--HG-- extra : convert_revision : svn%3A39bc706e-5318-0410-9160-8a85361fbb7c/trunk%401209
		
			
				
	
	
		
			2582 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2582 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains routines used for analyzing expressions and
 | |
| ** for generating VDBE code that evaluates expressions in SQLite.
 | |
| **
 | |
| ** $Id$
 | |
| */
 | |
| #include "sqliteInt.h"
 | |
| #include <ctype.h>
 | |
| 
 | |
| /*
 | |
| ** Return the 'affinity' of the expression pExpr if any.
 | |
| **
 | |
| ** If pExpr is a column, a reference to a column via an 'AS' alias,
 | |
| ** or a sub-select with a column as the return value, then the 
 | |
| ** affinity of that column is returned. Otherwise, 0x00 is returned,
 | |
| ** indicating no affinity for the expression.
 | |
| **
 | |
| ** i.e. the WHERE clause expresssions in the following statements all
 | |
| ** have an affinity:
 | |
| **
 | |
| ** CREATE TABLE t1(a);
 | |
| ** SELECT * FROM t1 WHERE a;
 | |
| ** SELECT a AS b FROM t1 WHERE b;
 | |
| ** SELECT * FROM t1 WHERE (select a from t1);
 | |
| */
 | |
| char sqlite3ExprAffinity(Expr *pExpr){
 | |
|   int op = pExpr->op;
 | |
|   if( op==TK_SELECT ){
 | |
|     return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_CAST
 | |
|   if( op==TK_CAST ){
 | |
|     return sqlite3AffinityType(&pExpr->token);
 | |
|   }
 | |
| #endif
 | |
|   return pExpr->affinity;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the collating sequence for expression pExpr to be the collating
 | |
| ** sequence named by pToken.   Return a pointer to the revised expression.
 | |
| ** The collating sequence is marked as "explicit" using the EP_ExpCollate
 | |
| ** flag.  An explicit collating sequence will override implicit
 | |
| ** collating sequences.
 | |
| */
 | |
| Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
 | |
|   CollSeq *pColl;
 | |
|   if( pExpr==0 ) return 0;
 | |
|   pColl = sqlite3LocateCollSeq(pParse, (char*)pName->z, pName->n);
 | |
|   if( pColl ){
 | |
|     pExpr->pColl = pColl;
 | |
|     pExpr->flags |= EP_ExpCollate;
 | |
|   }
 | |
|   return pExpr;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the default collation sequence for the expression pExpr. If
 | |
| ** there is no default collation type, return 0.
 | |
| */
 | |
| CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
 | |
|   CollSeq *pColl = 0;
 | |
|   if( pExpr ){
 | |
|     int op;
 | |
|     pColl = pExpr->pColl;
 | |
|     op = pExpr->op;
 | |
|     if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){
 | |
|       return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
 | |
|     }
 | |
|   }
 | |
|   if( sqlite3CheckCollSeq(pParse, pColl) ){ 
 | |
|     pColl = 0;
 | |
|   }
 | |
|   return pColl;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** pExpr is an operand of a comparison operator.  aff2 is the
 | |
| ** type affinity of the other operand.  This routine returns the
 | |
| ** type affinity that should be used for the comparison operator.
 | |
| */
 | |
| char sqlite3CompareAffinity(Expr *pExpr, char aff2){
 | |
|   char aff1 = sqlite3ExprAffinity(pExpr);
 | |
|   if( aff1 && aff2 ){
 | |
|     /* Both sides of the comparison are columns. If one has numeric
 | |
|     ** affinity, use that. Otherwise use no affinity.
 | |
|     */
 | |
|     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
 | |
|       return SQLITE_AFF_NUMERIC;
 | |
|     }else{
 | |
|       return SQLITE_AFF_NONE;
 | |
|     }
 | |
|   }else if( !aff1 && !aff2 ){
 | |
|     /* Neither side of the comparison is a column.  Compare the
 | |
|     ** results directly.
 | |
|     */
 | |
|     return SQLITE_AFF_NONE;
 | |
|   }else{
 | |
|     /* One side is a column, the other is not. Use the columns affinity. */
 | |
|     assert( aff1==0 || aff2==0 );
 | |
|     return (aff1 + aff2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** pExpr is a comparison operator.  Return the type affinity that should
 | |
| ** be applied to both operands prior to doing the comparison.
 | |
| */
 | |
| static char comparisonAffinity(Expr *pExpr){
 | |
|   char aff;
 | |
|   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
 | |
|           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
 | |
|           pExpr->op==TK_NE );
 | |
|   assert( pExpr->pLeft );
 | |
|   aff = sqlite3ExprAffinity(pExpr->pLeft);
 | |
|   if( pExpr->pRight ){
 | |
|     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
 | |
|   }
 | |
|   else if( pExpr->pSelect ){
 | |
|     aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
 | |
|   }
 | |
|   else if( !aff ){
 | |
|     aff = SQLITE_AFF_NONE;
 | |
|   }
 | |
|   return aff;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
 | |
| ** idx_affinity is the affinity of an indexed column. Return true
 | |
| ** if the index with affinity idx_affinity may be used to implement
 | |
| ** the comparison in pExpr.
 | |
| */
 | |
| int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
 | |
|   char aff = comparisonAffinity(pExpr);
 | |
|   switch( aff ){
 | |
|     case SQLITE_AFF_NONE:
 | |
|       return 1;
 | |
|     case SQLITE_AFF_TEXT:
 | |
|       return idx_affinity==SQLITE_AFF_TEXT;
 | |
|     default:
 | |
|       return sqlite3IsNumericAffinity(idx_affinity);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the P1 value that should be used for a binary comparison
 | |
| ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
 | |
| ** If jumpIfNull is true, then set the low byte of the returned
 | |
| ** P1 value to tell the opcode to jump if either expression
 | |
| ** evaluates to NULL.
 | |
| */
 | |
| static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
 | |
|   char aff = sqlite3ExprAffinity(pExpr2);
 | |
|   return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a pointer to the collation sequence that should be used by
 | |
| ** a binary comparison operator comparing pLeft and pRight.
 | |
| **
 | |
| ** If the left hand expression has a collating sequence type, then it is
 | |
| ** used. Otherwise the collation sequence for the right hand expression
 | |
| ** is used, or the default (BINARY) if neither expression has a collating
 | |
| ** type.
 | |
| **
 | |
| ** Argument pRight (but not pLeft) may be a null pointer. In this case,
 | |
| ** it is not considered.
 | |
| */
 | |
| CollSeq* sqlite3BinaryCompareCollSeq(
 | |
|   Parse *pParse, 
 | |
|   Expr *pLeft, 
 | |
|   Expr *pRight
 | |
| ){
 | |
|   CollSeq *pColl;
 | |
|   assert( pLeft );
 | |
|   if( pLeft->flags & EP_ExpCollate ){
 | |
|     assert( pLeft->pColl );
 | |
|     pColl = pLeft->pColl;
 | |
|   }else if( pRight && pRight->flags & EP_ExpCollate ){
 | |
|     assert( pRight->pColl );
 | |
|     pColl = pRight->pColl;
 | |
|   }else{
 | |
|     pColl = sqlite3ExprCollSeq(pParse, pLeft);
 | |
|     if( !pColl ){
 | |
|       pColl = sqlite3ExprCollSeq(pParse, pRight);
 | |
|     }
 | |
|   }
 | |
|   return pColl;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code for a comparison operator.
 | |
| */
 | |
| static int codeCompare(
 | |
|   Parse *pParse,    /* The parsing (and code generating) context */
 | |
|   Expr *pLeft,      /* The left operand */
 | |
|   Expr *pRight,     /* The right operand */
 | |
|   int opcode,       /* The comparison opcode */
 | |
|   int dest,         /* Jump here if true.  */
 | |
|   int jumpIfNull    /* If true, jump if either operand is NULL */
 | |
| ){
 | |
|   int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull);
 | |
|   CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
 | |
|   return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Construct a new expression node and return a pointer to it.  Memory
 | |
| ** for this node is obtained from sqliteMalloc().  The calling function
 | |
| ** is responsible for making sure the node eventually gets freed.
 | |
| */
 | |
| Expr *sqlite3Expr(int op, Expr *pLeft, Expr *pRight, const Token *pToken){
 | |
|   Expr *pNew;
 | |
|   pNew = sqliteMalloc( sizeof(Expr) );
 | |
|   if( pNew==0 ){
 | |
|     /* When malloc fails, delete pLeft and pRight. Expressions passed to 
 | |
|     ** this function must always be allocated with sqlite3Expr() for this 
 | |
|     ** reason. 
 | |
|     */
 | |
|     sqlite3ExprDelete(pLeft);
 | |
|     sqlite3ExprDelete(pRight);
 | |
|     return 0;
 | |
|   }
 | |
|   pNew->op = op;
 | |
|   pNew->pLeft = pLeft;
 | |
|   pNew->pRight = pRight;
 | |
|   pNew->iAgg = -1;
 | |
|   if( pToken ){
 | |
|     assert( pToken->dyn==0 );
 | |
|     pNew->span = pNew->token = *pToken;
 | |
|   }else if( pLeft ){
 | |
|     if( pRight ){
 | |
|       sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
 | |
|       if( pRight->flags & EP_ExpCollate ){
 | |
|         pNew->flags |= EP_ExpCollate;
 | |
|         pNew->pColl = pRight->pColl;
 | |
|       }
 | |
|     }
 | |
|     if( pLeft->flags & EP_ExpCollate ){
 | |
|       pNew->flags |= EP_ExpCollate;
 | |
|       pNew->pColl = pLeft->pColl;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   sqlite3ExprSetHeight(pNew);
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Works like sqlite3Expr() but frees its pLeft and pRight arguments
 | |
| ** if it fails due to a malloc problem.
 | |
| */
 | |
| Expr *sqlite3ExprOrFree(int op, Expr *pLeft, Expr *pRight, const Token *pToken){
 | |
|   Expr *pNew = sqlite3Expr(op, pLeft, pRight, pToken);
 | |
|   if( pNew==0 ){
 | |
|     sqlite3ExprDelete(pLeft);
 | |
|     sqlite3ExprDelete(pRight);
 | |
|   }
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** When doing a nested parse, you can include terms in an expression
 | |
| ** that look like this:   #0 #1 #2 ...  These terms refer to elements
 | |
| ** on the stack.  "#0" means the top of the stack.
 | |
| ** "#1" means the next down on the stack.  And so forth.
 | |
| **
 | |
| ** This routine is called by the parser to deal with on of those terms.
 | |
| ** It immediately generates code to store the value in a memory location.
 | |
| ** The returns an expression that will code to extract the value from
 | |
| ** that memory location as needed.
 | |
| */
 | |
| Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   Expr *p;
 | |
|   int depth;
 | |
|   if( pParse->nested==0 ){
 | |
|     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
 | |
|     return sqlite3Expr(TK_NULL, 0, 0, 0);
 | |
|   }
 | |
|   if( v==0 ) return 0;
 | |
|   p = sqlite3Expr(TK_REGISTER, 0, 0, pToken);
 | |
|   if( p==0 ){
 | |
|     return 0;  /* Malloc failed */
 | |
|   }
 | |
|   depth = atoi((char*)&pToken->z[1]);
 | |
|   p->iTable = pParse->nMem++;
 | |
|   sqlite3VdbeAddOp(v, OP_Dup, depth, 0);
 | |
|   sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1);
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Join two expressions using an AND operator.  If either expression is
 | |
| ** NULL, then just return the other expression.
 | |
| */
 | |
| Expr *sqlite3ExprAnd(Expr *pLeft, Expr *pRight){
 | |
|   if( pLeft==0 ){
 | |
|     return pRight;
 | |
|   }else if( pRight==0 ){
 | |
|     return pLeft;
 | |
|   }else{
 | |
|     return sqlite3Expr(TK_AND, pLeft, pRight, 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the Expr.span field of the given expression to span all
 | |
| ** text between the two given tokens.
 | |
| */
 | |
| void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
 | |
|   assert( pRight!=0 );
 | |
|   assert( pLeft!=0 );
 | |
|   if( !sqlite3MallocFailed() && pRight->z && pLeft->z ){
 | |
|     assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 );
 | |
|     if( pLeft->dyn==0 && pRight->dyn==0 ){
 | |
|       pExpr->span.z = pLeft->z;
 | |
|       pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
 | |
|     }else{
 | |
|       pExpr->span.z = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Construct a new expression node for a function with multiple
 | |
| ** arguments.
 | |
| */
 | |
| Expr *sqlite3ExprFunction(ExprList *pList, Token *pToken){
 | |
|   Expr *pNew;
 | |
|   assert( pToken );
 | |
|   pNew = sqliteMalloc( sizeof(Expr) );
 | |
|   if( pNew==0 ){
 | |
|     sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */
 | |
|     return 0;
 | |
|   }
 | |
|   pNew->op = TK_FUNCTION;
 | |
|   pNew->pList = pList;
 | |
|   assert( pToken->dyn==0 );
 | |
|   pNew->token = *pToken;
 | |
|   pNew->span = pNew->token;
 | |
| 
 | |
|   sqlite3ExprSetHeight(pNew);
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Assign a variable number to an expression that encodes a wildcard
 | |
| ** in the original SQL statement.  
 | |
| **
 | |
| ** Wildcards consisting of a single "?" are assigned the next sequential
 | |
| ** variable number.
 | |
| **
 | |
| ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
 | |
| ** sure "nnn" is not too be to avoid a denial of service attack when
 | |
| ** the SQL statement comes from an external source.
 | |
| **
 | |
| ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
 | |
| ** as the previous instance of the same wildcard.  Or if this is the first
 | |
| ** instance of the wildcard, the next sequenial variable number is
 | |
| ** assigned.
 | |
| */
 | |
| void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
 | |
|   Token *pToken;
 | |
|   if( pExpr==0 ) return;
 | |
|   pToken = &pExpr->token;
 | |
|   assert( pToken->n>=1 );
 | |
|   assert( pToken->z!=0 );
 | |
|   assert( pToken->z[0]!=0 );
 | |
|   if( pToken->n==1 ){
 | |
|     /* Wildcard of the form "?".  Assign the next variable number */
 | |
|     pExpr->iTable = ++pParse->nVar;
 | |
|   }else if( pToken->z[0]=='?' ){
 | |
|     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
 | |
|     ** use it as the variable number */
 | |
|     int i;
 | |
|     pExpr->iTable = i = atoi((char*)&pToken->z[1]);
 | |
|     if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){
 | |
|       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
 | |
|           SQLITE_MAX_VARIABLE_NUMBER);
 | |
|     }
 | |
|     if( i>pParse->nVar ){
 | |
|       pParse->nVar = i;
 | |
|     }
 | |
|   }else{
 | |
|     /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable
 | |
|     ** number as the prior appearance of the same name, or if the name
 | |
|     ** has never appeared before, reuse the same variable number
 | |
|     */
 | |
|     int i, n;
 | |
|     n = pToken->n;
 | |
|     for(i=0; i<pParse->nVarExpr; i++){
 | |
|       Expr *pE;
 | |
|       if( (pE = pParse->apVarExpr[i])!=0
 | |
|           && pE->token.n==n
 | |
|           && memcmp(pE->token.z, pToken->z, n)==0 ){
 | |
|         pExpr->iTable = pE->iTable;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if( i>=pParse->nVarExpr ){
 | |
|       pExpr->iTable = ++pParse->nVar;
 | |
|       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
 | |
|         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
 | |
|         pParse->apVarExpr = sqliteReallocOrFree(pParse->apVarExpr,
 | |
|                        pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) );
 | |
|       }
 | |
|       if( !sqlite3MallocFailed() ){
 | |
|         assert( pParse->apVarExpr!=0 );
 | |
|         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
 | |
|       }
 | |
|     }
 | |
|   } 
 | |
|   if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){
 | |
|     sqlite3ErrorMsg(pParse, "too many SQL variables");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Recursively delete an expression tree.
 | |
| */
 | |
| void sqlite3ExprDelete(Expr *p){
 | |
|   if( p==0 ) return;
 | |
|   if( p->span.dyn ) sqliteFree((char*)p->span.z);
 | |
|   if( p->token.dyn ) sqliteFree((char*)p->token.z);
 | |
|   sqlite3ExprDelete(p->pLeft);
 | |
|   sqlite3ExprDelete(p->pRight);
 | |
|   sqlite3ExprListDelete(p->pList);
 | |
|   sqlite3SelectDelete(p->pSelect);
 | |
|   sqliteFree(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The Expr.token field might be a string literal that is quoted.
 | |
| ** If so, remove the quotation marks.
 | |
| */
 | |
| void sqlite3DequoteExpr(Expr *p){
 | |
|   if( ExprHasAnyProperty(p, EP_Dequoted) ){
 | |
|     return;
 | |
|   }
 | |
|   ExprSetProperty(p, EP_Dequoted);
 | |
|   if( p->token.dyn==0 ){
 | |
|     sqlite3TokenCopy(&p->token, &p->token);
 | |
|   }
 | |
|   sqlite3Dequote((char*)p->token.z);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The following group of routines make deep copies of expressions,
 | |
| ** expression lists, ID lists, and select statements.  The copies can
 | |
| ** be deleted (by being passed to their respective ...Delete() routines)
 | |
| ** without effecting the originals.
 | |
| **
 | |
| ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
 | |
| ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 
 | |
| ** by subsequent calls to sqlite*ListAppend() routines.
 | |
| **
 | |
| ** Any tables that the SrcList might point to are not duplicated.
 | |
| */
 | |
| Expr *sqlite3ExprDup(Expr *p){
 | |
|   Expr *pNew;
 | |
|   if( p==0 ) return 0;
 | |
|   pNew = sqliteMallocRaw( sizeof(*p) );
 | |
|   if( pNew==0 ) return 0;
 | |
|   memcpy(pNew, p, sizeof(*pNew));
 | |
|   if( p->token.z!=0 ){
 | |
|     pNew->token.z = (u8*)sqliteStrNDup((char*)p->token.z, p->token.n);
 | |
|     pNew->token.dyn = 1;
 | |
|   }else{
 | |
|     assert( pNew->token.z==0 );
 | |
|   }
 | |
|   pNew->span.z = 0;
 | |
|   pNew->pLeft = sqlite3ExprDup(p->pLeft);
 | |
|   pNew->pRight = sqlite3ExprDup(p->pRight);
 | |
|   pNew->pList = sqlite3ExprListDup(p->pList);
 | |
|   pNew->pSelect = sqlite3SelectDup(p->pSelect);
 | |
|   return pNew;
 | |
| }
 | |
| void sqlite3TokenCopy(Token *pTo, Token *pFrom){
 | |
|   if( pTo->dyn ) sqliteFree((char*)pTo->z);
 | |
|   if( pFrom->z ){
 | |
|     pTo->n = pFrom->n;
 | |
|     pTo->z = (u8*)sqliteStrNDup((char*)pFrom->z, pFrom->n);
 | |
|     pTo->dyn = 1;
 | |
|   }else{
 | |
|     pTo->z = 0;
 | |
|   }
 | |
| }
 | |
| ExprList *sqlite3ExprListDup(ExprList *p){
 | |
|   ExprList *pNew;
 | |
|   struct ExprList_item *pItem, *pOldItem;
 | |
|   int i;
 | |
|   if( p==0 ) return 0;
 | |
|   pNew = sqliteMalloc( sizeof(*pNew) );
 | |
|   if( pNew==0 ) return 0;
 | |
|   pNew->nExpr = pNew->nAlloc = p->nExpr;
 | |
|   pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) );
 | |
|   if( pItem==0 ){
 | |
|     sqliteFree(pNew);
 | |
|     return 0;
 | |
|   } 
 | |
|   pOldItem = p->a;
 | |
|   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
 | |
|     Expr *pNewExpr, *pOldExpr;
 | |
|     pItem->pExpr = pNewExpr = sqlite3ExprDup(pOldExpr = pOldItem->pExpr);
 | |
|     if( pOldExpr->span.z!=0 && pNewExpr ){
 | |
|       /* Always make a copy of the span for top-level expressions in the
 | |
|       ** expression list.  The logic in SELECT processing that determines
 | |
|       ** the names of columns in the result set needs this information */
 | |
|       sqlite3TokenCopy(&pNewExpr->span, &pOldExpr->span);
 | |
|     }
 | |
|     assert( pNewExpr==0 || pNewExpr->span.z!=0 
 | |
|             || pOldExpr->span.z==0
 | |
|             || sqlite3MallocFailed() );
 | |
|     pItem->zName = sqliteStrDup(pOldItem->zName);
 | |
|     pItem->sortOrder = pOldItem->sortOrder;
 | |
|     pItem->isAgg = pOldItem->isAgg;
 | |
|     pItem->done = 0;
 | |
|   }
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If cursors, triggers, views and subqueries are all omitted from
 | |
| ** the build, then none of the following routines, except for 
 | |
| ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
 | |
| ** called with a NULL argument.
 | |
| */
 | |
| #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
 | |
|  || !defined(SQLITE_OMIT_SUBQUERY)
 | |
| SrcList *sqlite3SrcListDup(SrcList *p){
 | |
|   SrcList *pNew;
 | |
|   int i;
 | |
|   int nByte;
 | |
|   if( p==0 ) return 0;
 | |
|   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
 | |
|   pNew = sqliteMallocRaw( nByte );
 | |
|   if( pNew==0 ) return 0;
 | |
|   pNew->nSrc = pNew->nAlloc = p->nSrc;
 | |
|   for(i=0; i<p->nSrc; i++){
 | |
|     struct SrcList_item *pNewItem = &pNew->a[i];
 | |
|     struct SrcList_item *pOldItem = &p->a[i];
 | |
|     Table *pTab;
 | |
|     pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase);
 | |
|     pNewItem->zName = sqliteStrDup(pOldItem->zName);
 | |
|     pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias);
 | |
|     pNewItem->jointype = pOldItem->jointype;
 | |
|     pNewItem->iCursor = pOldItem->iCursor;
 | |
|     pNewItem->isPopulated = pOldItem->isPopulated;
 | |
|     pTab = pNewItem->pTab = pOldItem->pTab;
 | |
|     if( pTab ){
 | |
|       pTab->nRef++;
 | |
|     }
 | |
|     pNewItem->pSelect = sqlite3SelectDup(pOldItem->pSelect);
 | |
|     pNewItem->pOn = sqlite3ExprDup(pOldItem->pOn);
 | |
|     pNewItem->pUsing = sqlite3IdListDup(pOldItem->pUsing);
 | |
|     pNewItem->colUsed = pOldItem->colUsed;
 | |
|   }
 | |
|   return pNew;
 | |
| }
 | |
| IdList *sqlite3IdListDup(IdList *p){
 | |
|   IdList *pNew;
 | |
|   int i;
 | |
|   if( p==0 ) return 0;
 | |
|   pNew = sqliteMallocRaw( sizeof(*pNew) );
 | |
|   if( pNew==0 ) return 0;
 | |
|   pNew->nId = pNew->nAlloc = p->nId;
 | |
|   pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) );
 | |
|   if( pNew->a==0 ){
 | |
|     sqliteFree(pNew);
 | |
|     return 0;
 | |
|   }
 | |
|   for(i=0; i<p->nId; i++){
 | |
|     struct IdList_item *pNewItem = &pNew->a[i];
 | |
|     struct IdList_item *pOldItem = &p->a[i];
 | |
|     pNewItem->zName = sqliteStrDup(pOldItem->zName);
 | |
|     pNewItem->idx = pOldItem->idx;
 | |
|   }
 | |
|   return pNew;
 | |
| }
 | |
| Select *sqlite3SelectDup(Select *p){
 | |
|   Select *pNew;
 | |
|   if( p==0 ) return 0;
 | |
|   pNew = sqliteMallocRaw( sizeof(*p) );
 | |
|   if( pNew==0 ) return 0;
 | |
|   pNew->isDistinct = p->isDistinct;
 | |
|   pNew->pEList = sqlite3ExprListDup(p->pEList);
 | |
|   pNew->pSrc = sqlite3SrcListDup(p->pSrc);
 | |
|   pNew->pWhere = sqlite3ExprDup(p->pWhere);
 | |
|   pNew->pGroupBy = sqlite3ExprListDup(p->pGroupBy);
 | |
|   pNew->pHaving = sqlite3ExprDup(p->pHaving);
 | |
|   pNew->pOrderBy = sqlite3ExprListDup(p->pOrderBy);
 | |
|   pNew->op = p->op;
 | |
|   pNew->pPrior = sqlite3SelectDup(p->pPrior);
 | |
|   pNew->pLimit = sqlite3ExprDup(p->pLimit);
 | |
|   pNew->pOffset = sqlite3ExprDup(p->pOffset);
 | |
|   pNew->iLimit = -1;
 | |
|   pNew->iOffset = -1;
 | |
|   pNew->isResolved = p->isResolved;
 | |
|   pNew->isAgg = p->isAgg;
 | |
|   pNew->usesEphm = 0;
 | |
|   pNew->disallowOrderBy = 0;
 | |
|   pNew->pRightmost = 0;
 | |
|   pNew->addrOpenEphm[0] = -1;
 | |
|   pNew->addrOpenEphm[1] = -1;
 | |
|   pNew->addrOpenEphm[2] = -1;
 | |
|   return pNew;
 | |
| }
 | |
| #else
 | |
| Select *sqlite3SelectDup(Select *p){
 | |
|   assert( p==0 );
 | |
|   return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Add a new element to the end of an expression list.  If pList is
 | |
| ** initially NULL, then create a new expression list.
 | |
| */
 | |
| ExprList *sqlite3ExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){
 | |
|   if( pList==0 ){
 | |
|     pList = sqliteMalloc( sizeof(ExprList) );
 | |
|     if( pList==0 ){
 | |
|       goto no_mem;
 | |
|     }
 | |
|     assert( pList->nAlloc==0 );
 | |
|   }
 | |
|   if( pList->nAlloc<=pList->nExpr ){
 | |
|     struct ExprList_item *a;
 | |
|     int n = pList->nAlloc*2 + 4;
 | |
|     a = sqliteRealloc(pList->a, n*sizeof(pList->a[0]));
 | |
|     if( a==0 ){
 | |
|       goto no_mem;
 | |
|     }
 | |
|     pList->a = a;
 | |
|     pList->nAlloc = n;
 | |
|   }
 | |
|   assert( pList->a!=0 );
 | |
|   if( pExpr || pName ){
 | |
|     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
 | |
|     memset(pItem, 0, sizeof(*pItem));
 | |
|     pItem->zName = sqlite3NameFromToken(pName);
 | |
|     pItem->pExpr = pExpr;
 | |
|   }
 | |
|   return pList;
 | |
| 
 | |
| no_mem:     
 | |
|   /* Avoid leaking memory if malloc has failed. */
 | |
|   sqlite3ExprDelete(pExpr);
 | |
|   sqlite3ExprListDelete(pList);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If the expression list pEList contains more than iLimit elements,
 | |
| ** leave an error message in pParse.
 | |
| */
 | |
| void sqlite3ExprListCheckLength(
 | |
|   Parse *pParse,
 | |
|   ExprList *pEList,
 | |
|   int iLimit,
 | |
|   const char *zObject
 | |
| ){
 | |
|   if( pEList && pEList->nExpr>iLimit ){
 | |
|     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| #if SQLITE_MAX_EXPR_DEPTH>0
 | |
| /* The following three functions, heightOfExpr(), heightOfExprList()
 | |
| ** and heightOfSelect(), are used to determine the maximum height
 | |
| ** of any expression tree referenced by the structure passed as the
 | |
| ** first argument.
 | |
| **
 | |
| ** If this maximum height is greater than the current value pointed
 | |
| ** to by pnHeight, the second parameter, then set *pnHeight to that
 | |
| ** value.
 | |
| */
 | |
| static void heightOfExpr(Expr *p, int *pnHeight){
 | |
|   if( p ){
 | |
|     if( p->nHeight>*pnHeight ){
 | |
|       *pnHeight = p->nHeight;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| static void heightOfExprList(ExprList *p, int *pnHeight){
 | |
|   if( p ){
 | |
|     int i;
 | |
|     for(i=0; i<p->nExpr; i++){
 | |
|       heightOfExpr(p->a[i].pExpr, pnHeight);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| static void heightOfSelect(Select *p, int *pnHeight){
 | |
|   if( p ){
 | |
|     heightOfExpr(p->pWhere, pnHeight);
 | |
|     heightOfExpr(p->pHaving, pnHeight);
 | |
|     heightOfExpr(p->pLimit, pnHeight);
 | |
|     heightOfExpr(p->pOffset, pnHeight);
 | |
|     heightOfExprList(p->pEList, pnHeight);
 | |
|     heightOfExprList(p->pGroupBy, pnHeight);
 | |
|     heightOfExprList(p->pOrderBy, pnHeight);
 | |
|     heightOfSelect(p->pPrior, pnHeight);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the Expr.nHeight variable in the structure passed as an 
 | |
| ** argument. An expression with no children, Expr.pList or 
 | |
| ** Expr.pSelect member has a height of 1. Any other expression
 | |
| ** has a height equal to the maximum height of any other 
 | |
| ** referenced Expr plus one.
 | |
| */
 | |
| void sqlite3ExprSetHeight(Expr *p){
 | |
|   int nHeight = 0;
 | |
|   heightOfExpr(p->pLeft, &nHeight);
 | |
|   heightOfExpr(p->pRight, &nHeight);
 | |
|   heightOfExprList(p->pList, &nHeight);
 | |
|   heightOfSelect(p->pSelect, &nHeight);
 | |
|   p->nHeight = nHeight + 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the maximum height of any expression tree referenced
 | |
| ** by the select statement passed as an argument.
 | |
| */
 | |
| int sqlite3SelectExprHeight(Select *p){
 | |
|   int nHeight = 0;
 | |
|   heightOfSelect(p, &nHeight);
 | |
|   return nHeight;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Delete an entire expression list.
 | |
| */
 | |
| void sqlite3ExprListDelete(ExprList *pList){
 | |
|   int i;
 | |
|   struct ExprList_item *pItem;
 | |
|   if( pList==0 ) return;
 | |
|   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
 | |
|   assert( pList->nExpr<=pList->nAlloc );
 | |
|   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
 | |
|     sqlite3ExprDelete(pItem->pExpr);
 | |
|     sqliteFree(pItem->zName);
 | |
|   }
 | |
|   sqliteFree(pList->a);
 | |
|   sqliteFree(pList);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Walk an expression tree.  Call xFunc for each node visited.
 | |
| **
 | |
| ** The return value from xFunc determines whether the tree walk continues.
 | |
| ** 0 means continue walking the tree.  1 means do not walk children
 | |
| ** of the current node but continue with siblings.  2 means abandon
 | |
| ** the tree walk completely.
 | |
| **
 | |
| ** The return value from this routine is 1 to abandon the tree walk
 | |
| ** and 0 to continue.
 | |
| **
 | |
| ** NOTICE:  This routine does *not* descend into subqueries.
 | |
| */
 | |
| static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
 | |
| static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
 | |
|   int rc;
 | |
|   if( pExpr==0 ) return 0;
 | |
|   rc = (*xFunc)(pArg, pExpr);
 | |
|   if( rc==0 ){
 | |
|     if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
 | |
|     if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
 | |
|     if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
 | |
|   }
 | |
|   return rc>1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Call walkExprTree() for every expression in list p.
 | |
| */
 | |
| static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
 | |
|   int i;
 | |
|   struct ExprList_item *pItem;
 | |
|   if( !p ) return 0;
 | |
|   for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
 | |
|     if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Call walkExprTree() for every expression in Select p, not including
 | |
| ** expressions that are part of sub-selects in any FROM clause or the LIMIT
 | |
| ** or OFFSET expressions..
 | |
| */
 | |
| static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
 | |
|   walkExprList(p->pEList, xFunc, pArg);
 | |
|   walkExprTree(p->pWhere, xFunc, pArg);
 | |
|   walkExprList(p->pGroupBy, xFunc, pArg);
 | |
|   walkExprTree(p->pHaving, xFunc, pArg);
 | |
|   walkExprList(p->pOrderBy, xFunc, pArg);
 | |
|   if( p->pPrior ){
 | |
|     walkSelectExpr(p->pPrior, xFunc, pArg);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This routine is designed as an xFunc for walkExprTree().
 | |
| **
 | |
| ** pArg is really a pointer to an integer.  If we can tell by looking
 | |
| ** at pExpr that the expression that contains pExpr is not a constant
 | |
| ** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
 | |
| ** If pExpr does does not disqualify the expression from being a constant
 | |
| ** then do nothing.
 | |
| **
 | |
| ** After walking the whole tree, if no nodes are found that disqualify
 | |
| ** the expression as constant, then we assume the whole expression
 | |
| ** is constant.  See sqlite3ExprIsConstant() for additional information.
 | |
| */
 | |
| static int exprNodeIsConstant(void *pArg, Expr *pExpr){
 | |
|   int *pN = (int*)pArg;
 | |
| 
 | |
|   /* If *pArg is 3 then any term of the expression that comes from
 | |
|   ** the ON or USING clauses of a join disqualifies the expression
 | |
|   ** from being considered constant. */
 | |
|   if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
 | |
|     *pN = 0;
 | |
|     return 2;
 | |
|   }
 | |
| 
 | |
|   switch( pExpr->op ){
 | |
|     /* Consider functions to be constant if all their arguments are constant
 | |
|     ** and *pArg==2 */
 | |
|     case TK_FUNCTION:
 | |
|       if( (*pN)==2 ) return 0;
 | |
|       /* Fall through */
 | |
|     case TK_ID:
 | |
|     case TK_COLUMN:
 | |
|     case TK_DOT:
 | |
|     case TK_AGG_FUNCTION:
 | |
|     case TK_AGG_COLUMN:
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
|     case TK_SELECT:
 | |
|     case TK_EXISTS:
 | |
| #endif
 | |
|       *pN = 0;
 | |
|       return 2;
 | |
|     case TK_IN:
 | |
|       if( pExpr->pSelect ){
 | |
|         *pN = 0;
 | |
|         return 2;
 | |
|       }
 | |
|     default:
 | |
|       return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Walk an expression tree.  Return 1 if the expression is constant
 | |
| ** and 0 if it involves variables or function calls.
 | |
| **
 | |
| ** For the purposes of this function, a double-quoted string (ex: "abc")
 | |
| ** is considered a variable but a single-quoted string (ex: 'abc') is
 | |
| ** a constant.
 | |
| */
 | |
| int sqlite3ExprIsConstant(Expr *p){
 | |
|   int isConst = 1;
 | |
|   walkExprTree(p, exprNodeIsConstant, &isConst);
 | |
|   return isConst;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Walk an expression tree.  Return 1 if the expression is constant
 | |
| ** that does no originate from the ON or USING clauses of a join.
 | |
| ** Return 0 if it involves variables or function calls or terms from
 | |
| ** an ON or USING clause.
 | |
| */
 | |
| int sqlite3ExprIsConstantNotJoin(Expr *p){
 | |
|   int isConst = 3;
 | |
|   walkExprTree(p, exprNodeIsConstant, &isConst);
 | |
|   return isConst!=0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Walk an expression tree.  Return 1 if the expression is constant
 | |
| ** or a function call with constant arguments.  Return and 0 if there
 | |
| ** are any variables.
 | |
| **
 | |
| ** For the purposes of this function, a double-quoted string (ex: "abc")
 | |
| ** is considered a variable but a single-quoted string (ex: 'abc') is
 | |
| ** a constant.
 | |
| */
 | |
| int sqlite3ExprIsConstantOrFunction(Expr *p){
 | |
|   int isConst = 2;
 | |
|   walkExprTree(p, exprNodeIsConstant, &isConst);
 | |
|   return isConst!=0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If the expression p codes a constant integer that is small enough
 | |
| ** to fit in a 32-bit integer, return 1 and put the value of the integer
 | |
| ** in *pValue.  If the expression is not an integer or if it is too big
 | |
| ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
 | |
| */
 | |
| int sqlite3ExprIsInteger(Expr *p, int *pValue){
 | |
|   switch( p->op ){
 | |
|     case TK_INTEGER: {
 | |
|       if( sqlite3GetInt32((char*)p->token.z, pValue) ){
 | |
|         return 1;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case TK_UPLUS: {
 | |
|       return sqlite3ExprIsInteger(p->pLeft, pValue);
 | |
|     }
 | |
|     case TK_UMINUS: {
 | |
|       int v;
 | |
|       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
 | |
|         *pValue = -v;
 | |
|         return 1;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     default: break;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return TRUE if the given string is a row-id column name.
 | |
| */
 | |
| int sqlite3IsRowid(const char *z){
 | |
|   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
 | |
|   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
 | |
|   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
 | |
| ** that name in the set of source tables in pSrcList and make the pExpr 
 | |
| ** expression node refer back to that source column.  The following changes
 | |
| ** are made to pExpr:
 | |
| **
 | |
| **    pExpr->iDb           Set the index in db->aDb[] of the database holding
 | |
| **                         the table.
 | |
| **    pExpr->iTable        Set to the cursor number for the table obtained
 | |
| **                         from pSrcList.
 | |
| **    pExpr->iColumn       Set to the column number within the table.
 | |
| **    pExpr->op            Set to TK_COLUMN.
 | |
| **    pExpr->pLeft         Any expression this points to is deleted
 | |
| **    pExpr->pRight        Any expression this points to is deleted.
 | |
| **
 | |
| ** The pDbToken is the name of the database (the "X").  This value may be
 | |
| ** NULL meaning that name is of the form Y.Z or Z.  Any available database
 | |
| ** can be used.  The pTableToken is the name of the table (the "Y").  This
 | |
| ** value can be NULL if pDbToken is also NULL.  If pTableToken is NULL it
 | |
| ** means that the form of the name is Z and that columns from any table
 | |
| ** can be used.
 | |
| **
 | |
| ** If the name cannot be resolved unambiguously, leave an error message
 | |
| ** in pParse and return non-zero.  Return zero on success.
 | |
| */
 | |
| static int lookupName(
 | |
|   Parse *pParse,       /* The parsing context */
 | |
|   Token *pDbToken,     /* Name of the database containing table, or NULL */
 | |
|   Token *pTableToken,  /* Name of table containing column, or NULL */
 | |
|   Token *pColumnToken, /* Name of the column. */
 | |
|   NameContext *pNC,    /* The name context used to resolve the name */
 | |
|   Expr *pExpr          /* Make this EXPR node point to the selected column */
 | |
| ){
 | |
|   char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */
 | |
|   char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */
 | |
|   char *zCol = 0;      /* Name of the column.  The "Z" */
 | |
|   int i, j;            /* Loop counters */
 | |
|   int cnt = 0;         /* Number of matching column names */
 | |
|   int cntTab = 0;      /* Number of matching table names */
 | |
|   sqlite3 *db = pParse->db;  /* The database */
 | |
|   struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
 | |
|   struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
 | |
|   NameContext *pTopNC = pNC;        /* First namecontext in the list */
 | |
| 
 | |
|   assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
 | |
|   zDb = sqlite3NameFromToken(pDbToken);
 | |
|   zTab = sqlite3NameFromToken(pTableToken);
 | |
|   zCol = sqlite3NameFromToken(pColumnToken);
 | |
|   if( sqlite3MallocFailed() ){
 | |
|     goto lookupname_end;
 | |
|   }
 | |
| 
 | |
|   pExpr->iTable = -1;
 | |
|   while( pNC && cnt==0 ){
 | |
|     ExprList *pEList;
 | |
|     SrcList *pSrcList = pNC->pSrcList;
 | |
| 
 | |
|     if( pSrcList ){
 | |
|       for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
 | |
|         Table *pTab;
 | |
|         int iDb;
 | |
|         Column *pCol;
 | |
|   
 | |
|         pTab = pItem->pTab;
 | |
|         assert( pTab!=0 );
 | |
|         iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | |
|         assert( pTab->nCol>0 );
 | |
|         if( zTab ){
 | |
|           if( pItem->zAlias ){
 | |
|             char *zTabName = pItem->zAlias;
 | |
|             if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
 | |
|           }else{
 | |
|             char *zTabName = pTab->zName;
 | |
|             if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
 | |
|             if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
 | |
|               continue;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         if( 0==(cntTab++) ){
 | |
|           pExpr->iTable = pItem->iCursor;
 | |
|           pExpr->pSchema = pTab->pSchema;
 | |
|           pMatch = pItem;
 | |
|         }
 | |
|         for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
 | |
|           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
 | |
|             const char *zColl = pTab->aCol[j].zColl;
 | |
|             IdList *pUsing;
 | |
|             cnt++;
 | |
|             pExpr->iTable = pItem->iCursor;
 | |
|             pMatch = pItem;
 | |
|             pExpr->pSchema = pTab->pSchema;
 | |
|             /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
 | |
|             pExpr->iColumn = j==pTab->iPKey ? -1 : j;
 | |
|             pExpr->affinity = pTab->aCol[j].affinity;
 | |
|             if( (pExpr->flags & EP_ExpCollate)==0 ){
 | |
|               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
 | |
|             }
 | |
|             if( i<pSrcList->nSrc-1 ){
 | |
|               if( pItem[1].jointype & JT_NATURAL ){
 | |
|                 /* If this match occurred in the left table of a natural join,
 | |
|                 ** then skip the right table to avoid a duplicate match */
 | |
|                 pItem++;
 | |
|                 i++;
 | |
|               }else if( (pUsing = pItem[1].pUsing)!=0 ){
 | |
|                 /* If this match occurs on a column that is in the USING clause
 | |
|                 ** of a join, skip the search of the right table of the join
 | |
|                 ** to avoid a duplicate match there. */
 | |
|                 int k;
 | |
|                 for(k=0; k<pUsing->nId; k++){
 | |
|                   if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
 | |
|                     pItem++;
 | |
|                     i++;
 | |
|                     break;
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|     /* If we have not already resolved the name, then maybe 
 | |
|     ** it is a new.* or old.* trigger argument reference
 | |
|     */
 | |
|     if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
 | |
|       TriggerStack *pTriggerStack = pParse->trigStack;
 | |
|       Table *pTab = 0;
 | |
|       if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
 | |
|         pExpr->iTable = pTriggerStack->newIdx;
 | |
|         assert( pTriggerStack->pTab );
 | |
|         pTab = pTriggerStack->pTab;
 | |
|       }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
 | |
|         pExpr->iTable = pTriggerStack->oldIdx;
 | |
|         assert( pTriggerStack->pTab );
 | |
|         pTab = pTriggerStack->pTab;
 | |
|       }
 | |
| 
 | |
|       if( pTab ){ 
 | |
|         int iCol;
 | |
|         Column *pCol = pTab->aCol;
 | |
| 
 | |
|         pExpr->pSchema = pTab->pSchema;
 | |
|         cntTab++;
 | |
|         for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
 | |
|           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
 | |
|             const char *zColl = pTab->aCol[iCol].zColl;
 | |
|             cnt++;
 | |
|             pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
 | |
|             pExpr->affinity = pTab->aCol[iCol].affinity;
 | |
|             if( (pExpr->flags & EP_ExpCollate)==0 ){
 | |
|               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
 | |
|             }
 | |
|             pExpr->pTab = pTab;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| #endif /* !defined(SQLITE_OMIT_TRIGGER) */
 | |
| 
 | |
|     /*
 | |
|     ** Perhaps the name is a reference to the ROWID
 | |
|     */
 | |
|     if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
 | |
|       cnt = 1;
 | |
|       pExpr->iColumn = -1;
 | |
|       pExpr->affinity = SQLITE_AFF_INTEGER;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|     ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
 | |
|     ** might refer to an result-set alias.  This happens, for example, when
 | |
|     ** we are resolving names in the WHERE clause of the following command:
 | |
|     **
 | |
|     **     SELECT a+b AS x FROM table WHERE x<10;
 | |
|     **
 | |
|     ** In cases like this, replace pExpr with a copy of the expression that
 | |
|     ** forms the result set entry ("a+b" in the example) and return immediately.
 | |
|     ** Note that the expression in the result set should have already been
 | |
|     ** resolved by the time the WHERE clause is resolved.
 | |
|     */
 | |
|     if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
 | |
|       for(j=0; j<pEList->nExpr; j++){
 | |
|         char *zAs = pEList->a[j].zName;
 | |
|         if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
 | |
|           Expr *pDup;
 | |
|           assert( pExpr->pLeft==0 && pExpr->pRight==0 );
 | |
|           assert( pExpr->pList==0 );
 | |
|           assert( pExpr->pSelect==0 );
 | |
|           pDup = sqlite3ExprDup(pEList->a[j].pExpr);
 | |
|           if( pExpr->flags & EP_ExpCollate ){
 | |
|             pDup->pColl = pExpr->pColl;
 | |
|             pDup->flags |= EP_ExpCollate;
 | |
|           }
 | |
|           if( pExpr->span.dyn ) sqliteFree((char*)pExpr->span.z);
 | |
|           if( pExpr->token.dyn ) sqliteFree((char*)pExpr->token.z);
 | |
|           memcpy(pExpr, pDup, sizeof(*pExpr));
 | |
|           sqliteFree(pDup);
 | |
|           cnt = 1;
 | |
|           pMatch = 0;
 | |
|           assert( zTab==0 && zDb==0 );
 | |
|           goto lookupname_end_2;
 | |
|         }
 | |
|       } 
 | |
|     }
 | |
| 
 | |
|     /* Advance to the next name context.  The loop will exit when either
 | |
|     ** we have a match (cnt>0) or when we run out of name contexts.
 | |
|     */
 | |
|     if( cnt==0 ){
 | |
|       pNC = pNC->pNext;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   ** If X and Y are NULL (in other words if only the column name Z is
 | |
|   ** supplied) and the value of Z is enclosed in double-quotes, then
 | |
|   ** Z is a string literal if it doesn't match any column names.  In that
 | |
|   ** case, we need to return right away and not make any changes to
 | |
|   ** pExpr.
 | |
|   **
 | |
|   ** Because no reference was made to outer contexts, the pNC->nRef
 | |
|   ** fields are not changed in any context.
 | |
|   */
 | |
|   if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
 | |
|     sqliteFree(zCol);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   ** cnt==0 means there was not match.  cnt>1 means there were two or
 | |
|   ** more matches.  Either way, we have an error.
 | |
|   */
 | |
|   if( cnt!=1 ){
 | |
|     char *z = 0;
 | |
|     char *zErr;
 | |
|     zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s";
 | |
|     if( zDb ){
 | |
|       sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0);
 | |
|     }else if( zTab ){
 | |
|       sqlite3SetString(&z, zTab, ".", zCol, (char*)0);
 | |
|     }else{
 | |
|       z = sqliteStrDup(zCol);
 | |
|     }
 | |
|     sqlite3ErrorMsg(pParse, zErr, z);
 | |
|     sqliteFree(z);
 | |
|     pTopNC->nErr++;
 | |
|   }
 | |
| 
 | |
|   /* If a column from a table in pSrcList is referenced, then record
 | |
|   ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes
 | |
|   ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the
 | |
|   ** column number is greater than the number of bits in the bitmask
 | |
|   ** then set the high-order bit of the bitmask.
 | |
|   */
 | |
|   if( pExpr->iColumn>=0 && pMatch!=0 ){
 | |
|     int n = pExpr->iColumn;
 | |
|     if( n>=sizeof(Bitmask)*8 ){
 | |
|       n = sizeof(Bitmask)*8-1;
 | |
|     }
 | |
|     assert( pMatch->iCursor==pExpr->iTable );
 | |
|     pMatch->colUsed |= ((Bitmask)1)<<n;
 | |
|   }
 | |
| 
 | |
| lookupname_end:
 | |
|   /* Clean up and return
 | |
|   */
 | |
|   sqliteFree(zDb);
 | |
|   sqliteFree(zTab);
 | |
|   sqlite3ExprDelete(pExpr->pLeft);
 | |
|   pExpr->pLeft = 0;
 | |
|   sqlite3ExprDelete(pExpr->pRight);
 | |
|   pExpr->pRight = 0;
 | |
|   pExpr->op = TK_COLUMN;
 | |
| lookupname_end_2:
 | |
|   sqliteFree(zCol);
 | |
|   if( cnt==1 ){
 | |
|     assert( pNC!=0 );
 | |
|     sqlite3AuthRead(pParse, pExpr, pNC->pSrcList);
 | |
|     if( pMatch && !pMatch->pSelect ){
 | |
|       pExpr->pTab = pMatch->pTab;
 | |
|     }
 | |
|     /* Increment the nRef value on all name contexts from TopNC up to
 | |
|     ** the point where the name matched. */
 | |
|     for(;;){
 | |
|       assert( pTopNC!=0 );
 | |
|       pTopNC->nRef++;
 | |
|       if( pTopNC==pNC ) break;
 | |
|       pTopNC = pTopNC->pNext;
 | |
|     }
 | |
|     return 0;
 | |
|   } else {
 | |
|     return 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is designed as an xFunc for walkExprTree().
 | |
| **
 | |
| ** Resolve symbolic names into TK_COLUMN operators for the current
 | |
| ** node in the expression tree.  Return 0 to continue the search down
 | |
| ** the tree or 2 to abort the tree walk.
 | |
| **
 | |
| ** This routine also does error checking and name resolution for
 | |
| ** function names.  The operator for aggregate functions is changed
 | |
| ** to TK_AGG_FUNCTION.
 | |
| */
 | |
| static int nameResolverStep(void *pArg, Expr *pExpr){
 | |
|   NameContext *pNC = (NameContext*)pArg;
 | |
|   Parse *pParse;
 | |
| 
 | |
|   if( pExpr==0 ) return 1;
 | |
|   assert( pNC!=0 );
 | |
|   pParse = pNC->pParse;
 | |
| 
 | |
|   if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
 | |
|   ExprSetProperty(pExpr, EP_Resolved);
 | |
| #ifndef NDEBUG
 | |
|   if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
 | |
|     SrcList *pSrcList = pNC->pSrcList;
 | |
|     int i;
 | |
|     for(i=0; i<pNC->pSrcList->nSrc; i++){
 | |
|       assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   switch( pExpr->op ){
 | |
|     /* Double-quoted strings (ex: "abc") are used as identifiers if
 | |
|     ** possible.  Otherwise they remain as strings.  Single-quoted
 | |
|     ** strings (ex: 'abc') are always string literals.
 | |
|     */
 | |
|     case TK_STRING: {
 | |
|       if( pExpr->token.z[0]=='\'' ) break;
 | |
|       /* Fall thru into the TK_ID case if this is a double-quoted string */
 | |
|     }
 | |
|     /* A lone identifier is the name of a column.
 | |
|     */
 | |
|     case TK_ID: {
 | |
|       lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
 | |
|       return 1;
 | |
|     }
 | |
|   
 | |
|     /* A table name and column name:     ID.ID
 | |
|     ** Or a database, table and column:  ID.ID.ID
 | |
|     */
 | |
|     case TK_DOT: {
 | |
|       Token *pColumn;
 | |
|       Token *pTable;
 | |
|       Token *pDb;
 | |
|       Expr *pRight;
 | |
| 
 | |
|       /* if( pSrcList==0 ) break; */
 | |
|       pRight = pExpr->pRight;
 | |
|       if( pRight->op==TK_ID ){
 | |
|         pDb = 0;
 | |
|         pTable = &pExpr->pLeft->token;
 | |
|         pColumn = &pRight->token;
 | |
|       }else{
 | |
|         assert( pRight->op==TK_DOT );
 | |
|         pDb = &pExpr->pLeft->token;
 | |
|         pTable = &pRight->pLeft->token;
 | |
|         pColumn = &pRight->pRight->token;
 | |
|       }
 | |
|       lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
 | |
|       return 1;
 | |
|     }
 | |
| 
 | |
|     /* Resolve function names
 | |
|     */
 | |
|     case TK_CONST_FUNC:
 | |
|     case TK_FUNCTION: {
 | |
|       ExprList *pList = pExpr->pList;    /* The argument list */
 | |
|       int n = pList ? pList->nExpr : 0;  /* Number of arguments */
 | |
|       int no_such_func = 0;       /* True if no such function exists */
 | |
|       int wrong_num_args = 0;     /* True if wrong number of arguments */
 | |
|       int is_agg = 0;             /* True if is an aggregate function */
 | |
|       int i;
 | |
|       int auth;                   /* Authorization to use the function */
 | |
|       int nId;                    /* Number of characters in function name */
 | |
|       const char *zId;            /* The function name. */
 | |
|       FuncDef *pDef;              /* Information about the function */
 | |
|       int enc = ENC(pParse->db);  /* The database encoding */
 | |
| 
 | |
|       zId = (char*)pExpr->token.z;
 | |
|       nId = pExpr->token.n;
 | |
|       pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
 | |
|       if( pDef==0 ){
 | |
|         pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
 | |
|         if( pDef==0 ){
 | |
|           no_such_func = 1;
 | |
|         }else{
 | |
|           wrong_num_args = 1;
 | |
|         }
 | |
|       }else{
 | |
|         is_agg = pDef->xFunc==0;
 | |
|       }
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|       if( pDef ){
 | |
|         auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
 | |
|         if( auth!=SQLITE_OK ){
 | |
|           if( auth==SQLITE_DENY ){
 | |
|             sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
 | |
|                                     pDef->zName);
 | |
|             pNC->nErr++;
 | |
|           }
 | |
|           pExpr->op = TK_NULL;
 | |
|           return 1;
 | |
|         }
 | |
|       }
 | |
| #endif
 | |
|       if( is_agg && !pNC->allowAgg ){
 | |
|         sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
 | |
|         pNC->nErr++;
 | |
|         is_agg = 0;
 | |
|       }else if( no_such_func ){
 | |
|         sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
 | |
|         pNC->nErr++;
 | |
|       }else if( wrong_num_args ){
 | |
|         sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
 | |
|              nId, zId);
 | |
|         pNC->nErr++;
 | |
|       }
 | |
|       if( is_agg ){
 | |
|         pExpr->op = TK_AGG_FUNCTION;
 | |
|         pNC->hasAgg = 1;
 | |
|       }
 | |
|       if( is_agg ) pNC->allowAgg = 0;
 | |
|       for(i=0; pNC->nErr==0 && i<n; i++){
 | |
|         walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
 | |
|       }
 | |
|       if( is_agg ) pNC->allowAgg = 1;
 | |
|       /* FIX ME:  Compute pExpr->affinity based on the expected return
 | |
|       ** type of the function 
 | |
|       */
 | |
|       return is_agg;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
|     case TK_SELECT:
 | |
|     case TK_EXISTS:
 | |
| #endif
 | |
|     case TK_IN: {
 | |
|       if( pExpr->pSelect ){
 | |
|         int nRef = pNC->nRef;
 | |
| #ifndef SQLITE_OMIT_CHECK
 | |
|         if( pNC->isCheck ){
 | |
|           sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
 | |
|         }
 | |
| #endif
 | |
|         sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
 | |
|         assert( pNC->nRef>=nRef );
 | |
|         if( nRef!=pNC->nRef ){
 | |
|           ExprSetProperty(pExpr, EP_VarSelect);
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_CHECK
 | |
|     case TK_VARIABLE: {
 | |
|       if( pNC->isCheck ){
 | |
|         sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine walks an expression tree and resolves references to
 | |
| ** table columns.  Nodes of the form ID.ID or ID resolve into an
 | |
| ** index to the table in the table list and a column offset.  The 
 | |
| ** Expr.opcode for such nodes is changed to TK_COLUMN.  The Expr.iTable
 | |
| ** value is changed to the index of the referenced table in pTabList
 | |
| ** plus the "base" value.  The base value will ultimately become the
 | |
| ** VDBE cursor number for a cursor that is pointing into the referenced
 | |
| ** table.  The Expr.iColumn value is changed to the index of the column 
 | |
| ** of the referenced table.  The Expr.iColumn value for the special
 | |
| ** ROWID column is -1.  Any INTEGER PRIMARY KEY column is tried as an
 | |
| ** alias for ROWID.
 | |
| **
 | |
| ** Also resolve function names and check the functions for proper
 | |
| ** usage.  Make sure all function names are recognized and all functions
 | |
| ** have the correct number of arguments.  Leave an error message
 | |
| ** in pParse->zErrMsg if anything is amiss.  Return the number of errors.
 | |
| **
 | |
| ** If the expression contains aggregate functions then set the EP_Agg
 | |
| ** property on the expression.
 | |
| */
 | |
| int sqlite3ExprResolveNames( 
 | |
|   NameContext *pNC,       /* Namespace to resolve expressions in. */
 | |
|   Expr *pExpr             /* The expression to be analyzed. */
 | |
| ){
 | |
|   int savedHasAgg;
 | |
|   if( pExpr==0 ) return 0;
 | |
| #if SQLITE_MAX_EXPR_DEPTH>0
 | |
|   if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){
 | |
|     sqlite3ErrorMsg(pNC->pParse, 
 | |
|        "Expression tree is too large (maximum depth %d)",
 | |
|        SQLITE_MAX_EXPR_DEPTH
 | |
|     );
 | |
|     return 1;
 | |
|   }
 | |
|   pNC->pParse->nHeight += pExpr->nHeight;
 | |
| #endif
 | |
|   savedHasAgg = pNC->hasAgg;
 | |
|   pNC->hasAgg = 0;
 | |
|   walkExprTree(pExpr, nameResolverStep, pNC);
 | |
| #if SQLITE_MAX_EXPR_DEPTH>0
 | |
|   pNC->pParse->nHeight -= pExpr->nHeight;
 | |
| #endif
 | |
|   if( pNC->nErr>0 ){
 | |
|     ExprSetProperty(pExpr, EP_Error);
 | |
|   }
 | |
|   if( pNC->hasAgg ){
 | |
|     ExprSetProperty(pExpr, EP_Agg);
 | |
|   }else if( savedHasAgg ){
 | |
|     pNC->hasAgg = 1;
 | |
|   }
 | |
|   return ExprHasProperty(pExpr, EP_Error);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** A pointer instance of this structure is used to pass information
 | |
| ** through walkExprTree into codeSubqueryStep().
 | |
| */
 | |
| typedef struct QueryCoder QueryCoder;
 | |
| struct QueryCoder {
 | |
|   Parse *pParse;       /* The parsing context */
 | |
|   NameContext *pNC;    /* Namespace of first enclosing query */
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Generate code for scalar subqueries used as an expression
 | |
| ** and IN operators.  Examples:
 | |
| **
 | |
| **     (SELECT a FROM b)          -- subquery
 | |
| **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
 | |
| **     x IN (4,5,11)              -- IN operator with list on right-hand side
 | |
| **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
 | |
| **
 | |
| ** The pExpr parameter describes the expression that contains the IN
 | |
| ** operator or subquery.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
| void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
 | |
|   int testAddr = 0;                       /* One-time test address */
 | |
|   Vdbe *v = sqlite3GetVdbe(pParse);
 | |
|   if( v==0 ) return;
 | |
| 
 | |
| 
 | |
|   /* This code must be run in its entirety every time it is encountered
 | |
|   ** if any of the following is true:
 | |
|   **
 | |
|   **    *  The right-hand side is a correlated subquery
 | |
|   **    *  The right-hand side is an expression list containing variables
 | |
|   **    *  We are inside a trigger
 | |
|   **
 | |
|   ** If all of the above are false, then we can run this code just once
 | |
|   ** save the results, and reuse the same result on subsequent invocations.
 | |
|   */
 | |
|   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
 | |
|     int mem = pParse->nMem++;
 | |
|     sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0);
 | |
|     testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0);
 | |
|     assert( testAddr>0 || sqlite3MallocFailed() );
 | |
|     sqlite3VdbeAddOp(v, OP_MemInt, 1, mem);
 | |
|   }
 | |
| 
 | |
|   switch( pExpr->op ){
 | |
|     case TK_IN: {
 | |
|       char affinity;
 | |
|       KeyInfo keyInfo;
 | |
|       int addr;        /* Address of OP_OpenEphemeral instruction */
 | |
| 
 | |
|       affinity = sqlite3ExprAffinity(pExpr->pLeft);
 | |
| 
 | |
|       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
 | |
|       ** expression it is handled the same way. A virtual table is 
 | |
|       ** filled with single-field index keys representing the results
 | |
|       ** from the SELECT or the <exprlist>.
 | |
|       **
 | |
|       ** If the 'x' expression is a column value, or the SELECT...
 | |
|       ** statement returns a column value, then the affinity of that
 | |
|       ** column is used to build the index keys. If both 'x' and the
 | |
|       ** SELECT... statement are columns, then numeric affinity is used
 | |
|       ** if either column has NUMERIC or INTEGER affinity. If neither
 | |
|       ** 'x' nor the SELECT... statement are columns, then numeric affinity
 | |
|       ** is used.
 | |
|       */
 | |
|       pExpr->iTable = pParse->nTab++;
 | |
|       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0);
 | |
|       memset(&keyInfo, 0, sizeof(keyInfo));
 | |
|       keyInfo.nField = 1;
 | |
|       sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1);
 | |
| 
 | |
|       if( pExpr->pSelect ){
 | |
|         /* Case 1:     expr IN (SELECT ...)
 | |
|         **
 | |
|         ** Generate code to write the results of the select into the temporary
 | |
|         ** table allocated and opened above.
 | |
|         */
 | |
|         int iParm = pExpr->iTable +  (((int)affinity)<<16);
 | |
|         ExprList *pEList;
 | |
|         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
 | |
|         if( sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0) ){
 | |
|           return;
 | |
|         }
 | |
|         pEList = pExpr->pSelect->pEList;
 | |
|         if( pEList && pEList->nExpr>0 ){ 
 | |
|           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
 | |
|               pEList->a[0].pExpr);
 | |
|         }
 | |
|       }else if( pExpr->pList ){
 | |
|         /* Case 2:     expr IN (exprlist)
 | |
|         **
 | |
| 	** For each expression, build an index key from the evaluation and
 | |
|         ** store it in the temporary table. If <expr> is a column, then use
 | |
|         ** that columns affinity when building index keys. If <expr> is not
 | |
|         ** a column, use numeric affinity.
 | |
|         */
 | |
|         int i;
 | |
|         ExprList *pList = pExpr->pList;
 | |
|         struct ExprList_item *pItem;
 | |
| 
 | |
|         if( !affinity ){
 | |
|           affinity = SQLITE_AFF_NONE;
 | |
|         }
 | |
|         keyInfo.aColl[0] = pExpr->pLeft->pColl;
 | |
| 
 | |
|         /* Loop through each expression in <exprlist>. */
 | |
|         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
 | |
|           Expr *pE2 = pItem->pExpr;
 | |
| 
 | |
|           /* If the expression is not constant then we will need to
 | |
|           ** disable the test that was generated above that makes sure
 | |
|           ** this code only executes once.  Because for a non-constant
 | |
|           ** expression we need to rerun this code each time.
 | |
|           */
 | |
|           if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){
 | |
|             sqlite3VdbeChangeToNoop(v, testAddr-1, 3);
 | |
|             testAddr = 0;
 | |
|           }
 | |
| 
 | |
|           /* Evaluate the expression and insert it into the temp table */
 | |
|           sqlite3ExprCode(pParse, pE2);
 | |
|           sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);
 | |
|           sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0);
 | |
|         }
 | |
|       }
 | |
|       sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case TK_EXISTS:
 | |
|     case TK_SELECT: {
 | |
|       /* This has to be a scalar SELECT.  Generate code to put the
 | |
|       ** value of this select in a memory cell and record the number
 | |
|       ** of the memory cell in iColumn.
 | |
|       */
 | |
|       static const Token one = { (u8*)"1", 0, 1 };
 | |
|       Select *pSel;
 | |
|       int iMem;
 | |
|       int sop;
 | |
| 
 | |
|       pExpr->iColumn = iMem = pParse->nMem++;
 | |
|       pSel = pExpr->pSelect;
 | |
|       if( pExpr->op==TK_SELECT ){
 | |
|         sop = SRT_Mem;
 | |
|         sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0);
 | |
|         VdbeComment((v, "# Init subquery result"));
 | |
|       }else{
 | |
|         sop = SRT_Exists;
 | |
|         sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem);
 | |
|         VdbeComment((v, "# Init EXISTS result"));
 | |
|       }
 | |
|       sqlite3ExprDelete(pSel->pLimit);
 | |
|       pSel->pLimit = sqlite3Expr(TK_INTEGER, 0, 0, &one);
 | |
|       if( sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0) ){
 | |
|         return;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( testAddr ){
 | |
|     sqlite3VdbeJumpHere(v, testAddr);
 | |
|   }
 | |
| 
 | |
|   return;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_SUBQUERY */
 | |
| 
 | |
| /*
 | |
| ** Generate an instruction that will put the integer describe by
 | |
| ** text z[0..n-1] on the stack.
 | |
| */
 | |
| static void codeInteger(Vdbe *v, const char *z, int n){
 | |
|   assert( z || sqlite3MallocFailed() );
 | |
|   if( z ){
 | |
|     int i;
 | |
|     if( sqlite3GetInt32(z, &i) ){
 | |
|       sqlite3VdbeAddOp(v, OP_Integer, i, 0);
 | |
|     }else if( sqlite3FitsIn64Bits(z) ){
 | |
|       sqlite3VdbeOp3(v, OP_Int64, 0, 0, z, n);
 | |
|     }else{
 | |
|       sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Generate code that will extract the iColumn-th column from
 | |
| ** table pTab and push that column value on the stack.  There
 | |
| ** is an open cursor to pTab in iTable.  If iColumn<0 then
 | |
| ** code is generated that extracts the rowid.
 | |
| */
 | |
| void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){
 | |
|   if( iColumn<0 ){
 | |
|     int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
 | |
|     sqlite3VdbeAddOp(v, op, iTable, 0);
 | |
|   }else if( pTab==0 ){
 | |
|     sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn);
 | |
|   }else{
 | |
|     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
 | |
|     sqlite3VdbeAddOp(v, op, iTable, iColumn);
 | |
|     sqlite3ColumnDefault(v, pTab, iColumn);
 | |
| #ifndef SQLITE_OMIT_FLOATING_POINT
 | |
|     if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
 | |
|       sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0);
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code into the current Vdbe to evaluate the given
 | |
| ** expression and leave the result on the top of stack.
 | |
| **
 | |
| ** This code depends on the fact that certain token values (ex: TK_EQ)
 | |
| ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
 | |
| ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
 | |
| ** the make process cause these values to align.  Assert()s in the code
 | |
| ** below verify that the numbers are aligned correctly.
 | |
| */
 | |
| void sqlite3ExprCode(Parse *pParse, Expr *pExpr){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int op;
 | |
|   int stackChng = 1;    /* Amount of change to stack depth */
 | |
| 
 | |
|   if( v==0 ) return;
 | |
|   if( pExpr==0 ){
 | |
|     sqlite3VdbeAddOp(v, OP_Null, 0, 0);
 | |
|     return;
 | |
|   }
 | |
|   op = pExpr->op;
 | |
|   switch( op ){
 | |
|     case TK_AGG_COLUMN: {
 | |
|       AggInfo *pAggInfo = pExpr->pAggInfo;
 | |
|       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
 | |
|       if( !pAggInfo->directMode ){
 | |
|         sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0);
 | |
|         break;
 | |
|       }else if( pAggInfo->useSortingIdx ){
 | |
|         sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx,
 | |
|                               pCol->iSorterColumn);
 | |
|         break;
 | |
|       }
 | |
|       /* Otherwise, fall thru into the TK_COLUMN case */
 | |
|     }
 | |
|     case TK_COLUMN: {
 | |
|       if( pExpr->iTable<0 ){
 | |
|         /* This only happens when coding check constraints */
 | |
|         assert( pParse->ckOffset>0 );
 | |
|         sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1);
 | |
|       }else{
 | |
|         sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case TK_INTEGER: {
 | |
|       codeInteger(v, (char*)pExpr->token.z, pExpr->token.n);
 | |
|       break;
 | |
|     }
 | |
|     case TK_FLOAT:
 | |
|     case TK_STRING: {
 | |
|       assert( TK_FLOAT==OP_Real );
 | |
|       assert( TK_STRING==OP_String8 );
 | |
|       sqlite3DequoteExpr(pExpr);
 | |
|       sqlite3VdbeOp3(v, op, 0, 0, (char*)pExpr->token.z, pExpr->token.n);
 | |
|       break;
 | |
|     }
 | |
|     case TK_NULL: {
 | |
|       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
 | |
|       break;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_BLOB_LITERAL
 | |
|     case TK_BLOB: {
 | |
|       int n;
 | |
|       const char *z;
 | |
|       assert( TK_BLOB==OP_HexBlob );
 | |
|       n = pExpr->token.n - 3;
 | |
|       z = (char*)pExpr->token.z + 2;
 | |
|       assert( n>=0 );
 | |
|       if( n==0 ){
 | |
|         z = "";
 | |
|       }
 | |
|       sqlite3VdbeOp3(v, op, 0, 0, z, n);
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|     case TK_VARIABLE: {
 | |
|       sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
 | |
|       if( pExpr->token.n>1 ){
 | |
|         sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case TK_REGISTER: {
 | |
|       sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0);
 | |
|       break;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_CAST
 | |
|     case TK_CAST: {
 | |
|       /* Expressions of the form:   CAST(pLeft AS token) */
 | |
|       int aff, to_op;
 | |
|       sqlite3ExprCode(pParse, pExpr->pLeft);
 | |
|       aff = sqlite3AffinityType(&pExpr->token);
 | |
|       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
 | |
|       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
 | |
|       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
 | |
|       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
 | |
|       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
 | |
|       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
 | |
|       sqlite3VdbeAddOp(v, to_op, 0, 0);
 | |
|       stackChng = 0;
 | |
|       break;
 | |
|     }
 | |
| #endif /* SQLITE_OMIT_CAST */
 | |
|     case TK_LT:
 | |
|     case TK_LE:
 | |
|     case TK_GT:
 | |
|     case TK_GE:
 | |
|     case TK_NE:
 | |
|     case TK_EQ: {
 | |
|       assert( TK_LT==OP_Lt );
 | |
|       assert( TK_LE==OP_Le );
 | |
|       assert( TK_GT==OP_Gt );
 | |
|       assert( TK_GE==OP_Ge );
 | |
|       assert( TK_EQ==OP_Eq );
 | |
|       assert( TK_NE==OP_Ne );
 | |
|       sqlite3ExprCode(pParse, pExpr->pLeft);
 | |
|       sqlite3ExprCode(pParse, pExpr->pRight);
 | |
|       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0);
 | |
|       stackChng = -1;
 | |
|       break;
 | |
|     }
 | |
|     case TK_AND:
 | |
|     case TK_OR:
 | |
|     case TK_PLUS:
 | |
|     case TK_STAR:
 | |
|     case TK_MINUS:
 | |
|     case TK_REM:
 | |
|     case TK_BITAND:
 | |
|     case TK_BITOR:
 | |
|     case TK_SLASH:
 | |
|     case TK_LSHIFT:
 | |
|     case TK_RSHIFT: 
 | |
|     case TK_CONCAT: {
 | |
|       assert( TK_AND==OP_And );
 | |
|       assert( TK_OR==OP_Or );
 | |
|       assert( TK_PLUS==OP_Add );
 | |
|       assert( TK_MINUS==OP_Subtract );
 | |
|       assert( TK_REM==OP_Remainder );
 | |
|       assert( TK_BITAND==OP_BitAnd );
 | |
|       assert( TK_BITOR==OP_BitOr );
 | |
|       assert( TK_SLASH==OP_Divide );
 | |
|       assert( TK_LSHIFT==OP_ShiftLeft );
 | |
|       assert( TK_RSHIFT==OP_ShiftRight );
 | |
|       assert( TK_CONCAT==OP_Concat );
 | |
|       sqlite3ExprCode(pParse, pExpr->pLeft);
 | |
|       sqlite3ExprCode(pParse, pExpr->pRight);
 | |
|       sqlite3VdbeAddOp(v, op, 0, 0);
 | |
|       stackChng = -1;
 | |
|       break;
 | |
|     }
 | |
|     case TK_UMINUS: {
 | |
|       Expr *pLeft = pExpr->pLeft;
 | |
|       assert( pLeft );
 | |
|       if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
 | |
|         Token *p = &pLeft->token;
 | |
|         char *z = sqlite3MPrintf("-%.*s", p->n, p->z);
 | |
|         if( pLeft->op==TK_FLOAT ){
 | |
|           sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1);
 | |
|         }else{
 | |
|           codeInteger(v, z, p->n+1);
 | |
|         }
 | |
|         sqliteFree(z);
 | |
|         break;
 | |
|       }
 | |
|       /* Fall through into TK_NOT */
 | |
|     }
 | |
|     case TK_BITNOT:
 | |
|     case TK_NOT: {
 | |
|       assert( TK_BITNOT==OP_BitNot );
 | |
|       assert( TK_NOT==OP_Not );
 | |
|       sqlite3ExprCode(pParse, pExpr->pLeft);
 | |
|       sqlite3VdbeAddOp(v, op, 0, 0);
 | |
|       stackChng = 0;
 | |
|       break;
 | |
|     }
 | |
|     case TK_ISNULL:
 | |
|     case TK_NOTNULL: {
 | |
|       int dest;
 | |
|       assert( TK_ISNULL==OP_IsNull );
 | |
|       assert( TK_NOTNULL==OP_NotNull );
 | |
|       sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
 | |
|       sqlite3ExprCode(pParse, pExpr->pLeft);
 | |
|       dest = sqlite3VdbeCurrentAddr(v) + 2;
 | |
|       sqlite3VdbeAddOp(v, op, 1, dest);
 | |
|       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
 | |
|       stackChng = 0;
 | |
|       break;
 | |
|     }
 | |
|     case TK_AGG_FUNCTION: {
 | |
|       AggInfo *pInfo = pExpr->pAggInfo;
 | |
|       if( pInfo==0 ){
 | |
|         sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
 | |
|             &pExpr->span);
 | |
|       }else{
 | |
|         sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case TK_CONST_FUNC:
 | |
|     case TK_FUNCTION: {
 | |
|       ExprList *pList = pExpr->pList;
 | |
|       int nExpr = pList ? pList->nExpr : 0;
 | |
|       FuncDef *pDef;
 | |
|       int nId;
 | |
|       const char *zId;
 | |
|       int constMask = 0;
 | |
|       int i;
 | |
|       u8 enc = ENC(pParse->db);
 | |
|       CollSeq *pColl = 0;
 | |
|       zId = (char*)pExpr->token.z;
 | |
|       nId = pExpr->token.n;
 | |
|       pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
 | |
|       assert( pDef!=0 );
 | |
|       nExpr = sqlite3ExprCodeExprList(pParse, pList);
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|       /* Possibly overload the function if the first argument is
 | |
|       ** a virtual table column.
 | |
|       **
 | |
|       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
 | |
|       ** second argument, not the first, as the argument to test to
 | |
|       ** see if it is a column in a virtual table.  This is done because
 | |
|       ** the left operand of infix functions (the operand we want to
 | |
|       ** control overloading) ends up as the second argument to the
 | |
|       ** function.  The expression "A glob B" is equivalent to 
 | |
|       ** "glob(B,A).  We want to use the A in "A glob B" to test
 | |
|       ** for function overloading.  But we use the B term in "glob(B,A)".
 | |
|       */
 | |
|       if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
 | |
|         pDef = sqlite3VtabOverloadFunction(pDef, nExpr, pList->a[1].pExpr);
 | |
|       }else if( nExpr>0 ){
 | |
|         pDef = sqlite3VtabOverloadFunction(pDef, nExpr, pList->a[0].pExpr);
 | |
|       }
 | |
| #endif
 | |
|       for(i=0; i<nExpr && i<32; i++){
 | |
|         if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
 | |
|           constMask |= (1<<i);
 | |
|         }
 | |
|         if( pDef->needCollSeq && !pColl ){
 | |
|           pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
 | |
|         }
 | |
|       }
 | |
|       if( pDef->needCollSeq ){
 | |
|         if( !pColl ) pColl = pParse->db->pDfltColl; 
 | |
|         sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
 | |
|       }
 | |
|       sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF);
 | |
|       stackChng = 1-nExpr;
 | |
|       break;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
|     case TK_EXISTS:
 | |
|     case TK_SELECT: {
 | |
|       if( pExpr->iColumn==0 ){
 | |
|         sqlite3CodeSubselect(pParse, pExpr);
 | |
|       }
 | |
|       sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
 | |
|       VdbeComment((v, "# load subquery result"));
 | |
|       break;
 | |
|     }
 | |
|     case TK_IN: {
 | |
|       int addr;
 | |
|       char affinity;
 | |
|       int ckOffset = pParse->ckOffset;
 | |
|       sqlite3CodeSubselect(pParse, pExpr);
 | |
| 
 | |
|       /* Figure out the affinity to use to create a key from the results
 | |
|       ** of the expression. affinityStr stores a static string suitable for
 | |
|       ** P3 of OP_MakeRecord.
 | |
|       */
 | |
|       affinity = comparisonAffinity(pExpr);
 | |
| 
 | |
|       sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
 | |
|       pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0);
 | |
| 
 | |
|       /* Code the <expr> from "<expr> IN (...)". The temporary table
 | |
|       ** pExpr->iTable contains the values that make up the (...) set.
 | |
|       */
 | |
|       sqlite3ExprCode(pParse, pExpr->pLeft);
 | |
|       addr = sqlite3VdbeCurrentAddr(v);
 | |
|       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4);            /* addr + 0 */
 | |
|       sqlite3VdbeAddOp(v, OP_Pop, 2, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7);
 | |
|       sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);   /* addr + 4 */
 | |
|       sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7);
 | |
|       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);                  /* addr + 6 */
 | |
| 
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|     case TK_BETWEEN: {
 | |
|       Expr *pLeft = pExpr->pLeft;
 | |
|       struct ExprList_item *pLItem = pExpr->pList->a;
 | |
|       Expr *pRight = pLItem->pExpr;
 | |
|       sqlite3ExprCode(pParse, pLeft);
 | |
|       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
 | |
|       sqlite3ExprCode(pParse, pRight);
 | |
|       codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
 | |
|       pLItem++;
 | |
|       pRight = pLItem->pExpr;
 | |
|       sqlite3ExprCode(pParse, pRight);
 | |
|       codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_And, 0, 0);
 | |
|       break;
 | |
|     }
 | |
|     case TK_UPLUS: {
 | |
|       sqlite3ExprCode(pParse, pExpr->pLeft);
 | |
|       stackChng = 0;
 | |
|       break;
 | |
|     }
 | |
|     case TK_CASE: {
 | |
|       int expr_end_label;
 | |
|       int jumpInst;
 | |
|       int nExpr;
 | |
|       int i;
 | |
|       ExprList *pEList;
 | |
|       struct ExprList_item *aListelem;
 | |
| 
 | |
|       assert(pExpr->pList);
 | |
|       assert((pExpr->pList->nExpr % 2) == 0);
 | |
|       assert(pExpr->pList->nExpr > 0);
 | |
|       pEList = pExpr->pList;
 | |
|       aListelem = pEList->a;
 | |
|       nExpr = pEList->nExpr;
 | |
|       expr_end_label = sqlite3VdbeMakeLabel(v);
 | |
|       if( pExpr->pLeft ){
 | |
|         sqlite3ExprCode(pParse, pExpr->pLeft);
 | |
|       }
 | |
|       for(i=0; i<nExpr; i=i+2){
 | |
|         sqlite3ExprCode(pParse, aListelem[i].pExpr);
 | |
|         if( pExpr->pLeft ){
 | |
|           sqlite3VdbeAddOp(v, OP_Dup, 1, 1);
 | |
|           jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr,
 | |
|                                  OP_Ne, 0, 1);
 | |
|           sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | |
|         }else{
 | |
|           jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0);
 | |
|         }
 | |
|         sqlite3ExprCode(pParse, aListelem[i+1].pExpr);
 | |
|         sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label);
 | |
|         sqlite3VdbeJumpHere(v, jumpInst);
 | |
|       }
 | |
|       if( pExpr->pLeft ){
 | |
|         sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | |
|       }
 | |
|       if( pExpr->pRight ){
 | |
|         sqlite3ExprCode(pParse, pExpr->pRight);
 | |
|       }else{
 | |
|         sqlite3VdbeAddOp(v, OP_Null, 0, 0);
 | |
|       }
 | |
|       sqlite3VdbeResolveLabel(v, expr_end_label);
 | |
|       break;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|     case TK_RAISE: {
 | |
|       if( !pParse->trigStack ){
 | |
|         sqlite3ErrorMsg(pParse,
 | |
|                        "RAISE() may only be used within a trigger-program");
 | |
| 	return;
 | |
|       }
 | |
|       if( pExpr->iColumn!=OE_Ignore ){
 | |
|          assert( pExpr->iColumn==OE_Rollback ||
 | |
|                  pExpr->iColumn == OE_Abort ||
 | |
|                  pExpr->iColumn == OE_Fail );
 | |
|          sqlite3DequoteExpr(pExpr);
 | |
|          sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
 | |
|                         (char*)pExpr->token.z, pExpr->token.n);
 | |
|       } else {
 | |
|          assert( pExpr->iColumn == OE_Ignore );
 | |
|          sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0);
 | |
|          sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
 | |
|          VdbeComment((v, "# raise(IGNORE)"));
 | |
|       }
 | |
|       stackChng = 0;
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   if( pParse->ckOffset ){
 | |
|     pParse->ckOffset += stackChng;
 | |
|     assert( pParse->ckOffset );
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
| /*
 | |
| ** Generate code that evalutes the given expression and leaves the result
 | |
| ** on the stack.  See also sqlite3ExprCode().
 | |
| **
 | |
| ** This routine might also cache the result and modify the pExpr tree
 | |
| ** so that it will make use of the cached result on subsequent evaluations
 | |
| ** rather than evaluate the whole expression again.  Trivial expressions are
 | |
| ** not cached.  If the expression is cached, its result is stored in a 
 | |
| ** memory location.
 | |
| */
 | |
| void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int iMem;
 | |
|   int addr1, addr2;
 | |
|   if( v==0 ) return;
 | |
|   addr1 = sqlite3VdbeCurrentAddr(v);
 | |
|   sqlite3ExprCode(pParse, pExpr);
 | |
|   addr2 = sqlite3VdbeCurrentAddr(v);
 | |
|   if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){
 | |
|     iMem = pExpr->iTable = pParse->nMem++;
 | |
|     sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
 | |
|     pExpr->op = TK_REGISTER;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Generate code that pushes the value of every element of the given
 | |
| ** expression list onto the stack.
 | |
| **
 | |
| ** Return the number of elements pushed onto the stack.
 | |
| */
 | |
| int sqlite3ExprCodeExprList(
 | |
|   Parse *pParse,     /* Parsing context */
 | |
|   ExprList *pList    /* The expression list to be coded */
 | |
| ){
 | |
|   struct ExprList_item *pItem;
 | |
|   int i, n;
 | |
|   if( pList==0 ) return 0;
 | |
|   n = pList->nExpr;
 | |
|   for(pItem=pList->a, i=n; i>0; i--, pItem++){
 | |
|     sqlite3ExprCode(pParse, pItem->pExpr);
 | |
|   }
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code for a boolean expression such that a jump is made
 | |
| ** to the label "dest" if the expression is true but execution
 | |
| ** continues straight thru if the expression is false.
 | |
| **
 | |
| ** If the expression evaluates to NULL (neither true nor false), then
 | |
| ** take the jump if the jumpIfNull flag is true.
 | |
| **
 | |
| ** This code depends on the fact that certain token values (ex: TK_EQ)
 | |
| ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
 | |
| ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
 | |
| ** the make process cause these values to align.  Assert()s in the code
 | |
| ** below verify that the numbers are aligned correctly.
 | |
| */
 | |
| void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int op = 0;
 | |
|   int ckOffset = pParse->ckOffset;
 | |
|   if( v==0 || pExpr==0 ) return;
 | |
|   op = pExpr->op;
 | |
|   switch( op ){
 | |
|     case TK_AND: {
 | |
|       int d2 = sqlite3VdbeMakeLabel(v);
 | |
|       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
 | |
|       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
 | |
|       sqlite3VdbeResolveLabel(v, d2);
 | |
|       break;
 | |
|     }
 | |
|     case TK_OR: {
 | |
|       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
 | |
|       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
 | |
|       break;
 | |
|     }
 | |
|     case TK_NOT: {
 | |
|       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
 | |
|       break;
 | |
|     }
 | |
|     case TK_LT:
 | |
|     case TK_LE:
 | |
|     case TK_GT:
 | |
|     case TK_GE:
 | |
|     case TK_NE:
 | |
|     case TK_EQ: {
 | |
|       assert( TK_LT==OP_Lt );
 | |
|       assert( TK_LE==OP_Le );
 | |
|       assert( TK_GT==OP_Gt );
 | |
|       assert( TK_GE==OP_Ge );
 | |
|       assert( TK_EQ==OP_Eq );
 | |
|       assert( TK_NE==OP_Ne );
 | |
|       sqlite3ExprCode(pParse, pExpr->pLeft);
 | |
|       sqlite3ExprCode(pParse, pExpr->pRight);
 | |
|       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
 | |
|       break;
 | |
|     }
 | |
|     case TK_ISNULL:
 | |
|     case TK_NOTNULL: {
 | |
|       assert( TK_ISNULL==OP_IsNull );
 | |
|       assert( TK_NOTNULL==OP_NotNull );
 | |
|       sqlite3ExprCode(pParse, pExpr->pLeft);
 | |
|       sqlite3VdbeAddOp(v, op, 1, dest);
 | |
|       break;
 | |
|     }
 | |
|     case TK_BETWEEN: {
 | |
|       /* The expression "x BETWEEN y AND z" is implemented as:
 | |
|       **
 | |
|       ** 1 IF (x < y) GOTO 3
 | |
|       ** 2 IF (x <= z) GOTO <dest>
 | |
|       ** 3 ...
 | |
|       */
 | |
|       int addr;
 | |
|       Expr *pLeft = pExpr->pLeft;
 | |
|       Expr *pRight = pExpr->pList->a[0].pExpr;
 | |
|       sqlite3ExprCode(pParse, pLeft);
 | |
|       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
 | |
|       sqlite3ExprCode(pParse, pRight);
 | |
|       addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull);
 | |
| 
 | |
|       pRight = pExpr->pList->a[1].pExpr;
 | |
|       sqlite3ExprCode(pParse, pRight);
 | |
|       codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull);
 | |
| 
 | |
|       sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
 | |
|       sqlite3VdbeJumpHere(v, addr);
 | |
|       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       sqlite3ExprCode(pParse, pExpr);
 | |
|       sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   pParse->ckOffset = ckOffset;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code for a boolean expression such that a jump is made
 | |
| ** to the label "dest" if the expression is false but execution
 | |
| ** continues straight thru if the expression is true.
 | |
| **
 | |
| ** If the expression evaluates to NULL (neither true nor false) then
 | |
| ** jump if jumpIfNull is true or fall through if jumpIfNull is false.
 | |
| */
 | |
| void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int op = 0;
 | |
|   int ckOffset = pParse->ckOffset;
 | |
|   if( v==0 || pExpr==0 ) return;
 | |
| 
 | |
|   /* The value of pExpr->op and op are related as follows:
 | |
|   **
 | |
|   **       pExpr->op            op
 | |
|   **       ---------          ----------
 | |
|   **       TK_ISNULL          OP_NotNull
 | |
|   **       TK_NOTNULL         OP_IsNull
 | |
|   **       TK_NE              OP_Eq
 | |
|   **       TK_EQ              OP_Ne
 | |
|   **       TK_GT              OP_Le
 | |
|   **       TK_LE              OP_Gt
 | |
|   **       TK_GE              OP_Lt
 | |
|   **       TK_LT              OP_Ge
 | |
|   **
 | |
|   ** For other values of pExpr->op, op is undefined and unused.
 | |
|   ** The value of TK_ and OP_ constants are arranged such that we
 | |
|   ** can compute the mapping above using the following expression.
 | |
|   ** Assert()s verify that the computation is correct.
 | |
|   */
 | |
|   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
 | |
| 
 | |
|   /* Verify correct alignment of TK_ and OP_ constants
 | |
|   */
 | |
|   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
 | |
|   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
 | |
|   assert( pExpr->op!=TK_NE || op==OP_Eq );
 | |
|   assert( pExpr->op!=TK_EQ || op==OP_Ne );
 | |
|   assert( pExpr->op!=TK_LT || op==OP_Ge );
 | |
|   assert( pExpr->op!=TK_LE || op==OP_Gt );
 | |
|   assert( pExpr->op!=TK_GT || op==OP_Le );
 | |
|   assert( pExpr->op!=TK_GE || op==OP_Lt );
 | |
| 
 | |
|   switch( pExpr->op ){
 | |
|     case TK_AND: {
 | |
|       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
 | |
|       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
 | |
|       break;
 | |
|     }
 | |
|     case TK_OR: {
 | |
|       int d2 = sqlite3VdbeMakeLabel(v);
 | |
|       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
 | |
|       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
 | |
|       sqlite3VdbeResolveLabel(v, d2);
 | |
|       break;
 | |
|     }
 | |
|     case TK_NOT: {
 | |
|       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
 | |
|       break;
 | |
|     }
 | |
|     case TK_LT:
 | |
|     case TK_LE:
 | |
|     case TK_GT:
 | |
|     case TK_GE:
 | |
|     case TK_NE:
 | |
|     case TK_EQ: {
 | |
|       sqlite3ExprCode(pParse, pExpr->pLeft);
 | |
|       sqlite3ExprCode(pParse, pExpr->pRight);
 | |
|       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
 | |
|       break;
 | |
|     }
 | |
|     case TK_ISNULL:
 | |
|     case TK_NOTNULL: {
 | |
|       sqlite3ExprCode(pParse, pExpr->pLeft);
 | |
|       sqlite3VdbeAddOp(v, op, 1, dest);
 | |
|       break;
 | |
|     }
 | |
|     case TK_BETWEEN: {
 | |
|       /* The expression is "x BETWEEN y AND z". It is implemented as:
 | |
|       **
 | |
|       ** 1 IF (x >= y) GOTO 3
 | |
|       ** 2 GOTO <dest>
 | |
|       ** 3 IF (x > z) GOTO <dest>
 | |
|       */
 | |
|       int addr;
 | |
|       Expr *pLeft = pExpr->pLeft;
 | |
|       Expr *pRight = pExpr->pList->a[0].pExpr;
 | |
|       sqlite3ExprCode(pParse, pLeft);
 | |
|       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
 | |
|       sqlite3ExprCode(pParse, pRight);
 | |
|       addr = sqlite3VdbeCurrentAddr(v);
 | |
|       codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull);
 | |
| 
 | |
|       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_Goto, 0, dest);
 | |
|       pRight = pExpr->pList->a[1].pExpr;
 | |
|       sqlite3ExprCode(pParse, pRight);
 | |
|       codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull);
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       sqlite3ExprCode(pParse, pExpr);
 | |
|       sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   pParse->ckOffset = ckOffset;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
 | |
| ** if they are identical and return FALSE if they differ in any way.
 | |
| **
 | |
| ** Sometimes this routine will return FALSE even if the two expressions
 | |
| ** really are equivalent.  If we cannot prove that the expressions are
 | |
| ** identical, we return FALSE just to be safe.  So if this routine
 | |
| ** returns false, then you do not really know for certain if the two
 | |
| ** expressions are the same.  But if you get a TRUE return, then you
 | |
| ** can be sure the expressions are the same.  In the places where
 | |
| ** this routine is used, it does not hurt to get an extra FALSE - that
 | |
| ** just might result in some slightly slower code.  But returning
 | |
| ** an incorrect TRUE could lead to a malfunction.
 | |
| */
 | |
| int sqlite3ExprCompare(Expr *pA, Expr *pB){
 | |
|   int i;
 | |
|   if( pA==0||pB==0 ){
 | |
|     return pB==pA;
 | |
|   }
 | |
|   if( pA->op!=pB->op ) return 0;
 | |
|   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
 | |
|   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
 | |
|   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
 | |
|   if( pA->pList ){
 | |
|     if( pB->pList==0 ) return 0;
 | |
|     if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
 | |
|     for(i=0; i<pA->pList->nExpr; i++){
 | |
|       if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
 | |
|         return 0;
 | |
|       }
 | |
|     }
 | |
|   }else if( pB->pList ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( pA->pSelect || pB->pSelect ) return 0;
 | |
|   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
 | |
|   if( pA->op!=TK_COLUMN && pA->token.z ){
 | |
|     if( pB->token.z==0 ) return 0;
 | |
|     if( pB->token.n!=pA->token.n ) return 0;
 | |
|     if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
 | |
| ** the new element.  Return a negative number if malloc fails.
 | |
| */
 | |
| static int addAggInfoColumn(AggInfo *pInfo){
 | |
|   int i;
 | |
|   pInfo->aCol = sqlite3ArrayAllocate(
 | |
|        pInfo->aCol,
 | |
|        sizeof(pInfo->aCol[0]),
 | |
|        3,
 | |
|        &pInfo->nColumn,
 | |
|        &pInfo->nColumnAlloc,
 | |
|        &i
 | |
|   );
 | |
|   return i;
 | |
| }    
 | |
| 
 | |
| /*
 | |
| ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
 | |
| ** the new element.  Return a negative number if malloc fails.
 | |
| */
 | |
| static int addAggInfoFunc(AggInfo *pInfo){
 | |
|   int i;
 | |
|   pInfo->aFunc = sqlite3ArrayAllocate(
 | |
|        pInfo->aFunc,
 | |
|        sizeof(pInfo->aFunc[0]),
 | |
|        3,
 | |
|        &pInfo->nFunc,
 | |
|        &pInfo->nFuncAlloc,
 | |
|        &i
 | |
|   );
 | |
|   return i;
 | |
| }    
 | |
| 
 | |
| /*
 | |
| ** This is an xFunc for walkExprTree() used to implement 
 | |
| ** sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
 | |
| ** for additional information.
 | |
| **
 | |
| ** This routine analyzes the aggregate function at pExpr.
 | |
| */
 | |
| static int analyzeAggregate(void *pArg, Expr *pExpr){
 | |
|   int i;
 | |
|   NameContext *pNC = (NameContext *)pArg;
 | |
|   Parse *pParse = pNC->pParse;
 | |
|   SrcList *pSrcList = pNC->pSrcList;
 | |
|   AggInfo *pAggInfo = pNC->pAggInfo;
 | |
|   
 | |
| 
 | |
|   switch( pExpr->op ){
 | |
|     case TK_AGG_COLUMN:
 | |
|     case TK_COLUMN: {
 | |
|       /* Check to see if the column is in one of the tables in the FROM
 | |
|       ** clause of the aggregate query */
 | |
|       if( pSrcList ){
 | |
|         struct SrcList_item *pItem = pSrcList->a;
 | |
|         for(i=0; i<pSrcList->nSrc; i++, pItem++){
 | |
|           struct AggInfo_col *pCol;
 | |
|           if( pExpr->iTable==pItem->iCursor ){
 | |
|             /* If we reach this point, it means that pExpr refers to a table
 | |
|             ** that is in the FROM clause of the aggregate query.  
 | |
|             **
 | |
|             ** Make an entry for the column in pAggInfo->aCol[] if there
 | |
|             ** is not an entry there already.
 | |
|             */
 | |
|             int k;
 | |
|             pCol = pAggInfo->aCol;
 | |
|             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
 | |
|               if( pCol->iTable==pExpr->iTable &&
 | |
|                   pCol->iColumn==pExpr->iColumn ){
 | |
|                 break;
 | |
|               }
 | |
|             }
 | |
|             if( k>=pAggInfo->nColumn && (k = addAggInfoColumn(pAggInfo))>=0 ){
 | |
|               pCol = &pAggInfo->aCol[k];
 | |
|               pCol->pTab = pExpr->pTab;
 | |
|               pCol->iTable = pExpr->iTable;
 | |
|               pCol->iColumn = pExpr->iColumn;
 | |
|               pCol->iMem = pParse->nMem++;
 | |
|               pCol->iSorterColumn = -1;
 | |
|               pCol->pExpr = pExpr;
 | |
|               if( pAggInfo->pGroupBy ){
 | |
|                 int j, n;
 | |
|                 ExprList *pGB = pAggInfo->pGroupBy;
 | |
|                 struct ExprList_item *pTerm = pGB->a;
 | |
|                 n = pGB->nExpr;
 | |
|                 for(j=0; j<n; j++, pTerm++){
 | |
|                   Expr *pE = pTerm->pExpr;
 | |
|                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
 | |
|                       pE->iColumn==pExpr->iColumn ){
 | |
|                     pCol->iSorterColumn = j;
 | |
|                     break;
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|               if( pCol->iSorterColumn<0 ){
 | |
|                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
 | |
|               }
 | |
|             }
 | |
|             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
 | |
|             ** because it was there before or because we just created it).
 | |
|             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
 | |
|             ** pAggInfo->aCol[] entry.
 | |
|             */
 | |
|             pExpr->pAggInfo = pAggInfo;
 | |
|             pExpr->op = TK_AGG_COLUMN;
 | |
|             pExpr->iAgg = k;
 | |
|             break;
 | |
|           } /* endif pExpr->iTable==pItem->iCursor */
 | |
|         } /* end loop over pSrcList */
 | |
|       }
 | |
|       return 1;
 | |
|     }
 | |
|     case TK_AGG_FUNCTION: {
 | |
|       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
 | |
|       ** to be ignored */
 | |
|       if( pNC->nDepth==0 ){
 | |
|         /* Check to see if pExpr is a duplicate of another aggregate 
 | |
|         ** function that is already in the pAggInfo structure
 | |
|         */
 | |
|         struct AggInfo_func *pItem = pAggInfo->aFunc;
 | |
|         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
 | |
|           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if( i>=pAggInfo->nFunc ){
 | |
|           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
 | |
|           */
 | |
|           u8 enc = ENC(pParse->db);
 | |
|           i = addAggInfoFunc(pAggInfo);
 | |
|           if( i>=0 ){
 | |
|             pItem = &pAggInfo->aFunc[i];
 | |
|             pItem->pExpr = pExpr;
 | |
|             pItem->iMem = pParse->nMem++;
 | |
|             pItem->pFunc = sqlite3FindFunction(pParse->db,
 | |
|                    (char*)pExpr->token.z, pExpr->token.n,
 | |
|                    pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
 | |
|             if( pExpr->flags & EP_Distinct ){
 | |
|               pItem->iDistinct = pParse->nTab++;
 | |
|             }else{
 | |
|               pItem->iDistinct = -1;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
 | |
|         */
 | |
|         pExpr->iAgg = i;
 | |
|         pExpr->pAggInfo = pAggInfo;
 | |
|         return 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Recursively walk subqueries looking for TK_COLUMN nodes that need
 | |
|   ** to be changed to TK_AGG_COLUMN.  But increment nDepth so that
 | |
|   ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
 | |
|   */
 | |
|   if( pExpr->pSelect ){
 | |
|     pNC->nDepth++;
 | |
|     walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
 | |
|     pNC->nDepth--;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Analyze the given expression looking for aggregate functions and
 | |
| ** for variables that need to be added to the pParse->aAgg[] array.
 | |
| ** Make additional entries to the pParse->aAgg[] array as necessary.
 | |
| **
 | |
| ** This routine should only be called after the expression has been
 | |
| ** analyzed by sqlite3ExprResolveNames().
 | |
| **
 | |
| ** If errors are seen, leave an error message in zErrMsg and return
 | |
| ** the number of errors.
 | |
| */
 | |
| int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
 | |
|   int nErr = pNC->pParse->nErr;
 | |
|   walkExprTree(pExpr, analyzeAggregate, pNC);
 | |
|   return pNC->pParse->nErr - nErr;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
 | |
| ** expression list.  Return the number of errors.
 | |
| **
 | |
| ** If an error is found, the analysis is cut short.
 | |
| */
 | |
| int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
 | |
|   struct ExprList_item *pItem;
 | |
|   int i;
 | |
|   int nErr = 0;
 | |
|   if( pList ){
 | |
|     for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){
 | |
|       nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
 | |
|     }
 | |
|   }
 | |
|   return nErr;
 | |
| }
 |