--HG-- extra : convert_revision : svn%3A39bc706e-5318-0410-9160-8a85361fbb7c/trunk%401209
		
			
				
	
	
		
			545 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			545 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** 2004 April 13
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains routines used to translate between UTF-8, 
 | |
| ** UTF-16, UTF-16BE, and UTF-16LE.
 | |
| **
 | |
| ** $Id$
 | |
| **
 | |
| ** Notes on UTF-8:
 | |
| **
 | |
| **   Byte-0    Byte-1    Byte-2    Byte-3    Value
 | |
| **  0xxxxxxx                                 00000000 00000000 0xxxxxxx
 | |
| **  110yyyyy  10xxxxxx                       00000000 00000yyy yyxxxxxx
 | |
| **  1110zzzz  10yyyyyy  10xxxxxx             00000000 zzzzyyyy yyxxxxxx
 | |
| **  11110uuu  10uuzzzz  10yyyyyy  10xxxxxx   000uuuuu zzzzyyyy yyxxxxxx
 | |
| **
 | |
| **
 | |
| ** Notes on UTF-16:  (with wwww+1==uuuuu)
 | |
| **
 | |
| **      Word-0               Word-1          Value
 | |
| **  110110ww wwzzzzyy   110111yy yyxxxxxx    000uuuuu zzzzyyyy yyxxxxxx
 | |
| **  zzzzyyyy yyxxxxxx                        00000000 zzzzyyyy yyxxxxxx
 | |
| **
 | |
| **
 | |
| ** BOM or Byte Order Mark:
 | |
| **     0xff 0xfe   little-endian utf-16 follows
 | |
| **     0xfe 0xff   big-endian utf-16 follows
 | |
| **
 | |
| */
 | |
| #include "sqliteInt.h"
 | |
| #include <assert.h>
 | |
| #include "vdbeInt.h"
 | |
| 
 | |
| /*
 | |
| ** The following constant value is used by the SQLITE_BIGENDIAN and
 | |
| ** SQLITE_LITTLEENDIAN macros.
 | |
| */
 | |
| const int sqlite3one = 1;
 | |
| 
 | |
| /*
 | |
| ** This lookup table is used to help decode the first byte of
 | |
| ** a multi-byte UTF8 character.
 | |
| */
 | |
| const unsigned char sqlite3UtfTrans1[] = {
 | |
|   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 | |
|   0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 | |
|   0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 | |
|   0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
 | |
|   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 | |
|   0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 | |
|   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 | |
|   0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
 | |
| };
 | |
| 
 | |
| #define WRITE_UTF8(zOut, c) {                          \
 | |
|   if( c<0x00080 ){                                     \
 | |
|     *zOut++ = (c&0xFF);                                \
 | |
|   }                                                    \
 | |
|   else if( c<0x00800 ){                                \
 | |
|     *zOut++ = 0xC0 + ((c>>6)&0x1F);                    \
 | |
|     *zOut++ = 0x80 + (c & 0x3F);                       \
 | |
|   }                                                    \
 | |
|   else if( c<0x10000 ){                                \
 | |
|     *zOut++ = 0xE0 + ((c>>12)&0x0F);                   \
 | |
|     *zOut++ = 0x80 + ((c>>6) & 0x3F);                  \
 | |
|     *zOut++ = 0x80 + (c & 0x3F);                       \
 | |
|   }else{                                               \
 | |
|     *zOut++ = 0xF0 + ((c>>18) & 0x07);                 \
 | |
|     *zOut++ = 0x80 + ((c>>12) & 0x3F);                 \
 | |
|     *zOut++ = 0x80 + ((c>>6) & 0x3F);                  \
 | |
|     *zOut++ = 0x80 + (c & 0x3F);                       \
 | |
|   }                                                    \
 | |
| }
 | |
| 
 | |
| #define WRITE_UTF16LE(zOut, c) {                                \
 | |
|   if( c<=0xFFFF ){                                              \
 | |
|     *zOut++ = (c&0x00FF);                                       \
 | |
|     *zOut++ = ((c>>8)&0x00FF);                                  \
 | |
|   }else{                                                        \
 | |
|     *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0));  \
 | |
|     *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03));              \
 | |
|     *zOut++ = (c&0x00FF);                                       \
 | |
|     *zOut++ = (0x00DC + ((c>>8)&0x03));                         \
 | |
|   }                                                             \
 | |
| }
 | |
| 
 | |
| #define WRITE_UTF16BE(zOut, c) {                                \
 | |
|   if( c<=0xFFFF ){                                              \
 | |
|     *zOut++ = ((c>>8)&0x00FF);                                  \
 | |
|     *zOut++ = (c&0x00FF);                                       \
 | |
|   }else{                                                        \
 | |
|     *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03));              \
 | |
|     *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0));  \
 | |
|     *zOut++ = (0x00DC + ((c>>8)&0x03));                         \
 | |
|     *zOut++ = (c&0x00FF);                                       \
 | |
|   }                                                             \
 | |
| }
 | |
| 
 | |
| #define READ_UTF16LE(zIn, c){                                         \
 | |
|   c = (*zIn++);                                                       \
 | |
|   c += ((*zIn++)<<8);                                                 \
 | |
|   if( c>=0xD800 && c<0xE000 ){                                       \
 | |
|     int c2 = (*zIn++);                                                \
 | |
|     c2 += ((*zIn++)<<8);                                              \
 | |
|     c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);   \
 | |
|     if( (c & 0xFFFF0000)==0 ) c = 0xFFFD;                             \
 | |
|   }                                                                   \
 | |
| }
 | |
| 
 | |
| #define READ_UTF16BE(zIn, c){                                         \
 | |
|   c = ((*zIn++)<<8);                                                  \
 | |
|   c += (*zIn++);                                                      \
 | |
|   if( c>=0xD800 && c<0xE000 ){                                       \
 | |
|     int c2 = ((*zIn++)<<8);                                           \
 | |
|     c2 += (*zIn++);                                                   \
 | |
|     c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);   \
 | |
|     if( (c & 0xFFFF0000)==0 ) c = 0xFFFD;                             \
 | |
|   }                                                                   \
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
 | |
| ** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
 | |
| */ 
 | |
| /* #define TRANSLATE_TRACE 1 */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| /*
 | |
| ** This routine transforms the internal text encoding used by pMem to
 | |
| ** desiredEnc. It is an error if the string is already of the desired
 | |
| ** encoding, or if *pMem does not contain a string value.
 | |
| */
 | |
| int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
 | |
|   unsigned char zShort[NBFS]; /* Temporary short output buffer */
 | |
|   int len;                    /* Maximum length of output string in bytes */
 | |
|   unsigned char *zOut;                  /* Output buffer */
 | |
|   unsigned char *zIn;                   /* Input iterator */
 | |
|   unsigned char *zTerm;                 /* End of input */
 | |
|   unsigned char *z;                     /* Output iterator */
 | |
|   unsigned int c;
 | |
| 
 | |
|   assert( pMem->flags&MEM_Str );
 | |
|   assert( pMem->enc!=desiredEnc );
 | |
|   assert( pMem->enc!=0 );
 | |
|   assert( pMem->n>=0 );
 | |
| 
 | |
| #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
 | |
|   {
 | |
|     char zBuf[100];
 | |
|     sqlite3VdbeMemPrettyPrint(pMem, zBuf);
 | |
|     fprintf(stderr, "INPUT:  %s\n", zBuf);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* If the translation is between UTF-16 little and big endian, then 
 | |
|   ** all that is required is to swap the byte order. This case is handled
 | |
|   ** differently from the others.
 | |
|   */
 | |
|   if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
 | |
|     u8 temp;
 | |
|     int rc;
 | |
|     rc = sqlite3VdbeMemMakeWriteable(pMem);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       assert( rc==SQLITE_NOMEM );
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|     zIn = (u8*)pMem->z;
 | |
|     zTerm = &zIn[pMem->n];
 | |
|     while( zIn<zTerm ){
 | |
|       temp = *zIn;
 | |
|       *zIn = *(zIn+1);
 | |
|       zIn++;
 | |
|       *zIn++ = temp;
 | |
|     }
 | |
|     pMem->enc = desiredEnc;
 | |
|     goto translate_out;
 | |
|   }
 | |
| 
 | |
|   /* Set len to the maximum number of bytes required in the output buffer. */
 | |
|   if( desiredEnc==SQLITE_UTF8 ){
 | |
|     /* When converting from UTF-16, the maximum growth results from
 | |
|     ** translating a 2-byte character to a 4-byte UTF-8 character.
 | |
|     ** A single byte is required for the output string
 | |
|     ** nul-terminator.
 | |
|     */
 | |
|     len = pMem->n * 2 + 1;
 | |
|   }else{
 | |
|     /* When converting from UTF-8 to UTF-16 the maximum growth is caused
 | |
|     ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
 | |
|     ** character. Two bytes are required in the output buffer for the
 | |
|     ** nul-terminator.
 | |
|     */
 | |
|     len = pMem->n * 2 + 2;
 | |
|   }
 | |
| 
 | |
|   /* Set zIn to point at the start of the input buffer and zTerm to point 1
 | |
|   ** byte past the end.
 | |
|   **
 | |
|   ** Variable zOut is set to point at the output buffer. This may be space
 | |
|   ** obtained from malloc(), or Mem.zShort, if it large enough and not in
 | |
|   ** use, or the zShort array on the stack (see above).
 | |
|   */
 | |
|   zIn = (u8*)pMem->z;
 | |
|   zTerm = &zIn[pMem->n];
 | |
|   if( len>NBFS ){
 | |
|     zOut = sqliteMallocRaw(len);
 | |
|     if( !zOut ) return SQLITE_NOMEM;
 | |
|   }else{
 | |
|     zOut = zShort;
 | |
|   }
 | |
|   z = zOut;
 | |
| 
 | |
|   if( pMem->enc==SQLITE_UTF8 ){
 | |
|     unsigned int iExtra = 0xD800;
 | |
| 
 | |
|     if( 0==(pMem->flags&MEM_Term) && zTerm>zIn && (zTerm[-1]&0x80) ){
 | |
|       /* This UTF8 string is not nul-terminated, and the last byte is
 | |
|       ** not a character in the ascii range (codpoints 0..127). This
 | |
|       ** means the SQLITE_READ_UTF8() macro might read past the end
 | |
|       ** of the allocated buffer.
 | |
|       **
 | |
|       ** There are four possibilities:
 | |
|       **
 | |
|       **   1. The last byte is the first byte of a non-ASCII character,
 | |
|       **
 | |
|       **   2. The final N bytes of the input string are continuation bytes
 | |
|       **      and immediately preceding them is the first byte of a 
 | |
|       **      non-ASCII character.
 | |
|       **
 | |
|       **   3. The final N bytes of the input string are continuation bytes
 | |
|       **      and immediately preceding them is a byte that encodes a 
 | |
|       **      character in the ASCII range.
 | |
|       **
 | |
|       **   4. The entire string consists of continuation characters.
 | |
|       **
 | |
|       ** Cases (3) and (4) require no special handling. The SQLITE_READ_UTF8()
 | |
|       ** macro will not overread the buffer in these cases.
 | |
|       */
 | |
|       unsigned char *zExtra = &zTerm[-1];
 | |
|       while( zExtra>zIn && (zExtra[0]&0xC0)==0x80 ){
 | |
|         zExtra--;
 | |
|       }
 | |
| 
 | |
|       if( (zExtra[0]&0xC0)==0xC0 ){
 | |
|         /* Make a copy of the last character encoding in the input string.
 | |
|         ** Then make sure it is nul-terminated and use SQLITE_READ_UTF8()
 | |
|         ** to decode the codepoint. Store the codepoint in variable iExtra,
 | |
|         ** it will be appended to the output string later.
 | |
|         */
 | |
|         unsigned char *zFree = 0;
 | |
|         unsigned char zBuf[16];
 | |
|         int nExtra = (pMem->n+zIn-zExtra);
 | |
|         zTerm = zExtra;
 | |
|         if( nExtra>15 ){
 | |
|           zExtra = sqliteMallocRaw(nExtra+1);
 | |
|           if( !zExtra ){
 | |
|             return SQLITE_NOMEM;
 | |
|           }
 | |
|           zFree = zExtra;
 | |
|         }else{
 | |
|           zExtra = zBuf;
 | |
|         }
 | |
|         memcpy(zExtra, zTerm, nExtra);
 | |
|         zExtra[nExtra] = '\0';
 | |
|         SQLITE_READ_UTF8(zExtra, iExtra);
 | |
|         sqliteFree(zFree);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if( desiredEnc==SQLITE_UTF16LE ){
 | |
|       /* UTF-8 -> UTF-16 Little-endian */
 | |
|       while( zIn<zTerm ){
 | |
|         SQLITE_READ_UTF8(zIn, c); 
 | |
|         WRITE_UTF16LE(z, c);
 | |
|       }
 | |
|       if( iExtra!=0xD800 ){
 | |
|         WRITE_UTF16LE(z, iExtra);
 | |
|       }
 | |
|     }else{
 | |
|       assert( desiredEnc==SQLITE_UTF16BE );
 | |
|       /* UTF-8 -> UTF-16 Big-endian */
 | |
|       while( zIn<zTerm ){
 | |
|         SQLITE_READ_UTF8(zIn, c); 
 | |
|         WRITE_UTF16BE(z, c);
 | |
|       }
 | |
|       if( iExtra!=0xD800 ){
 | |
|         WRITE_UTF16BE(z, iExtra);
 | |
|       }
 | |
|     }
 | |
|     pMem->n = z - zOut;
 | |
|     *z++ = 0;
 | |
|   }else{
 | |
|     assert( desiredEnc==SQLITE_UTF8 );
 | |
|     if( pMem->enc==SQLITE_UTF16LE ){
 | |
|       /* UTF-16 Little-endian -> UTF-8 */
 | |
|       while( zIn<zTerm ){
 | |
|         READ_UTF16LE(zIn, c); 
 | |
|         WRITE_UTF8(z, c);
 | |
|       }
 | |
|     }else{
 | |
|       /* UTF-16 Little-endian -> UTF-8 */
 | |
|       while( zIn<zTerm ){
 | |
|         READ_UTF16BE(zIn, c); 
 | |
|         WRITE_UTF8(z, c);
 | |
|       }
 | |
|     }
 | |
|     pMem->n = z - zOut;
 | |
|   }
 | |
|   *z = 0;
 | |
|   assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
 | |
| 
 | |
|   sqlite3VdbeMemRelease(pMem);
 | |
|   pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
 | |
|   pMem->enc = desiredEnc;
 | |
|   if( zOut==zShort ){
 | |
|     memcpy(pMem->zShort, zOut, len);
 | |
|     zOut = (u8*)pMem->zShort;
 | |
|     pMem->flags |= (MEM_Term|MEM_Short);
 | |
|   }else{
 | |
|     pMem->flags |= (MEM_Term|MEM_Dyn);
 | |
|   }
 | |
|   pMem->z = (char*)zOut;
 | |
| 
 | |
| translate_out:
 | |
| #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
 | |
|   {
 | |
|     char zBuf[100];
 | |
|     sqlite3VdbeMemPrettyPrint(pMem, zBuf);
 | |
|     fprintf(stderr, "OUTPUT: %s\n", zBuf);
 | |
|   }
 | |
| #endif
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine checks for a byte-order mark at the beginning of the 
 | |
| ** UTF-16 string stored in *pMem. If one is present, it is removed and
 | |
| ** the encoding of the Mem adjusted. This routine does not do any
 | |
| ** byte-swapping, it just sets Mem.enc appropriately.
 | |
| **
 | |
| ** The allocation (static, dynamic etc.) and encoding of the Mem may be
 | |
| ** changed by this function.
 | |
| */
 | |
| int sqlite3VdbeMemHandleBom(Mem *pMem){
 | |
|   int rc = SQLITE_OK;
 | |
|   u8 bom = 0;
 | |
| 
 | |
|   if( pMem->n<0 || pMem->n>1 ){
 | |
|     u8 b1 = *(u8 *)pMem->z;
 | |
|     u8 b2 = *(((u8 *)pMem->z) + 1);
 | |
|     if( b1==0xFE && b2==0xFF ){
 | |
|       bom = SQLITE_UTF16BE;
 | |
|     }
 | |
|     if( b1==0xFF && b2==0xFE ){
 | |
|       bom = SQLITE_UTF16LE;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if( bom ){
 | |
|     /* This function is called as soon as a string is stored in a Mem*,
 | |
|     ** from within sqlite3VdbeMemSetStr(). At that point it is not possible
 | |
|     ** for the string to be stored in Mem.zShort, or for it to be stored
 | |
|     ** in dynamic memory with no destructor.
 | |
|     */
 | |
|     assert( !(pMem->flags&MEM_Short) );
 | |
|     assert( !(pMem->flags&MEM_Dyn) || pMem->xDel );
 | |
|     if( pMem->flags & MEM_Dyn ){
 | |
|       void (*xDel)(void*) = pMem->xDel;
 | |
|       char *z = pMem->z;
 | |
|       pMem->z = 0;
 | |
|       pMem->xDel = 0;
 | |
|       rc = sqlite3VdbeMemSetStr(pMem, &z[2], pMem->n-2, bom, SQLITE_TRANSIENT);
 | |
|       xDel(z);
 | |
|     }else{
 | |
|       rc = sqlite3VdbeMemSetStr(pMem, &pMem->z[2], pMem->n-2, bom, 
 | |
|           SQLITE_TRANSIENT);
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
| 
 | |
| /*
 | |
| ** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
 | |
| ** return the number of unicode characters in pZ up to (but not including)
 | |
| ** the first 0x00 byte. If nByte is not less than zero, return the
 | |
| ** number of unicode characters in the first nByte of pZ (or up to 
 | |
| ** the first 0x00, whichever comes first).
 | |
| */
 | |
| int sqlite3Utf8CharLen(const char *zIn, int nByte){
 | |
|   int r = 0;
 | |
|   const u8 *z = (const u8*)zIn;
 | |
|   const u8 *zTerm;
 | |
|   if( nByte>=0 ){
 | |
|     zTerm = &z[nByte];
 | |
|   }else{
 | |
|     zTerm = (const u8*)(-1);
 | |
|   }
 | |
|   assert( z<=zTerm );
 | |
|   while( *z!=0 && z<zTerm ){
 | |
|     SQLITE_SKIP_UTF8(z);
 | |
|     r++;
 | |
|   }
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| /*
 | |
| ** Convert a UTF-16 string in the native encoding into a UTF-8 string.
 | |
| ** Memory to hold the UTF-8 string is obtained from malloc and must be
 | |
| ** freed by the calling function.
 | |
| **
 | |
| ** NULL is returned if there is an allocation error.
 | |
| */
 | |
| char *sqlite3Utf16to8(const void *z, int nByte){
 | |
|   Mem m;
 | |
|   memset(&m, 0, sizeof(m));
 | |
|   sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC);
 | |
|   sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
 | |
|   assert( (m.flags & MEM_Term)!=0 || sqlite3MallocFailed() );
 | |
|   assert( (m.flags & MEM_Str)!=0 || sqlite3MallocFailed() );
 | |
|   return (m.flags & MEM_Dyn)!=0 ? m.z : sqliteStrDup(m.z);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,
 | |
| ** return the number of bytes up to (but not including), the first pair
 | |
| ** of consecutive 0x00 bytes in pZ. If nChar is not less than zero,
 | |
| ** then return the number of bytes in the first nChar unicode characters
 | |
| ** in pZ (or up until the first pair of 0x00 bytes, whichever comes first).
 | |
| */
 | |
| int sqlite3Utf16ByteLen(const void *zIn, int nChar){
 | |
|   unsigned int c = 1;
 | |
|   char const *z = zIn;
 | |
|   int n = 0;
 | |
|   if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
 | |
|     /* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here
 | |
|     ** and in other parts of this file means that at one branch will
 | |
|     ** not be covered by coverage testing on any single host. But coverage
 | |
|     ** will be complete if the tests are run on both a little-endian and 
 | |
|     ** big-endian host. Because both the UTF16NATIVE and SQLITE_UTF16BE
 | |
|     ** macros are constant at compile time the compiler can determine
 | |
|     ** which branch will be followed. It is therefore assumed that no runtime
 | |
|     ** penalty is paid for this "if" statement.
 | |
|     */
 | |
|     while( c && ((nChar<0) || n<nChar) ){
 | |
|       READ_UTF16BE(z, c);
 | |
|       n++;
 | |
|     }
 | |
|   }else{
 | |
|     while( c && ((nChar<0) || n<nChar) ){
 | |
|       READ_UTF16LE(z, c);
 | |
|       n++;
 | |
|     }
 | |
|   }
 | |
|   return (z-(char const *)zIn)-((c==0)?2:0);
 | |
| }
 | |
| 
 | |
| #if defined(SQLITE_TEST)
 | |
| /*
 | |
| ** Translate UTF-8 to UTF-8.
 | |
| **
 | |
| ** This has the effect of making sure that the string is well-formed
 | |
| ** UTF-8.  Miscoded characters are removed.
 | |
| **
 | |
| ** The translation is done in-place (since it is impossible for the
 | |
| ** correct UTF-8 encoding to be longer than a malformed encoding).
 | |
| */
 | |
| int sqlite3Utf8To8(unsigned char *zIn){
 | |
|   unsigned char *zOut = zIn;
 | |
|   unsigned char *zStart = zIn;
 | |
|   int c;
 | |
| 
 | |
|   while(1){
 | |
|     SQLITE_READ_UTF8(zIn, c);
 | |
|     if( c==0 ) break;
 | |
|     if( c!=0xfffd ){
 | |
|       WRITE_UTF8(zOut, c);
 | |
|     }
 | |
|   }
 | |
|   *zOut = 0;
 | |
|   return zOut - zStart;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(SQLITE_TEST)
 | |
| /*
 | |
| ** This routine is called from the TCL test function "translate_selftest".
 | |
| ** It checks that the primitives for serializing and deserializing
 | |
| ** characters in each encoding are inverses of each other.
 | |
| */
 | |
| void sqlite3UtfSelfTest(){
 | |
|   unsigned int i, t;
 | |
|   unsigned char zBuf[20];
 | |
|   unsigned char *z;
 | |
|   int n;
 | |
|   unsigned int c;
 | |
| 
 | |
|   for(i=0; i<0x00110000; i++){
 | |
|     z = zBuf;
 | |
|     WRITE_UTF8(z, i);
 | |
|     n = z-zBuf;
 | |
|     z[0] = 0;
 | |
|     z = zBuf;
 | |
|     SQLITE_READ_UTF8(z, c);
 | |
|     t = i;
 | |
|     if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD;
 | |
|     if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD;
 | |
|     assert( c==t );
 | |
|     assert( (z-zBuf)==n );
 | |
|   }
 | |
|   for(i=0; i<0x00110000; i++){
 | |
|     if( i>=0xD800 && i<0xE000 ) continue;
 | |
|     z = zBuf;
 | |
|     WRITE_UTF16LE(z, i);
 | |
|     n = z-zBuf;
 | |
|     z[0] = 0;
 | |
|     z = zBuf;
 | |
|     READ_UTF16LE(z, c);
 | |
|     assert( c==i );
 | |
|     assert( (z-zBuf)==n );
 | |
|   }
 | |
|   for(i=0; i<0x00110000; i++){
 | |
|     if( i>=0xD800 && i<0xE000 ) continue;
 | |
|     z = zBuf;
 | |
|     WRITE_UTF16BE(z, i);
 | |
|     n = z-zBuf;
 | |
|     z[0] = 0;
 | |
|     z = zBuf;
 | |
|     READ_UTF16BE(z, c);
 | |
|     assert( c==i );
 | |
|     assert( (z-zBuf)==n );
 | |
|   }
 | |
| }
 | |
| #endif /* SQLITE_TEST */
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 |