--HG-- extra : convert_revision : svn%3A39bc706e-5318-0410-9160-8a85361fbb7c/trunk%401209
		
			
				
	
	
		
			2758 lines
		
	
	
		
			96 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2758 lines
		
	
	
		
			96 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This module contains C code that generates VDBE code used to process
 | |
| ** the WHERE clause of SQL statements.  This module is reponsible for
 | |
| ** generating the code that loops through a table looking for applicable
 | |
| ** rows.  Indices are selected and used to speed the search when doing
 | |
| ** so is applicable.  Because this module is responsible for selecting
 | |
| ** indices, you might also think of this module as the "query optimizer".
 | |
| **
 | |
| ** $Id$
 | |
| */
 | |
| #include "sqliteInt.h"
 | |
| 
 | |
| /*
 | |
| ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
 | |
| */
 | |
| #define BMS  (sizeof(Bitmask)*8)
 | |
| 
 | |
| /*
 | |
| ** Trace output macros
 | |
| */
 | |
| #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
 | |
| int sqlite3_where_trace = 0;
 | |
| # define WHERETRACE(X)  if(sqlite3_where_trace) sqlite3DebugPrintf X
 | |
| #else
 | |
| # define WHERETRACE(X)
 | |
| #endif
 | |
| 
 | |
| /* Forward reference
 | |
| */
 | |
| typedef struct WhereClause WhereClause;
 | |
| typedef struct ExprMaskSet ExprMaskSet;
 | |
| 
 | |
| /*
 | |
| ** The query generator uses an array of instances of this structure to
 | |
| ** help it analyze the subexpressions of the WHERE clause.  Each WHERE
 | |
| ** clause subexpression is separated from the others by an AND operator.
 | |
| **
 | |
| ** All WhereTerms are collected into a single WhereClause structure.  
 | |
| ** The following identity holds:
 | |
| **
 | |
| **        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
 | |
| **
 | |
| ** When a term is of the form:
 | |
| **
 | |
| **              X <op> <expr>
 | |
| **
 | |
| ** where X is a column name and <op> is one of certain operators,
 | |
| ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
 | |
| ** cursor number and column number for X.  WhereTerm.operator records
 | |
| ** the <op> using a bitmask encoding defined by WO_xxx below.  The
 | |
| ** use of a bitmask encoding for the operator allows us to search
 | |
| ** quickly for terms that match any of several different operators.
 | |
| **
 | |
| ** prereqRight and prereqAll record sets of cursor numbers,
 | |
| ** but they do so indirectly.  A single ExprMaskSet structure translates
 | |
| ** cursor number into bits and the translated bit is stored in the prereq
 | |
| ** fields.  The translation is used in order to maximize the number of
 | |
| ** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
 | |
| ** spread out over the non-negative integers.  For example, the cursor
 | |
| ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The ExprMaskSet
 | |
| ** translates these sparse cursor numbers into consecutive integers
 | |
| ** beginning with 0 in order to make the best possible use of the available
 | |
| ** bits in the Bitmask.  So, in the example above, the cursor numbers
 | |
| ** would be mapped into integers 0 through 7.
 | |
| */
 | |
| typedef struct WhereTerm WhereTerm;
 | |
| struct WhereTerm {
 | |
|   Expr *pExpr;            /* Pointer to the subexpression */
 | |
|   i16 iParent;            /* Disable pWC->a[iParent] when this term disabled */
 | |
|   i16 leftCursor;         /* Cursor number of X in "X <op> <expr>" */
 | |
|   i16 leftColumn;         /* Column number of X in "X <op> <expr>" */
 | |
|   u16 eOperator;          /* A WO_xx value describing <op> */
 | |
|   u8 flags;               /* Bit flags.  See below */
 | |
|   u8 nChild;              /* Number of children that must disable us */
 | |
|   WhereClause *pWC;       /* The clause this term is part of */
 | |
|   Bitmask prereqRight;    /* Bitmask of tables used by pRight */
 | |
|   Bitmask prereqAll;      /* Bitmask of tables referenced by p */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Allowed values of WhereTerm.flags
 | |
| */
 | |
| #define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(pExpr) */
 | |
| #define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
 | |
| #define TERM_CODED      0x04   /* This term is already coded */
 | |
| #define TERM_COPIED     0x08   /* Has a child */
 | |
| #define TERM_OR_OK      0x10   /* Used during OR-clause processing */
 | |
| 
 | |
| /*
 | |
| ** An instance of the following structure holds all information about a
 | |
| ** WHERE clause.  Mostly this is a container for one or more WhereTerms.
 | |
| */
 | |
| struct WhereClause {
 | |
|   Parse *pParse;           /* The parser context */
 | |
|   ExprMaskSet *pMaskSet;   /* Mapping of table indices to bitmasks */
 | |
|   int nTerm;               /* Number of terms */
 | |
|   int nSlot;               /* Number of entries in a[] */
 | |
|   WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
 | |
|   WhereTerm aStatic[10];   /* Initial static space for a[] */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** An instance of the following structure keeps track of a mapping
 | |
| ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
 | |
| **
 | |
| ** The VDBE cursor numbers are small integers contained in 
 | |
| ** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE 
 | |
| ** clause, the cursor numbers might not begin with 0 and they might
 | |
| ** contain gaps in the numbering sequence.  But we want to make maximum
 | |
| ** use of the bits in our bitmasks.  This structure provides a mapping
 | |
| ** from the sparse cursor numbers into consecutive integers beginning
 | |
| ** with 0.
 | |
| **
 | |
| ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
 | |
| ** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
 | |
| **
 | |
| ** For example, if the WHERE clause expression used these VDBE
 | |
| ** cursors:  4, 5, 8, 29, 57, 73.  Then the  ExprMaskSet structure
 | |
| ** would map those cursor numbers into bits 0 through 5.
 | |
| **
 | |
| ** Note that the mapping is not necessarily ordered.  In the example
 | |
| ** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
 | |
| ** 57->5, 73->4.  Or one of 719 other combinations might be used. It
 | |
| ** does not really matter.  What is important is that sparse cursor
 | |
| ** numbers all get mapped into bit numbers that begin with 0 and contain
 | |
| ** no gaps.
 | |
| */
 | |
| struct ExprMaskSet {
 | |
|   int n;                        /* Number of assigned cursor values */
 | |
|   int ix[sizeof(Bitmask)*8];    /* Cursor assigned to each bit */
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Bitmasks for the operators that indices are able to exploit.  An
 | |
| ** OR-ed combination of these values can be used when searching for
 | |
| ** terms in the where clause.
 | |
| */
 | |
| #define WO_IN     1
 | |
| #define WO_EQ     2
 | |
| #define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
 | |
| #define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
 | |
| #define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
 | |
| #define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
 | |
| #define WO_MATCH  64
 | |
| #define WO_ISNULL 128
 | |
| 
 | |
| /*
 | |
| ** Value for flags returned by bestIndex().  
 | |
| **
 | |
| ** The least significant byte is reserved as a mask for WO_ values above.
 | |
| ** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
 | |
| ** But if the table is the right table of a left join, WhereLevel.flags
 | |
| ** is set to WO_IN|WO_EQ.  The WhereLevel.flags field can then be used as
 | |
| ** the "op" parameter to findTerm when we are resolving equality constraints.
 | |
| ** ISNULL constraints will then not be used on the right table of a left
 | |
| ** join.  Tickets #2177 and #2189.
 | |
| */
 | |
| #define WHERE_ROWID_EQ     0x000100   /* rowid=EXPR or rowid IN (...) */
 | |
| #define WHERE_ROWID_RANGE  0x000200   /* rowid<EXPR and/or rowid>EXPR */
 | |
| #define WHERE_COLUMN_EQ    0x001000   /* x=EXPR or x IN (...) */
 | |
| #define WHERE_COLUMN_RANGE 0x002000   /* x<EXPR and/or x>EXPR */
 | |
| #define WHERE_COLUMN_IN    0x004000   /* x IN (...) */
 | |
| #define WHERE_TOP_LIMIT    0x010000   /* x<EXPR or x<=EXPR constraint */
 | |
| #define WHERE_BTM_LIMIT    0x020000   /* x>EXPR or x>=EXPR constraint */
 | |
| #define WHERE_IDX_ONLY     0x080000   /* Use index only - omit table */
 | |
| #define WHERE_ORDERBY      0x100000   /* Output will appear in correct order */
 | |
| #define WHERE_REVERSE      0x200000   /* Scan in reverse order */
 | |
| #define WHERE_UNIQUE       0x400000   /* Selects no more than one row */
 | |
| #define WHERE_VIRTUALTABLE 0x800000   /* Use virtual-table processing */
 | |
| 
 | |
| /*
 | |
| ** Initialize a preallocated WhereClause structure.
 | |
| */
 | |
| static void whereClauseInit(
 | |
|   WhereClause *pWC,        /* The WhereClause to be initialized */
 | |
|   Parse *pParse,           /* The parsing context */
 | |
|   ExprMaskSet *pMaskSet    /* Mapping from table indices to bitmasks */
 | |
| ){
 | |
|   pWC->pParse = pParse;
 | |
|   pWC->pMaskSet = pMaskSet;
 | |
|   pWC->nTerm = 0;
 | |
|   pWC->nSlot = ArraySize(pWC->aStatic);
 | |
|   pWC->a = pWC->aStatic;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Deallocate a WhereClause structure.  The WhereClause structure
 | |
| ** itself is not freed.  This routine is the inverse of whereClauseInit().
 | |
| */
 | |
| static void whereClauseClear(WhereClause *pWC){
 | |
|   int i;
 | |
|   WhereTerm *a;
 | |
|   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
 | |
|     if( a->flags & TERM_DYNAMIC ){
 | |
|       sqlite3ExprDelete(a->pExpr);
 | |
|     }
 | |
|   }
 | |
|   if( pWC->a!=pWC->aStatic ){
 | |
|     sqliteFree(pWC->a);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add a new entries to the WhereClause structure.  Increase the allocated
 | |
| ** space as necessary.
 | |
| **
 | |
| ** If the flags argument includes TERM_DYNAMIC, then responsibility
 | |
| ** for freeing the expression p is assumed by the WhereClause object.
 | |
| **
 | |
| ** WARNING:  This routine might reallocate the space used to store
 | |
| ** WhereTerms.  All pointers to WhereTerms should be invalided after
 | |
| ** calling this routine.  Such pointers may be reinitialized by referencing
 | |
| ** the pWC->a[] array.
 | |
| */
 | |
| static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
 | |
|   WhereTerm *pTerm;
 | |
|   int idx;
 | |
|   if( pWC->nTerm>=pWC->nSlot ){
 | |
|     WhereTerm *pOld = pWC->a;
 | |
|     pWC->a = sqliteMalloc( sizeof(pWC->a[0])*pWC->nSlot*2 );
 | |
|     if( pWC->a==0 ){
 | |
|       if( flags & TERM_DYNAMIC ){
 | |
|         sqlite3ExprDelete(p);
 | |
|       }
 | |
|       return 0;
 | |
|     }
 | |
|     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
 | |
|     if( pOld!=pWC->aStatic ){
 | |
|       sqliteFree(pOld);
 | |
|     }
 | |
|     pWC->nSlot *= 2;
 | |
|   }
 | |
|   pTerm = &pWC->a[idx = pWC->nTerm];
 | |
|   pWC->nTerm++;
 | |
|   pTerm->pExpr = p;
 | |
|   pTerm->flags = flags;
 | |
|   pTerm->pWC = pWC;
 | |
|   pTerm->iParent = -1;
 | |
|   return idx;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine identifies subexpressions in the WHERE clause where
 | |
| ** each subexpression is separated by the AND operator or some other
 | |
| ** operator specified in the op parameter.  The WhereClause structure
 | |
| ** is filled with pointers to subexpressions.  For example:
 | |
| **
 | |
| **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
 | |
| **           \________/     \_______________/     \________________/
 | |
| **            slot[0]            slot[1]               slot[2]
 | |
| **
 | |
| ** The original WHERE clause in pExpr is unaltered.  All this routine
 | |
| ** does is make slot[] entries point to substructure within pExpr.
 | |
| **
 | |
| ** In the previous sentence and in the diagram, "slot[]" refers to
 | |
| ** the WhereClause.a[] array.  This array grows as needed to contain
 | |
| ** all terms of the WHERE clause.
 | |
| */
 | |
| static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
 | |
|   if( pExpr==0 ) return;
 | |
|   if( pExpr->op!=op ){
 | |
|     whereClauseInsert(pWC, pExpr, 0);
 | |
|   }else{
 | |
|     whereSplit(pWC, pExpr->pLeft, op);
 | |
|     whereSplit(pWC, pExpr->pRight, op);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Initialize an expression mask set
 | |
| */
 | |
| #define initMaskSet(P)  memset(P, 0, sizeof(*P))
 | |
| 
 | |
| /*
 | |
| ** Return the bitmask for the given cursor number.  Return 0 if
 | |
| ** iCursor is not in the set.
 | |
| */
 | |
| static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
 | |
|   int i;
 | |
|   for(i=0; i<pMaskSet->n; i++){
 | |
|     if( pMaskSet->ix[i]==iCursor ){
 | |
|       return ((Bitmask)1)<<i;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a new mask for cursor iCursor.
 | |
| **
 | |
| ** There is one cursor per table in the FROM clause.  The number of
 | |
| ** tables in the FROM clause is limited by a test early in the
 | |
| ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
 | |
| ** array will never overflow.
 | |
| */
 | |
| static void createMask(ExprMaskSet *pMaskSet, int iCursor){
 | |
|   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
 | |
|   pMaskSet->ix[pMaskSet->n++] = iCursor;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine walks (recursively) an expression tree and generates
 | |
| ** a bitmask indicating which tables are used in that expression
 | |
| ** tree.
 | |
| **
 | |
| ** In order for this routine to work, the calling function must have
 | |
| ** previously invoked sqlite3ExprResolveNames() on the expression.  See
 | |
| ** the header comment on that routine for additional information.
 | |
| ** The sqlite3ExprResolveNames() routines looks for column names and
 | |
| ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
 | |
| ** the VDBE cursor number of the table.  This routine just has to
 | |
| ** translate the cursor numbers into bitmask values and OR all
 | |
| ** the bitmasks together.
 | |
| */
 | |
| static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
 | |
| static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);
 | |
| static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
 | |
|   Bitmask mask = 0;
 | |
|   if( p==0 ) return 0;
 | |
|   if( p->op==TK_COLUMN ){
 | |
|     mask = getMask(pMaskSet, p->iTable);
 | |
|     return mask;
 | |
|   }
 | |
|   mask = exprTableUsage(pMaskSet, p->pRight);
 | |
|   mask |= exprTableUsage(pMaskSet, p->pLeft);
 | |
|   mask |= exprListTableUsage(pMaskSet, p->pList);
 | |
|   mask |= exprSelectTableUsage(pMaskSet, p->pSelect);
 | |
|   return mask;
 | |
| }
 | |
| static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
 | |
|   int i;
 | |
|   Bitmask mask = 0;
 | |
|   if( pList ){
 | |
|     for(i=0; i<pList->nExpr; i++){
 | |
|       mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
 | |
|     }
 | |
|   }
 | |
|   return mask;
 | |
| }
 | |
| static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){
 | |
|   Bitmask mask;
 | |
|   if( pS==0 ){
 | |
|     mask = 0;
 | |
|   }else{
 | |
|     mask = exprListTableUsage(pMaskSet, pS->pEList);
 | |
|     mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
 | |
|     mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
 | |
|     mask |= exprTableUsage(pMaskSet, pS->pWhere);
 | |
|     mask |= exprTableUsage(pMaskSet, pS->pHaving);
 | |
|   }
 | |
|   return mask;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return TRUE if the given operator is one of the operators that is
 | |
| ** allowed for an indexable WHERE clause term.  The allowed operators are
 | |
| ** "=", "<", ">", "<=", ">=", and "IN".
 | |
| */
 | |
| static int allowedOp(int op){
 | |
|   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
 | |
|   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
 | |
|   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
 | |
|   assert( TK_GE==TK_EQ+4 );
 | |
|   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Swap two objects of type T.
 | |
| */
 | |
| #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
 | |
| 
 | |
| /*
 | |
| ** Commute a comparision operator.  Expressions of the form "X op Y"
 | |
| ** are converted into "Y op X".
 | |
| */
 | |
| static void exprCommute(Expr *pExpr){
 | |
|   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
 | |
|   SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
 | |
|   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
 | |
|   if( pExpr->op>=TK_GT ){
 | |
|     assert( TK_LT==TK_GT+2 );
 | |
|     assert( TK_GE==TK_LE+2 );
 | |
|     assert( TK_GT>TK_EQ );
 | |
|     assert( TK_GT<TK_LE );
 | |
|     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
 | |
|     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Translate from TK_xx operator to WO_xx bitmask.
 | |
| */
 | |
| static int operatorMask(int op){
 | |
|   int c;
 | |
|   assert( allowedOp(op) );
 | |
|   if( op==TK_IN ){
 | |
|     c = WO_IN;
 | |
|   }else if( op==TK_ISNULL ){
 | |
|     c = WO_ISNULL;
 | |
|   }else{
 | |
|     c = WO_EQ<<(op-TK_EQ);
 | |
|   }
 | |
|   assert( op!=TK_ISNULL || c==WO_ISNULL );
 | |
|   assert( op!=TK_IN || c==WO_IN );
 | |
|   assert( op!=TK_EQ || c==WO_EQ );
 | |
|   assert( op!=TK_LT || c==WO_LT );
 | |
|   assert( op!=TK_LE || c==WO_LE );
 | |
|   assert( op!=TK_GT || c==WO_GT );
 | |
|   assert( op!=TK_GE || c==WO_GE );
 | |
|   return c;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
 | |
| ** where X is a reference to the iColumn of table iCur and <op> is one of
 | |
| ** the WO_xx operator codes specified by the op parameter.
 | |
| ** Return a pointer to the term.  Return 0 if not found.
 | |
| */
 | |
| static WhereTerm *findTerm(
 | |
|   WhereClause *pWC,     /* The WHERE clause to be searched */
 | |
|   int iCur,             /* Cursor number of LHS */
 | |
|   int iColumn,          /* Column number of LHS */
 | |
|   Bitmask notReady,     /* RHS must not overlap with this mask */
 | |
|   u16 op,               /* Mask of WO_xx values describing operator */
 | |
|   Index *pIdx           /* Must be compatible with this index, if not NULL */
 | |
| ){
 | |
|   WhereTerm *pTerm;
 | |
|   int k;
 | |
|   for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
 | |
|     if( pTerm->leftCursor==iCur
 | |
|        && (pTerm->prereqRight & notReady)==0
 | |
|        && pTerm->leftColumn==iColumn
 | |
|        && (pTerm->eOperator & op)!=0
 | |
|     ){
 | |
|       if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){
 | |
|         Expr *pX = pTerm->pExpr;
 | |
|         CollSeq *pColl;
 | |
|         char idxaff;
 | |
|         int j;
 | |
|         Parse *pParse = pWC->pParse;
 | |
| 
 | |
|         idxaff = pIdx->pTable->aCol[iColumn].affinity;
 | |
|         if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
 | |
| 
 | |
|         /* Figure out the collation sequence required from an index for
 | |
|         ** it to be useful for optimising expression pX. Store this
 | |
|         ** value in variable pColl.
 | |
|         */
 | |
|         assert(pX->pLeft);
 | |
|         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
 | |
|         if( !pColl ){
 | |
|           pColl = pParse->db->pDfltColl;
 | |
|         }
 | |
| 
 | |
|         for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){}
 | |
|         assert( j<pIdx->nColumn );
 | |
|         if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
 | |
|       }
 | |
|       return pTerm;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* Forward reference */
 | |
| static void exprAnalyze(SrcList*, WhereClause*, int);
 | |
| 
 | |
| /*
 | |
| ** Call exprAnalyze on all terms in a WHERE clause.  
 | |
| **
 | |
| **
 | |
| */
 | |
| static void exprAnalyzeAll(
 | |
|   SrcList *pTabList,       /* the FROM clause */
 | |
|   WhereClause *pWC         /* the WHERE clause to be analyzed */
 | |
| ){
 | |
|   int i;
 | |
|   for(i=pWC->nTerm-1; i>=0; i--){
 | |
|     exprAnalyze(pTabList, pWC, i);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
 | |
| /*
 | |
| ** Check to see if the given expression is a LIKE or GLOB operator that
 | |
| ** can be optimized using inequality constraints.  Return TRUE if it is
 | |
| ** so and false if not.
 | |
| **
 | |
| ** In order for the operator to be optimizible, the RHS must be a string
 | |
| ** literal that does not begin with a wildcard.  
 | |
| */
 | |
| static int isLikeOrGlob(
 | |
|   sqlite3 *db,      /* The database */
 | |
|   Expr *pExpr,      /* Test this expression */
 | |
|   int *pnPattern,   /* Number of non-wildcard prefix characters */
 | |
|   int *pisComplete  /* True if the only wildcard is % in the last character */
 | |
| ){
 | |
|   const char *z;
 | |
|   Expr *pRight, *pLeft;
 | |
|   ExprList *pList;
 | |
|   int c, cnt;
 | |
|   int noCase;
 | |
|   char wc[3];
 | |
|   CollSeq *pColl;
 | |
| 
 | |
|   if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){
 | |
|     return 0;
 | |
|   }
 | |
|   pList = pExpr->pList;
 | |
|   pRight = pList->a[0].pExpr;
 | |
|   if( pRight->op!=TK_STRING ){
 | |
|     return 0;
 | |
|   }
 | |
|   pLeft = pList->a[1].pExpr;
 | |
|   if( pLeft->op!=TK_COLUMN ){
 | |
|     return 0;
 | |
|   }
 | |
|   pColl = pLeft->pColl;
 | |
|   if( pColl==0 ){
 | |
|     /* TODO: Coverage testing doesn't get this case. Is it actually possible
 | |
|     ** for an expression of type TK_COLUMN to not have an assigned collation 
 | |
|     ** sequence at this point?
 | |
|     */
 | |
|     pColl = db->pDfltColl;
 | |
|   }
 | |
|   if( (pColl->type!=SQLITE_COLL_BINARY || noCase) &&
 | |
|       (pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){
 | |
|     return 0;
 | |
|   }
 | |
|   sqlite3DequoteExpr(pRight);
 | |
|   z = (char *)pRight->token.z;
 | |
|   for(cnt=0; (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2]; cnt++){}
 | |
|   if( cnt==0 || 255==(u8)z[cnt] ){
 | |
|     return 0;
 | |
|   }
 | |
|   *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
 | |
|   *pnPattern = cnt;
 | |
|   return 1;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
 | |
| 
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /*
 | |
| ** Check to see if the given expression is of the form
 | |
| **
 | |
| **         column MATCH expr
 | |
| **
 | |
| ** If it is then return TRUE.  If not, return FALSE.
 | |
| */
 | |
| static int isMatchOfColumn(
 | |
|   Expr *pExpr      /* Test this expression */
 | |
| ){
 | |
|   ExprList *pList;
 | |
| 
 | |
|   if( pExpr->op!=TK_FUNCTION ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( pExpr->token.n!=5 ||
 | |
|        sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   pList = pExpr->pList;
 | |
|   if( pList->nExpr!=2 ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( pList->a[1].pExpr->op != TK_COLUMN ){
 | |
|     return 0;
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| /*
 | |
| ** If the pBase expression originated in the ON or USING clause of
 | |
| ** a join, then transfer the appropriate markings over to derived.
 | |
| */
 | |
| static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
 | |
|   pDerived->flags |= pBase->flags & EP_FromJoin;
 | |
|   pDerived->iRightJoinTable = pBase->iRightJoinTable;
 | |
| }
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
 | |
| /*
 | |
| ** Return TRUE if the given term of an OR clause can be converted
 | |
| ** into an IN clause.  The iCursor and iColumn define the left-hand
 | |
| ** side of the IN clause.
 | |
| **
 | |
| ** The context is that we have multiple OR-connected equality terms
 | |
| ** like this:
 | |
| **
 | |
| **           a=<expr1> OR  a=<expr2> OR b=<expr3>  OR ...
 | |
| **
 | |
| ** The pOrTerm input to this routine corresponds to a single term of
 | |
| ** this OR clause.  In order for the term to be a condidate for
 | |
| ** conversion to an IN operator, the following must be true:
 | |
| **
 | |
| **     *  The left-hand side of the term must be the column which
 | |
| **        is identified by iCursor and iColumn.
 | |
| **
 | |
| **     *  If the right-hand side is also a column, then the affinities
 | |
| **        of both right and left sides must be such that no type
 | |
| **        conversions are required on the right.  (Ticket #2249)
 | |
| **
 | |
| ** If both of these conditions are true, then return true.  Otherwise
 | |
| ** return false.
 | |
| */
 | |
| static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){
 | |
|   int affLeft, affRight;
 | |
|   assert( pOrTerm->eOperator==WO_EQ );
 | |
|   if( pOrTerm->leftCursor!=iCursor ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( pOrTerm->leftColumn!=iColumn ){
 | |
|     return 0;
 | |
|   }
 | |
|   affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
 | |
|   if( affRight==0 ){
 | |
|     return 1;
 | |
|   }
 | |
|   affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
 | |
|   if( affRight!=affLeft ){
 | |
|     return 0;
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return true if the given term of an OR clause can be ignored during
 | |
| ** a check to make sure all OR terms are candidates for optimization.
 | |
| ** In other words, return true if a call to the orTermIsOptCandidate()
 | |
| ** above returned false but it is not necessary to disqualify the
 | |
| ** optimization.
 | |
| **
 | |
| ** Suppose the original OR phrase was this:
 | |
| **
 | |
| **           a=4  OR  a=11  OR  a=b
 | |
| **
 | |
| ** During analysis, the third term gets flipped around and duplicate
 | |
| ** so that we are left with this:
 | |
| **
 | |
| **           a=4  OR  a=11  OR  a=b  OR  b=a
 | |
| **
 | |
| ** Since the last two terms are duplicates, only one of them
 | |
| ** has to qualify in order for the whole phrase to qualify.  When
 | |
| ** this routine is called, we know that pOrTerm did not qualify.
 | |
| ** This routine merely checks to see if pOrTerm has a duplicate that
 | |
| ** might qualify.  If there is a duplicate that has not yet been
 | |
| ** disqualified, then return true.  If there are no duplicates, or
 | |
| ** the duplicate has also been disqualifed, return false.
 | |
| */
 | |
| static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){
 | |
|   if( pOrTerm->flags & TERM_COPIED ){
 | |
|     /* This is the original term.  The duplicate is to the left had
 | |
|     ** has not yet been analyzed and thus has not yet been disqualified. */
 | |
|     return 1;
 | |
|   }
 | |
|   if( (pOrTerm->flags & TERM_VIRTUAL)!=0
 | |
|      && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){
 | |
|     /* This is a duplicate term.  The original qualified so this one
 | |
|     ** does not have to. */
 | |
|     return 1;
 | |
|   }
 | |
|   /* This is either a singleton term or else it is a duplicate for
 | |
|   ** which the original did not qualify.  Either way we are done for. */
 | |
|   return 0;
 | |
| }
 | |
| #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
 | |
| 
 | |
| /*
 | |
| ** The input to this routine is an WhereTerm structure with only the
 | |
| ** "pExpr" field filled in.  The job of this routine is to analyze the
 | |
| ** subexpression and populate all the other fields of the WhereTerm
 | |
| ** structure.
 | |
| **
 | |
| ** If the expression is of the form "<expr> <op> X" it gets commuted
 | |
| ** to the standard form of "X <op> <expr>".  If the expression is of
 | |
| ** the form "X <op> Y" where both X and Y are columns, then the original
 | |
| ** expression is unchanged and a new virtual expression of the form
 | |
| ** "Y <op> X" is added to the WHERE clause and analyzed separately.
 | |
| */
 | |
| static void exprAnalyze(
 | |
|   SrcList *pSrc,            /* the FROM clause */
 | |
|   WhereClause *pWC,         /* the WHERE clause */
 | |
|   int idxTerm               /* Index of the term to be analyzed */
 | |
| ){
 | |
|   WhereTerm *pTerm = &pWC->a[idxTerm];
 | |
|   ExprMaskSet *pMaskSet = pWC->pMaskSet;
 | |
|   Expr *pExpr = pTerm->pExpr;
 | |
|   Bitmask prereqLeft;
 | |
|   Bitmask prereqAll;
 | |
|   int nPattern;
 | |
|   int isComplete;
 | |
|   int op;
 | |
| 
 | |
|   if( sqlite3MallocFailed() ) return;
 | |
|   prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
 | |
|   op = pExpr->op;
 | |
|   if( op==TK_IN ){
 | |
|     assert( pExpr->pRight==0 );
 | |
|     pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList)
 | |
|                           | exprSelectTableUsage(pMaskSet, pExpr->pSelect);
 | |
|   }else if( op==TK_ISNULL ){
 | |
|     pTerm->prereqRight = 0;
 | |
|   }else{
 | |
|     pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
 | |
|   }
 | |
|   prereqAll = exprTableUsage(pMaskSet, pExpr);
 | |
|   if( ExprHasProperty(pExpr, EP_FromJoin) ){
 | |
|     prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable);
 | |
|   }
 | |
|   pTerm->prereqAll = prereqAll;
 | |
|   pTerm->leftCursor = -1;
 | |
|   pTerm->iParent = -1;
 | |
|   pTerm->eOperator = 0;
 | |
|   if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
 | |
|     Expr *pLeft = pExpr->pLeft;
 | |
|     Expr *pRight = pExpr->pRight;
 | |
|     if( pLeft->op==TK_COLUMN ){
 | |
|       pTerm->leftCursor = pLeft->iTable;
 | |
|       pTerm->leftColumn = pLeft->iColumn;
 | |
|       pTerm->eOperator = operatorMask(op);
 | |
|     }
 | |
|     if( pRight && pRight->op==TK_COLUMN ){
 | |
|       WhereTerm *pNew;
 | |
|       Expr *pDup;
 | |
|       if( pTerm->leftCursor>=0 ){
 | |
|         int idxNew;
 | |
|         pDup = sqlite3ExprDup(pExpr);
 | |
|         if( sqlite3MallocFailed() ){
 | |
|           sqlite3ExprDelete(pDup);
 | |
|           return;
 | |
|         }
 | |
|         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
 | |
|         if( idxNew==0 ) return;
 | |
|         pNew = &pWC->a[idxNew];
 | |
|         pNew->iParent = idxTerm;
 | |
|         pTerm = &pWC->a[idxTerm];
 | |
|         pTerm->nChild = 1;
 | |
|         pTerm->flags |= TERM_COPIED;
 | |
|       }else{
 | |
|         pDup = pExpr;
 | |
|         pNew = pTerm;
 | |
|       }
 | |
|       exprCommute(pDup);
 | |
|       pLeft = pDup->pLeft;
 | |
|       pNew->leftCursor = pLeft->iTable;
 | |
|       pNew->leftColumn = pLeft->iColumn;
 | |
|       pNew->prereqRight = prereqLeft;
 | |
|       pNew->prereqAll = prereqAll;
 | |
|       pNew->eOperator = operatorMask(pDup->op);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
 | |
|   /* If a term is the BETWEEN operator, create two new virtual terms
 | |
|   ** that define the range that the BETWEEN implements.
 | |
|   */
 | |
|   else if( pExpr->op==TK_BETWEEN ){
 | |
|     ExprList *pList = pExpr->pList;
 | |
|     int i;
 | |
|     static const u8 ops[] = {TK_GE, TK_LE};
 | |
|     assert( pList!=0 );
 | |
|     assert( pList->nExpr==2 );
 | |
|     for(i=0; i<2; i++){
 | |
|       Expr *pNewExpr;
 | |
|       int idxNew;
 | |
|       pNewExpr = sqlite3Expr(ops[i], sqlite3ExprDup(pExpr->pLeft),
 | |
|                              sqlite3ExprDup(pList->a[i].pExpr), 0);
 | |
|       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
 | |
|       exprAnalyze(pSrc, pWC, idxNew);
 | |
|       pTerm = &pWC->a[idxTerm];
 | |
|       pWC->a[idxNew].iParent = idxTerm;
 | |
|     }
 | |
|     pTerm->nChild = 2;
 | |
|   }
 | |
| #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
 | |
|   /* Attempt to convert OR-connected terms into an IN operator so that
 | |
|   ** they can make use of indices.  Example:
 | |
|   **
 | |
|   **      x = expr1  OR  expr2 = x  OR  x = expr3
 | |
|   **
 | |
|   ** is converted into
 | |
|   **
 | |
|   **      x IN (expr1,expr2,expr3)
 | |
|   **
 | |
|   ** This optimization must be omitted if OMIT_SUBQUERY is defined because
 | |
|   ** the compiler for the the IN operator is part of sub-queries.
 | |
|   */
 | |
|   else if( pExpr->op==TK_OR ){
 | |
|     int ok;
 | |
|     int i, j;
 | |
|     int iColumn, iCursor;
 | |
|     WhereClause sOr;
 | |
|     WhereTerm *pOrTerm;
 | |
| 
 | |
|     assert( (pTerm->flags & TERM_DYNAMIC)==0 );
 | |
|     whereClauseInit(&sOr, pWC->pParse, pMaskSet);
 | |
|     whereSplit(&sOr, pExpr, TK_OR);
 | |
|     exprAnalyzeAll(pSrc, &sOr);
 | |
|     assert( sOr.nTerm>=2 );
 | |
|     j = 0;
 | |
|     do{
 | |
|       assert( j<sOr.nTerm );
 | |
|       iColumn = sOr.a[j].leftColumn;
 | |
|       iCursor = sOr.a[j].leftCursor;
 | |
|       ok = iCursor>=0;
 | |
|       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
 | |
|         if( pOrTerm->eOperator!=WO_EQ ){
 | |
|           goto or_not_possible;
 | |
|         }
 | |
|         if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){
 | |
|           pOrTerm->flags |= TERM_OR_OK;
 | |
|         }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){
 | |
|           pOrTerm->flags &= ~TERM_OR_OK;
 | |
|         }else{
 | |
|           ok = 0;
 | |
|         }
 | |
|       }
 | |
|     }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 );
 | |
|     if( ok ){
 | |
|       ExprList *pList = 0;
 | |
|       Expr *pNew, *pDup;
 | |
|       Expr *pLeft = 0;
 | |
|       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
 | |
|         if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
 | |
|         pDup = sqlite3ExprDup(pOrTerm->pExpr->pRight);
 | |
|         pList = sqlite3ExprListAppend(pList, pDup, 0);
 | |
|         pLeft = pOrTerm->pExpr->pLeft;
 | |
|       }
 | |
|       assert( pLeft!=0 );
 | |
|       pDup = sqlite3ExprDup(pLeft);
 | |
|       pNew = sqlite3Expr(TK_IN, pDup, 0, 0);
 | |
|       if( pNew ){
 | |
|         int idxNew;
 | |
|         transferJoinMarkings(pNew, pExpr);
 | |
|         pNew->pList = pList;
 | |
|         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
 | |
|         exprAnalyze(pSrc, pWC, idxNew);
 | |
|         pTerm = &pWC->a[idxTerm];
 | |
|         pWC->a[idxNew].iParent = idxTerm;
 | |
|         pTerm->nChild = 1;
 | |
|       }else{
 | |
|         sqlite3ExprListDelete(pList);
 | |
|       }
 | |
|     }
 | |
| or_not_possible:
 | |
|     whereClauseClear(&sOr);
 | |
|   }
 | |
| #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
 | |
|   /* Add constraints to reduce the search space on a LIKE or GLOB
 | |
|   ** operator.
 | |
|   */
 | |
|   if( isLikeOrGlob(pWC->pParse->db, pExpr, &nPattern, &isComplete) ){
 | |
|     Expr *pLeft, *pRight;
 | |
|     Expr *pStr1, *pStr2;
 | |
|     Expr *pNewExpr1, *pNewExpr2;
 | |
|     int idxNew1, idxNew2;
 | |
| 
 | |
|     pLeft = pExpr->pList->a[1].pExpr;
 | |
|     pRight = pExpr->pList->a[0].pExpr;
 | |
|     pStr1 = sqlite3Expr(TK_STRING, 0, 0, 0);
 | |
|     if( pStr1 ){
 | |
|       sqlite3TokenCopy(&pStr1->token, &pRight->token);
 | |
|       pStr1->token.n = nPattern;
 | |
|       pStr1->flags = EP_Dequoted;
 | |
|     }
 | |
|     pStr2 = sqlite3ExprDup(pStr1);
 | |
|     if( pStr2 ){
 | |
|       assert( pStr2->token.dyn );
 | |
|       ++*(u8*)&pStr2->token.z[nPattern-1];
 | |
|     }
 | |
|     pNewExpr1 = sqlite3Expr(TK_GE, sqlite3ExprDup(pLeft), pStr1, 0);
 | |
|     idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
 | |
|     exprAnalyze(pSrc, pWC, idxNew1);
 | |
|     pNewExpr2 = sqlite3Expr(TK_LT, sqlite3ExprDup(pLeft), pStr2, 0);
 | |
|     idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
 | |
|     exprAnalyze(pSrc, pWC, idxNew2);
 | |
|     pTerm = &pWC->a[idxTerm];
 | |
|     if( isComplete ){
 | |
|       pWC->a[idxNew1].iParent = idxTerm;
 | |
|       pWC->a[idxNew2].iParent = idxTerm;
 | |
|       pTerm->nChild = 2;
 | |
|     }
 | |
|   }
 | |
| #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   /* Add a WO_MATCH auxiliary term to the constraint set if the
 | |
|   ** current expression is of the form:  column MATCH expr.
 | |
|   ** This information is used by the xBestIndex methods of
 | |
|   ** virtual tables.  The native query optimizer does not attempt
 | |
|   ** to do anything with MATCH functions.
 | |
|   */
 | |
|   if( isMatchOfColumn(pExpr) ){
 | |
|     int idxNew;
 | |
|     Expr *pRight, *pLeft;
 | |
|     WhereTerm *pNewTerm;
 | |
|     Bitmask prereqColumn, prereqExpr;
 | |
| 
 | |
|     pRight = pExpr->pList->a[0].pExpr;
 | |
|     pLeft = pExpr->pList->a[1].pExpr;
 | |
|     prereqExpr = exprTableUsage(pMaskSet, pRight);
 | |
|     prereqColumn = exprTableUsage(pMaskSet, pLeft);
 | |
|     if( (prereqExpr & prereqColumn)==0 ){
 | |
|       Expr *pNewExpr;
 | |
|       pNewExpr = sqlite3Expr(TK_MATCH, 0, sqlite3ExprDup(pRight), 0);
 | |
|       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
 | |
|       pNewTerm = &pWC->a[idxNew];
 | |
|       pNewTerm->prereqRight = prereqExpr;
 | |
|       pNewTerm->leftCursor = pLeft->iTable;
 | |
|       pNewTerm->leftColumn = pLeft->iColumn;
 | |
|       pNewTerm->eOperator = WO_MATCH;
 | |
|       pNewTerm->iParent = idxTerm;
 | |
|       pTerm = &pWC->a[idxTerm];
 | |
|       pTerm->nChild = 1;
 | |
|       pTerm->flags |= TERM_COPIED;
 | |
|       pNewTerm->prereqAll = pTerm->prereqAll;
 | |
|     }
 | |
|   }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return TRUE if any of the expressions in pList->a[iFirst...] contain
 | |
| ** a reference to any table other than the iBase table.
 | |
| */
 | |
| static int referencesOtherTables(
 | |
|   ExprList *pList,          /* Search expressions in ths list */
 | |
|   ExprMaskSet *pMaskSet,    /* Mapping from tables to bitmaps */
 | |
|   int iFirst,               /* Be searching with the iFirst-th expression */
 | |
|   int iBase                 /* Ignore references to this table */
 | |
| ){
 | |
|   Bitmask allowed = ~getMask(pMaskSet, iBase);
 | |
|   while( iFirst<pList->nExpr ){
 | |
|     if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This routine decides if pIdx can be used to satisfy the ORDER BY
 | |
| ** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
 | |
| ** ORDER BY clause, this routine returns 0.
 | |
| **
 | |
| ** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
 | |
| ** left-most table in the FROM clause of that same SELECT statement and
 | |
| ** the table has a cursor number of "base".  pIdx is an index on pTab.
 | |
| **
 | |
| ** nEqCol is the number of columns of pIdx that are used as equality
 | |
| ** constraints.  Any of these columns may be missing from the ORDER BY
 | |
| ** clause and the match can still be a success.
 | |
| **
 | |
| ** All terms of the ORDER BY that match against the index must be either
 | |
| ** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE
 | |
| ** index do not need to satisfy this constraint.)  The *pbRev value is
 | |
| ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
 | |
| ** the ORDER BY clause is all ASC.
 | |
| */
 | |
| static int isSortingIndex(
 | |
|   Parse *pParse,          /* Parsing context */
 | |
|   ExprMaskSet *pMaskSet,  /* Mapping from table indices to bitmaps */
 | |
|   Index *pIdx,            /* The index we are testing */
 | |
|   int base,               /* Cursor number for the table to be sorted */
 | |
|   ExprList *pOrderBy,     /* The ORDER BY clause */
 | |
|   int nEqCol,             /* Number of index columns with == constraints */
 | |
|   int *pbRev              /* Set to 1 if ORDER BY is DESC */
 | |
| ){
 | |
|   int i, j;                       /* Loop counters */
 | |
|   int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */
 | |
|   int nTerm;                      /* Number of ORDER BY terms */
 | |
|   struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
 | |
|   sqlite3 *db = pParse->db;
 | |
| 
 | |
|   assert( pOrderBy!=0 );
 | |
|   nTerm = pOrderBy->nExpr;
 | |
|   assert( nTerm>0 );
 | |
| 
 | |
|   /* Match terms of the ORDER BY clause against columns of
 | |
|   ** the index.
 | |
|   **
 | |
|   ** Note that indices have pIdx->nColumn regular columns plus
 | |
|   ** one additional column containing the rowid.  The rowid column
 | |
|   ** of the index is also allowed to match against the ORDER BY
 | |
|   ** clause.
 | |
|   */
 | |
|   for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
 | |
|     Expr *pExpr;       /* The expression of the ORDER BY pTerm */
 | |
|     CollSeq *pColl;    /* The collating sequence of pExpr */
 | |
|     int termSortOrder; /* Sort order for this term */
 | |
|     int iColumn;       /* The i-th column of the index.  -1 for rowid */
 | |
|     int iSortOrder;    /* 1 for DESC, 0 for ASC on the i-th index term */
 | |
|     const char *zColl; /* Name of the collating sequence for i-th index term */
 | |
| 
 | |
|     pExpr = pTerm->pExpr;
 | |
|     if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
 | |
|       /* Can not use an index sort on anything that is not a column in the
 | |
|       ** left-most table of the FROM clause */
 | |
|       break;
 | |
|     }
 | |
|     pColl = sqlite3ExprCollSeq(pParse, pExpr);
 | |
|     if( !pColl ){
 | |
|       pColl = db->pDfltColl;
 | |
|     }
 | |
|     if( i<pIdx->nColumn ){
 | |
|       iColumn = pIdx->aiColumn[i];
 | |
|       if( iColumn==pIdx->pTable->iPKey ){
 | |
|         iColumn = -1;
 | |
|       }
 | |
|       iSortOrder = pIdx->aSortOrder[i];
 | |
|       zColl = pIdx->azColl[i];
 | |
|     }else{
 | |
|       iColumn = -1;
 | |
|       iSortOrder = 0;
 | |
|       zColl = pColl->zName;
 | |
|     }
 | |
|     if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
 | |
|       /* Term j of the ORDER BY clause does not match column i of the index */
 | |
|       if( i<nEqCol ){
 | |
|         /* If an index column that is constrained by == fails to match an
 | |
|         ** ORDER BY term, that is OK.  Just ignore that column of the index
 | |
|         */
 | |
|         continue;
 | |
|       }else{
 | |
|         /* If an index column fails to match and is not constrained by ==
 | |
|         ** then the index cannot satisfy the ORDER BY constraint.
 | |
|         */
 | |
|         return 0;
 | |
|       }
 | |
|     }
 | |
|     assert( pIdx->aSortOrder!=0 );
 | |
|     assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
 | |
|     assert( iSortOrder==0 || iSortOrder==1 );
 | |
|     termSortOrder = iSortOrder ^ pTerm->sortOrder;
 | |
|     if( i>nEqCol ){
 | |
|       if( termSortOrder!=sortOrder ){
 | |
|         /* Indices can only be used if all ORDER BY terms past the
 | |
|         ** equality constraints are all either DESC or ASC. */
 | |
|         return 0;
 | |
|       }
 | |
|     }else{
 | |
|       sortOrder = termSortOrder;
 | |
|     }
 | |
|     j++;
 | |
|     pTerm++;
 | |
|     if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
 | |
|       /* If the indexed column is the primary key and everything matches
 | |
|       ** so far and none of the ORDER BY terms to the right reference other
 | |
|       ** tables in the join, then we are assured that the index can be used 
 | |
|       ** to sort because the primary key is unique and so none of the other
 | |
|       ** columns will make any difference
 | |
|       */
 | |
|       j = nTerm;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   *pbRev = sortOrder!=0;
 | |
|   if( j>=nTerm ){
 | |
|     /* All terms of the ORDER BY clause are covered by this index so
 | |
|     ** this index can be used for sorting. */
 | |
|     return 1;
 | |
|   }
 | |
|   if( pIdx->onError!=OE_None && i==pIdx->nColumn
 | |
|       && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
 | |
|     /* All terms of this index match some prefix of the ORDER BY clause
 | |
|     ** and the index is UNIQUE and no terms on the tail of the ORDER BY
 | |
|     ** clause reference other tables in a join.  If this is all true then
 | |
|     ** the order by clause is superfluous. */
 | |
|     return 1;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
 | |
| ** by sorting in order of ROWID.  Return true if so and set *pbRev to be
 | |
| ** true for reverse ROWID and false for forward ROWID order.
 | |
| */
 | |
| static int sortableByRowid(
 | |
|   int base,               /* Cursor number for table to be sorted */
 | |
|   ExprList *pOrderBy,     /* The ORDER BY clause */
 | |
|   ExprMaskSet *pMaskSet,  /* Mapping from tables to bitmaps */
 | |
|   int *pbRev              /* Set to 1 if ORDER BY is DESC */
 | |
| ){
 | |
|   Expr *p;
 | |
| 
 | |
|   assert( pOrderBy!=0 );
 | |
|   assert( pOrderBy->nExpr>0 );
 | |
|   p = pOrderBy->a[0].pExpr;
 | |
|   if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1
 | |
|     && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){
 | |
|     *pbRev = pOrderBy->a[0].sortOrder;
 | |
|     return 1;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Prepare a crude estimate of the logarithm of the input value.
 | |
| ** The results need not be exact.  This is only used for estimating
 | |
| ** the total cost of performing operatings with O(logN) or O(NlogN)
 | |
| ** complexity.  Because N is just a guess, it is no great tragedy if
 | |
| ** logN is a little off.
 | |
| */
 | |
| static double estLog(double N){
 | |
|   double logN = 1;
 | |
|   double x = 10;
 | |
|   while( N>x ){
 | |
|     logN += 1;
 | |
|     x *= 10;
 | |
|   }
 | |
|   return logN;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Two routines for printing the content of an sqlite3_index_info
 | |
| ** structure.  Used for testing and debugging only.  If neither
 | |
| ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
 | |
| ** are no-ops.
 | |
| */
 | |
| #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
 | |
| static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
 | |
|   int i;
 | |
|   if( !sqlite3_where_trace ) return;
 | |
|   for(i=0; i<p->nConstraint; i++){
 | |
|     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
 | |
|        i,
 | |
|        p->aConstraint[i].iColumn,
 | |
|        p->aConstraint[i].iTermOffset,
 | |
|        p->aConstraint[i].op,
 | |
|        p->aConstraint[i].usable);
 | |
|   }
 | |
|   for(i=0; i<p->nOrderBy; i++){
 | |
|     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
 | |
|        i,
 | |
|        p->aOrderBy[i].iColumn,
 | |
|        p->aOrderBy[i].desc);
 | |
|   }
 | |
| }
 | |
| static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
 | |
|   int i;
 | |
|   if( !sqlite3_where_trace ) return;
 | |
|   for(i=0; i<p->nConstraint; i++){
 | |
|     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
 | |
|        i,
 | |
|        p->aConstraintUsage[i].argvIndex,
 | |
|        p->aConstraintUsage[i].omit);
 | |
|   }
 | |
|   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
 | |
|   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
 | |
|   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
 | |
|   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
 | |
| }
 | |
| #else
 | |
| #define TRACE_IDX_INPUTS(A)
 | |
| #define TRACE_IDX_OUTPUTS(A)
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /*
 | |
| ** Compute the best index for a virtual table.
 | |
| **
 | |
| ** The best index is computed by the xBestIndex method of the virtual
 | |
| ** table module.  This routine is really just a wrapper that sets up
 | |
| ** the sqlite3_index_info structure that is used to communicate with
 | |
| ** xBestIndex.
 | |
| **
 | |
| ** In a join, this routine might be called multiple times for the
 | |
| ** same virtual table.  The sqlite3_index_info structure is created
 | |
| ** and initialized on the first invocation and reused on all subsequent
 | |
| ** invocations.  The sqlite3_index_info structure is also used when
 | |
| ** code is generated to access the virtual table.  The whereInfoDelete() 
 | |
| ** routine takes care of freeing the sqlite3_index_info structure after
 | |
| ** everybody has finished with it.
 | |
| */
 | |
| static double bestVirtualIndex(
 | |
|   Parse *pParse,                 /* The parsing context */
 | |
|   WhereClause *pWC,              /* The WHERE clause */
 | |
|   struct SrcList_item *pSrc,     /* The FROM clause term to search */
 | |
|   Bitmask notReady,              /* Mask of cursors that are not available */
 | |
|   ExprList *pOrderBy,            /* The order by clause */
 | |
|   int orderByUsable,             /* True if we can potential sort */
 | |
|   sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
 | |
| ){
 | |
|   Table *pTab = pSrc->pTab;
 | |
|   sqlite3_index_info *pIdxInfo;
 | |
|   struct sqlite3_index_constraint *pIdxCons;
 | |
|   struct sqlite3_index_orderby *pIdxOrderBy;
 | |
|   struct sqlite3_index_constraint_usage *pUsage;
 | |
|   WhereTerm *pTerm;
 | |
|   int i, j;
 | |
|   int nOrderBy;
 | |
|   int rc;
 | |
| 
 | |
|   /* If the sqlite3_index_info structure has not been previously
 | |
|   ** allocated and initialized for this virtual table, then allocate
 | |
|   ** and initialize it now
 | |
|   */
 | |
|   pIdxInfo = *ppIdxInfo;
 | |
|   if( pIdxInfo==0 ){
 | |
|     WhereTerm *pTerm;
 | |
|     int nTerm;
 | |
|     WHERETRACE(("Recomputing index info for %s...\n", pTab->zName));
 | |
| 
 | |
|     /* Count the number of possible WHERE clause constraints referring
 | |
|     ** to this virtual table */
 | |
|     for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
 | |
|       if( pTerm->leftCursor != pSrc->iCursor ) continue;
 | |
|       if( pTerm->eOperator==WO_IN ) continue;
 | |
|       nTerm++;
 | |
|     }
 | |
| 
 | |
|     /* If the ORDER BY clause contains only columns in the current 
 | |
|     ** virtual table then allocate space for the aOrderBy part of
 | |
|     ** the sqlite3_index_info structure.
 | |
|     */
 | |
|     nOrderBy = 0;
 | |
|     if( pOrderBy ){
 | |
|       for(i=0; i<pOrderBy->nExpr; i++){
 | |
|         Expr *pExpr = pOrderBy->a[i].pExpr;
 | |
|         if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
 | |
|       }
 | |
|       if( i==pOrderBy->nExpr ){
 | |
|         nOrderBy = pOrderBy->nExpr;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Allocate the sqlite3_index_info structure
 | |
|     */
 | |
|     pIdxInfo = sqliteMalloc( sizeof(*pIdxInfo)
 | |
|                              + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
 | |
|                              + sizeof(*pIdxOrderBy)*nOrderBy );
 | |
|     if( pIdxInfo==0 ){
 | |
|       sqlite3ErrorMsg(pParse, "out of memory");
 | |
|       return 0.0;
 | |
|     }
 | |
|     *ppIdxInfo = pIdxInfo;
 | |
| 
 | |
|     /* Initialize the structure.  The sqlite3_index_info structure contains
 | |
|     ** many fields that are declared "const" to prevent xBestIndex from
 | |
|     ** changing them.  We have to do some funky casting in order to
 | |
|     ** initialize those fields.
 | |
|     */
 | |
|     pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
 | |
|     pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
 | |
|     pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
 | |
|     *(int*)&pIdxInfo->nConstraint = nTerm;
 | |
|     *(int*)&pIdxInfo->nOrderBy = nOrderBy;
 | |
|     *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
 | |
|     *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
 | |
|     *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
 | |
|                                                                      pUsage;
 | |
| 
 | |
|     for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
 | |
|       if( pTerm->leftCursor != pSrc->iCursor ) continue;
 | |
|       if( pTerm->eOperator==WO_IN ) continue;
 | |
|       pIdxCons[j].iColumn = pTerm->leftColumn;
 | |
|       pIdxCons[j].iTermOffset = i;
 | |
|       pIdxCons[j].op = (unsigned char)pTerm->eOperator;
 | |
|       /* The direct assignment in the previous line is possible only because
 | |
|       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
 | |
|       ** following asserts verify this fact. */
 | |
|       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
 | |
|       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
 | |
|       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
 | |
|       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
 | |
|       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
 | |
|       assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
 | |
|       assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
 | |
|       j++;
 | |
|     }
 | |
|     for(i=0; i<nOrderBy; i++){
 | |
|       Expr *pExpr = pOrderBy->a[i].pExpr;
 | |
|       pIdxOrderBy[i].iColumn = pExpr->iColumn;
 | |
|       pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* At this point, the sqlite3_index_info structure that pIdxInfo points
 | |
|   ** to will have been initialized, either during the current invocation or
 | |
|   ** during some prior invocation.  Now we just have to customize the
 | |
|   ** details of pIdxInfo for the current invocation and pass it to
 | |
|   ** xBestIndex.
 | |
|   */
 | |
| 
 | |
|   /* The module name must be defined. Also, by this point there must
 | |
|   ** be a pointer to an sqlite3_vtab structure. Otherwise
 | |
|   ** sqlite3ViewGetColumnNames() would have picked up the error. 
 | |
|   */
 | |
|   assert( pTab->azModuleArg && pTab->azModuleArg[0] );
 | |
|   assert( pTab->pVtab );
 | |
| #if 0
 | |
|   if( pTab->pVtab==0 ){
 | |
|     sqlite3ErrorMsg(pParse, "undefined module %s for table %s",
 | |
|         pTab->azModuleArg[0], pTab->zName);
 | |
|     return 0.0;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Set the aConstraint[].usable fields and initialize all 
 | |
|   ** output variables to zero.
 | |
|   **
 | |
|   ** aConstraint[].usable is true for constraints where the right-hand
 | |
|   ** side contains only references to tables to the left of the current
 | |
|   ** table.  In other words, if the constraint is of the form:
 | |
|   **
 | |
|   **           column = expr
 | |
|   **
 | |
|   ** and we are evaluating a join, then the constraint on column is 
 | |
|   ** only valid if all tables referenced in expr occur to the left
 | |
|   ** of the table containing column.
 | |
|   **
 | |
|   ** The aConstraints[] array contains entries for all constraints
 | |
|   ** on the current table.  That way we only have to compute it once
 | |
|   ** even though we might try to pick the best index multiple times.
 | |
|   ** For each attempt at picking an index, the order of tables in the
 | |
|   ** join might be different so we have to recompute the usable flag
 | |
|   ** each time.
 | |
|   */
 | |
|   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
 | |
|   pUsage = pIdxInfo->aConstraintUsage;
 | |
|   for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
 | |
|     j = pIdxCons->iTermOffset;
 | |
|     pTerm = &pWC->a[j];
 | |
|     pIdxCons->usable =  (pTerm->prereqRight & notReady)==0;
 | |
|   }
 | |
|   memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
 | |
|   if( pIdxInfo->needToFreeIdxStr ){
 | |
|     sqlite3_free(pIdxInfo->idxStr);
 | |
|   }
 | |
|   pIdxInfo->idxStr = 0;
 | |
|   pIdxInfo->idxNum = 0;
 | |
|   pIdxInfo->needToFreeIdxStr = 0;
 | |
|   pIdxInfo->orderByConsumed = 0;
 | |
|   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0;
 | |
|   nOrderBy = pIdxInfo->nOrderBy;
 | |
|   if( pIdxInfo->nOrderBy && !orderByUsable ){
 | |
|     *(int*)&pIdxInfo->nOrderBy = 0;
 | |
|   }
 | |
| 
 | |
|   sqlite3SafetyOff(pParse->db);
 | |
|   WHERETRACE(("xBestIndex for %s\n", pTab->zName));
 | |
|   TRACE_IDX_INPUTS(pIdxInfo);
 | |
|   rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo);
 | |
|   TRACE_IDX_OUTPUTS(pIdxInfo);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     if( rc==SQLITE_NOMEM ){
 | |
|       sqlite3FailedMalloc();
 | |
|     }else {
 | |
|       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
 | |
|     }
 | |
|     sqlite3SafetyOn(pParse->db);
 | |
|   }else{
 | |
|     rc = sqlite3SafetyOn(pParse->db);
 | |
|   }
 | |
|   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
 | |
| 
 | |
|   return pIdxInfo->estimatedCost;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| /*
 | |
| ** Find the best index for accessing a particular table.  Return a pointer
 | |
| ** to the index, flags that describe how the index should be used, the
 | |
| ** number of equality constraints, and the "cost" for this index.
 | |
| **
 | |
| ** The lowest cost index wins.  The cost is an estimate of the amount of
 | |
| ** CPU and disk I/O need to process the request using the selected index.
 | |
| ** Factors that influence cost include:
 | |
| **
 | |
| **    *  The estimated number of rows that will be retrieved.  (The
 | |
| **       fewer the better.)
 | |
| **
 | |
| **    *  Whether or not sorting must occur.
 | |
| **
 | |
| **    *  Whether or not there must be separate lookups in the
 | |
| **       index and in the main table.
 | |
| **
 | |
| */
 | |
| static double bestIndex(
 | |
|   Parse *pParse,              /* The parsing context */
 | |
|   WhereClause *pWC,           /* The WHERE clause */
 | |
|   struct SrcList_item *pSrc,  /* The FROM clause term to search */
 | |
|   Bitmask notReady,           /* Mask of cursors that are not available */
 | |
|   ExprList *pOrderBy,         /* The order by clause */
 | |
|   Index **ppIndex,            /* Make *ppIndex point to the best index */
 | |
|   int *pFlags,                /* Put flags describing this choice in *pFlags */
 | |
|   int *pnEq                   /* Put the number of == or IN constraints here */
 | |
| ){
 | |
|   WhereTerm *pTerm;
 | |
|   Index *bestIdx = 0;         /* Index that gives the lowest cost */
 | |
|   double lowestCost;          /* The cost of using bestIdx */
 | |
|   int bestFlags = 0;          /* Flags associated with bestIdx */
 | |
|   int bestNEq = 0;            /* Best value for nEq */
 | |
|   int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
 | |
|   Index *pProbe;              /* An index we are evaluating */
 | |
|   int rev;                    /* True to scan in reverse order */
 | |
|   int flags;                  /* Flags associated with pProbe */
 | |
|   int nEq;                    /* Number of == or IN constraints */
 | |
|   int eqTermMask;             /* Mask of valid equality operators */
 | |
|   double cost;                /* Cost of using pProbe */
 | |
| 
 | |
|   WHERETRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));
 | |
|   lowestCost = SQLITE_BIG_DBL;
 | |
|   pProbe = pSrc->pTab->pIndex;
 | |
| 
 | |
|   /* If the table has no indices and there are no terms in the where
 | |
|   ** clause that refer to the ROWID, then we will never be able to do
 | |
|   ** anything other than a full table scan on this table.  We might as
 | |
|   ** well put it first in the join order.  That way, perhaps it can be
 | |
|   ** referenced by other tables in the join.
 | |
|   */
 | |
|   if( pProbe==0 &&
 | |
|      findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
 | |
|      (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){
 | |
|     *pFlags = 0;
 | |
|     *ppIndex = 0;
 | |
|     *pnEq = 0;
 | |
|     return 0.0;
 | |
|   }
 | |
| 
 | |
|   /* Check for a rowid=EXPR or rowid IN (...) constraints
 | |
|   */
 | |
|   pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
 | |
|   if( pTerm ){
 | |
|     Expr *pExpr;
 | |
|     *ppIndex = 0;
 | |
|     bestFlags = WHERE_ROWID_EQ;
 | |
|     if( pTerm->eOperator & WO_EQ ){
 | |
|       /* Rowid== is always the best pick.  Look no further.  Because only
 | |
|       ** a single row is generated, output is always in sorted order */
 | |
|       *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
 | |
|       *pnEq = 1;
 | |
|       WHERETRACE(("... best is rowid\n"));
 | |
|       return 0.0;
 | |
|     }else if( (pExpr = pTerm->pExpr)->pList!=0 ){
 | |
|       /* Rowid IN (LIST): cost is NlogN where N is the number of list
 | |
|       ** elements.  */
 | |
|       lowestCost = pExpr->pList->nExpr;
 | |
|       lowestCost *= estLog(lowestCost);
 | |
|     }else{
 | |
|       /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
 | |
|       ** in the result of the inner select.  We have no way to estimate
 | |
|       ** that value so make a wild guess. */
 | |
|       lowestCost = 200;
 | |
|     }
 | |
|     WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost));
 | |
|   }
 | |
| 
 | |
|   /* Estimate the cost of a table scan.  If we do not know how many
 | |
|   ** entries are in the table, use 1 million as a guess.
 | |
|   */
 | |
|   cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
 | |
|   WHERETRACE(("... table scan base cost: %.9g\n", cost));
 | |
|   flags = WHERE_ROWID_RANGE;
 | |
| 
 | |
|   /* Check for constraints on a range of rowids in a table scan.
 | |
|   */
 | |
|   pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
 | |
|   if( pTerm ){
 | |
|     if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
 | |
|       flags |= WHERE_TOP_LIMIT;
 | |
|       cost /= 3;  /* Guess that rowid<EXPR eliminates two-thirds or rows */
 | |
|     }
 | |
|     if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
 | |
|       flags |= WHERE_BTM_LIMIT;
 | |
|       cost /= 3;  /* Guess that rowid>EXPR eliminates two-thirds of rows */
 | |
|     }
 | |
|     WHERETRACE(("... rowid range reduces cost to %.9g\n", cost));
 | |
|   }else{
 | |
|     flags = 0;
 | |
|   }
 | |
| 
 | |
|   /* If the table scan does not satisfy the ORDER BY clause, increase
 | |
|   ** the cost by NlogN to cover the expense of sorting. */
 | |
|   if( pOrderBy ){
 | |
|     if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){
 | |
|       flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
 | |
|       if( rev ){
 | |
|         flags |= WHERE_REVERSE;
 | |
|       }
 | |
|     }else{
 | |
|       cost += cost*estLog(cost);
 | |
|       WHERETRACE(("... sorting increases cost to %.9g\n", cost));
 | |
|     }
 | |
|   }
 | |
|   if( cost<lowestCost ){
 | |
|     lowestCost = cost;
 | |
|     bestFlags = flags;
 | |
|   }
 | |
| 
 | |
|   /* If the pSrc table is the right table of a LEFT JOIN then we may not
 | |
|   ** use an index to satisfy IS NULL constraints on that table.  This is
 | |
|   ** because columns might end up being NULL if the table does not match -
 | |
|   ** a circumstance which the index cannot help us discover.  Ticket #2177.
 | |
|   */
 | |
|   if( (pSrc->jointype & JT_LEFT)!=0 ){
 | |
|     eqTermMask = WO_EQ|WO_IN;
 | |
|   }else{
 | |
|     eqTermMask = WO_EQ|WO_IN|WO_ISNULL;
 | |
|   }
 | |
| 
 | |
|   /* Look at each index.
 | |
|   */
 | |
|   for(; pProbe; pProbe=pProbe->pNext){
 | |
|     int i;                       /* Loop counter */
 | |
|     double inMultiplier = 1;
 | |
| 
 | |
|     WHERETRACE(("... index %s:\n", pProbe->zName));
 | |
| 
 | |
|     /* Count the number of columns in the index that are satisfied
 | |
|     ** by x=EXPR constraints or x IN (...) constraints.
 | |
|     */
 | |
|     flags = 0;
 | |
|     for(i=0; i<pProbe->nColumn; i++){
 | |
|       int j = pProbe->aiColumn[i];
 | |
|       pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe);
 | |
|       if( pTerm==0 ) break;
 | |
|       flags |= WHERE_COLUMN_EQ;
 | |
|       if( pTerm->eOperator & WO_IN ){
 | |
|         Expr *pExpr = pTerm->pExpr;
 | |
|         flags |= WHERE_COLUMN_IN;
 | |
|         if( pExpr->pSelect!=0 ){
 | |
|           inMultiplier *= 25;
 | |
|         }else if( pExpr->pList!=0 ){
 | |
|           inMultiplier *= pExpr->pList->nExpr + 1;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
 | |
|     nEq = i;
 | |
|     if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
 | |
|          && nEq==pProbe->nColumn ){
 | |
|       flags |= WHERE_UNIQUE;
 | |
|     }
 | |
|     WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost));
 | |
| 
 | |
|     /* Look for range constraints
 | |
|     */
 | |
|     if( nEq<pProbe->nColumn ){
 | |
|       int j = pProbe->aiColumn[nEq];
 | |
|       pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
 | |
|       if( pTerm ){
 | |
|         flags |= WHERE_COLUMN_RANGE;
 | |
|         if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
 | |
|           flags |= WHERE_TOP_LIMIT;
 | |
|           cost /= 3;
 | |
|         }
 | |
|         if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
 | |
|           flags |= WHERE_BTM_LIMIT;
 | |
|           cost /= 3;
 | |
|         }
 | |
|         WHERETRACE(("...... range reduces cost to %.9g\n", cost));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Add the additional cost of sorting if that is a factor.
 | |
|     */
 | |
|     if( pOrderBy ){
 | |
|       if( (flags & WHERE_COLUMN_IN)==0 &&
 | |
|            isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){
 | |
|         if( flags==0 ){
 | |
|           flags = WHERE_COLUMN_RANGE;
 | |
|         }
 | |
|         flags |= WHERE_ORDERBY;
 | |
|         if( rev ){
 | |
|           flags |= WHERE_REVERSE;
 | |
|         }
 | |
|       }else{
 | |
|         cost += cost*estLog(cost);
 | |
|         WHERETRACE(("...... orderby increases cost to %.9g\n", cost));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Check to see if we can get away with using just the index without
 | |
|     ** ever reading the table.  If that is the case, then halve the
 | |
|     ** cost of this index.
 | |
|     */
 | |
|     if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
 | |
|       Bitmask m = pSrc->colUsed;
 | |
|       int j;
 | |
|       for(j=0; j<pProbe->nColumn; j++){
 | |
|         int x = pProbe->aiColumn[j];
 | |
|         if( x<BMS-1 ){
 | |
|           m &= ~(((Bitmask)1)<<x);
 | |
|         }
 | |
|       }
 | |
|       if( m==0 ){
 | |
|         flags |= WHERE_IDX_ONLY;
 | |
|         cost /= 2;
 | |
|         WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* If this index has achieved the lowest cost so far, then use it.
 | |
|     */
 | |
|     if( cost < lowestCost ){
 | |
|       bestIdx = pProbe;
 | |
|       lowestCost = cost;
 | |
|       assert( flags!=0 );
 | |
|       bestFlags = flags;
 | |
|       bestNEq = nEq;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Report the best result
 | |
|   */
 | |
|   *ppIndex = bestIdx;
 | |
|   WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
 | |
|         bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
 | |
|   *pFlags = bestFlags | eqTermMask;
 | |
|   *pnEq = bestNEq;
 | |
|   return lowestCost;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Disable a term in the WHERE clause.  Except, do not disable the term
 | |
| ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
 | |
| ** or USING clause of that join.
 | |
| **
 | |
| ** Consider the term t2.z='ok' in the following queries:
 | |
| **
 | |
| **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
 | |
| **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
 | |
| **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
 | |
| **
 | |
| ** The t2.z='ok' is disabled in the in (2) because it originates
 | |
| ** in the ON clause.  The term is disabled in (3) because it is not part
 | |
| ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
 | |
| **
 | |
| ** Disabling a term causes that term to not be tested in the inner loop
 | |
| ** of the join.  Disabling is an optimization.  When terms are satisfied
 | |
| ** by indices, we disable them to prevent redundant tests in the inner
 | |
| ** loop.  We would get the correct results if nothing were ever disabled,
 | |
| ** but joins might run a little slower.  The trick is to disable as much
 | |
| ** as we can without disabling too much.  If we disabled in (1), we'd get
 | |
| ** the wrong answer.  See ticket #813.
 | |
| */
 | |
| static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
 | |
|   if( pTerm
 | |
|       && (pTerm->flags & TERM_CODED)==0
 | |
|       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
 | |
|   ){
 | |
|     pTerm->flags |= TERM_CODED;
 | |
|     if( pTerm->iParent>=0 ){
 | |
|       WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
 | |
|       if( (--pOther->nChild)==0 ){
 | |
|         disableTerm(pLevel, pOther);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that builds a probe for an index.
 | |
| **
 | |
| ** There should be nColumn values on the stack.  The index
 | |
| ** to be probed is pIdx.  Pop the values from the stack and
 | |
| ** replace them all with a single record that is the index
 | |
| ** problem.
 | |
| */
 | |
| static void buildIndexProbe(
 | |
|   Vdbe *v,        /* Generate code into this VM */
 | |
|   int nColumn,    /* The number of columns to check for NULL */
 | |
|   Index *pIdx     /* Index that we will be searching */
 | |
| ){
 | |
|   sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
 | |
|   sqlite3IndexAffinityStr(v, pIdx);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Generate code for a single equality term of the WHERE clause.  An equality
 | |
| ** term can be either X=expr or X IN (...).   pTerm is the term to be 
 | |
| ** coded.
 | |
| **
 | |
| ** The current value for the constraint is left on the top of the stack.
 | |
| **
 | |
| ** For a constraint of the form X=expr, the expression is evaluated and its
 | |
| ** result is left on the stack.  For constraints of the form X IN (...)
 | |
| ** this routine sets up a loop that will iterate over all values of X.
 | |
| */
 | |
| static void codeEqualityTerm(
 | |
|   Parse *pParse,      /* The parsing context */
 | |
|   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
 | |
|   WhereLevel *pLevel  /* When level of the FROM clause we are working on */
 | |
| ){
 | |
|   Expr *pX = pTerm->pExpr;
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   if( pX->op==TK_EQ ){
 | |
|     sqlite3ExprCode(pParse, pX->pRight);
 | |
|   }else if( pX->op==TK_ISNULL ){
 | |
|     sqlite3VdbeAddOp(v, OP_Null, 0, 0);
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
|   }else{
 | |
|     int iTab;
 | |
|     struct InLoop *pIn;
 | |
| 
 | |
|     assert( pX->op==TK_IN );
 | |
|     sqlite3CodeSubselect(pParse, pX);
 | |
|     iTab = pX->iTable;
 | |
|     sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
 | |
|     VdbeComment((v, "# %.*s", pX->span.n, pX->span.z));
 | |
|     if( pLevel->nIn==0 ){
 | |
|       pLevel->nxt = sqlite3VdbeMakeLabel(v);
 | |
|     }
 | |
|     pLevel->nIn++;
 | |
|     pLevel->aInLoop = sqliteReallocOrFree(pLevel->aInLoop,
 | |
|                                     sizeof(pLevel->aInLoop[0])*pLevel->nIn);
 | |
|     pIn = pLevel->aInLoop;
 | |
|     if( pIn ){
 | |
|       pIn += pLevel->nIn - 1;
 | |
|       pIn->iCur = iTab;
 | |
|       pIn->topAddr = sqlite3VdbeAddOp(v, OP_Column, iTab, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_IsNull, -1, 0);
 | |
|     }else{
 | |
|       pLevel->nIn = 0;
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
|   disableTerm(pLevel, pTerm);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that will evaluate all == and IN constraints for an
 | |
| ** index.  The values for all constraints are left on the stack.
 | |
| **
 | |
| ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
 | |
| ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
 | |
| ** The index has as many as three equality constraints, but in this
 | |
| ** example, the third "c" value is an inequality.  So only two 
 | |
| ** constraints are coded.  This routine will generate code to evaluate
 | |
| ** a==5 and b IN (1,2,3).  The current values for a and b will be left
 | |
| ** on the stack - a is the deepest and b the shallowest.
 | |
| **
 | |
| ** In the example above nEq==2.  But this subroutine works for any value
 | |
| ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
 | |
| ** The only thing it does is allocate the pLevel->iMem memory cell.
 | |
| **
 | |
| ** This routine always allocates at least one memory cell and puts
 | |
| ** the address of that memory cell in pLevel->iMem.  The code that
 | |
| ** calls this routine will use pLevel->iMem to store the termination
 | |
| ** key value of the loop.  If one or more IN operators appear, then
 | |
| ** this routine allocates an additional nEq memory cells for internal
 | |
| ** use.
 | |
| */
 | |
| static void codeAllEqualityTerms(
 | |
|   Parse *pParse,        /* Parsing context */
 | |
|   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
 | |
|   WhereClause *pWC,     /* The WHERE clause */
 | |
|   Bitmask notReady      /* Which parts of FROM have not yet been coded */
 | |
| ){
 | |
|   int nEq = pLevel->nEq;        /* The number of == or IN constraints to code */
 | |
|   int termsInMem = 0;           /* If true, store value in mem[] cells */
 | |
|   Vdbe *v = pParse->pVdbe;      /* The virtual machine under construction */
 | |
|   Index *pIdx = pLevel->pIdx;   /* The index being used for this loop */
 | |
|   int iCur = pLevel->iTabCur;   /* The cursor of the table */
 | |
|   WhereTerm *pTerm;             /* A single constraint term */
 | |
|   int j;                        /* Loop counter */
 | |
| 
 | |
|   /* Figure out how many memory cells we will need then allocate them.
 | |
|   ** We always need at least one used to store the loop terminator
 | |
|   ** value.  If there are IN operators we'll need one for each == or
 | |
|   ** IN constraint.
 | |
|   */
 | |
|   pLevel->iMem = pParse->nMem++;
 | |
|   if( pLevel->flags & WHERE_COLUMN_IN ){
 | |
|     pParse->nMem += pLevel->nEq;
 | |
|     termsInMem = 1;
 | |
|   }
 | |
| 
 | |
|   /* Evaluate the equality constraints
 | |
|   */
 | |
|   assert( pIdx->nColumn>=nEq );
 | |
|   for(j=0; j<nEq; j++){
 | |
|     int k = pIdx->aiColumn[j];
 | |
|     pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
 | |
|     if( pTerm==0 ) break;
 | |
|     assert( (pTerm->flags & TERM_CODED)==0 );
 | |
|     codeEqualityTerm(pParse, pTerm, pLevel);
 | |
|     if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
 | |
|       sqlite3VdbeAddOp(v, OP_IsNull, termsInMem ? -1 : -(j+1), pLevel->brk);
 | |
|     }
 | |
|     if( termsInMem ){
 | |
|       sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Make sure all the constraint values are on the top of the stack
 | |
|   */
 | |
|   if( termsInMem ){
 | |
|     for(j=0; j<nEq; j++){
 | |
|       sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| #if defined(SQLITE_TEST)
 | |
| /*
 | |
| ** The following variable holds a text description of query plan generated
 | |
| ** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
 | |
| ** overwrites the previous.  This information is used for testing and
 | |
| ** analysis only.
 | |
| */
 | |
| char sqlite3_query_plan[BMS*2*40];  /* Text of the join */
 | |
| static int nQPlan = 0;              /* Next free slow in _query_plan[] */
 | |
| 
 | |
| #endif /* SQLITE_TEST */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Free a WhereInfo structure
 | |
| */
 | |
| static void whereInfoFree(WhereInfo *pWInfo){
 | |
|   if( pWInfo ){
 | |
|     int i;
 | |
|     for(i=0; i<pWInfo->nLevel; i++){
 | |
|       sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
 | |
|       if( pInfo ){
 | |
|         if( pInfo->needToFreeIdxStr ){
 | |
|           /* Coverage: Don't think this can be reached. By the time this
 | |
|           ** function is called, the index-strings have been passed
 | |
|           ** to the vdbe layer for deletion.
 | |
|           */
 | |
|           sqlite3_free(pInfo->idxStr);
 | |
|         }
 | |
|         sqliteFree(pInfo);
 | |
|       }
 | |
|     }
 | |
|     sqliteFree(pWInfo);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Generate the beginning of the loop used for WHERE clause processing.
 | |
| ** The return value is a pointer to an opaque structure that contains
 | |
| ** information needed to terminate the loop.  Later, the calling routine
 | |
| ** should invoke sqlite3WhereEnd() with the return value of this function
 | |
| ** in order to complete the WHERE clause processing.
 | |
| **
 | |
| ** If an error occurs, this routine returns NULL.
 | |
| **
 | |
| ** The basic idea is to do a nested loop, one loop for each table in
 | |
| ** the FROM clause of a select.  (INSERT and UPDATE statements are the
 | |
| ** same as a SELECT with only a single table in the FROM clause.)  For
 | |
| ** example, if the SQL is this:
 | |
| **
 | |
| **       SELECT * FROM t1, t2, t3 WHERE ...;
 | |
| **
 | |
| ** Then the code generated is conceptually like the following:
 | |
| **
 | |
| **      foreach row1 in t1 do       \    Code generated
 | |
| **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
 | |
| **          foreach row3 in t3 do   /
 | |
| **            ...
 | |
| **          end                     \    Code generated
 | |
| **        end                        |-- by sqlite3WhereEnd()
 | |
| **      end                         /
 | |
| **
 | |
| ** Note that the loops might not be nested in the order in which they
 | |
| ** appear in the FROM clause if a different order is better able to make
 | |
| ** use of indices.  Note also that when the IN operator appears in
 | |
| ** the WHERE clause, it might result in additional nested loops for
 | |
| ** scanning through all values on the right-hand side of the IN.
 | |
| **
 | |
| ** There are Btree cursors associated with each table.  t1 uses cursor
 | |
| ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
 | |
| ** And so forth.  This routine generates code to open those VDBE cursors
 | |
| ** and sqlite3WhereEnd() generates the code to close them.
 | |
| **
 | |
| ** The code that sqlite3WhereBegin() generates leaves the cursors named
 | |
| ** in pTabList pointing at their appropriate entries.  The [...] code
 | |
| ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
 | |
| ** data from the various tables of the loop.
 | |
| **
 | |
| ** If the WHERE clause is empty, the foreach loops must each scan their
 | |
| ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
 | |
| ** the tables have indices and there are terms in the WHERE clause that
 | |
| ** refer to those indices, a complete table scan can be avoided and the
 | |
| ** code will run much faster.  Most of the work of this routine is checking
 | |
| ** to see if there are indices that can be used to speed up the loop.
 | |
| **
 | |
| ** Terms of the WHERE clause are also used to limit which rows actually
 | |
| ** make it to the "..." in the middle of the loop.  After each "foreach",
 | |
| ** terms of the WHERE clause that use only terms in that loop and outer
 | |
| ** loops are evaluated and if false a jump is made around all subsequent
 | |
| ** inner loops (or around the "..." if the test occurs within the inner-
 | |
| ** most loop)
 | |
| **
 | |
| ** OUTER JOINS
 | |
| **
 | |
| ** An outer join of tables t1 and t2 is conceptally coded as follows:
 | |
| **
 | |
| **    foreach row1 in t1 do
 | |
| **      flag = 0
 | |
| **      foreach row2 in t2 do
 | |
| **        start:
 | |
| **          ...
 | |
| **          flag = 1
 | |
| **      end
 | |
| **      if flag==0 then
 | |
| **        move the row2 cursor to a null row
 | |
| **        goto start
 | |
| **      fi
 | |
| **    end
 | |
| **
 | |
| ** ORDER BY CLAUSE PROCESSING
 | |
| **
 | |
| ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
 | |
| ** if there is one.  If there is no ORDER BY clause or if this routine
 | |
| ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
 | |
| **
 | |
| ** If an index can be used so that the natural output order of the table
 | |
| ** scan is correct for the ORDER BY clause, then that index is used and
 | |
| ** *ppOrderBy is set to NULL.  This is an optimization that prevents an
 | |
| ** unnecessary sort of the result set if an index appropriate for the
 | |
| ** ORDER BY clause already exists.
 | |
| **
 | |
| ** If the where clause loops cannot be arranged to provide the correct
 | |
| ** output order, then the *ppOrderBy is unchanged.
 | |
| */
 | |
| WhereInfo *sqlite3WhereBegin(
 | |
|   Parse *pParse,        /* The parser context */
 | |
|   SrcList *pTabList,    /* A list of all tables to be scanned */
 | |
|   Expr *pWhere,         /* The WHERE clause */
 | |
|   ExprList **ppOrderBy  /* An ORDER BY clause, or NULL */
 | |
| ){
 | |
|   int i;                     /* Loop counter */
 | |
|   WhereInfo *pWInfo;         /* Will become the return value of this function */
 | |
|   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
 | |
|   int brk, cont = 0;         /* Addresses used during code generation */
 | |
|   Bitmask notReady;          /* Cursors that are not yet positioned */
 | |
|   WhereTerm *pTerm;          /* A single term in the WHERE clause */
 | |
|   ExprMaskSet maskSet;       /* The expression mask set */
 | |
|   WhereClause wc;            /* The WHERE clause is divided into these terms */
 | |
|   struct SrcList_item *pTabItem;  /* A single entry from pTabList */
 | |
|   WhereLevel *pLevel;             /* A single level in the pWInfo list */
 | |
|   int iFrom;                      /* First unused FROM clause element */
 | |
|   int andFlags;              /* AND-ed combination of all wc.a[].flags */
 | |
| 
 | |
|   /* The number of tables in the FROM clause is limited by the number of
 | |
|   ** bits in a Bitmask 
 | |
|   */
 | |
|   if( pTabList->nSrc>BMS ){
 | |
|     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /* Split the WHERE clause into separate subexpressions where each
 | |
|   ** subexpression is separated by an AND operator.
 | |
|   */
 | |
|   initMaskSet(&maskSet);
 | |
|   whereClauseInit(&wc, pParse, &maskSet);
 | |
|   whereSplit(&wc, pWhere, TK_AND);
 | |
|     
 | |
|   /* Allocate and initialize the WhereInfo structure that will become the
 | |
|   ** return value.
 | |
|   */
 | |
|   pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
 | |
|   if( sqlite3MallocFailed() ){
 | |
|     goto whereBeginNoMem;
 | |
|   }
 | |
|   pWInfo->nLevel = pTabList->nSrc;
 | |
|   pWInfo->pParse = pParse;
 | |
|   pWInfo->pTabList = pTabList;
 | |
|   pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
 | |
| 
 | |
|   /* Special case: a WHERE clause that is constant.  Evaluate the
 | |
|   ** expression and either jump over all of the code or fall thru.
 | |
|   */
 | |
|   if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
 | |
|     sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
 | |
|     pWhere = 0;
 | |
|   }
 | |
| 
 | |
|   /* Analyze all of the subexpressions.  Note that exprAnalyze() might
 | |
|   ** add new virtual terms onto the end of the WHERE clause.  We do not
 | |
|   ** want to analyze these virtual terms, so start analyzing at the end
 | |
|   ** and work forward so that the added virtual terms are never processed.
 | |
|   */
 | |
|   for(i=0; i<pTabList->nSrc; i++){
 | |
|     createMask(&maskSet, pTabList->a[i].iCursor);
 | |
|   }
 | |
|   exprAnalyzeAll(pTabList, &wc);
 | |
|   if( sqlite3MallocFailed() ){
 | |
|     goto whereBeginNoMem;
 | |
|   }
 | |
| 
 | |
|   /* Chose the best index to use for each table in the FROM clause.
 | |
|   **
 | |
|   ** This loop fills in the following fields:
 | |
|   **
 | |
|   **   pWInfo->a[].pIdx      The index to use for this level of the loop.
 | |
|   **   pWInfo->a[].flags     WHERE_xxx flags associated with pIdx
 | |
|   **   pWInfo->a[].nEq       The number of == and IN constraints
 | |
|   **   pWInfo->a[].iFrom     When term of the FROM clause is being coded
 | |
|   **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
 | |
|   **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
 | |
|   **
 | |
|   ** This loop also figures out the nesting order of tables in the FROM
 | |
|   ** clause.
 | |
|   */
 | |
|   notReady = ~(Bitmask)0;
 | |
|   pTabItem = pTabList->a;
 | |
|   pLevel = pWInfo->a;
 | |
|   andFlags = ~0;
 | |
|   WHERETRACE(("*** Optimizer Start ***\n"));
 | |
|   for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
 | |
|     Index *pIdx;                /* Index for FROM table at pTabItem */
 | |
|     int flags;                  /* Flags asssociated with pIdx */
 | |
|     int nEq;                    /* Number of == or IN constraints */
 | |
|     double cost;                /* The cost for pIdx */
 | |
|     int j;                      /* For looping over FROM tables */
 | |
|     Index *pBest = 0;           /* The best index seen so far */
 | |
|     int bestFlags = 0;          /* Flags associated with pBest */
 | |
|     int bestNEq = 0;            /* nEq associated with pBest */
 | |
|     double lowestCost;          /* Cost of the pBest */
 | |
|     int bestJ = 0;              /* The value of j */
 | |
|     Bitmask m;                  /* Bitmask value for j or bestJ */
 | |
|     int once = 0;               /* True when first table is seen */
 | |
|     sqlite3_index_info *pIndex; /* Current virtual index */
 | |
| 
 | |
|     lowestCost = SQLITE_BIG_DBL;
 | |
|     for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
 | |
|       int doNotReorder;  /* True if this table should not be reordered */
 | |
| 
 | |
|       doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
 | |
|       if( once && doNotReorder ) break;
 | |
|       m = getMask(&maskSet, pTabItem->iCursor);
 | |
|       if( (m & notReady)==0 ){
 | |
|         if( j==iFrom ) iFrom++;
 | |
|         continue;
 | |
|       }
 | |
|       assert( pTabItem->pTab );
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|       if( IsVirtual(pTabItem->pTab) ){
 | |
|         sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo;
 | |
|         cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady,
 | |
|                                 ppOrderBy ? *ppOrderBy : 0, i==0,
 | |
|                                 ppIdxInfo);
 | |
|         flags = WHERE_VIRTUALTABLE;
 | |
|         pIndex = *ppIdxInfo;
 | |
|         if( pIndex && pIndex->orderByConsumed ){
 | |
|           flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY;
 | |
|         }
 | |
|         pIdx = 0;
 | |
|         nEq = 0;
 | |
|         if( (SQLITE_BIG_DBL/2.0)<cost ){
 | |
|           /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
 | |
|           ** inital value of lowestCost in this loop. If it is, then
 | |
|           ** the (cost<lowestCost) test below will never be true and
 | |
|           ** pLevel->pBestIdx never set.
 | |
|           */ 
 | |
|           cost = (SQLITE_BIG_DBL/2.0);
 | |
|         }
 | |
|       }else 
 | |
| #endif
 | |
|       {
 | |
|         cost = bestIndex(pParse, &wc, pTabItem, notReady,
 | |
|                          (i==0 && ppOrderBy) ? *ppOrderBy : 0,
 | |
|                          &pIdx, &flags, &nEq);
 | |
|         pIndex = 0;
 | |
|       }
 | |
|       if( cost<lowestCost ){
 | |
|         once = 1;
 | |
|         lowestCost = cost;
 | |
|         pBest = pIdx;
 | |
|         bestFlags = flags;
 | |
|         bestNEq = nEq;
 | |
|         bestJ = j;
 | |
|         pLevel->pBestIdx = pIndex;
 | |
|       }
 | |
|       if( doNotReorder ) break;
 | |
|     }
 | |
|     WHERETRACE(("*** Optimizer choose table %d for loop %d\n", bestJ,
 | |
|            pLevel-pWInfo->a));
 | |
|     if( (bestFlags & WHERE_ORDERBY)!=0 ){
 | |
|       *ppOrderBy = 0;
 | |
|     }
 | |
|     andFlags &= bestFlags;
 | |
|     pLevel->flags = bestFlags;
 | |
|     pLevel->pIdx = pBest;
 | |
|     pLevel->nEq = bestNEq;
 | |
|     pLevel->aInLoop = 0;
 | |
|     pLevel->nIn = 0;
 | |
|     if( pBest ){
 | |
|       pLevel->iIdxCur = pParse->nTab++;
 | |
|     }else{
 | |
|       pLevel->iIdxCur = -1;
 | |
|     }
 | |
|     notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
 | |
|     pLevel->iFrom = bestJ;
 | |
|   }
 | |
|   WHERETRACE(("*** Optimizer Finished ***\n"));
 | |
| 
 | |
|   /* If the total query only selects a single row, then the ORDER BY
 | |
|   ** clause is irrelevant.
 | |
|   */
 | |
|   if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
 | |
|     *ppOrderBy = 0;
 | |
|   }
 | |
| 
 | |
|   /* Open all tables in the pTabList and any indices selected for
 | |
|   ** searching those tables.
 | |
|   */
 | |
|   sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
 | |
|   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
 | |
|     Table *pTab;     /* Table to open */
 | |
|     Index *pIx;      /* Index used to access pTab (if any) */
 | |
|     int iDb;         /* Index of database containing table/index */
 | |
|     int iIdxCur = pLevel->iIdxCur;
 | |
| 
 | |
| #ifndef SQLITE_OMIT_EXPLAIN
 | |
|     if( pParse->explain==2 ){
 | |
|       char *zMsg;
 | |
|       struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
 | |
|       zMsg = sqlite3MPrintf("TABLE %s", pItem->zName);
 | |
|       if( pItem->zAlias ){
 | |
|         zMsg = sqlite3MPrintf("%z AS %s", zMsg, pItem->zAlias);
 | |
|       }
 | |
|       if( (pIx = pLevel->pIdx)!=0 ){
 | |
|         zMsg = sqlite3MPrintf("%z WITH INDEX %s", zMsg, pIx->zName);
 | |
|       }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
 | |
|         zMsg = sqlite3MPrintf("%z USING PRIMARY KEY", zMsg);
 | |
|       }
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|       else if( pLevel->pBestIdx ){
 | |
|         sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
 | |
|         zMsg = sqlite3MPrintf("%z VIRTUAL TABLE INDEX %d:%s", zMsg,
 | |
|                     pBestIdx->idxNum, pBestIdx->idxStr);
 | |
|       }
 | |
| #endif
 | |
|       if( pLevel->flags & WHERE_ORDERBY ){
 | |
|         zMsg = sqlite3MPrintf("%z ORDER BY", zMsg);
 | |
|       }
 | |
|       sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC);
 | |
|     }
 | |
| #endif /* SQLITE_OMIT_EXPLAIN */
 | |
|     pTabItem = &pTabList->a[pLevel->iFrom];
 | |
|     pTab = pTabItem->pTab;
 | |
|     iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | |
|     if( pTab->isEphem || pTab->pSelect ) continue;
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|     if( pLevel->pBestIdx ){
 | |
|       int iCur = pTabItem->iCursor;
 | |
|       sqlite3VdbeOp3(v, OP_VOpen, iCur, 0, (const char*)pTab->pVtab, P3_VTAB);
 | |
|     }else
 | |
| #endif
 | |
|     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
 | |
|       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead);
 | |
|       if( pTab->nCol<(sizeof(Bitmask)*8) ){
 | |
|         Bitmask b = pTabItem->colUsed;
 | |
|         int n = 0;
 | |
|         for(; b; b=b>>1, n++){}
 | |
|         sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n);
 | |
|         assert( n<=pTab->nCol );
 | |
|       }
 | |
|     }else{
 | |
|       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
 | |
|     }
 | |
|     pLevel->iTabCur = pTabItem->iCursor;
 | |
|     if( (pIx = pLevel->pIdx)!=0 ){
 | |
|       KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
 | |
|       assert( pIx->pSchema==pTab->pSchema );
 | |
|       sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
 | |
|       VdbeComment((v, "# %s", pIx->zName));
 | |
|       sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
 | |
|                      (char*)pKey, P3_KEYINFO_HANDOFF);
 | |
|     }
 | |
|     if( (pLevel->flags & (WHERE_IDX_ONLY|WHERE_COLUMN_RANGE))!=0 ){
 | |
|       /* Only call OP_SetNumColumns on the index if we might later use
 | |
|       ** OP_Column on the index. */
 | |
|       sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
 | |
|     }
 | |
|     sqlite3CodeVerifySchema(pParse, iDb);
 | |
|   }
 | |
|   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
 | |
| 
 | |
|   /* Generate the code to do the search.  Each iteration of the for
 | |
|   ** loop below generates code for a single nested loop of the VM
 | |
|   ** program.
 | |
|   */
 | |
|   notReady = ~(Bitmask)0;
 | |
|   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
 | |
|     int j;
 | |
|     int iCur = pTabItem->iCursor;  /* The VDBE cursor for the table */
 | |
|     Index *pIdx;       /* The index we will be using */
 | |
|     int nxt;           /* Where to jump to continue with the next IN case */
 | |
|     int iIdxCur;       /* The VDBE cursor for the index */
 | |
|     int omitTable;     /* True if we use the index only */
 | |
|     int bRev;          /* True if we need to scan in reverse order */
 | |
| 
 | |
|     pTabItem = &pTabList->a[pLevel->iFrom];
 | |
|     iCur = pTabItem->iCursor;
 | |
|     pIdx = pLevel->pIdx;
 | |
|     iIdxCur = pLevel->iIdxCur;
 | |
|     bRev = (pLevel->flags & WHERE_REVERSE)!=0;
 | |
|     omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;
 | |
| 
 | |
|     /* Create labels for the "break" and "continue" instructions
 | |
|     ** for the current loop.  Jump to brk to break out of a loop.
 | |
|     ** Jump to cont to go immediately to the next iteration of the
 | |
|     ** loop.
 | |
|     **
 | |
|     ** When there is an IN operator, we also have a "nxt" label that
 | |
|     ** means to continue with the next IN value combination.  When
 | |
|     ** there are no IN operators in the constraints, the "nxt" label
 | |
|     ** is the same as "brk".
 | |
|     */
 | |
|     brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v);
 | |
|     cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
 | |
| 
 | |
|     /* If this is the right table of a LEFT OUTER JOIN, allocate and
 | |
|     ** initialize a memory cell that records if this table matches any
 | |
|     ** row of the left table of the join.
 | |
|     */
 | |
|     if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
 | |
|       if( !pParse->nMem ) pParse->nMem++;
 | |
|       pLevel->iLeftJoin = pParse->nMem++;
 | |
|       sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin);
 | |
|       VdbeComment((v, "# init LEFT JOIN no-match flag"));
 | |
|     }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|     if( pLevel->pBestIdx ){
 | |
|       /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
 | |
|       **          to access the data.
 | |
|       */
 | |
|       int j;
 | |
|       sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
 | |
|       int nConstraint = pBestIdx->nConstraint;
 | |
|       struct sqlite3_index_constraint_usage *aUsage =
 | |
|                                                   pBestIdx->aConstraintUsage;
 | |
|       const struct sqlite3_index_constraint *aConstraint =
 | |
|                                                   pBestIdx->aConstraint;
 | |
| 
 | |
|       for(j=1; j<=nConstraint; j++){
 | |
|         int k;
 | |
|         for(k=0; k<nConstraint; k++){
 | |
|           if( aUsage[k].argvIndex==j ){
 | |
|             int iTerm = aConstraint[k].iTermOffset;
 | |
|             sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight);
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if( k==nConstraint ) break;
 | |
|       }
 | |
|       sqlite3VdbeAddOp(v, OP_Integer, j-1, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_Integer, pBestIdx->idxNum, 0);
 | |
|       sqlite3VdbeOp3(v, OP_VFilter, iCur, brk, pBestIdx->idxStr,
 | |
|                       pBestIdx->needToFreeIdxStr ? P3_MPRINTF : P3_STATIC);
 | |
|       pBestIdx->needToFreeIdxStr = 0;
 | |
|       for(j=0; j<pBestIdx->nConstraint; j++){
 | |
|         if( aUsage[j].omit ){
 | |
|           int iTerm = aConstraint[j].iTermOffset;
 | |
|           disableTerm(pLevel, &wc.a[iTerm]);
 | |
|         }
 | |
|       }
 | |
|       pLevel->op = OP_VNext;
 | |
|       pLevel->p1 = iCur;
 | |
|       pLevel->p2 = sqlite3VdbeCurrentAddr(v);
 | |
|     }else
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
|     if( pLevel->flags & WHERE_ROWID_EQ ){
 | |
|       /* Case 1:  We can directly reference a single row using an
 | |
|       **          equality comparison against the ROWID field.  Or
 | |
|       **          we reference multiple rows using a "rowid IN (...)"
 | |
|       **          construct.
 | |
|       */
 | |
|       pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
 | |
|       assert( pTerm!=0 );
 | |
|       assert( pTerm->pExpr!=0 );
 | |
|       assert( pTerm->leftCursor==iCur );
 | |
|       assert( omitTable==0 );
 | |
|       codeEqualityTerm(pParse, pTerm, pLevel);
 | |
|       nxt = pLevel->nxt;
 | |
|       sqlite3VdbeAddOp(v, OP_MustBeInt, 1, nxt);
 | |
|       sqlite3VdbeAddOp(v, OP_NotExists, iCur, nxt);
 | |
|       VdbeComment((v, "pk"));
 | |
|       pLevel->op = OP_Noop;
 | |
|     }else if( pLevel->flags & WHERE_ROWID_RANGE ){
 | |
|       /* Case 2:  We have an inequality comparison against the ROWID field.
 | |
|       */
 | |
|       int testOp = OP_Noop;
 | |
|       int start;
 | |
|       WhereTerm *pStart, *pEnd;
 | |
| 
 | |
|       assert( omitTable==0 );
 | |
|       pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
 | |
|       pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
 | |
|       if( bRev ){
 | |
|         pTerm = pStart;
 | |
|         pStart = pEnd;
 | |
|         pEnd = pTerm;
 | |
|       }
 | |
|       if( pStart ){
 | |
|         Expr *pX;
 | |
|         pX = pStart->pExpr;
 | |
|         assert( pX!=0 );
 | |
|         assert( pStart->leftCursor==iCur );
 | |
|         sqlite3ExprCode(pParse, pX->pRight);
 | |
|         sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
 | |
|         sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
 | |
|         VdbeComment((v, "pk"));
 | |
|         disableTerm(pLevel, pStart);
 | |
|       }else{
 | |
|         sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
 | |
|       }
 | |
|       if( pEnd ){
 | |
|         Expr *pX;
 | |
|         pX = pEnd->pExpr;
 | |
|         assert( pX!=0 );
 | |
|         assert( pEnd->leftCursor==iCur );
 | |
|         sqlite3ExprCode(pParse, pX->pRight);
 | |
|         pLevel->iMem = pParse->nMem++;
 | |
|         sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
 | |
|         if( pX->op==TK_LT || pX->op==TK_GT ){
 | |
|           testOp = bRev ? OP_Le : OP_Ge;
 | |
|         }else{
 | |
|           testOp = bRev ? OP_Lt : OP_Gt;
 | |
|         }
 | |
|         disableTerm(pLevel, pEnd);
 | |
|       }
 | |
|       start = sqlite3VdbeCurrentAddr(v);
 | |
|       pLevel->op = bRev ? OP_Prev : OP_Next;
 | |
|       pLevel->p1 = iCur;
 | |
|       pLevel->p2 = start;
 | |
|       if( testOp!=OP_Noop ){
 | |
|         sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
 | |
|         sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
 | |
|         sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC|0x100, brk);
 | |
|       }
 | |
|     }else if( pLevel->flags & WHERE_COLUMN_RANGE ){
 | |
|       /* Case 3: The WHERE clause term that refers to the right-most
 | |
|       **         column of the index is an inequality.  For example, if
 | |
|       **         the index is on (x,y,z) and the WHERE clause is of the
 | |
|       **         form "x=5 AND y<10" then this case is used.  Only the
 | |
|       **         right-most column can be an inequality - the rest must
 | |
|       **         use the "==" and "IN" operators.
 | |
|       **
 | |
|       **         This case is also used when there are no WHERE clause
 | |
|       **         constraints but an index is selected anyway, in order
 | |
|       **         to force the output order to conform to an ORDER BY.
 | |
|       */
 | |
|       int start;
 | |
|       int nEq = pLevel->nEq;
 | |
|       int topEq=0;        /* True if top limit uses ==. False is strictly < */
 | |
|       int btmEq=0;        /* True if btm limit uses ==. False if strictly > */
 | |
|       int topOp, btmOp;   /* Operators for the top and bottom search bounds */
 | |
|       int testOp;
 | |
|       int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0;
 | |
|       int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0;
 | |
| 
 | |
|       /* Generate code to evaluate all constraint terms using == or IN
 | |
|       ** and level the values of those terms on the stack.
 | |
|       */
 | |
|       codeAllEqualityTerms(pParse, pLevel, &wc, notReady);
 | |
| 
 | |
|       /* Duplicate the equality term values because they will all be
 | |
|       ** used twice: once to make the termination key and once to make the
 | |
|       ** start key.
 | |
|       */
 | |
|       for(j=0; j<nEq; j++){
 | |
|         sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0);
 | |
|       }
 | |
| 
 | |
|       /* Figure out what comparison operators to use for top and bottom 
 | |
|       ** search bounds. For an ascending index, the bottom bound is a > or >=
 | |
|       ** operator and the top bound is a < or <= operator.  For a descending
 | |
|       ** index the operators are reversed.
 | |
|       */
 | |
|       if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){
 | |
|         topOp = WO_LT|WO_LE;
 | |
|         btmOp = WO_GT|WO_GE;
 | |
|       }else{
 | |
|         topOp = WO_GT|WO_GE;
 | |
|         btmOp = WO_LT|WO_LE;
 | |
|         SWAP(int, topLimit, btmLimit);
 | |
|       }
 | |
| 
 | |
|       /* Generate the termination key.  This is the key value that
 | |
|       ** will end the search.  There is no termination key if there
 | |
|       ** are no equality terms and no "X<..." term.
 | |
|       **
 | |
|       ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
 | |
|       ** key computed here really ends up being the start key.
 | |
|       */
 | |
|       nxt = pLevel->nxt;
 | |
|       if( topLimit ){
 | |
|         Expr *pX;
 | |
|         int k = pIdx->aiColumn[j];
 | |
|         pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx);
 | |
|         assert( pTerm!=0 );
 | |
|         pX = pTerm->pExpr;
 | |
|         assert( (pTerm->flags & TERM_CODED)==0 );
 | |
|         sqlite3ExprCode(pParse, pX->pRight);
 | |
|         sqlite3VdbeAddOp(v, OP_IsNull, -(nEq*2+1), nxt);
 | |
|         topEq = pTerm->eOperator & (WO_LE|WO_GE);
 | |
|         disableTerm(pLevel, pTerm);
 | |
|         testOp = OP_IdxGE;
 | |
|       }else{
 | |
|         testOp = nEq>0 ? OP_IdxGE : OP_Noop;
 | |
|         topEq = 1;
 | |
|       }
 | |
|       if( testOp!=OP_Noop ){
 | |
|         int nCol = nEq + topLimit;
 | |
|         pLevel->iMem = pParse->nMem++;
 | |
|         buildIndexProbe(v, nCol, pIdx);
 | |
|         if( bRev ){
 | |
|           int op = topEq ? OP_MoveLe : OP_MoveLt;
 | |
|           sqlite3VdbeAddOp(v, op, iIdxCur, nxt);
 | |
|         }else{
 | |
|           sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
 | |
|         }
 | |
|       }else if( bRev ){
 | |
|         sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
 | |
|       }
 | |
| 
 | |
|       /* Generate the start key.  This is the key that defines the lower
 | |
|       ** bound on the search.  There is no start key if there are no
 | |
|       ** equality terms and if there is no "X>..." term.  In
 | |
|       ** that case, generate a "Rewind" instruction in place of the
 | |
|       ** start key search.
 | |
|       **
 | |
|       ** 2002-Dec-04: In the case of a reverse-order search, the so-called
 | |
|       ** "start" key really ends up being used as the termination key.
 | |
|       */
 | |
|       if( btmLimit ){
 | |
|         Expr *pX;
 | |
|         int k = pIdx->aiColumn[j];
 | |
|         pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx);
 | |
|         assert( pTerm!=0 );
 | |
|         pX = pTerm->pExpr;
 | |
|         assert( (pTerm->flags & TERM_CODED)==0 );
 | |
|         sqlite3ExprCode(pParse, pX->pRight);
 | |
|         sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), nxt);
 | |
|         btmEq = pTerm->eOperator & (WO_LE|WO_GE);
 | |
|         disableTerm(pLevel, pTerm);
 | |
|       }else{
 | |
|         btmEq = 1;
 | |
|       }
 | |
|       if( nEq>0 || btmLimit ){
 | |
|         int nCol = nEq + btmLimit;
 | |
|         buildIndexProbe(v, nCol, pIdx);
 | |
|         if( bRev ){
 | |
|           pLevel->iMem = pParse->nMem++;
 | |
|           sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
 | |
|           testOp = OP_IdxLT;
 | |
|         }else{
 | |
|           int op = btmEq ? OP_MoveGe : OP_MoveGt;
 | |
|           sqlite3VdbeAddOp(v, op, iIdxCur, nxt);
 | |
|         }
 | |
|       }else if( bRev ){
 | |
|         testOp = OP_Noop;
 | |
|       }else{
 | |
|         sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
 | |
|       }
 | |
| 
 | |
|       /* Generate the the top of the loop.  If there is a termination
 | |
|       ** key we have to test for that key and abort at the top of the
 | |
|       ** loop.
 | |
|       */
 | |
|       start = sqlite3VdbeCurrentAddr(v);
 | |
|       if( testOp!=OP_Noop ){
 | |
|         sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
 | |
|         sqlite3VdbeAddOp(v, testOp, iIdxCur, nxt);
 | |
|         if( (topEq && !bRev) || (!btmEq && bRev) ){
 | |
|           sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
 | |
|         }
 | |
|       }
 | |
|       if( topLimit | btmLimit ){
 | |
|         sqlite3VdbeAddOp(v, OP_Column, iIdxCur, nEq);
 | |
|         sqlite3VdbeAddOp(v, OP_IsNull, 1, cont);
 | |
|       }
 | |
|       if( !omitTable ){
 | |
|         sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
 | |
|         sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
 | |
|       }
 | |
| 
 | |
|       /* Record the instruction used to terminate the loop.
 | |
|       */
 | |
|       pLevel->op = bRev ? OP_Prev : OP_Next;
 | |
|       pLevel->p1 = iIdxCur;
 | |
|       pLevel->p2 = start;
 | |
|     }else if( pLevel->flags & WHERE_COLUMN_EQ ){
 | |
|       /* Case 4:  There is an index and all terms of the WHERE clause that
 | |
|       **          refer to the index using the "==" or "IN" operators.
 | |
|       */
 | |
|       int start;
 | |
|       int nEq = pLevel->nEq;
 | |
| 
 | |
|       /* Generate code to evaluate all constraint terms using == or IN
 | |
|       ** and leave the values of those terms on the stack.
 | |
|       */
 | |
|       codeAllEqualityTerms(pParse, pLevel, &wc, notReady);
 | |
|       nxt = pLevel->nxt;
 | |
| 
 | |
|       /* Generate a single key that will be used to both start and terminate
 | |
|       ** the search
 | |
|       */
 | |
|       buildIndexProbe(v, nEq, pIdx);
 | |
|       sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
 | |
| 
 | |
|       /* Generate code (1) to move to the first matching element of the table.
 | |
|       ** Then generate code (2) that jumps to "nxt" after the cursor is past
 | |
|       ** the last matching element of the table.  The code (1) is executed
 | |
|       ** once to initialize the search, the code (2) is executed before each
 | |
|       ** iteration of the scan to see if the scan has finished. */
 | |
|       if( bRev ){
 | |
|         /* Scan in reverse order */
 | |
|         sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, nxt);
 | |
|         start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
 | |
|         sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, nxt);
 | |
|         pLevel->op = OP_Prev;
 | |
|       }else{
 | |
|         /* Scan in the forward order */
 | |
|         sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, nxt);
 | |
|         start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
 | |
|         sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, nxt, "+", P3_STATIC);
 | |
|         pLevel->op = OP_Next;
 | |
|       }
 | |
|       if( !omitTable ){
 | |
|         sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
 | |
|         sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
 | |
|       }
 | |
|       pLevel->p1 = iIdxCur;
 | |
|       pLevel->p2 = start;
 | |
|     }else{
 | |
|       /* Case 5:  There is no usable index.  We must do a complete
 | |
|       **          scan of the entire table.
 | |
|       */
 | |
|       assert( omitTable==0 );
 | |
|       assert( bRev==0 );
 | |
|       pLevel->op = OP_Next;
 | |
|       pLevel->p1 = iCur;
 | |
|       pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk);
 | |
|     }
 | |
|     notReady &= ~getMask(&maskSet, iCur);
 | |
| 
 | |
|     /* Insert code to test every subexpression that can be completely
 | |
|     ** computed using the current set of tables.
 | |
|     */
 | |
|     for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
 | |
|       Expr *pE;
 | |
|       if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
 | |
|       if( (pTerm->prereqAll & notReady)!=0 ) continue;
 | |
|       pE = pTerm->pExpr;
 | |
|       assert( pE!=0 );
 | |
|       if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
 | |
|         continue;
 | |
|       }
 | |
|       sqlite3ExprIfFalse(pParse, pE, cont, 1);
 | |
|       pTerm->flags |= TERM_CODED;
 | |
|     }
 | |
| 
 | |
|     /* For a LEFT OUTER JOIN, generate code that will record the fact that
 | |
|     ** at least one row of the right table has matched the left table.  
 | |
|     */
 | |
|     if( pLevel->iLeftJoin ){
 | |
|       pLevel->top = sqlite3VdbeCurrentAddr(v);
 | |
|       sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin);
 | |
|       VdbeComment((v, "# record LEFT JOIN hit"));
 | |
|       for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
 | |
|         if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
 | |
|         if( (pTerm->prereqAll & notReady)!=0 ) continue;
 | |
|         assert( pTerm->pExpr );
 | |
|         sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1);
 | |
|         pTerm->flags |= TERM_CODED;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #ifdef SQLITE_TEST  /* For testing and debugging use only */
 | |
|   /* Record in the query plan information about the current table
 | |
|   ** and the index used to access it (if any).  If the table itself
 | |
|   ** is not used, its name is just '{}'.  If no index is used
 | |
|   ** the index is listed as "{}".  If the primary key is used the
 | |
|   ** index name is '*'.
 | |
|   */
 | |
|   for(i=0; i<pTabList->nSrc; i++){
 | |
|     char *z;
 | |
|     int n;
 | |
|     pLevel = &pWInfo->a[i];
 | |
|     pTabItem = &pTabList->a[pLevel->iFrom];
 | |
|     z = pTabItem->zAlias;
 | |
|     if( z==0 ) z = pTabItem->pTab->zName;
 | |
|     n = strlen(z);
 | |
|     if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
 | |
|       if( pLevel->flags & WHERE_IDX_ONLY ){
 | |
|         memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
 | |
|         nQPlan += 2;
 | |
|       }else{
 | |
|         memcpy(&sqlite3_query_plan[nQPlan], z, n);
 | |
|         nQPlan += n;
 | |
|       }
 | |
|       sqlite3_query_plan[nQPlan++] = ' ';
 | |
|     }
 | |
|     if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
 | |
|       memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
 | |
|       nQPlan += 2;
 | |
|     }else if( pLevel->pIdx==0 ){
 | |
|       memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
 | |
|       nQPlan += 3;
 | |
|     }else{
 | |
|       n = strlen(pLevel->pIdx->zName);
 | |
|       if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
 | |
|         memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n);
 | |
|         nQPlan += n;
 | |
|         sqlite3_query_plan[nQPlan++] = ' ';
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
 | |
|     sqlite3_query_plan[--nQPlan] = 0;
 | |
|   }
 | |
|   sqlite3_query_plan[nQPlan] = 0;
 | |
|   nQPlan = 0;
 | |
| #endif /* SQLITE_TEST // Testing and debugging use only */
 | |
| 
 | |
|   /* Record the continuation address in the WhereInfo structure.  Then
 | |
|   ** clean up and return.
 | |
|   */
 | |
|   pWInfo->iContinue = cont;
 | |
|   whereClauseClear(&wc);
 | |
|   return pWInfo;
 | |
| 
 | |
|   /* Jump here if malloc fails */
 | |
| whereBeginNoMem:
 | |
|   whereClauseClear(&wc);
 | |
|   whereInfoFree(pWInfo);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate the end of the WHERE loop.  See comments on 
 | |
| ** sqlite3WhereBegin() for additional information.
 | |
| */
 | |
| void sqlite3WhereEnd(WhereInfo *pWInfo){
 | |
|   Vdbe *v = pWInfo->pParse->pVdbe;
 | |
|   int i;
 | |
|   WhereLevel *pLevel;
 | |
|   SrcList *pTabList = pWInfo->pTabList;
 | |
| 
 | |
|   /* Generate loop termination code.
 | |
|   */
 | |
|   for(i=pTabList->nSrc-1; i>=0; i--){
 | |
|     pLevel = &pWInfo->a[i];
 | |
|     sqlite3VdbeResolveLabel(v, pLevel->cont);
 | |
|     if( pLevel->op!=OP_Noop ){
 | |
|       sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
 | |
|     }
 | |
|     if( pLevel->nIn ){
 | |
|       struct InLoop *pIn;
 | |
|       int j;
 | |
|       sqlite3VdbeResolveLabel(v, pLevel->nxt);
 | |
|       for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){
 | |
|         sqlite3VdbeJumpHere(v, pIn->topAddr+1);
 | |
|         sqlite3VdbeAddOp(v, OP_Next, pIn->iCur, pIn->topAddr);
 | |
|         sqlite3VdbeJumpHere(v, pIn->topAddr-1);
 | |
|       }
 | |
|       sqliteFree(pLevel->aInLoop);
 | |
|     }
 | |
|     sqlite3VdbeResolveLabel(v, pLevel->brk);
 | |
|     if( pLevel->iLeftJoin ){
 | |
|       int addr;
 | |
|       addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
 | |
|       if( pLevel->iIdxCur>=0 ){
 | |
|         sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0);
 | |
|       }
 | |
|       sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top);
 | |
|       sqlite3VdbeJumpHere(v, addr);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* The "break" point is here, just past the end of the outer loop.
 | |
|   ** Set it.
 | |
|   */
 | |
|   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
 | |
| 
 | |
|   /* Close all of the cursors that were opened by sqlite3WhereBegin.
 | |
|   */
 | |
|   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
 | |
|     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
 | |
|     Table *pTab = pTabItem->pTab;
 | |
|     assert( pTab!=0 );
 | |
|     if( pTab->isEphem || pTab->pSelect ) continue;
 | |
|     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
 | |
|       sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0);
 | |
|     }
 | |
|     if( pLevel->pIdx!=0 ){
 | |
|       sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0);
 | |
|     }
 | |
| 
 | |
|     /* Make cursor substitutions for cases where we want to use
 | |
|     ** just the index and never reference the table.
 | |
|     ** 
 | |
|     ** Calls to the code generator in between sqlite3WhereBegin and
 | |
|     ** sqlite3WhereEnd will have created code that references the table
 | |
|     ** directly.  This loop scans all that code looking for opcodes
 | |
|     ** that reference the table and converts them into opcodes that
 | |
|     ** reference the index.
 | |
|     */
 | |
|     if( pLevel->flags & WHERE_IDX_ONLY ){
 | |
|       int k, j, last;
 | |
|       VdbeOp *pOp;
 | |
|       Index *pIdx = pLevel->pIdx;
 | |
| 
 | |
|       assert( pIdx!=0 );
 | |
|       pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
 | |
|       last = sqlite3VdbeCurrentAddr(v);
 | |
|       for(k=pWInfo->iTop; k<last; k++, pOp++){
 | |
|         if( pOp->p1!=pLevel->iTabCur ) continue;
 | |
|         if( pOp->opcode==OP_Column ){
 | |
|           pOp->p1 = pLevel->iIdxCur;
 | |
|           for(j=0; j<pIdx->nColumn; j++){
 | |
|             if( pOp->p2==pIdx->aiColumn[j] ){
 | |
|               pOp->p2 = j;
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }else if( pOp->opcode==OP_Rowid ){
 | |
|           pOp->p1 = pLevel->iIdxCur;
 | |
|           pOp->opcode = OP_IdxRowid;
 | |
|         }else if( pOp->opcode==OP_NullRow ){
 | |
|           pOp->opcode = OP_Noop;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Final cleanup
 | |
|   */
 | |
|   whereInfoFree(pWInfo);
 | |
|   return;
 | |
| }
 |