--HG-- extra : convert_revision : svn%3A39bc706e-5318-0410-9160-8a85361fbb7c/trunk%401209
		
			
				
	
	
		
			2216 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2216 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** 2003 September 6
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains code used for creating, destroying, and populating
 | |
| ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
 | |
| ** to version 2.8.7, all this code was combined into the vdbe.c source file.
 | |
| ** But that file was getting too big so this subroutines were split out.
 | |
| */
 | |
| #include "sqliteInt.h"
 | |
| #include "os.h"
 | |
| #include <ctype.h>
 | |
| #include "vdbeInt.h"
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** When debugging the code generator in a symbolic debugger, one can
 | |
| ** set the sqlite3_vdbe_addop_trace to 1 and all opcodes will be printed
 | |
| ** as they are added to the instruction stream.
 | |
| */
 | |
| #ifdef SQLITE_DEBUG
 | |
| int sqlite3_vdbe_addop_trace = 0;
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Create a new virtual database engine.
 | |
| */
 | |
| Vdbe *sqlite3VdbeCreate(sqlite3 *db){
 | |
|   Vdbe *p;
 | |
|   p = sqliteMalloc( sizeof(Vdbe) );
 | |
|   if( p==0 ) return 0;
 | |
|   p->db = db;
 | |
|   if( db->pVdbe ){
 | |
|     db->pVdbe->pPrev = p;
 | |
|   }
 | |
|   p->pNext = db->pVdbe;
 | |
|   p->pPrev = 0;
 | |
|   db->pVdbe = p;
 | |
|   p->magic = VDBE_MAGIC_INIT;
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Remember the SQL string for a prepared statement.
 | |
| */
 | |
| void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){
 | |
|   if( p==0 ) return;
 | |
|   assert( p->zSql==0 );
 | |
|   p->zSql = sqlite3StrNDup(z, n);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the SQL associated with a prepared statement
 | |
| */
 | |
| const char *sqlite3VdbeGetSql(Vdbe *p){
 | |
|   return p->zSql;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Swap all content between two VDBE structures.
 | |
| */
 | |
| void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
 | |
|   Vdbe tmp, *pTmp;
 | |
|   char *zTmp;
 | |
|   int nTmp;
 | |
|   tmp = *pA;
 | |
|   *pA = *pB;
 | |
|   *pB = tmp;
 | |
|   pTmp = pA->pNext;
 | |
|   pA->pNext = pB->pNext;
 | |
|   pB->pNext = pTmp;
 | |
|   pTmp = pA->pPrev;
 | |
|   pA->pPrev = pB->pPrev;
 | |
|   pB->pPrev = pTmp;
 | |
|   zTmp = pA->zSql;
 | |
|   pA->zSql = pB->zSql;
 | |
|   pB->zSql = zTmp;
 | |
|   nTmp = pA->nSql;
 | |
|   pA->nSql = pB->nSql;
 | |
|   pB->nSql = nTmp;
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| /*
 | |
| ** Turn tracing on or off
 | |
| */
 | |
| void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
 | |
|   p->trace = trace;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Resize the Vdbe.aOp array so that it contains at least N
 | |
| ** elements. If the Vdbe is in VDBE_MAGIC_RUN state, then
 | |
| ** the Vdbe.aOp array will be sized to contain exactly N
 | |
| ** elements. Vdbe.nOpAlloc is set to reflect the new size of
 | |
| ** the array.
 | |
| **
 | |
| ** If an out-of-memory error occurs while resizing the array,
 | |
| ** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that
 | |
| ** any opcodes already allocated can be correctly deallocated
 | |
| ** along with the rest of the Vdbe).
 | |
| */
 | |
| static void resizeOpArray(Vdbe *p, int N){
 | |
|   int runMode = p->magic==VDBE_MAGIC_RUN;
 | |
|   if( runMode || p->nOpAlloc<N ){
 | |
|     VdbeOp *pNew;
 | |
|     int nNew = N + 100*(!runMode);
 | |
|     int oldSize = p->nOpAlloc;
 | |
|     pNew = sqliteRealloc(p->aOp, nNew*sizeof(Op));
 | |
|     if( pNew ){
 | |
|       p->nOpAlloc = nNew;
 | |
|       p->aOp = pNew;
 | |
|       if( nNew>oldSize ){
 | |
|         memset(&p->aOp[oldSize], 0, (nNew-oldSize)*sizeof(Op));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add a new instruction to the list of instructions current in the
 | |
| ** VDBE.  Return the address of the new instruction.
 | |
| **
 | |
| ** Parameters:
 | |
| **
 | |
| **    p               Pointer to the VDBE
 | |
| **
 | |
| **    op              The opcode for this instruction
 | |
| **
 | |
| **    p1, p2          First two of the three possible operands.
 | |
| **
 | |
| ** Use the sqlite3VdbeResolveLabel() function to fix an address and
 | |
| ** the sqlite3VdbeChangeP3() function to change the value of the P3
 | |
| ** operand.
 | |
| */
 | |
| int sqlite3VdbeAddOp(Vdbe *p, int op, int p1, int p2){
 | |
|   int i;
 | |
|   VdbeOp *pOp;
 | |
| 
 | |
|   i = p->nOp;
 | |
|   assert( p->magic==VDBE_MAGIC_INIT );
 | |
|   if( p->nOpAlloc<=i ){
 | |
|     resizeOpArray(p, i+1);
 | |
|     if( sqlite3MallocFailed() ){
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   p->nOp++;
 | |
|   pOp = &p->aOp[i];
 | |
|   pOp->opcode = op;
 | |
|   pOp->p1 = p1;
 | |
|   pOp->p2 = p2;
 | |
|   pOp->p3 = 0;
 | |
|   pOp->p3type = P3_NOTUSED;
 | |
|   p->expired = 0;
 | |
| #ifdef SQLITE_DEBUG
 | |
|   if( sqlite3_vdbe_addop_trace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
 | |
| #endif
 | |
|   return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add an opcode that includes the p3 value.
 | |
| */
 | |
| int sqlite3VdbeOp3(Vdbe *p, int op, int p1, int p2, const char *zP3,int p3type){
 | |
|   int addr = sqlite3VdbeAddOp(p, op, p1, p2);
 | |
|   sqlite3VdbeChangeP3(p, addr, zP3, p3type);
 | |
|   return addr;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a new symbolic label for an instruction that has yet to be
 | |
| ** coded.  The symbolic label is really just a negative number.  The
 | |
| ** label can be used as the P2 value of an operation.  Later, when
 | |
| ** the label is resolved to a specific address, the VDBE will scan
 | |
| ** through its operation list and change all values of P2 which match
 | |
| ** the label into the resolved address.
 | |
| **
 | |
| ** The VDBE knows that a P2 value is a label because labels are
 | |
| ** always negative and P2 values are suppose to be non-negative.
 | |
| ** Hence, a negative P2 value is a label that has yet to be resolved.
 | |
| **
 | |
| ** Zero is returned if a malloc() fails.
 | |
| */
 | |
| int sqlite3VdbeMakeLabel(Vdbe *p){
 | |
|   int i;
 | |
|   i = p->nLabel++;
 | |
|   assert( p->magic==VDBE_MAGIC_INIT );
 | |
|   if( i>=p->nLabelAlloc ){
 | |
|     p->nLabelAlloc = p->nLabelAlloc*2 + 10;
 | |
|     p->aLabel = sqliteReallocOrFree(p->aLabel,
 | |
|                                     p->nLabelAlloc*sizeof(p->aLabel[0]));
 | |
|   }
 | |
|   if( p->aLabel ){
 | |
|     p->aLabel[i] = -1;
 | |
|   }
 | |
|   return -1-i;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Resolve label "x" to be the address of the next instruction to
 | |
| ** be inserted.  The parameter "x" must have been obtained from
 | |
| ** a prior call to sqlite3VdbeMakeLabel().
 | |
| */
 | |
| void sqlite3VdbeResolveLabel(Vdbe *p, int x){
 | |
|   int j = -1-x;
 | |
|   assert( p->magic==VDBE_MAGIC_INIT );
 | |
|   assert( j>=0 && j<p->nLabel );
 | |
|   if( p->aLabel ){
 | |
|     p->aLabel[j] = p->nOp;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return non-zero if opcode 'op' is guarenteed not to push more values
 | |
| ** onto the VDBE stack than it pops off.
 | |
| */
 | |
| static int opcodeNoPush(u8 op){
 | |
|   /* The 10 NOPUSH_MASK_n constants are defined in the automatically
 | |
|   ** generated header file opcodes.h. Each is a 16-bit bitmask, one
 | |
|   ** bit corresponding to each opcode implemented by the virtual
 | |
|   ** machine in vdbe.c. The bit is true if the word "no-push" appears
 | |
|   ** in a comment on the same line as the "case OP_XXX:" in 
 | |
|   ** sqlite3VdbeExec() in vdbe.c.
 | |
|   **
 | |
|   ** If the bit is true, then the corresponding opcode is guarenteed not
 | |
|   ** to grow the stack when it is executed. Otherwise, it may grow the
 | |
|   ** stack by at most one entry.
 | |
|   **
 | |
|   ** NOPUSH_MASK_0 corresponds to opcodes 0 to 15. NOPUSH_MASK_1 contains
 | |
|   ** one bit for opcodes 16 to 31, and so on.
 | |
|   **
 | |
|   ** 16-bit bitmasks (rather than 32-bit) are specified in opcodes.h 
 | |
|   ** because the file is generated by an awk program. Awk manipulates
 | |
|   ** all numbers as floating-point and we don't want to risk a rounding
 | |
|   ** error if someone builds with an awk that uses (for example) 32-bit 
 | |
|   ** IEEE floats.
 | |
|   */ 
 | |
|   static const u32 masks[5] = {
 | |
|     NOPUSH_MASK_0 + (((unsigned)NOPUSH_MASK_1)<<16),
 | |
|     NOPUSH_MASK_2 + (((unsigned)NOPUSH_MASK_3)<<16),
 | |
|     NOPUSH_MASK_4 + (((unsigned)NOPUSH_MASK_5)<<16),
 | |
|     NOPUSH_MASK_6 + (((unsigned)NOPUSH_MASK_7)<<16),
 | |
|     NOPUSH_MASK_8 + (((unsigned)NOPUSH_MASK_9)<<16)
 | |
|   };
 | |
|   assert( op<32*5 );
 | |
|   return (masks[op>>5] & (1<<(op&0x1F)));
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| int sqlite3VdbeOpcodeNoPush(u8 op){
 | |
|   return opcodeNoPush(op);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Loop through the program looking for P2 values that are negative.
 | |
| ** Each such value is a label.  Resolve the label by setting the P2
 | |
| ** value to its correct non-zero value.
 | |
| **
 | |
| ** This routine is called once after all opcodes have been inserted.
 | |
| **
 | |
| ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument 
 | |
| ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by 
 | |
| ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
 | |
| **
 | |
| ** The integer *pMaxStack is set to the maximum number of vdbe stack
 | |
| ** entries that static analysis reveals this program might need.
 | |
| **
 | |
| ** This routine also does the following optimization:  It scans for
 | |
| ** Halt instructions where P1==SQLITE_CONSTRAINT or P2==OE_Abort or for
 | |
| ** IdxInsert instructions where P2!=0.  If no such instruction is
 | |
| ** found, then every Statement instruction is changed to a Noop.  In
 | |
| ** this way, we avoid creating the statement journal file unnecessarily.
 | |
| */
 | |
| static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs, int *pMaxStack){
 | |
|   int i;
 | |
|   int nMaxArgs = 0;
 | |
|   int nMaxStack = p->nOp;
 | |
|   Op *pOp;
 | |
|   int *aLabel = p->aLabel;
 | |
|   int doesStatementRollback = 0;
 | |
|   int hasStatementBegin = 0;
 | |
|   for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
 | |
|     u8 opcode = pOp->opcode;
 | |
| 
 | |
|     if( opcode==OP_Function || opcode==OP_AggStep 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|         || opcode==OP_VUpdate
 | |
| #endif
 | |
|     ){
 | |
|       if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
 | |
|     }
 | |
|     if( opcode==OP_Halt ){
 | |
|       if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
 | |
|         doesStatementRollback = 1;
 | |
|       }
 | |
|     }else if( opcode==OP_Statement ){
 | |
|       hasStatementBegin = 1;
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|     }else if( opcode==OP_VUpdate || opcode==OP_VRename ){
 | |
|       doesStatementRollback = 1;
 | |
|     }else if( opcode==OP_VFilter ){
 | |
|       int n;
 | |
|       assert( p->nOp - i >= 3 );
 | |
|       assert( pOp[-2].opcode==OP_Integer );
 | |
|       n = pOp[-2].p1;
 | |
|       if( n>nMaxArgs ) nMaxArgs = n;
 | |
| #endif
 | |
|     }
 | |
|     if( opcodeNoPush(opcode) ){
 | |
|       nMaxStack--;
 | |
|     }
 | |
| 
 | |
|     if( pOp->p2>=0 ) continue;
 | |
|     assert( -1-pOp->p2<p->nLabel );
 | |
|     pOp->p2 = aLabel[-1-pOp->p2];
 | |
|   }
 | |
|   sqliteFree(p->aLabel);
 | |
|   p->aLabel = 0;
 | |
| 
 | |
|   *pMaxFuncArgs = nMaxArgs;
 | |
|   *pMaxStack = nMaxStack;
 | |
| 
 | |
|   /* If we never rollback a statement transaction, then statement
 | |
|   ** transactions are not needed.  So change every OP_Statement
 | |
|   ** opcode into an OP_Noop.  This avoid a call to sqlite3OsOpenExclusive()
 | |
|   ** which can be expensive on some platforms.
 | |
|   */
 | |
|   if( hasStatementBegin && !doesStatementRollback ){
 | |
|     for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
 | |
|       if( pOp->opcode==OP_Statement ){
 | |
|         pOp->opcode = OP_Noop;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the address of the next instruction to be inserted.
 | |
| */
 | |
| int sqlite3VdbeCurrentAddr(Vdbe *p){
 | |
|   assert( p->magic==VDBE_MAGIC_INIT );
 | |
|   return p->nOp;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add a whole list of operations to the operation stack.  Return the
 | |
| ** address of the first operation added.
 | |
| */
 | |
| int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
 | |
|   int addr;
 | |
|   assert( p->magic==VDBE_MAGIC_INIT );
 | |
|   resizeOpArray(p, p->nOp + nOp);
 | |
|   if( sqlite3MallocFailed() ){
 | |
|     return 0;
 | |
|   }
 | |
|   addr = p->nOp;
 | |
|   if( nOp>0 ){
 | |
|     int i;
 | |
|     VdbeOpList const *pIn = aOp;
 | |
|     for(i=0; i<nOp; i++, pIn++){
 | |
|       int p2 = pIn->p2;
 | |
|       VdbeOp *pOut = &p->aOp[i+addr];
 | |
|       pOut->opcode = pIn->opcode;
 | |
|       pOut->p1 = pIn->p1;
 | |
|       pOut->p2 = p2<0 ? addr + ADDR(p2) : p2;
 | |
|       pOut->p3 = pIn->p3;
 | |
|       pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED;
 | |
| #ifdef SQLITE_DEBUG
 | |
|       if( sqlite3_vdbe_addop_trace ){
 | |
|         sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
 | |
|       }
 | |
| #endif
 | |
|     }
 | |
|     p->nOp += nOp;
 | |
|   }
 | |
|   return addr;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the value of the P1 operand for a specific instruction.
 | |
| ** This routine is useful when a large program is loaded from a
 | |
| ** static array using sqlite3VdbeAddOpList but we want to make a
 | |
| ** few minor changes to the program.
 | |
| */
 | |
| void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
 | |
|   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
 | |
|   if( p && addr>=0 && p->nOp>addr && p->aOp ){
 | |
|     p->aOp[addr].p1 = val;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the value of the P2 operand for a specific instruction.
 | |
| ** This routine is useful for setting a jump destination.
 | |
| */
 | |
| void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
 | |
|   assert( val>=0 );
 | |
|   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
 | |
|   if( p && addr>=0 && p->nOp>addr && p->aOp ){
 | |
|     p->aOp[addr].p2 = val;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the P2 operand of instruction addr so that it points to
 | |
| ** the address of the next instruction to be coded.
 | |
| */
 | |
| void sqlite3VdbeJumpHere(Vdbe *p, int addr){
 | |
|   sqlite3VdbeChangeP2(p, addr, p->nOp);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** If the input FuncDef structure is ephemeral, then free it.  If
 | |
| ** the FuncDef is not ephermal, then do nothing.
 | |
| */
 | |
| static void freeEphemeralFunction(FuncDef *pDef){
 | |
|   if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
 | |
|     sqliteFree(pDef);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete a P3 value if necessary.
 | |
| */
 | |
| static void freeP3(int p3type, void *p3){
 | |
|   if( p3 ){
 | |
|     switch( p3type ){
 | |
|       case P3_DYNAMIC:
 | |
|       case P3_KEYINFO:
 | |
|       case P3_KEYINFO_HANDOFF: {
 | |
|         sqliteFree(p3);
 | |
|         break;
 | |
|       }
 | |
|       case P3_MPRINTF: {
 | |
|         sqlite3_free(p3);
 | |
|         break;
 | |
|       }
 | |
|       case P3_VDBEFUNC: {
 | |
|         VdbeFunc *pVdbeFunc = (VdbeFunc *)p3;
 | |
|         freeEphemeralFunction(pVdbeFunc->pFunc);
 | |
|         sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
 | |
|         sqliteFree(pVdbeFunc);
 | |
|         break;
 | |
|       }
 | |
|       case P3_FUNCDEF: {
 | |
|         freeEphemeralFunction((FuncDef*)p3);
 | |
|         break;
 | |
|       }
 | |
|       case P3_MEM: {
 | |
|         sqlite3ValueFree((sqlite3_value*)p3);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Change N opcodes starting at addr to No-ops.
 | |
| */
 | |
| void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
 | |
|   if( p && p->aOp ){
 | |
|     VdbeOp *pOp = &p->aOp[addr];
 | |
|     while( N-- ){
 | |
|       freeP3(pOp->p3type, pOp->p3);
 | |
|       memset(pOp, 0, sizeof(pOp[0]));
 | |
|       pOp->opcode = OP_Noop;
 | |
|       pOp++;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the value of the P3 operand for a specific instruction.
 | |
| ** This routine is useful when a large program is loaded from a
 | |
| ** static array using sqlite3VdbeAddOpList but we want to make a
 | |
| ** few minor changes to the program.
 | |
| **
 | |
| ** If n>=0 then the P3 operand is dynamic, meaning that a copy of
 | |
| ** the string is made into memory obtained from sqliteMalloc().
 | |
| ** A value of n==0 means copy bytes of zP3 up to and including the
 | |
| ** first null byte.  If n>0 then copy n+1 bytes of zP3.
 | |
| **
 | |
| ** If n==P3_KEYINFO it means that zP3 is a pointer to a KeyInfo structure.
 | |
| ** A copy is made of the KeyInfo structure into memory obtained from
 | |
| ** sqliteMalloc, to be freed when the Vdbe is finalized.
 | |
| ** n==P3_KEYINFO_HANDOFF indicates that zP3 points to a KeyInfo structure
 | |
| ** stored in memory that the caller has obtained from sqliteMalloc. The 
 | |
| ** caller should not free the allocation, it will be freed when the Vdbe is
 | |
| ** finalized.
 | |
| ** 
 | |
| ** Other values of n (P3_STATIC, P3_COLLSEQ etc.) indicate that zP3 points
 | |
| ** to a string or structure that is guaranteed to exist for the lifetime of
 | |
| ** the Vdbe. In these cases we can just copy the pointer.
 | |
| **
 | |
| ** If addr<0 then change P3 on the most recently inserted instruction.
 | |
| */
 | |
| void sqlite3VdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
 | |
|   Op *pOp;
 | |
|   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
 | |
|   if( p==0 || p->aOp==0 || sqlite3MallocFailed() ){
 | |
|     if (n != P3_KEYINFO) {
 | |
|       freeP3(n, (void*)*(char**)&zP3);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   if( addr<0 || addr>=p->nOp ){
 | |
|     addr = p->nOp - 1;
 | |
|     if( addr<0 ) return;
 | |
|   }
 | |
|   pOp = &p->aOp[addr];
 | |
|   freeP3(pOp->p3type, pOp->p3);
 | |
|   pOp->p3 = 0;
 | |
|   if( zP3==0 ){
 | |
|     pOp->p3 = 0;
 | |
|     pOp->p3type = P3_NOTUSED;
 | |
|   }else if( n==P3_KEYINFO ){
 | |
|     KeyInfo *pKeyInfo;
 | |
|     int nField, nByte;
 | |
| 
 | |
|     nField = ((KeyInfo*)zP3)->nField;
 | |
|     nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
 | |
|     pKeyInfo = sqliteMallocRaw( nByte );
 | |
|     pOp->p3 = (char*)pKeyInfo;
 | |
|     if( pKeyInfo ){
 | |
|       unsigned char *aSortOrder;
 | |
|       memcpy(pKeyInfo, zP3, nByte);
 | |
|       aSortOrder = pKeyInfo->aSortOrder;
 | |
|       if( aSortOrder ){
 | |
|         pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
 | |
|         memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
 | |
|       }
 | |
|       pOp->p3type = P3_KEYINFO;
 | |
|     }else{
 | |
|       pOp->p3type = P3_NOTUSED;
 | |
|     }
 | |
|   }else if( n==P3_KEYINFO_HANDOFF ){
 | |
|     pOp->p3 = (char*)zP3;
 | |
|     pOp->p3type = P3_KEYINFO;
 | |
|   }else if( n<0 ){
 | |
|     pOp->p3 = (char*)zP3;
 | |
|     pOp->p3type = n;
 | |
|   }else{
 | |
|     if( n==0 ) n = strlen(zP3);
 | |
|     pOp->p3 = sqliteStrNDup(zP3, n);
 | |
|     pOp->p3type = P3_DYNAMIC;
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /*
 | |
| ** Replace the P3 field of the most recently coded instruction with
 | |
| ** comment text.
 | |
| */
 | |
| void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
 | |
|   va_list ap;
 | |
|   assert( p->nOp>0 || p->aOp==0 );
 | |
|   assert( p->aOp==0 || p->aOp[p->nOp-1].p3==0 || sqlite3MallocFailed() );
 | |
|   va_start(ap, zFormat);
 | |
|   sqlite3VdbeChangeP3(p, -1, sqlite3VMPrintf(zFormat, ap), P3_DYNAMIC);
 | |
|   va_end(ap);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Return the opcode for a given address.
 | |
| */
 | |
| VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
 | |
|   assert( p->magic==VDBE_MAGIC_INIT );
 | |
|   assert( (addr>=0 && addr<p->nOp) || sqlite3MallocFailed() );
 | |
|   return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0);
 | |
| }
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
 | |
|      || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
 | |
| /*
 | |
| ** Compute a string that describes the P3 parameter for an opcode.
 | |
| ** Use zTemp for any required temporary buffer space.
 | |
| */
 | |
| static char *displayP3(Op *pOp, char *zTemp, int nTemp){
 | |
|   char *zP3;
 | |
|   assert( nTemp>=20 );
 | |
|   switch( pOp->p3type ){
 | |
|     case P3_KEYINFO: {
 | |
|       int i, j;
 | |
|       KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3;
 | |
|       sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
 | |
|       i = strlen(zTemp);
 | |
|       for(j=0; j<pKeyInfo->nField; j++){
 | |
|         CollSeq *pColl = pKeyInfo->aColl[j];
 | |
|         if( pColl ){
 | |
|           int n = strlen(pColl->zName);
 | |
|           if( i+n>nTemp-6 ){
 | |
|             memcpy(&zTemp[i],",...",4);
 | |
|             break;
 | |
|           }
 | |
|           zTemp[i++] = ',';
 | |
|           if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
 | |
|             zTemp[i++] = '-';
 | |
|           }
 | |
|           memcpy(&zTemp[i], pColl->zName,n+1);
 | |
|           i += n;
 | |
|         }else if( i+4<nTemp-6 ){
 | |
|           memcpy(&zTemp[i],",nil",4);
 | |
|           i += 4;
 | |
|         }
 | |
|       }
 | |
|       zTemp[i++] = ')';
 | |
|       zTemp[i] = 0;
 | |
|       assert( i<nTemp );
 | |
|       zP3 = zTemp;
 | |
|       break;
 | |
|     }
 | |
|     case P3_COLLSEQ: {
 | |
|       CollSeq *pColl = (CollSeq*)pOp->p3;
 | |
|       sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
 | |
|       zP3 = zTemp;
 | |
|       break;
 | |
|     }
 | |
|     case P3_FUNCDEF: {
 | |
|       FuncDef *pDef = (FuncDef*)pOp->p3;
 | |
|       sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
 | |
|       zP3 = zTemp;
 | |
|       break;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|     case P3_VTAB: {
 | |
|       sqlite3_vtab *pVtab = (sqlite3_vtab*)pOp->p3;
 | |
|       sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
 | |
|       zP3 = zTemp;
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|     default: {
 | |
|       zP3 = pOp->p3;
 | |
|       if( zP3==0 || pOp->opcode==OP_Noop ){
 | |
|         zP3 = "";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   assert( zP3!=0 );
 | |
|   return zP3;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
 | |
| /*
 | |
| ** Print a single opcode.  This routine is used for debugging only.
 | |
| */
 | |
| void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
 | |
|   char *zP3;
 | |
|   char zPtr[50];
 | |
|   static const char *zFormat1 = "%4d %-13s %4d %4d %s\n";
 | |
|   if( pOut==0 ) pOut = stdout;
 | |
|   zP3 = displayP3(pOp, zPtr, sizeof(zPtr));
 | |
|   fprintf(pOut, zFormat1,
 | |
|       pc, sqlite3OpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3);
 | |
|   fflush(pOut);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Release an array of N Mem elements
 | |
| */
 | |
| static void releaseMemArray(Mem *p, int N){
 | |
|   if( p ){
 | |
|     while( N-->0 ){
 | |
|       sqlite3VdbeMemRelease(p++);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_EXPLAIN
 | |
| /*
 | |
| ** Give a listing of the program in the virtual machine.
 | |
| **
 | |
| ** The interface is the same as sqlite3VdbeExec().  But instead of
 | |
| ** running the code, it invokes the callback once for each instruction.
 | |
| ** This feature is used to implement "EXPLAIN".
 | |
| */
 | |
| int sqlite3VdbeList(
 | |
|   Vdbe *p                   /* The VDBE */
 | |
| ){
 | |
|   sqlite3 *db = p->db;
 | |
|   int i;
 | |
|   int rc = SQLITE_OK;
 | |
| 
 | |
|   assert( p->explain );
 | |
|   if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
 | |
|   assert( db->magic==SQLITE_MAGIC_BUSY );
 | |
|   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
 | |
| 
 | |
|   /* Even though this opcode does not put dynamic strings onto the
 | |
|   ** the stack, they may become dynamic if the user calls
 | |
|   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
 | |
|   */
 | |
|   if( p->pTos==&p->aStack[4] ){
 | |
|     releaseMemArray(p->aStack, 5);
 | |
|   }
 | |
|   p->resOnStack = 0;
 | |
| 
 | |
|   do{
 | |
|     i = p->pc++;
 | |
|   }while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
 | |
|   if( i>=p->nOp ){
 | |
|     p->rc = SQLITE_OK;
 | |
|     rc = SQLITE_DONE;
 | |
|   }else if( db->u1.isInterrupted ){
 | |
|     p->rc = SQLITE_INTERRUPT;
 | |
|     rc = SQLITE_ERROR;
 | |
|     sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0);
 | |
|   }else{
 | |
|     Op *pOp = &p->aOp[i];
 | |
|     Mem *pMem = p->aStack;
 | |
|     pMem->flags = MEM_Int;
 | |
|     pMem->type = SQLITE_INTEGER;
 | |
|     pMem->u.i = i;                                /* Program counter */
 | |
|     pMem++;
 | |
| 
 | |
|     pMem->flags = MEM_Static|MEM_Str|MEM_Term;
 | |
|     pMem->z = (char*)sqlite3OpcodeNames[pOp->opcode];  /* Opcode */
 | |
|     assert( pMem->z!=0 );
 | |
|     pMem->n = strlen(pMem->z);
 | |
|     pMem->type = SQLITE_TEXT;
 | |
|     pMem->enc = SQLITE_UTF8;
 | |
|     pMem++;
 | |
| 
 | |
|     pMem->flags = MEM_Int;
 | |
|     pMem->u.i = pOp->p1;                          /* P1 */
 | |
|     pMem->type = SQLITE_INTEGER;
 | |
|     pMem++;
 | |
| 
 | |
|     pMem->flags = MEM_Int;
 | |
|     pMem->u.i = pOp->p2;                          /* P2 */
 | |
|     pMem->type = SQLITE_INTEGER;
 | |
|     pMem++;
 | |
| 
 | |
|     pMem->flags = MEM_Ephem|MEM_Str|MEM_Term;   /* P3 */
 | |
|     pMem->z = displayP3(pOp, pMem->zShort, sizeof(pMem->zShort));
 | |
|     assert( pMem->z!=0 );
 | |
|     pMem->n = strlen(pMem->z);
 | |
|     pMem->type = SQLITE_TEXT;
 | |
|     pMem->enc = SQLITE_UTF8;
 | |
| 
 | |
|     p->nResColumn = 5 - 2*(p->explain-1);
 | |
|     p->pTos = pMem;
 | |
|     p->rc = SQLITE_OK;
 | |
|     p->resOnStack = 1;
 | |
|     rc = SQLITE_ROW;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_EXPLAIN */
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| /*
 | |
| ** Print the SQL that was used to generate a VDBE program.
 | |
| */
 | |
| void sqlite3VdbePrintSql(Vdbe *p){
 | |
|   int nOp = p->nOp;
 | |
|   VdbeOp *pOp;
 | |
|   if( nOp<1 ) return;
 | |
|   pOp = &p->aOp[nOp-1];
 | |
|   if( pOp->opcode==OP_Noop && pOp->p3!=0 ){
 | |
|     const char *z = pOp->p3;
 | |
|     while( isspace(*(u8*)z) ) z++;
 | |
|     printf("SQL: [%s]\n", z);
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
 | |
| /*
 | |
| ** Print an IOTRACE message showing SQL content.
 | |
| */
 | |
| void sqlite3VdbeIOTraceSql(Vdbe *p){
 | |
|   int nOp = p->nOp;
 | |
|   VdbeOp *pOp;
 | |
|   if( sqlite3_io_trace==0 ) return;
 | |
|   if( nOp<1 ) return;
 | |
|   pOp = &p->aOp[nOp-1];
 | |
|   if( pOp->opcode==OP_Noop && pOp->p3!=0 ){
 | |
|     char *z = sqlite3StrDup(pOp->p3);
 | |
|     int i, j;
 | |
|     for(i=0; isspace((unsigned char)z[i]); i++){}
 | |
|     for(j=0; z[i]; i++){
 | |
|       if( isspace((unsigned char)z[i]) ){
 | |
|         if( z[i-1]!=' ' ){
 | |
|           z[j++] = ' ';
 | |
|         }
 | |
|       }else{
 | |
|         z[j++] = z[i];
 | |
|       }
 | |
|     }
 | |
|     z[j] = 0;
 | |
|     sqlite3_io_trace("SQL %s\n", z);
 | |
|     sqliteFree(z);
 | |
|   }
 | |
| }
 | |
| #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Prepare a virtual machine for execution.  This involves things such
 | |
| ** as allocating stack space and initializing the program counter.
 | |
| ** After the VDBE has be prepped, it can be executed by one or more
 | |
| ** calls to sqlite3VdbeExec().  
 | |
| **
 | |
| ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
 | |
| ** VDBE_MAGIC_RUN.
 | |
| */
 | |
| void sqlite3VdbeMakeReady(
 | |
|   Vdbe *p,                       /* The VDBE */
 | |
|   int nVar,                      /* Number of '?' see in the SQL statement */
 | |
|   int nMem,                      /* Number of memory cells to allocate */
 | |
|   int nCursor,                   /* Number of cursors to allocate */
 | |
|   int isExplain                  /* True if the EXPLAIN keywords is present */
 | |
| ){
 | |
|   int n;
 | |
| 
 | |
|   assert( p!=0 );
 | |
|   assert( p->magic==VDBE_MAGIC_INIT );
 | |
| 
 | |
|   /* There should be at least one opcode.
 | |
|   */
 | |
|   assert( p->nOp>0 );
 | |
| 
 | |
|   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
 | |
|    * is because the call to resizeOpArray() below may shrink the
 | |
|    * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN 
 | |
|    * state.
 | |
|    */
 | |
|   p->magic = VDBE_MAGIC_RUN;
 | |
| 
 | |
|   /* No instruction ever pushes more than a single element onto the
 | |
|   ** stack.  And the stack never grows on successive executions of the
 | |
|   ** same loop.  So the total number of instructions is an upper bound
 | |
|   ** on the maximum stack depth required.  (Added later:)  The
 | |
|   ** resolveP2Values() call computes a tighter upper bound on the
 | |
|   ** stack size.
 | |
|   **
 | |
|   ** Allocation all the stack space we will ever need.
 | |
|   */
 | |
|   if( p->aStack==0 ){
 | |
|     int nArg;       /* Maximum number of args passed to a user function. */
 | |
|     int nStack;     /* Maximum number of stack entries required */
 | |
|     resolveP2Values(p, &nArg, &nStack);
 | |
|     resizeOpArray(p, p->nOp);
 | |
|     assert( nVar>=0 );
 | |
|     assert( nStack<p->nOp );
 | |
|     if( isExplain ){
 | |
|       nStack = 10;
 | |
|     }
 | |
|     p->aStack = sqliteMalloc(
 | |
|         nStack*sizeof(p->aStack[0])    /* aStack */
 | |
|       + nArg*sizeof(Mem*)              /* apArg */
 | |
|       + nVar*sizeof(Mem)               /* aVar */
 | |
|       + nVar*sizeof(char*)             /* azVar */
 | |
|       + nMem*sizeof(Mem)               /* aMem */
 | |
|       + nCursor*sizeof(Cursor*)        /* apCsr */
 | |
|     );
 | |
|     if( !sqlite3MallocFailed() ){
 | |
|       p->aMem = &p->aStack[nStack];
 | |
|       p->nMem = nMem;
 | |
|       p->aVar = &p->aMem[nMem];
 | |
|       p->nVar = nVar;
 | |
|       p->okVar = 0;
 | |
|       p->apArg = (Mem**)&p->aVar[nVar];
 | |
|       p->azVar = (char**)&p->apArg[nArg];
 | |
|       p->apCsr = (Cursor**)&p->azVar[nVar];
 | |
|       p->nCursor = nCursor;
 | |
|       for(n=0; n<nVar; n++){
 | |
|         p->aVar[n].flags = MEM_Null;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   for(n=0; n<p->nMem; n++){
 | |
|     p->aMem[n].flags = MEM_Null;
 | |
|   }
 | |
| 
 | |
|   p->pTos = &p->aStack[-1];
 | |
|   p->pc = -1;
 | |
|   p->rc = SQLITE_OK;
 | |
|   p->uniqueCnt = 0;
 | |
|   p->returnDepth = 0;
 | |
|   p->errorAction = OE_Abort;
 | |
|   p->popStack =  0;
 | |
|   p->explain |= isExplain;
 | |
|   p->magic = VDBE_MAGIC_RUN;
 | |
|   p->nChange = 0;
 | |
|   p->cacheCtr = 1;
 | |
|   p->minWriteFileFormat = 255;
 | |
|   p->openedStatement = 0;
 | |
| #ifdef VDBE_PROFILE
 | |
|   {
 | |
|     int i;
 | |
|     for(i=0; i<p->nOp; i++){
 | |
|       p->aOp[i].cnt = 0;
 | |
|       p->aOp[i].cycles = 0;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Close a cursor and release all the resources that cursor happens
 | |
| ** to hold.
 | |
| */
 | |
| void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){
 | |
|   if( pCx==0 ){
 | |
|     return;
 | |
|   }
 | |
|   if( pCx->pCursor ){
 | |
|     sqlite3BtreeCloseCursor(pCx->pCursor);
 | |
|   }
 | |
|   if( pCx->pBt ){
 | |
|     sqlite3BtreeClose(pCx->pBt);
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   if( pCx->pVtabCursor ){
 | |
|     sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
 | |
|     const sqlite3_module *pModule = pCx->pModule;
 | |
|     p->inVtabMethod = 1;
 | |
|     sqlite3SafetyOff(p->db);
 | |
|     pModule->xClose(pVtabCursor);
 | |
|     sqlite3SafetyOn(p->db);
 | |
|     p->inVtabMethod = 0;
 | |
|   }
 | |
| #endif
 | |
|   sqliteFree(pCx->pData);
 | |
|   sqliteFree(pCx->aType);
 | |
|   sqliteFree(pCx);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Close all cursors
 | |
| */
 | |
| static void closeAllCursors(Vdbe *p){
 | |
|   int i;
 | |
|   if( p->apCsr==0 ) return;
 | |
|   for(i=0; i<p->nCursor; i++){
 | |
|     if( !p->inVtabMethod || (p->apCsr[i] && !p->apCsr[i]->pVtabCursor) ){
 | |
|       sqlite3VdbeFreeCursor(p, p->apCsr[i]);
 | |
|       p->apCsr[i] = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Clean up the VM after execution.
 | |
| **
 | |
| ** This routine will automatically close any cursors, lists, and/or
 | |
| ** sorters that were left open.  It also deletes the values of
 | |
| ** variables in the aVar[] array.
 | |
| */
 | |
| static void Cleanup(Vdbe *p){
 | |
|   int i;
 | |
|   if( p->aStack ){
 | |
|     releaseMemArray(p->aStack, 1 + (p->pTos - p->aStack));
 | |
|     p->pTos = &p->aStack[-1];
 | |
|   }
 | |
|   closeAllCursors(p);
 | |
|   releaseMemArray(p->aMem, p->nMem);
 | |
|   sqlite3VdbeFifoClear(&p->sFifo);
 | |
|   if( p->contextStack ){
 | |
|     for(i=0; i<p->contextStackTop; i++){
 | |
|       sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
 | |
|     }
 | |
|     sqliteFree(p->contextStack);
 | |
|   }
 | |
|   p->contextStack = 0;
 | |
|   p->contextStackDepth = 0;
 | |
|   p->contextStackTop = 0;
 | |
|   sqliteFree(p->zErrMsg);
 | |
|   p->zErrMsg = 0;
 | |
|   p->resOnStack = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the number of result columns that will be returned by this SQL
 | |
| ** statement. This is now set at compile time, rather than during
 | |
| ** execution of the vdbe program so that sqlite3_column_count() can
 | |
| ** be called on an SQL statement before sqlite3_step().
 | |
| */
 | |
| void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
 | |
|   Mem *pColName;
 | |
|   int n;
 | |
|   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
 | |
|   sqliteFree(p->aColName);
 | |
|   n = nResColumn*COLNAME_N;
 | |
|   p->nResColumn = nResColumn;
 | |
|   p->aColName = pColName = (Mem*)sqliteMalloc( sizeof(Mem)*n );
 | |
|   if( p->aColName==0 ) return;
 | |
|   while( n-- > 0 ){
 | |
|     (pColName++)->flags = MEM_Null;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the name of the idx'th column to be returned by the SQL statement.
 | |
| ** zName must be a pointer to a nul terminated string.
 | |
| **
 | |
| ** This call must be made after a call to sqlite3VdbeSetNumCols().
 | |
| **
 | |
| ** If N==P3_STATIC  it means that zName is a pointer to a constant static
 | |
| ** string and we can just copy the pointer. If it is P3_DYNAMIC, then 
 | |
| ** the string is freed using sqliteFree() when the vdbe is finished with
 | |
| ** it. Otherwise, N bytes of zName are copied.
 | |
| */
 | |
| int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
 | |
|   int rc;
 | |
|   Mem *pColName;
 | |
|   assert( idx<p->nResColumn );
 | |
|   assert( var<COLNAME_N );
 | |
|   if( sqlite3MallocFailed() ) return SQLITE_NOMEM;
 | |
|   assert( p->aColName!=0 );
 | |
|   pColName = &(p->aColName[idx+var*p->nResColumn]);
 | |
|   if( N==P3_DYNAMIC || N==P3_STATIC ){
 | |
|     rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
 | |
|   }else{
 | |
|     rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
 | |
|   }
 | |
|   if( rc==SQLITE_OK && N==P3_DYNAMIC ){
 | |
|     pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn;
 | |
|     pColName->xDel = 0;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** A read or write transaction may or may not be active on database handle
 | |
| ** db. If a transaction is active, commit it. If there is a
 | |
| ** write-transaction spanning more than one database file, this routine
 | |
| ** takes care of the master journal trickery.
 | |
| */
 | |
| static int vdbeCommit(sqlite3 *db){
 | |
|   int i;
 | |
|   int nTrans = 0;  /* Number of databases with an active write-transaction */
 | |
|   int rc = SQLITE_OK;
 | |
|   int needXcommit = 0;
 | |
| 
 | |
|   /* Before doing anything else, call the xSync() callback for any
 | |
|   ** virtual module tables written in this transaction. This has to
 | |
|   ** be done before determining whether a master journal file is 
 | |
|   ** required, as an xSync() callback may add an attached database
 | |
|   ** to the transaction.
 | |
|   */
 | |
|   rc = sqlite3VtabSync(db, rc);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   /* This loop determines (a) if the commit hook should be invoked and
 | |
|   ** (b) how many database files have open write transactions, not 
 | |
|   ** including the temp database. (b) is important because if more than 
 | |
|   ** one database file has an open write transaction, a master journal
 | |
|   ** file is required for an atomic commit.
 | |
|   */ 
 | |
|   for(i=0; i<db->nDb; i++){ 
 | |
|     Btree *pBt = db->aDb[i].pBt;
 | |
|     if( pBt && sqlite3BtreeIsInTrans(pBt) ){
 | |
|       needXcommit = 1;
 | |
|       if( i!=1 ) nTrans++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If there are any write-transactions at all, invoke the commit hook */
 | |
|   if( needXcommit && db->xCommitCallback ){
 | |
|     sqlite3SafetyOff(db);
 | |
|     rc = db->xCommitCallback(db->pCommitArg);
 | |
|     sqlite3SafetyOn(db);
 | |
|     if( rc ){
 | |
|       return SQLITE_CONSTRAINT;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* The simple case - no more than one database file (not counting the
 | |
|   ** TEMP database) has a transaction active.   There is no need for the
 | |
|   ** master-journal.
 | |
|   **
 | |
|   ** If the return value of sqlite3BtreeGetFilename() is a zero length
 | |
|   ** string, it means the main database is :memory:.  In that case we do
 | |
|   ** not support atomic multi-file commits, so use the simple case then
 | |
|   ** too.
 | |
|   */
 | |
|   if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
 | |
|     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
 | |
|       Btree *pBt = db->aDb[i].pBt;
 | |
|       if( pBt ){
 | |
|         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Do the commit only if all databases successfully complete phase 1. 
 | |
|     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
 | |
|     ** IO error while deleting or truncating a journal file. It is unlikely,
 | |
|     ** but could happen. In this case abandon processing and return the error.
 | |
|     */
 | |
|     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
 | |
|       Btree *pBt = db->aDb[i].pBt;
 | |
|       if( pBt ){
 | |
|         rc = sqlite3BtreeCommitPhaseTwo(pBt);
 | |
|       }
 | |
|     }
 | |
|     if( rc==SQLITE_OK ){
 | |
|       sqlite3VtabCommit(db);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* The complex case - There is a multi-file write-transaction active.
 | |
|   ** This requires a master journal file to ensure the transaction is
 | |
|   ** committed atomicly.
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_DISKIO
 | |
|   else{
 | |
|     int needSync = 0;
 | |
|     char *zMaster = 0;   /* File-name for the master journal */
 | |
|     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
 | |
|     OsFile *master = 0;
 | |
| 
 | |
|     /* Select a master journal file name */
 | |
|     do {
 | |
|       u32 random;
 | |
|       sqliteFree(zMaster);
 | |
|       sqlite3Randomness(sizeof(random), &random);
 | |
|       zMaster = sqlite3MPrintf("%s-mj%08X", zMainFile, random&0x7fffffff);
 | |
|       if( !zMaster ){
 | |
|         return SQLITE_NOMEM;
 | |
|       }
 | |
|     }while( sqlite3OsFileExists(zMaster) );
 | |
| 
 | |
|     /* Open the master journal. */
 | |
|     rc = sqlite3OsOpenExclusive(zMaster, &master, 0);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       sqliteFree(zMaster);
 | |
|       return rc;
 | |
|     }
 | |
|  
 | |
|     /* Write the name of each database file in the transaction into the new
 | |
|     ** master journal file. If an error occurs at this point close
 | |
|     ** and delete the master journal file. All the individual journal files
 | |
|     ** still have 'null' as the master journal pointer, so they will roll
 | |
|     ** back independently if a failure occurs.
 | |
|     */
 | |
|     for(i=0; i<db->nDb; i++){ 
 | |
|       Btree *pBt = db->aDb[i].pBt;
 | |
|       if( i==1 ) continue;   /* Ignore the TEMP database */
 | |
|       if( pBt && sqlite3BtreeIsInTrans(pBt) ){
 | |
|         char const *zFile = sqlite3BtreeGetJournalname(pBt);
 | |
|         if( zFile[0]==0 ) continue;  /* Ignore :memory: databases */
 | |
|         if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
 | |
|           needSync = 1;
 | |
|         }
 | |
|         rc = sqlite3OsWrite(master, zFile, strlen(zFile)+1);
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           sqlite3OsClose(&master);
 | |
|           sqlite3OsDelete(zMaster);
 | |
|           sqliteFree(zMaster);
 | |
|           return rc;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* Sync the master journal file. Before doing this, open the directory
 | |
|     ** the master journal file is store in so that it gets synced too.
 | |
|     */
 | |
|     zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
 | |
|     rc = sqlite3OsOpenDirectory(master, zMainFile);
 | |
|     if( rc!=SQLITE_OK ||
 | |
|           (needSync && (rc=sqlite3OsSync(master,0))!=SQLITE_OK) ){
 | |
|       sqlite3OsClose(&master);
 | |
|       sqlite3OsDelete(zMaster);
 | |
|       sqliteFree(zMaster);
 | |
|       return rc;
 | |
|     }
 | |
| 
 | |
|     /* Sync all the db files involved in the transaction. The same call
 | |
|     ** sets the master journal pointer in each individual journal. If
 | |
|     ** an error occurs here, do not delete the master journal file.
 | |
|     **
 | |
|     ** If the error occurs during the first call to
 | |
|     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
 | |
|     ** master journal file will be orphaned. But we cannot delete it,
 | |
|     ** in case the master journal file name was written into the journal
 | |
|     ** file before the failure occured.
 | |
|     */
 | |
|     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
 | |
|       Btree *pBt = db->aDb[i].pBt;
 | |
|       if( pBt && sqlite3BtreeIsInTrans(pBt) ){
 | |
|         rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
 | |
|       }
 | |
|     }
 | |
|     sqlite3OsClose(&master);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       sqliteFree(zMaster);
 | |
|       return rc;
 | |
|     }
 | |
| 
 | |
|     /* Delete the master journal file. This commits the transaction. After
 | |
|     ** doing this the directory is synced again before any individual
 | |
|     ** transaction files are deleted.
 | |
|     */
 | |
|     rc = sqlite3OsDelete(zMaster);
 | |
|     sqliteFree(zMaster);
 | |
|     zMaster = 0;
 | |
|     if( rc ){
 | |
|       return rc;
 | |
|     }
 | |
|     rc = sqlite3OsSyncDirectory(zMainFile);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       /* This is not good. The master journal file has been deleted, but
 | |
|       ** the directory sync failed. There is no completely safe course of
 | |
|       ** action from here. The individual journals contain the name of the
 | |
|       ** master journal file, but there is no way of knowing if that
 | |
|       ** master journal exists now or if it will exist after the operating
 | |
|       ** system crash that may follow the fsync() failure.
 | |
|       */
 | |
|       return rc;
 | |
|     }
 | |
| 
 | |
|     /* All files and directories have already been synced, so the following
 | |
|     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
 | |
|     ** deleting or truncating journals. If something goes wrong while
 | |
|     ** this is happening we don't really care. The integrity of the
 | |
|     ** transaction is already guaranteed, but some stray 'cold' journals
 | |
|     ** may be lying around. Returning an error code won't help matters.
 | |
|     */
 | |
|     disable_simulated_io_errors();
 | |
|     for(i=0; i<db->nDb; i++){ 
 | |
|       Btree *pBt = db->aDb[i].pBt;
 | |
|       if( pBt ){
 | |
|         sqlite3BtreeCommitPhaseTwo(pBt);
 | |
|       }
 | |
|     }
 | |
|     enable_simulated_io_errors();
 | |
| 
 | |
|     sqlite3VtabCommit(db);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** This routine checks that the sqlite3.activeVdbeCnt count variable
 | |
| ** matches the number of vdbe's in the list sqlite3.pVdbe that are
 | |
| ** currently active. An assertion fails if the two counts do not match.
 | |
| ** This is an internal self-check only - it is not an essential processing
 | |
| ** step.
 | |
| **
 | |
| ** This is a no-op if NDEBUG is defined.
 | |
| */
 | |
| #ifndef NDEBUG
 | |
| static void checkActiveVdbeCnt(sqlite3 *db){
 | |
|   Vdbe *p;
 | |
|   int cnt = 0;
 | |
|   p = db->pVdbe;
 | |
|   while( p ){
 | |
|     if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
 | |
|       cnt++;
 | |
|     }
 | |
|     p = p->pNext;
 | |
|   }
 | |
|   assert( cnt==db->activeVdbeCnt );
 | |
| }
 | |
| #else
 | |
| #define checkActiveVdbeCnt(x)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Find every active VM other than pVdbe and change its status to
 | |
| ** aborted.  This happens when one VM causes a rollback due to an
 | |
| ** ON CONFLICT ROLLBACK clause (for example).  The other VMs must be
 | |
| ** aborted so that they do not have data rolled out from underneath
 | |
| ** them leading to a segfault.
 | |
| */
 | |
| void sqlite3AbortOtherActiveVdbes(sqlite3 *db, Vdbe *pExcept){
 | |
|   Vdbe *pOther;
 | |
|   for(pOther=db->pVdbe; pOther; pOther=pOther->pNext){
 | |
|     if( pOther==pExcept ) continue;
 | |
|     if( pOther->magic!=VDBE_MAGIC_RUN || pOther->pc<0 ) continue;
 | |
|     checkActiveVdbeCnt(db);
 | |
|     closeAllCursors(pOther);
 | |
|     checkActiveVdbeCnt(db);
 | |
|     pOther->aborted = 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called the when a VDBE tries to halt.  If the VDBE
 | |
| ** has made changes and is in autocommit mode, then commit those
 | |
| ** changes.  If a rollback is needed, then do the rollback.
 | |
| **
 | |
| ** This routine is the only way to move the state of a VM from
 | |
| ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.
 | |
| **
 | |
| ** Return an error code.  If the commit could not complete because of
 | |
| ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
 | |
| ** means the close did not happen and needs to be repeated.
 | |
| */
 | |
| int sqlite3VdbeHalt(Vdbe *p){
 | |
|   sqlite3 *db = p->db;
 | |
|   int i;
 | |
|   int (*xFunc)(Btree *pBt) = 0;  /* Function to call on each btree backend */
 | |
|   int isSpecialError;            /* Set to true if SQLITE_NOMEM or IOERR */
 | |
| 
 | |
|   /* This function contains the logic that determines if a statement or
 | |
|   ** transaction will be committed or rolled back as a result of the
 | |
|   ** execution of this virtual machine. 
 | |
|   **
 | |
|   ** Special errors:
 | |
|   **
 | |
|   **     If an SQLITE_NOMEM error has occured in a statement that writes to
 | |
|   **     the database, then either a statement or transaction must be rolled
 | |
|   **     back to ensure the tree-structures are in a consistent state. A
 | |
|   **     statement transaction is rolled back if one is open, otherwise the
 | |
|   **     entire transaction must be rolled back.
 | |
|   **
 | |
|   **     If an SQLITE_IOERR error has occured in a statement that writes to
 | |
|   **     the database, then the entire transaction must be rolled back. The
 | |
|   **     I/O error may have caused garbage to be written to the journal 
 | |
|   **     file. Were the transaction to continue and eventually be rolled 
 | |
|   **     back that garbage might end up in the database file.
 | |
|   **     
 | |
|   **     In both of the above cases, the Vdbe.errorAction variable is 
 | |
|   **     ignored. If the sqlite3.autoCommit flag is false and a transaction
 | |
|   **     is rolled back, it will be set to true.
 | |
|   **
 | |
|   ** Other errors:
 | |
|   **
 | |
|   ** No error:
 | |
|   **
 | |
|   */
 | |
| 
 | |
|   if( sqlite3MallocFailed() ){
 | |
|     p->rc = SQLITE_NOMEM;
 | |
|   }
 | |
|   if( p->magic!=VDBE_MAGIC_RUN ){
 | |
|     /* Already halted.  Nothing to do. */
 | |
|     assert( p->magic==VDBE_MAGIC_HALT );
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|     closeAllCursors(p);
 | |
| #endif
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   closeAllCursors(p);
 | |
|   checkActiveVdbeCnt(db);
 | |
| 
 | |
|   /* No commit or rollback needed if the program never started */
 | |
|   if( p->pc>=0 ){
 | |
|     int mrc;   /* Primary error code from p->rc */
 | |
|     /* Check for one of the special errors - SQLITE_NOMEM or SQLITE_IOERR */
 | |
|     mrc = p->rc & 0xff;
 | |
|     isSpecialError = (
 | |
|         (mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR || mrc==SQLITE_INTERRUPT)?1:0);
 | |
|     if( isSpecialError ){
 | |
|       /* This loop does static analysis of the query to see which of the
 | |
|       ** following three categories it falls into:
 | |
|       **
 | |
|       **     Read-only
 | |
|       **     Query with statement journal
 | |
|       **     Query without statement journal
 | |
|       **
 | |
|       ** We could do something more elegant than this static analysis (i.e.
 | |
|       ** store the type of query as part of the compliation phase), but 
 | |
|       ** handling malloc() or IO failure is a fairly obscure edge case so 
 | |
|       ** this is probably easier. Todo: Might be an opportunity to reduce 
 | |
|       ** code size a very small amount though...
 | |
|       */
 | |
|       int isReadOnly = 1;
 | |
|       int isStatement = 0;
 | |
|       assert(p->aOp || p->nOp==0);
 | |
|       for(i=0; i<p->nOp; i++){ 
 | |
|         switch( p->aOp[i].opcode ){
 | |
|           case OP_Transaction:
 | |
|             /* This is a bit strange. If we hit a malloc() or IO error and
 | |
|             ** the statement did not open a statement transaction, we will
 | |
|             ** rollback any active transaction and abort all other active
 | |
|             ** statements. Or, if this is an SQLITE_INTERRUPT error, we
 | |
|             ** will only rollback if the interrupted statement was a write.
 | |
|             **
 | |
|             ** It could be argued that read-only statements should never
 | |
|             ** rollback anything. But careful analysis is required before
 | |
|             ** making this change
 | |
|             */
 | |
|             if( p->aOp[i].p2 || mrc!=SQLITE_INTERRUPT ){
 | |
|               isReadOnly = 0;
 | |
|             }
 | |
|             break;
 | |
|           case OP_Statement:
 | |
|             isStatement = 1;
 | |
|             break;
 | |
|         }
 | |
|       }
 | |
|   
 | |
|       /* If the query was read-only, we need do no rollback at all. Otherwise,
 | |
|       ** proceed with the special handling.
 | |
|       */
 | |
|       if( !isReadOnly ){
 | |
|         if( p->rc==SQLITE_IOERR_BLOCKED && isStatement ){
 | |
|           xFunc = sqlite3BtreeRollbackStmt;
 | |
|           p->rc = SQLITE_BUSY;
 | |
|         } else if( p->rc==SQLITE_NOMEM && isStatement ){
 | |
|           xFunc = sqlite3BtreeRollbackStmt;
 | |
|         }else{
 | |
|           /* We are forced to roll back the active transaction. Before doing
 | |
|           ** so, abort any other statements this handle currently has active.
 | |
|           */
 | |
|           sqlite3AbortOtherActiveVdbes(db, p);
 | |
|           sqlite3RollbackAll(db);
 | |
|           db->autoCommit = 1;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   
 | |
|     /* If the auto-commit flag is set and this is the only active vdbe, then
 | |
|     ** we do either a commit or rollback of the current transaction. 
 | |
|     **
 | |
|     ** Note: This block also runs if one of the special errors handled 
 | |
|     ** above has occured. 
 | |
|     */
 | |
|     if( db->autoCommit && db->activeVdbeCnt==1 ){
 | |
|       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
 | |
| 	/* The auto-commit flag is true, and the vdbe program was 
 | |
|         ** successful or hit an 'OR FAIL' constraint. This means a commit 
 | |
|         ** is required.
 | |
|         */
 | |
|         int rc = vdbeCommit(db);
 | |
|         if( rc==SQLITE_BUSY ){
 | |
|           return SQLITE_BUSY;
 | |
|         }else if( rc!=SQLITE_OK ){
 | |
|           p->rc = rc;
 | |
|           sqlite3RollbackAll(db);
 | |
|         }else{
 | |
|           sqlite3CommitInternalChanges(db);
 | |
|         }
 | |
|       }else{
 | |
|         sqlite3RollbackAll(db);
 | |
|       }
 | |
|     }else if( !xFunc ){
 | |
|       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
 | |
|         if( p->openedStatement ){
 | |
|           xFunc = sqlite3BtreeCommitStmt;
 | |
|         } 
 | |
|       }else if( p->errorAction==OE_Abort ){
 | |
|         xFunc = sqlite3BtreeRollbackStmt;
 | |
|       }else{
 | |
|         sqlite3AbortOtherActiveVdbes(db, p);
 | |
|         sqlite3RollbackAll(db);
 | |
|         db->autoCommit = 1;
 | |
|       }
 | |
|     }
 | |
|   
 | |
|     /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or
 | |
|     ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs
 | |
|     ** and the return code is still SQLITE_OK, set the return code to the new
 | |
|     ** error value.
 | |
|     */
 | |
|     assert(!xFunc ||
 | |
|       xFunc==sqlite3BtreeCommitStmt ||
 | |
|       xFunc==sqlite3BtreeRollbackStmt
 | |
|     );
 | |
|     for(i=0; xFunc && i<db->nDb; i++){ 
 | |
|       int rc;
 | |
|       Btree *pBt = db->aDb[i].pBt;
 | |
|       if( pBt ){
 | |
|         rc = xFunc(pBt);
 | |
|         if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
 | |
|           p->rc = rc;
 | |
|           sqlite3SetString(&p->zErrMsg, 0);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   
 | |
|     /* If this was an INSERT, UPDATE or DELETE and the statement was committed, 
 | |
|     ** set the change counter. 
 | |
|     */
 | |
|     if( p->changeCntOn && p->pc>=0 ){
 | |
|       if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
 | |
|         sqlite3VdbeSetChanges(db, p->nChange);
 | |
|       }else{
 | |
|         sqlite3VdbeSetChanges(db, 0);
 | |
|       }
 | |
|       p->nChange = 0;
 | |
|     }
 | |
|   
 | |
|     /* Rollback or commit any schema changes that occurred. */
 | |
|     if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
 | |
|       sqlite3ResetInternalSchema(db, 0);
 | |
|       db->flags = (db->flags | SQLITE_InternChanges);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* We have successfully halted and closed the VM.  Record this fact. */
 | |
|   if( p->pc>=0 ){
 | |
|     db->activeVdbeCnt--;
 | |
|   }
 | |
|   p->magic = VDBE_MAGIC_HALT;
 | |
|   checkActiveVdbeCnt(db);
 | |
| 
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Each VDBE holds the result of the most recent sqlite3_step() call
 | |
| ** in p->rc.  This routine sets that result back to SQLITE_OK.
 | |
| */
 | |
| void sqlite3VdbeResetStepResult(Vdbe *p){
 | |
|   p->rc = SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Clean up a VDBE after execution but do not delete the VDBE just yet.
 | |
| ** Write any error messages into *pzErrMsg.  Return the result code.
 | |
| **
 | |
| ** After this routine is run, the VDBE should be ready to be executed
 | |
| ** again.
 | |
| **
 | |
| ** To look at it another way, this routine resets the state of the
 | |
| ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
 | |
| ** VDBE_MAGIC_INIT.
 | |
| */
 | |
| int sqlite3VdbeReset(Vdbe *p){
 | |
|   sqlite3 *db;
 | |
|   db = p->db;
 | |
| 
 | |
|   /* If the VM did not run to completion or if it encountered an
 | |
|   ** error, then it might not have been halted properly.  So halt
 | |
|   ** it now.
 | |
|   */
 | |
|   sqlite3SafetyOn(db);
 | |
|   sqlite3VdbeHalt(p);
 | |
|   sqlite3SafetyOff(db);
 | |
| 
 | |
|   /* If the VDBE has be run even partially, then transfer the error code
 | |
|   ** and error message from the VDBE into the main database structure.  But
 | |
|   ** if the VDBE has just been set to run but has not actually executed any
 | |
|   ** instructions yet, leave the main database error information unchanged.
 | |
|   */
 | |
|   if( p->pc>=0 ){
 | |
|     if( p->zErrMsg ){
 | |
|       sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, sqlite3FreeX);
 | |
|       db->errCode = p->rc;
 | |
|       p->zErrMsg = 0;
 | |
|     }else if( p->rc ){
 | |
|       sqlite3Error(db, p->rc, 0);
 | |
|     }else{
 | |
|       sqlite3Error(db, SQLITE_OK, 0);
 | |
|     }
 | |
|   }else if( p->rc && p->expired ){
 | |
|     /* The expired flag was set on the VDBE before the first call
 | |
|     ** to sqlite3_step(). For consistency (since sqlite3_step() was
 | |
|     ** called), set the database error in this case as well.
 | |
|     */
 | |
|     sqlite3Error(db, p->rc, 0);
 | |
|   }
 | |
| 
 | |
|   /* Reclaim all memory used by the VDBE
 | |
|   */
 | |
|   Cleanup(p);
 | |
| 
 | |
|   /* Save profiling information from this VDBE run.
 | |
|   */
 | |
|   assert( p->pTos<&p->aStack[p->pc<0?0:p->pc] || !p->aStack );
 | |
| #ifdef VDBE_PROFILE
 | |
|   {
 | |
|     FILE *out = fopen("vdbe_profile.out", "a");
 | |
|     if( out ){
 | |
|       int i;
 | |
|       fprintf(out, "---- ");
 | |
|       for(i=0; i<p->nOp; i++){
 | |
|         fprintf(out, "%02x", p->aOp[i].opcode);
 | |
|       }
 | |
|       fprintf(out, "\n");
 | |
|       for(i=0; i<p->nOp; i++){
 | |
|         fprintf(out, "%6d %10lld %8lld ",
 | |
|            p->aOp[i].cnt,
 | |
|            p->aOp[i].cycles,
 | |
|            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
 | |
|         );
 | |
|         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
 | |
|       }
 | |
|       fclose(out);
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   p->magic = VDBE_MAGIC_INIT;
 | |
|   p->aborted = 0;
 | |
|   if( p->rc==SQLITE_SCHEMA ){
 | |
|     sqlite3ResetInternalSchema(db, 0);
 | |
|   }
 | |
|   return p->rc & db->errMask;
 | |
| }
 | |
|  
 | |
| /*
 | |
| ** Clean up and delete a VDBE after execution.  Return an integer which is
 | |
| ** the result code.  Write any error message text into *pzErrMsg.
 | |
| */
 | |
| int sqlite3VdbeFinalize(Vdbe *p){
 | |
|   int rc = SQLITE_OK;
 | |
|   if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
 | |
|     rc = sqlite3VdbeReset(p);
 | |
|     assert( (rc & p->db->errMask)==rc );
 | |
|   }else if( p->magic!=VDBE_MAGIC_INIT ){
 | |
|     return SQLITE_MISUSE;
 | |
|   }
 | |
|   sqlite3VdbeDelete(p);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Call the destructor for each auxdata entry in pVdbeFunc for which
 | |
| ** the corresponding bit in mask is clear.  Auxdata entries beyond 31
 | |
| ** are always destroyed.  To destroy all auxdata entries, call this
 | |
| ** routine with mask==0.
 | |
| */
 | |
| void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
 | |
|   int i;
 | |
|   for(i=0; i<pVdbeFunc->nAux; i++){
 | |
|     struct AuxData *pAux = &pVdbeFunc->apAux[i];
 | |
|     if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
 | |
|       if( pAux->xDelete ){
 | |
|         pAux->xDelete(pAux->pAux);
 | |
|       }
 | |
|       pAux->pAux = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete an entire VDBE.
 | |
| */
 | |
| void sqlite3VdbeDelete(Vdbe *p){
 | |
|   int i;
 | |
|   if( p==0 ) return;
 | |
|   Cleanup(p);
 | |
|   if( p->pPrev ){
 | |
|     p->pPrev->pNext = p->pNext;
 | |
|   }else{
 | |
|     assert( p->db->pVdbe==p );
 | |
|     p->db->pVdbe = p->pNext;
 | |
|   }
 | |
|   if( p->pNext ){
 | |
|     p->pNext->pPrev = p->pPrev;
 | |
|   }
 | |
|   if( p->aOp ){
 | |
|     for(i=0; i<p->nOp; i++){
 | |
|       Op *pOp = &p->aOp[i];
 | |
|       freeP3(pOp->p3type, pOp->p3);
 | |
|     }
 | |
|     sqliteFree(p->aOp);
 | |
|   }
 | |
|   releaseMemArray(p->aVar, p->nVar);
 | |
|   sqliteFree(p->aLabel);
 | |
|   sqliteFree(p->aStack);
 | |
|   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
 | |
|   sqliteFree(p->aColName);
 | |
|   sqliteFree(p->zSql);
 | |
|   p->magic = VDBE_MAGIC_DEAD;
 | |
|   sqliteFree(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If a MoveTo operation is pending on the given cursor, then do that
 | |
| ** MoveTo now.  Return an error code.  If no MoveTo is pending, this
 | |
| ** routine does nothing and returns SQLITE_OK.
 | |
| */
 | |
| int sqlite3VdbeCursorMoveto(Cursor *p){
 | |
|   if( p->deferredMoveto ){
 | |
|     int res, rc;
 | |
| #ifdef SQLITE_TEST
 | |
|     extern int sqlite3_search_count;
 | |
| #endif
 | |
|     assert( p->isTable );
 | |
|     rc = sqlite3BtreeMoveto(p->pCursor, 0, p->movetoTarget, 0, &res);
 | |
|     if( rc ) return rc;
 | |
|     *p->pIncrKey = 0;
 | |
|     p->lastRowid = keyToInt(p->movetoTarget);
 | |
|     p->rowidIsValid = res==0;
 | |
|     if( res<0 ){
 | |
|       rc = sqlite3BtreeNext(p->pCursor, &res);
 | |
|       if( rc ) return rc;
 | |
|     }
 | |
| #ifdef SQLITE_TEST
 | |
|     sqlite3_search_count++;
 | |
| #endif
 | |
|     p->deferredMoveto = 0;
 | |
|     p->cacheStatus = CACHE_STALE;
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following functions:
 | |
| **
 | |
| ** sqlite3VdbeSerialType()
 | |
| ** sqlite3VdbeSerialTypeLen()
 | |
| ** sqlite3VdbeSerialRead()
 | |
| ** sqlite3VdbeSerialLen()
 | |
| ** sqlite3VdbeSerialWrite()
 | |
| **
 | |
| ** encapsulate the code that serializes values for storage in SQLite
 | |
| ** data and index records. Each serialized value consists of a
 | |
| ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
 | |
| ** integer, stored as a varint.
 | |
| **
 | |
| ** In an SQLite index record, the serial type is stored directly before
 | |
| ** the blob of data that it corresponds to. In a table record, all serial
 | |
| ** types are stored at the start of the record, and the blobs of data at
 | |
| ** the end. Hence these functions allow the caller to handle the
 | |
| ** serial-type and data blob seperately.
 | |
| **
 | |
| ** The following table describes the various storage classes for data:
 | |
| **
 | |
| **   serial type        bytes of data      type
 | |
| **   --------------     ---------------    ---------------
 | |
| **      0                     0            NULL
 | |
| **      1                     1            signed integer
 | |
| **      2                     2            signed integer
 | |
| **      3                     3            signed integer
 | |
| **      4                     4            signed integer
 | |
| **      5                     6            signed integer
 | |
| **      6                     8            signed integer
 | |
| **      7                     8            IEEE float
 | |
| **      8                     0            Integer constant 0
 | |
| **      9                     0            Integer constant 1
 | |
| **     10,11                               reserved for expansion
 | |
| **    N>=12 and even       (N-12)/2        BLOB
 | |
| **    N>=13 and odd        (N-13)/2        text
 | |
| **
 | |
| ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
 | |
| ** of SQLite will not understand those serial types.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** Return the serial-type for the value stored in pMem.
 | |
| */
 | |
| u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
 | |
|   int flags = pMem->flags;
 | |
|   int n;
 | |
| 
 | |
|   if( flags&MEM_Null ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( flags&MEM_Int ){
 | |
|     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
 | |
| #   define MAX_6BYTE ((((i64)0x00001000)<<32)-1)
 | |
|     i64 i = pMem->u.i;
 | |
|     u64 u;
 | |
|     if( file_format>=4 && (i&1)==i ){
 | |
|       return 8+i;
 | |
|     }
 | |
|     u = i<0 ? -i : i;
 | |
|     if( u<=127 ) return 1;
 | |
|     if( u<=32767 ) return 2;
 | |
|     if( u<=8388607 ) return 3;
 | |
|     if( u<=2147483647 ) return 4;
 | |
|     if( u<=MAX_6BYTE ) return 5;
 | |
|     return 6;
 | |
|   }
 | |
|   if( flags&MEM_Real ){
 | |
|     return 7;
 | |
|   }
 | |
|   assert( flags&(MEM_Str|MEM_Blob) );
 | |
|   n = pMem->n;
 | |
|   if( flags & MEM_Zero ){
 | |
|     n += pMem->u.i;
 | |
|   }
 | |
|   assert( n>=0 );
 | |
|   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the length of the data corresponding to the supplied serial-type.
 | |
| */
 | |
| int sqlite3VdbeSerialTypeLen(u32 serial_type){
 | |
|   if( serial_type>=12 ){
 | |
|     return (serial_type-12)/2;
 | |
|   }else{
 | |
|     static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
 | |
|     return aSize[serial_type];
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If we are on an architecture with mixed-endian floating 
 | |
| ** points (ex: ARM7) then swap the lower 4 bytes with the 
 | |
| ** upper 4 bytes.  Return the result.
 | |
| **
 | |
| ** For most architectures, this is a no-op.
 | |
| **
 | |
| ** (later):  It is reported to me that the mixed-endian problem
 | |
| ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
 | |
| ** that early versions of GCC stored the two words of a 64-bit
 | |
| ** float in the wrong order.  And that error has been propagated
 | |
| ** ever since.  The blame is not necessarily with GCC, though.
 | |
| ** GCC might have just copying the problem from a prior compiler.
 | |
| ** I am also told that newer versions of GCC that follow a different
 | |
| ** ABI get the byte order right.
 | |
| **
 | |
| ** Developers using SQLite on an ARM7 should compile and run their
 | |
| ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
 | |
| ** enabled, some asserts below will ensure that the byte order of
 | |
| ** floating point values is correct.
 | |
| */
 | |
| #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
 | |
| static double floatSwap(double in){
 | |
|   union {
 | |
|     double r;
 | |
|     u32 i[2];
 | |
|   } u;
 | |
|   u32 t;
 | |
| 
 | |
|   u.r = in;
 | |
|   t = u.i[0];
 | |
|   u.i[0] = u.i[1];
 | |
|   u.i[1] = t;
 | |
|   return u.r;
 | |
| }
 | |
| # define swapMixedEndianFloat(X)  X = floatSwap(X)
 | |
| #else
 | |
| # define swapMixedEndianFloat(X)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Write the serialized data blob for the value stored in pMem into 
 | |
| ** buf. It is assumed that the caller has allocated sufficient space.
 | |
| ** Return the number of bytes written.
 | |
| **
 | |
| ** nBuf is the amount of space left in buf[].  nBuf must always be
 | |
| ** large enough to hold the entire field.  Except, if the field is
 | |
| ** a blob with a zero-filled tail, then buf[] might be just the right
 | |
| ** size to hold everything except for the zero-filled tail.  If buf[]
 | |
| ** is only big enough to hold the non-zero prefix, then only write that
 | |
| ** prefix into buf[].  But if buf[] is large enough to hold both the
 | |
| ** prefix and the tail then write the prefix and set the tail to all
 | |
| ** zeros.
 | |
| **
 | |
| ** Return the number of bytes actually written into buf[].  The number
 | |
| ** of bytes in the zero-filled tail is included in the return value only
 | |
| ** if those bytes were zeroed in buf[].
 | |
| */ 
 | |
| int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
 | |
|   u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
 | |
|   int len;
 | |
| 
 | |
|   /* Integer and Real */
 | |
|   if( serial_type<=7 && serial_type>0 ){
 | |
|     u64 v;
 | |
|     int i;
 | |
|     if( serial_type==7 ){
 | |
|       assert( sizeof(v)==sizeof(pMem->r) );
 | |
|       swapMixedEndianFloat(pMem->r);
 | |
|       memcpy(&v, &pMem->r, sizeof(v));
 | |
|     }else{
 | |
|       v = pMem->u.i;
 | |
|     }
 | |
|     len = i = sqlite3VdbeSerialTypeLen(serial_type);
 | |
|     assert( len<=nBuf );
 | |
|     while( i-- ){
 | |
|       buf[i] = (v&0xFF);
 | |
|       v >>= 8;
 | |
|     }
 | |
|     return len;
 | |
|   }
 | |
| 
 | |
|   /* String or blob */
 | |
|   if( serial_type>=12 ){
 | |
|     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0)
 | |
|              == sqlite3VdbeSerialTypeLen(serial_type) );
 | |
|     assert( pMem->n<=nBuf );
 | |
|     len = pMem->n;
 | |
|     memcpy(buf, pMem->z, len);
 | |
|     if( pMem->flags & MEM_Zero ){
 | |
|       len += pMem->u.i;
 | |
|       if( len>nBuf ){
 | |
|         len = nBuf;
 | |
|       }
 | |
|       memset(&buf[pMem->n], 0, len-pMem->n);
 | |
|     }
 | |
|     return len;
 | |
|   }
 | |
| 
 | |
|   /* NULL or constants 0 or 1 */
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Deserialize the data blob pointed to by buf as serial type serial_type
 | |
| ** and store the result in pMem.  Return the number of bytes read.
 | |
| */ 
 | |
| int sqlite3VdbeSerialGet(
 | |
|   const unsigned char *buf,     /* Buffer to deserialize from */
 | |
|   u32 serial_type,              /* Serial type to deserialize */
 | |
|   Mem *pMem                     /* Memory cell to write value into */
 | |
| ){
 | |
|   switch( serial_type ){
 | |
|     case 10:   /* Reserved for future use */
 | |
|     case 11:   /* Reserved for future use */
 | |
|     case 0: {  /* NULL */
 | |
|       pMem->flags = MEM_Null;
 | |
|       break;
 | |
|     }
 | |
|     case 1: { /* 1-byte signed integer */
 | |
|       pMem->u.i = (signed char)buf[0];
 | |
|       pMem->flags = MEM_Int;
 | |
|       return 1;
 | |
|     }
 | |
|     case 2: { /* 2-byte signed integer */
 | |
|       pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
 | |
|       pMem->flags = MEM_Int;
 | |
|       return 2;
 | |
|     }
 | |
|     case 3: { /* 3-byte signed integer */
 | |
|       pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
 | |
|       pMem->flags = MEM_Int;
 | |
|       return 3;
 | |
|     }
 | |
|     case 4: { /* 4-byte signed integer */
 | |
|       pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
 | |
|       pMem->flags = MEM_Int;
 | |
|       return 4;
 | |
|     }
 | |
|     case 5: { /* 6-byte signed integer */
 | |
|       u64 x = (((signed char)buf[0])<<8) | buf[1];
 | |
|       u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
 | |
|       x = (x<<32) | y;
 | |
|       pMem->u.i = *(i64*)&x;
 | |
|       pMem->flags = MEM_Int;
 | |
|       return 6;
 | |
|     }
 | |
|     case 6:   /* 8-byte signed integer */
 | |
|     case 7: { /* IEEE floating point */
 | |
|       u64 x;
 | |
|       u32 y;
 | |
| #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
 | |
|       /* Verify that integers and floating point values use the same
 | |
|       ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
 | |
|       ** defined that 64-bit floating point values really are mixed
 | |
|       ** endian.
 | |
|       */
 | |
|       static const u64 t1 = ((u64)0x3ff00000)<<32;
 | |
|       static const double r1 = 1.0;
 | |
|       double r2 = r1;
 | |
|       swapMixedEndianFloat(r2);
 | |
|       assert( sizeof(r2)==sizeof(t1) && memcmp(&r2, &t1, sizeof(r1))==0 );
 | |
| #endif
 | |
| 
 | |
|       x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
 | |
|       y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
 | |
|       x = (x<<32) | y;
 | |
|       if( serial_type==6 ){
 | |
|         pMem->u.i = *(i64*)&x;
 | |
|         pMem->flags = MEM_Int;
 | |
|       }else{
 | |
|         assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
 | |
|         memcpy(&pMem->r, &x, sizeof(x));
 | |
|         swapMixedEndianFloat(pMem->r);
 | |
|         pMem->flags = MEM_Real;
 | |
|       }
 | |
|       return 8;
 | |
|     }
 | |
|     case 8:    /* Integer 0 */
 | |
|     case 9: {  /* Integer 1 */
 | |
|       pMem->u.i = serial_type-8;
 | |
|       pMem->flags = MEM_Int;
 | |
|       return 0;
 | |
|     }
 | |
|     default: {
 | |
|       int len = (serial_type-12)/2;
 | |
|       pMem->z = (char *)buf;
 | |
|       pMem->n = len;
 | |
|       pMem->xDel = 0;
 | |
|       if( serial_type&0x01 ){
 | |
|         pMem->flags = MEM_Str | MEM_Ephem;
 | |
|       }else{
 | |
|         pMem->flags = MEM_Blob | MEM_Ephem;
 | |
|       }
 | |
|       return len;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The header of a record consists of a sequence variable-length integers.
 | |
| ** These integers are almost always small and are encoded as a single byte.
 | |
| ** The following macro takes advantage this fact to provide a fast decode
 | |
| ** of the integers in a record header.  It is faster for the common case
 | |
| ** where the integer is a single byte.  It is a little slower when the
 | |
| ** integer is two or more bytes.  But overall it is faster.
 | |
| **
 | |
| ** The following expressions are equivalent:
 | |
| **
 | |
| **     x = sqlite3GetVarint32( A, &B );
 | |
| **
 | |
| **     x = GetVarint( A, B );
 | |
| **
 | |
| */
 | |
| #define GetVarint(A,B)  ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))
 | |
| 
 | |
| /*
 | |
| ** This function compares the two table rows or index records specified by 
 | |
| ** {nKey1, pKey1} and {nKey2, pKey2}, returning a negative, zero
 | |
| ** or positive integer if {nKey1, pKey1} is less than, equal to or 
 | |
| ** greater than {nKey2, pKey2}.  Both Key1 and Key2 must be byte strings
 | |
| ** composed by the OP_MakeRecord opcode of the VDBE.
 | |
| */
 | |
| int sqlite3VdbeRecordCompare(
 | |
|   void *userData,
 | |
|   int nKey1, const void *pKey1, 
 | |
|   int nKey2, const void *pKey2
 | |
| ){
 | |
|   KeyInfo *pKeyInfo = (KeyInfo*)userData;
 | |
|   u32 d1, d2;          /* Offset into aKey[] of next data element */
 | |
|   u32 idx1, idx2;      /* Offset into aKey[] of next header element */
 | |
|   u32 szHdr1, szHdr2;  /* Number of bytes in header */
 | |
|   int i = 0;
 | |
|   int nField;
 | |
|   int rc = 0;
 | |
|   const unsigned char *aKey1 = (const unsigned char *)pKey1;
 | |
|   const unsigned char *aKey2 = (const unsigned char *)pKey2;
 | |
| 
 | |
|   Mem mem1;
 | |
|   Mem mem2;
 | |
|   mem1.enc = pKeyInfo->enc;
 | |
|   mem2.enc = pKeyInfo->enc;
 | |
|   
 | |
|   idx1 = GetVarint(aKey1, szHdr1);
 | |
|   d1 = szHdr1;
 | |
|   idx2 = GetVarint(aKey2, szHdr2);
 | |
|   d2 = szHdr2;
 | |
|   nField = pKeyInfo->nField;
 | |
|   while( idx1<szHdr1 && idx2<szHdr2 ){
 | |
|     u32 serial_type1;
 | |
|     u32 serial_type2;
 | |
| 
 | |
|     /* Read the serial types for the next element in each key. */
 | |
|     idx1 += GetVarint( aKey1+idx1, serial_type1 );
 | |
|     if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
 | |
|     idx2 += GetVarint( aKey2+idx2, serial_type2 );
 | |
|     if( d2>=nKey2 && sqlite3VdbeSerialTypeLen(serial_type2)>0 ) break;
 | |
| 
 | |
|     /* Extract the values to be compared.
 | |
|     */
 | |
|     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
 | |
|     d2 += sqlite3VdbeSerialGet(&aKey2[d2], serial_type2, &mem2);
 | |
| 
 | |
|     /* Do the comparison
 | |
|     */
 | |
|     rc = sqlite3MemCompare(&mem1, &mem2, i<nField ? pKeyInfo->aColl[i] : 0);
 | |
|     if( mem1.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem1);
 | |
|     if( mem2.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem2);
 | |
|     if( rc!=0 ){
 | |
|       break;
 | |
|     }
 | |
|     i++;
 | |
|   }
 | |
| 
 | |
|   /* One of the keys ran out of fields, but all the fields up to that point
 | |
|   ** were equal. If the incrKey flag is true, then the second key is
 | |
|   ** treated as larger.
 | |
|   */
 | |
|   if( rc==0 ){
 | |
|     if( pKeyInfo->incrKey ){
 | |
|       rc = -1;
 | |
|     }else if( d1<nKey1 ){
 | |
|       rc = 1;
 | |
|     }else if( d2<nKey2 ){
 | |
|       rc = -1;
 | |
|     }
 | |
|   }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
 | |
|                && pKeyInfo->aSortOrder[i] ){
 | |
|     rc = -rc;
 | |
|   }
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The argument is an index entry composed using the OP_MakeRecord opcode.
 | |
| ** The last entry in this record should be an integer (specifically
 | |
| ** an integer rowid).  This routine returns the number of bytes in
 | |
| ** that integer.
 | |
| */
 | |
| int sqlite3VdbeIdxRowidLen(const u8 *aKey){
 | |
|   u32 szHdr;        /* Size of the header */
 | |
|   u32 typeRowid;    /* Serial type of the rowid */
 | |
| 
 | |
|   sqlite3GetVarint32(aKey, &szHdr);
 | |
|   sqlite3GetVarint32(&aKey[szHdr-1], &typeRowid);
 | |
|   return sqlite3VdbeSerialTypeLen(typeRowid);
 | |
| }
 | |
|   
 | |
| 
 | |
| /*
 | |
| ** pCur points at an index entry created using the OP_MakeRecord opcode.
 | |
| ** Read the rowid (the last field in the record) and store it in *rowid.
 | |
| ** Return SQLITE_OK if everything works, or an error code otherwise.
 | |
| */
 | |
| int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
 | |
|   i64 nCellKey = 0;
 | |
|   int rc;
 | |
|   u32 szHdr;        /* Size of the header */
 | |
|   u32 typeRowid;    /* Serial type of the rowid */
 | |
|   u32 lenRowid;     /* Size of the rowid */
 | |
|   Mem m, v;
 | |
| 
 | |
|   sqlite3BtreeKeySize(pCur, &nCellKey);
 | |
|   if( nCellKey<=0 ){
 | |
|     return SQLITE_CORRUPT_BKPT;
 | |
|   }
 | |
|   rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
 | |
|   if( rc ){
 | |
|     return rc;
 | |
|   }
 | |
|   sqlite3GetVarint32((u8*)m.z, &szHdr);
 | |
|   sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid);
 | |
|   lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
 | |
|   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
 | |
|   *rowid = v.u.i;
 | |
|   sqlite3VdbeMemRelease(&m);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compare the key of the index entry that cursor pC is point to against
 | |
| ** the key string in pKey (of length nKey).  Write into *pRes a number
 | |
| ** that is negative, zero, or positive if pC is less than, equal to,
 | |
| ** or greater than pKey.  Return SQLITE_OK on success.
 | |
| **
 | |
| ** pKey is either created without a rowid or is truncated so that it
 | |
| ** omits the rowid at the end.  The rowid at the end of the index entry
 | |
| ** is ignored as well.
 | |
| */
 | |
| int sqlite3VdbeIdxKeyCompare(
 | |
|   Cursor *pC,                 /* The cursor to compare against */
 | |
|   int nKey, const u8 *pKey,   /* The key to compare */
 | |
|   int *res                    /* Write the comparison result here */
 | |
| ){
 | |
|   i64 nCellKey = 0;
 | |
|   int rc;
 | |
|   BtCursor *pCur = pC->pCursor;
 | |
|   int lenRowid;
 | |
|   Mem m;
 | |
| 
 | |
|   sqlite3BtreeKeySize(pCur, &nCellKey);
 | |
|   if( nCellKey<=0 ){
 | |
|     *res = 0;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
 | |
|   if( rc ){
 | |
|     return rc;
 | |
|   }
 | |
|   lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z);
 | |
|   *res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey);
 | |
|   sqlite3VdbeMemRelease(&m);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine sets the value to be returned by subsequent calls to
 | |
| ** sqlite3_changes() on the database handle 'db'. 
 | |
| */
 | |
| void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
 | |
|   db->nChange = nChange;
 | |
|   db->nTotalChange += nChange;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set a flag in the vdbe to update the change counter when it is finalised
 | |
| ** or reset.
 | |
| */
 | |
| void sqlite3VdbeCountChanges(Vdbe *v){
 | |
|   v->changeCntOn = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Mark every prepared statement associated with a database connection
 | |
| ** as expired.
 | |
| **
 | |
| ** An expired statement means that recompilation of the statement is
 | |
| ** recommend.  Statements expire when things happen that make their
 | |
| ** programs obsolete.  Removing user-defined functions or collating
 | |
| ** sequences, or changing an authorization function are the types of
 | |
| ** things that make prepared statements obsolete.
 | |
| */
 | |
| void sqlite3ExpirePreparedStatements(sqlite3 *db){
 | |
|   Vdbe *p;
 | |
|   for(p = db->pVdbe; p; p=p->pNext){
 | |
|     p->expired = 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the database associated with the Vdbe.
 | |
| */
 | |
| sqlite3 *sqlite3VdbeDb(Vdbe *v){
 | |
|   return v->db;
 | |
| }
 |