** We could do something more elegant than this static analysis (i.e.
** store the type of query as part of the compliation phase), but
** handling malloc() or IO failure is a fairly obscure edge case so
** this is probably easier. Todo: Might be an opportunity to reduce
** code size a very small amount though...
*/
int notReadOnly = 0;
int isStatement = 0;
assert(p->aOp || p->nOp==0);
for(i=0; i<p->nOp; i++){
switch( p->aOp[i].opcode ){
case OP_Transaction:
notReadOnly |= p->aOp[i].p2;
break;
case OP_Statement:
isStatement = 1;
break;
}
}
/* If the query was read-only, we need do no rollback at all. Otherwise,
** proceed with the special handling.
*/
if( notReadOnly || mrc!=SQLITE_INTERRUPT ){
if( p->rc==SQLITE_IOERR_BLOCKED && isStatement ){
xFunc = sqlite3BtreeRollbackStmt;
p->rc = SQLITE_BUSY;
} else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && isStatement ){
xFunc = sqlite3BtreeRollbackStmt;
}else{
/* We are forced to roll back the active transaction. Before doing
** so, abort any other statements this handle currently has active.
*/
invalidateCursorsOnModifiedBtrees(db);
sqlite3RollbackAll(db);
db->autoCommit = 1;
}
}
}
/* If the auto-commit flag is set and this is the only active vdbe, then
** we do either a commit or rollback of the current transaction.
**
** Note: This block also runs if one of the special errors handled
** above has occured.
*/
if( db->autoCommit && db->activeVdbeCnt==1 ){
if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
/* The auto-commit flag is true, and the vdbe program was
** successful or hit an 'OR FAIL' constraint. This means a commit
** is required.
*/
int rc = vdbeCommit(db);
if( rc==SQLITE_BUSY ){
sqlite3BtreeMutexArrayLeave(&p->aMutex);
return SQLITE_BUSY;
}else if( rc!=SQLITE_OK ){
p->rc = rc;
sqlite3RollbackAll(db);
}else{
sqlite3CommitInternalChanges(db);
}
}else{
sqlite3RollbackAll(db);
}
}else if( !xFunc ){
if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
if( p->openedStatement ){
xFunc = sqlite3BtreeCommitStmt;
}
}else if( p->errorAction==OE_Abort ){
xFunc = sqlite3BtreeRollbackStmt;
}else{
invalidateCursorsOnModifiedBtrees(db);
sqlite3RollbackAll(db);
db->autoCommit = 1;
}
}
/* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or
** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs
** and the return code is still SQLITE_OK, set the return code to the new
** error value.
*/
assert(!xFunc ||
xFunc==sqlite3BtreeCommitStmt ||
xFunc==sqlite3BtreeRollbackStmt
);
for(i=0; xFunc && i<db->nDb; i++){
int rc;
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
rc = xFunc(pBt);
if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
p->rc = rc;
sqlite3SetString(&p->zErrMsg, 0);
}
}
}
/* If this was an INSERT, UPDATE or DELETE and the statement was committed,
** set the change counter.
*/
if( p->changeCntOn && p->pc>=0 ){
if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
sqlite3VdbeSetChanges(db, p->nChange);
}else{
sqlite3VdbeSetChanges(db, 0);
}
p->nChange = 0;
}
/* Rollback or commit any schema changes that occurred. */
if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
sqlite3ResetInternalSchema(db, 0);
db->flags = (db->flags | SQLITE_InternChanges);
}
/* Release the locks */
sqlite3BtreeMutexArrayLeave(&p->aMutex);
}
/* We have successfully halted and closed the VM. Record this fact. */
if( p->pc>=0 ){
db->activeVdbeCnt--;
}
p->magic = VDBE_MAGIC_HALT;
checkActiveVdbeCnt(db);
if( p->db->mallocFailed ){
p->rc = SQLITE_NOMEM;
}
checkActiveVdbeCnt(db);
return SQLITE_OK;
}
/*
** Each VDBE holds the result of the most recent sqlite3_step() call
** in p->rc. This routine sets that result back to SQLITE_OK.
*/
void sqlite3VdbeResetStepResult(Vdbe *p){
p->rc = SQLITE_OK;
}
/*
** Clean up a VDBE after execution but do not delete the VDBE just yet.
** Write any error messages into *pzErrMsg. Return the result code.
**
** After this routine is run, the VDBE should be ready to be executed
** again.
**
** To look at it another way, this routine resets the state of the
** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
** VDBE_MAGIC_INIT.
*/
int sqlite3VdbeReset(Vdbe *p){
sqlite3 *db;
db = p->db;
/* If the VM did not run to completion or if it encountered an
** error, then it might not have been halted properly. So halt
** it now.
*/
sqlite3SafetyOn(db);
sqlite3VdbeHalt(p);
sqlite3SafetyOff(db);
/* If the VDBE has be run even partially, then transfer the error code
** and error message from the VDBE into the main database structure. But
** if the VDBE has just been set to run but has not actually executed any
** instructions yet, leave the main database error information unchanged.
*/
if( p->pc>=0 ){
if( p->zErrMsg ){
sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,sqlite3_free);
db->errCode = p->rc;
p->zErrMsg = 0;
}else if( p->rc ){
sqlite3Error(db, p->rc, 0);
}else{
sqlite3Error(db, SQLITE_OK, 0);
}
}else if( p->rc && p->expired ){
/* The expired flag was set on the VDBE before the first call
** to sqlite3_step(). For consistency (since sqlite3_step() was
** called), set the database error in this case as well.
*/
sqlite3Error(db, p->rc, 0);
}
/* Reclaim all memory used by the VDBE
*/
Cleanup(p);
/* Save profiling information from this VDBE run.
*/
assert( p->pTos<&p->aStack[p->pc<0?0:p->pc] || !p->aStack );
#ifdef VDBE_PROFILE
{
FILE *out = fopen("vdbe_profile.out", "a");
if( out ){
int i;
fprintf(out, "---- ");
for(i=0; i<p->nOp; i++){
fprintf(out, "%02x", p->aOp[i].opcode);
}
fprintf(out, "\n");
for(i=0; i<p->nOp; i++){
fprintf(out, "%6d %10lld %8lld ",
p->aOp[i].cnt,
p->aOp[i].cycles,
p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
);
sqlite3VdbePrintOp(out, i, &p->aOp[i]);
}
fclose(out);
}
}
#endif
p->magic = VDBE_MAGIC_INIT;
p->aborted = 0;
return p->rc & db->errMask;
}
/*
** Clean up and delete a VDBE after execution. Return an integer which is
** the result code. Write any error message text into *pzErrMsg.
*/
int sqlite3VdbeFinalize(Vdbe *p){
int rc = SQLITE_OK;
if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
rc = sqlite3VdbeReset(p);
assert( (rc & p->db->errMask)==rc );
}else if( p->magic!=VDBE_MAGIC_INIT ){
return SQLITE_MISUSE;
}
sqlite3VdbeDelete(p);
return rc;
}
/*
** Call the destructor for each auxdata entry in pVdbeFunc for which
** the corresponding bit in mask is clear. Auxdata entries beyond 31
** are always destroyed. To destroy all auxdata entries, call this
** routine with mask==0.
*/
void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
int i;
for(i=0; i<pVdbeFunc->nAux; i++){
struct AuxData *pAux = &pVdbeFunc->apAux[i];
if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
if( pAux->xDelete ){
pAux->xDelete(pAux->pAux);
}
pAux->pAux = 0;
}
}
}
/*
** Delete an entire VDBE.
*/
void sqlite3VdbeDelete(Vdbe *p){
int i;
if( p==0 ) return;
Cleanup(p);
if( p->pPrev ){
p->pPrev->pNext = p->pNext;
}else{
assert( p->db->pVdbe==p );
p->db->pVdbe = p->pNext;
}
if( p->pNext ){
p->pNext->pPrev = p->pPrev;
}
if( p->aOp ){
for(i=0; i<p->nOp; i++){
Op *pOp = &p->aOp[i];
freeP3(pOp->p3type, pOp->p3);
}
sqlite3_free(p->aOp);
}
releaseMemArray(p->aVar, p->nVar);
sqlite3_free(p->aLabel);
sqlite3_free(p->aStack);
releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
sqlite3_free(p->aColName);
sqlite3_free(p->zSql);
p->magic = VDBE_MAGIC_DEAD;
sqlite3_free(p);
}
/*
** If a MoveTo operation is pending on the given cursor, then do that
** MoveTo now. Return an error code. If no MoveTo is pending, this
** routine does nothing and returns SQLITE_OK.
*/
int sqlite3VdbeCursorMoveto(Cursor *p){
if( p->deferredMoveto ){
int res, rc;
#ifdef SQLITE_TEST
extern int sqlite3_search_count;
#endif
assert( p->isTable );
rc = sqlite3BtreeMoveto(p->pCursor, 0, p->movetoTarget, 0, &res);
if( rc ) return rc;
*p->pIncrKey = 0;
p->lastRowid = keyToInt(p->movetoTarget);
p->rowidIsValid = res==0;
if( res<0 ){
rc = sqlite3BtreeNext(p->pCursor, &res);
if( rc ) return rc;
}
#ifdef SQLITE_TEST
sqlite3_search_count++;
#endif
p->deferredMoveto = 0;
p->cacheStatus = CACHE_STALE;
}
return SQLITE_OK;
}
/*
** The following functions:
**
** sqlite3VdbeSerialType()
** sqlite3VdbeSerialTypeLen()
** sqlite3VdbeSerialRead()
** sqlite3VdbeSerialLen()
** sqlite3VdbeSerialWrite()
**
** encapsulate the code that serializes values for storage in SQLite
** data and index records. Each serialized value consists of a
** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
** integer, stored as a varint.
**
** In an SQLite index record, the serial type is stored directly before
** the blob of data that it corresponds to. In a table record, all serial
** types are stored at the start of the record, and the blobs of data at
** the end. Hence these functions allow the caller to handle the
** serial-type and data blob seperately.
**
** The following table describes the various storage classes for data:
**
** serial type bytes of data type
** -------------- --------------- ---------------
** 0 0 NULL
** 1 1 signed integer
** 2 2 signed integer
** 3 3 signed integer
** 4 4 signed integer
** 5 6 signed integer
** 6 8 signed integer
** 7 8 IEEE float
** 8 0 Integer constant 0
** 9 0 Integer constant 1
** 10,11 reserved for expansion
** N>=12 and even (N-12)/2 BLOB
** N>=13 and odd (N-13)/2 text
**
** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
** of SQLite will not understand those serial types.
*/
/*
** Return the serial-type for the value stored in pMem.
*/
u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
int flags = pMem->flags;
int n;
if( flags&MEM_Null ){
return 0;
}
if( flags&MEM_Int ){
/* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
# define MAX_6BYTE ((((i64)0x00001000)<<32)-1)
i64 i = pMem->u.i;
u64 u;
if( file_format>=4 && (i&1)==i ){
return 8+i;
}
u = i<0 ? -i : i;
if( u<=127 ) return 1;
if( u<=32767 ) return 2;
if( u<=8388607 ) return 3;
if( u<=2147483647 ) return 4;
if( u<=MAX_6BYTE ) return 5;
return 6;
}
if( flags&MEM_Real ){
return 7;
}
assert( flags&(MEM_Str|MEM_Blob) );
n = pMem->n;
if( flags & MEM_Zero ){
n += pMem->u.i;
}
assert( n>=0 );
return ((n*2) + 12 + ((flags&MEM_Str)!=0));
}
/*
** Return the length of the data corresponding to the supplied serial-type.
*/
int sqlite3VdbeSerialTypeLen(u32 serial_type){
if( serial_type>=12 ){
return (serial_type-12)/2;
}else{
static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
return aSize[serial_type];
}
}
/*
** If we are on an architecture with mixed-endian floating
** points (ex: ARM7) then swap the lower 4 bytes with the
** upper 4 bytes. Return the result.
**
** For most architectures, this is a no-op.
**
** (later): It is reported to me that the mixed-endian problem
** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
** that early versions of GCC stored the two words of a 64-bit
** float in the wrong order. And that error has been propagated
** ever since. The blame is not necessarily with GCC, though.
** GCC might have just copying the problem from a prior compiler.
** I am also told that newer versions of GCC that follow a different
** ABI get the byte order right.
**
** Developers using SQLite on an ARM7 should compile and run their
** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
** enabled, some asserts below will ensure that the byte order of
** floating point values is correct.
**
** (2007-08-30) Frank van Vugt has studied this problem closely
** and has send his findings to the SQLite developers. Frank
** writes that some Linux kernels offer floating point hardware
** emulation that uses only 32-bit mantissas instead of a full
** 48-bits as required by the IEEE standard. (This is the
** CONFIG_FPE_FASTFPE option.) On such systems, floating point
** byte swapping becomes very complicated. To avoid problems,
** the necessary byte swapping is carried out using a 64-bit integer
** rather than a 64-bit float. Frank assures us that the code here
** works for him. We, the developers, have no way to independently
** verify this, but Frank seems to know what he is talking about
** so we trust him.
*/
#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
static u64 floatSwap(u64 in){
union {
u64 r;
u32 i[2];
} u;
u32 t;
u.r = in;
t = u.i[0];
u.i[0] = u.i[1];
u.i[1] = t;
return u.r;
}
# define swapMixedEndianFloat(X) X = floatSwap(X)
#else
# define swapMixedEndianFloat(X)
#endif
/*
** Write the serialized data blob for the value stored in pMem into
** buf. It is assumed that the caller has allocated sufficient space.
** Return the number of bytes written.
**
** nBuf is the amount of space left in buf[]. nBuf must always be
** large enough to hold the entire field. Except, if the field is
** a blob with a zero-filled tail, then buf[] might be just the right
** size to hold everything except for the zero-filled tail. If buf[]
** is only big enough to hold the non-zero prefix, then only write that
** prefix into buf[]. But if buf[] is large enough to hold both the
** prefix and the tail then write the prefix and set the tail to all
** zeros.
**
** Return the number of bytes actually written into buf[]. The number
** of bytes in the zero-filled tail is included in the return value only
** if those bytes were zeroed in buf[].
*/
int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
int len;
/* Integer and Real */
if( serial_type<=7 && serial_type>0 ){
u64 v;
int i;
if( serial_type==7 ){
assert( sizeof(v)==sizeof(pMem->r) );
memcpy(&v, &pMem->r, sizeof(v));
swapMixedEndianFloat(v);
}else{
v = pMem->u.i;
}
len = i = sqlite3VdbeSerialTypeLen(serial_type);
assert( len<=nBuf );
while( i-- ){
buf[i] = (v&0xFF);
v >>= 8;
}
return len;
}
/* String or blob */
if( serial_type>=12 ){
assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0)
== sqlite3VdbeSerialTypeLen(serial_type) );
assert( pMem->n<=nBuf );
len = pMem->n;
memcpy(buf, pMem->z, len);
if( pMem->flags & MEM_Zero ){
len += pMem->u.i;
if( len>nBuf ){
len = nBuf;
}
memset(&buf[pMem->n], 0, len-pMem->n);
}
return len;
}
/* NULL or constants 0 or 1 */
return 0;
}
/*
** Deserialize the data blob pointed to by buf as serial type serial_type
** and store the result in pMem. Return the number of bytes read.
*/
int sqlite3VdbeSerialGet(
const unsigned char *buf, /* Buffer to deserialize from */
u32 serial_type, /* Serial type to deserialize */
Mem *pMem /* Memory cell to write value into */
){
switch( serial_type ){
case 10: /* Reserved for future use */
case 11: /* Reserved for future use */
case 0: { /* NULL */
pMem->flags = MEM_Null;
break;
}
case 1: { /* 1-byte signed integer */
pMem->u.i = (signed char)buf[0];
pMem->flags = MEM_Int;
return 1;
}
case 2: { /* 2-byte signed integer */
pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
pMem->flags = MEM_Int;
return 2;
}
case 3: { /* 3-byte signed integer */
pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
pMem->flags = MEM_Int;
return 3;
}
case 4: { /* 4-byte signed integer */
pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
pMem->flags = MEM_Int;
return 4;
}
case 5: { /* 6-byte signed integer */
u64 x = (((signed char)buf[0])<<8) | buf[1];
u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
x = (x<<32) | y;
pMem->u.i = *(i64*)&x;
pMem->flags = MEM_Int;
return 6;
}
case 6: /* 8-byte signed integer */
case 7: { /* IEEE floating point */
u64 x;
u32 y;
#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
/* Verify that integers and floating point values use the same
** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
** defined that 64-bit floating point values really are mixed
** endian.
*/
static const u64 t1 = ((u64)0x3ff00000)<<32;
static const double r1 = 1.0;
u64 t2 = t1;
swapMixedEndianFloat(t2);
assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
#endif
x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
x = (x<<32) | y;
if( serial_type==6 ){
pMem->u.i = *(i64*)&x;
pMem->flags = MEM_Int;
}else{
assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
swapMixedEndianFloat(x);
memcpy(&pMem->r, &x, sizeof(x));
pMem->flags = MEM_Real;
}
return 8;
}
case 8: /* Integer 0 */
case 9: { /* Integer 1 */
pMem->u.i = serial_type-8;
pMem->flags = MEM_Int;
return 0;
}
default: {
int len = (serial_type-12)/2;
pMem->z = (char *)buf;
pMem->n = len;
pMem->xDel = 0;
if( serial_type&0x01 ){
pMem->flags = MEM_Str | MEM_Ephem;
}else{
pMem->flags = MEM_Blob | MEM_Ephem;
}
return len;
}
}
return 0;
}
/*
** The header of a record consists of a sequence variable-length integers.
** These integers are almost always small and are encoded as a single byte.
** The following macro takes advantage this fact to provide a fast decode
** of the integers in a record header. It is faster for the common case
** where the integer is a single byte. It is a little slower when the
** integer is two or more bytes. But overall it is faster.
**
** The following expressions are equivalent:
**
** x = sqlite3GetVarint32( A, &B );
**
** x = GetVarint( A, B );
**
*/
#define GetVarint(A,B) ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))
/*
** This function compares the two table rows or index records specified by
** {nKey1, pKey1} and {nKey2, pKey2}, returning a negative, zero
** or positive integer if {nKey1, pKey1} is less than, equal to or
** greater than {nKey2, pKey2}. Both Key1 and Key2 must be byte strings
** composed by the OP_MakeRecord opcode of the VDBE.
*/
int sqlite3VdbeRecordCompare(
void *userData,
int nKey1, const void *pKey1,
int nKey2, const void *pKey2
){
KeyInfo *pKeyInfo = (KeyInfo*)userData;
u32 d1, d2; /* Offset into aKey[] of next data element */
u32 idx1, idx2; /* Offset into aKey[] of next header element */
u32 szHdr1, szHdr2; /* Number of bytes in header */
int i = 0;
int nField;
int rc = 0;
const unsigned char *aKey1 = (const unsigned char *)pKey1;
const unsigned char *aKey2 = (const unsigned char *)pKey2;
Mem mem1;
Mem mem2;
mem1.enc = pKeyInfo->enc;
mem1.db = pKeyInfo->db;
mem2.enc = pKeyInfo->enc;
mem2.db = pKeyInfo->db;
idx1 = GetVarint(aKey1, szHdr1);
d1 = szHdr1;
idx2 = GetVarint(aKey2, szHdr2);
d2 = szHdr2;
nField = pKeyInfo->nField;
while( idx1<szHdr1 && idx2<szHdr2 ){
u32 serial_type1;
u32 serial_type2;
/* Read the serial types for the next element in each key. */
idx1 += GetVarint( aKey1+idx1, serial_type1 );
if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
idx2 += GetVarint( aKey2+idx2, serial_type2 );
if( d2>=nKey2 && sqlite3VdbeSerialTypeLen(serial_type2)>0 ) break;
/* Extract the values to be compared.
*/
d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
d2 += sqlite3VdbeSerialGet(&aKey2[d2], serial_type2, &mem2);
/* Do the comparison
*/
rc = sqlite3MemCompare(&mem1, &mem2, i<nField ? pKeyInfo->aColl[i] : 0);
if( mem1.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem1);
if( mem2.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem2);
if( rc!=0 ){
break;
}
i++;
}
/* One of the keys ran out of fields, but all the fields up to that point
** were equal. If the incrKey flag is true, then the second key is
** treated as larger.
*/
if( rc==0 ){
if( pKeyInfo->incrKey ){
rc = -1;
}else if( d1<nKey1 ){
rc = 1;
}else if( d2<nKey2 ){
rc = -1;
}
}else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
&& pKeyInfo->aSortOrder[i] ){
rc = -rc;
}
return rc;
}
/*
** The argument is an index entry composed using the OP_MakeRecord opcode.
** The last entry in this record should be an integer (specifically
** an integer rowid). This routine returns the number of bytes in
** that integer.
*/
int sqlite3VdbeIdxRowidLen(const u8 *aKey){
u32 szHdr; /* Size of the header */
u32 typeRowid; /* Serial type of the rowid */
sqlite3GetVarint32(aKey, &szHdr);
sqlite3GetVarint32(&aKey[szHdr-1], &typeRowid);
return sqlite3VdbeSerialTypeLen(typeRowid);
}
/*
** pCur points at an index entry created using the OP_MakeRecord opcode.
** Read the rowid (the last field in the record) and store it in *rowid.
** Return SQLITE_OK if everything works, or an error code otherwise.
*/
int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
i64 nCellKey = 0;
int rc;
u32 szHdr; /* Size of the header */
u32 typeRowid; /* Serial type of the rowid */
u32 lenRowid; /* Size of the rowid */
Mem m, v;
sqlite3BtreeKeySize(pCur, &nCellKey);
if( nCellKey<=0 ){
return SQLITE_CORRUPT_BKPT;
}
rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
if( rc ){
return rc;
}
sqlite3GetVarint32((u8*)m.z, &szHdr);
sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid);
lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
*rowid = v.u.i;
sqlite3VdbeMemRelease(&m);
return SQLITE_OK;
}
/*
** Compare the key of the index entry that cursor pC is point to against
** the key string in pKey (of length nKey). Write into *pRes a number
** that is negative, zero, or positive if pC is less than, equal to,
** or greater than pKey. Return SQLITE_OK on success.
**
** pKey is either created without a rowid or is truncated so that it
** omits the rowid at the end. The rowid at the end of the index entry
** is ignored as well.
*/
int sqlite3VdbeIdxKeyCompare(
Cursor *pC, /* The cursor to compare against */
int nKey, const u8 *pKey, /* The key to compare */
int *res /* Write the comparison result here */
){
i64 nCellKey = 0;
int rc;
BtCursor *pCur = pC->pCursor;
int lenRowid;
Mem m;
sqlite3BtreeKeySize(pCur, &nCellKey);
if( nCellKey<=0 ){
*res = 0;
return SQLITE_OK;
}
rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
if( rc ){
return rc;
}
lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z);
*res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey);
sqlite3VdbeMemRelease(&m);
return SQLITE_OK;
}
/*
** This routine sets the value to be returned by subsequent calls to
** sqlite3_changes() on the database handle 'db'.
*/
void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
assert( sqlite3_mutex_held(db->mutex) );
db->nChange = nChange;
db->nTotalChange += nChange;
}
/*
** Set a flag in the vdbe to update the change counter when it is finalised
** or reset.
*/
void sqlite3VdbeCountChanges(Vdbe *v){
v->changeCntOn = 1;
}
/*
** Mark every prepared statement associated with a database connection
** as expired.
**
** An expired statement means that recompilation of the statement is
** recommend. Statements expire when things happen that make their
** programs obsolete. Removing user-defined functions or collating
** sequences, or changing an authorization function are the types of
** things that make prepared statements obsolete.
*/
void sqlite3ExpirePreparedStatements(sqlite3 *db){
Vdbe *p;
for(p = db->pVdbe; p; p=p->pNext){
p->expired = 1;
}
}
/*
** Return the database associated with the Vdbe.
*/
sqlite3 *sqlite3VdbeDb(Vdbe *v){
return v->db;
}