--HG-- extra : convert_revision : svn%3A39bc706e-5318-0410-9160-8a85361fbb7c/trunk%401209
		
			
				
	
	
		
			3506 lines
		
	
	
		
			117 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3506 lines
		
	
	
		
			117 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains C code routines that are called by the parser
 | |
| ** to handle SELECT statements in SQLite.
 | |
| **
 | |
| ** $Id$
 | |
| */
 | |
| #include "sqliteInt.h"
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Delete all the content of a Select structure but do not deallocate
 | |
| ** the select structure itself.
 | |
| */
 | |
| static void clearSelect(Select *p){
 | |
|   sqlite3ExprListDelete(p->pEList);
 | |
|   sqlite3SrcListDelete(p->pSrc);
 | |
|   sqlite3ExprDelete(p->pWhere);
 | |
|   sqlite3ExprListDelete(p->pGroupBy);
 | |
|   sqlite3ExprDelete(p->pHaving);
 | |
|   sqlite3ExprListDelete(p->pOrderBy);
 | |
|   sqlite3SelectDelete(p->pPrior);
 | |
|   sqlite3ExprDelete(p->pLimit);
 | |
|   sqlite3ExprDelete(p->pOffset);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Allocate a new Select structure and return a pointer to that
 | |
| ** structure.
 | |
| */
 | |
| Select *sqlite3SelectNew(
 | |
|   ExprList *pEList,     /* which columns to include in the result */
 | |
|   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
 | |
|   Expr *pWhere,         /* the WHERE clause */
 | |
|   ExprList *pGroupBy,   /* the GROUP BY clause */
 | |
|   Expr *pHaving,        /* the HAVING clause */
 | |
|   ExprList *pOrderBy,   /* the ORDER BY clause */
 | |
|   int isDistinct,       /* true if the DISTINCT keyword is present */
 | |
|   Expr *pLimit,         /* LIMIT value.  NULL means not used */
 | |
|   Expr *pOffset         /* OFFSET value.  NULL means no offset */
 | |
| ){
 | |
|   Select *pNew;
 | |
|   Select standin;
 | |
|   pNew = sqliteMalloc( sizeof(*pNew) );
 | |
|   assert( !pOffset || pLimit );   /* Can't have OFFSET without LIMIT. */
 | |
|   if( pNew==0 ){
 | |
|     pNew = &standin;
 | |
|     memset(pNew, 0, sizeof(*pNew));
 | |
|   }
 | |
|   if( pEList==0 ){
 | |
|     pEList = sqlite3ExprListAppend(0, sqlite3Expr(TK_ALL,0,0,0), 0);
 | |
|   }
 | |
|   pNew->pEList = pEList;
 | |
|   pNew->pSrc = pSrc;
 | |
|   pNew->pWhere = pWhere;
 | |
|   pNew->pGroupBy = pGroupBy;
 | |
|   pNew->pHaving = pHaving;
 | |
|   pNew->pOrderBy = pOrderBy;
 | |
|   pNew->isDistinct = isDistinct;
 | |
|   pNew->op = TK_SELECT;
 | |
|   assert( pOffset==0 || pLimit!=0 );
 | |
|   pNew->pLimit = pLimit;
 | |
|   pNew->pOffset = pOffset;
 | |
|   pNew->iLimit = -1;
 | |
|   pNew->iOffset = -1;
 | |
|   pNew->addrOpenEphm[0] = -1;
 | |
|   pNew->addrOpenEphm[1] = -1;
 | |
|   pNew->addrOpenEphm[2] = -1;
 | |
|   if( pNew==&standin) {
 | |
|     clearSelect(pNew);
 | |
|     pNew = 0;
 | |
|   }
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete the given Select structure and all of its substructures.
 | |
| */
 | |
| void sqlite3SelectDelete(Select *p){
 | |
|   if( p ){
 | |
|     clearSelect(p);
 | |
|     sqliteFree(p);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
 | |
| ** type of join.  Return an integer constant that expresses that type
 | |
| ** in terms of the following bit values:
 | |
| **
 | |
| **     JT_INNER
 | |
| **     JT_CROSS
 | |
| **     JT_OUTER
 | |
| **     JT_NATURAL
 | |
| **     JT_LEFT
 | |
| **     JT_RIGHT
 | |
| **
 | |
| ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
 | |
| **
 | |
| ** If an illegal or unsupported join type is seen, then still return
 | |
| ** a join type, but put an error in the pParse structure.
 | |
| */
 | |
| int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
 | |
|   int jointype = 0;
 | |
|   Token *apAll[3];
 | |
|   Token *p;
 | |
|   static const struct {
 | |
|     const char zKeyword[8];
 | |
|     u8 nChar;
 | |
|     u8 code;
 | |
|   } keywords[] = {
 | |
|     { "natural", 7, JT_NATURAL },
 | |
|     { "left",    4, JT_LEFT|JT_OUTER },
 | |
|     { "right",   5, JT_RIGHT|JT_OUTER },
 | |
|     { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
 | |
|     { "outer",   5, JT_OUTER },
 | |
|     { "inner",   5, JT_INNER },
 | |
|     { "cross",   5, JT_INNER|JT_CROSS },
 | |
|   };
 | |
|   int i, j;
 | |
|   apAll[0] = pA;
 | |
|   apAll[1] = pB;
 | |
|   apAll[2] = pC;
 | |
|   for(i=0; i<3 && apAll[i]; i++){
 | |
|     p = apAll[i];
 | |
|     for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
 | |
|       if( p->n==keywords[j].nChar 
 | |
|           && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
 | |
|         jointype |= keywords[j].code;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
 | |
|       jointype |= JT_ERROR;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if(
 | |
|      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
 | |
|      (jointype & JT_ERROR)!=0
 | |
|   ){
 | |
|     const char *zSp1 = " ";
 | |
|     const char *zSp2 = " ";
 | |
|     if( pB==0 ){ zSp1++; }
 | |
|     if( pC==0 ){ zSp2++; }
 | |
|     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
 | |
|        "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
 | |
|     jointype = JT_INNER;
 | |
|   }else if( jointype & JT_RIGHT ){
 | |
|     sqlite3ErrorMsg(pParse, 
 | |
|       "RIGHT and FULL OUTER JOINs are not currently supported");
 | |
|     jointype = JT_INNER;
 | |
|   }
 | |
|   return jointype;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the index of a column in a table.  Return -1 if the column
 | |
| ** is not contained in the table.
 | |
| */
 | |
| static int columnIndex(Table *pTab, const char *zCol){
 | |
|   int i;
 | |
|   for(i=0; i<pTab->nCol; i++){
 | |
|     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
 | |
|   }
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the value of a token to a '\000'-terminated string.
 | |
| */
 | |
| static void setToken(Token *p, const char *z){
 | |
|   p->z = (u8*)z;
 | |
|   p->n = z ? strlen(z) : 0;
 | |
|   p->dyn = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the token to the double-quoted and escaped version of the string pointed
 | |
| ** to by z. For example;
 | |
| **
 | |
| **    {a"bc}  ->  {"a""bc"}
 | |
| */
 | |
| static void setQuotedToken(Token *p, const char *z){
 | |
|   p->z = (u8 *)sqlite3MPrintf("\"%w\"", z);
 | |
|   p->dyn = 1;
 | |
|   if( p->z ){
 | |
|     p->n = strlen((char *)p->z);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create an expression node for an identifier with the name of zName
 | |
| */
 | |
| Expr *sqlite3CreateIdExpr(const char *zName){
 | |
|   Token dummy;
 | |
|   setToken(&dummy, zName);
 | |
|   return sqlite3Expr(TK_ID, 0, 0, &dummy);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Add a term to the WHERE expression in *ppExpr that requires the
 | |
| ** zCol column to be equal in the two tables pTab1 and pTab2.
 | |
| */
 | |
| static void addWhereTerm(
 | |
|   const char *zCol,        /* Name of the column */
 | |
|   const Table *pTab1,      /* First table */
 | |
|   const char *zAlias1,     /* Alias for first table.  May be NULL */
 | |
|   const Table *pTab2,      /* Second table */
 | |
|   const char *zAlias2,     /* Alias for second table.  May be NULL */
 | |
|   int iRightJoinTable,     /* VDBE cursor for the right table */
 | |
|   Expr **ppExpr            /* Add the equality term to this expression */
 | |
| ){
 | |
|   Expr *pE1a, *pE1b, *pE1c;
 | |
|   Expr *pE2a, *pE2b, *pE2c;
 | |
|   Expr *pE;
 | |
| 
 | |
|   pE1a = sqlite3CreateIdExpr(zCol);
 | |
|   pE2a = sqlite3CreateIdExpr(zCol);
 | |
|   if( zAlias1==0 ){
 | |
|     zAlias1 = pTab1->zName;
 | |
|   }
 | |
|   pE1b = sqlite3CreateIdExpr(zAlias1);
 | |
|   if( zAlias2==0 ){
 | |
|     zAlias2 = pTab2->zName;
 | |
|   }
 | |
|   pE2b = sqlite3CreateIdExpr(zAlias2);
 | |
|   pE1c = sqlite3ExprOrFree(TK_DOT, pE1b, pE1a, 0);
 | |
|   pE2c = sqlite3ExprOrFree(TK_DOT, pE2b, pE2a, 0);
 | |
|   pE = sqlite3ExprOrFree(TK_EQ, pE1c, pE2c, 0);
 | |
|   if( pE ){
 | |
|     ExprSetProperty(pE, EP_FromJoin);
 | |
|     pE->iRightJoinTable = iRightJoinTable;
 | |
|   }
 | |
|   pE = sqlite3ExprAnd(*ppExpr, pE);
 | |
|   if( pE ){
 | |
|     *ppExpr = pE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the EP_FromJoin property on all terms of the given expression.
 | |
| ** And set the Expr.iRightJoinTable to iTable for every term in the
 | |
| ** expression.
 | |
| **
 | |
| ** The EP_FromJoin property is used on terms of an expression to tell
 | |
| ** the LEFT OUTER JOIN processing logic that this term is part of the
 | |
| ** join restriction specified in the ON or USING clause and not a part
 | |
| ** of the more general WHERE clause.  These terms are moved over to the
 | |
| ** WHERE clause during join processing but we need to remember that they
 | |
| ** originated in the ON or USING clause.
 | |
| **
 | |
| ** The Expr.iRightJoinTable tells the WHERE clause processing that the
 | |
| ** expression depends on table iRightJoinTable even if that table is not
 | |
| ** explicitly mentioned in the expression.  That information is needed
 | |
| ** for cases like this:
 | |
| **
 | |
| **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
 | |
| **
 | |
| ** The where clause needs to defer the handling of the t1.x=5
 | |
| ** term until after the t2 loop of the join.  In that way, a
 | |
| ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
 | |
| ** defer the handling of t1.x=5, it will be processed immediately
 | |
| ** after the t1 loop and rows with t1.x!=5 will never appear in
 | |
| ** the output, which is incorrect.
 | |
| */
 | |
| static void setJoinExpr(Expr *p, int iTable){
 | |
|   while( p ){
 | |
|     ExprSetProperty(p, EP_FromJoin);
 | |
|     p->iRightJoinTable = iTable;
 | |
|     setJoinExpr(p->pLeft, iTable);
 | |
|     p = p->pRight;
 | |
|   } 
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine processes the join information for a SELECT statement.
 | |
| ** ON and USING clauses are converted into extra terms of the WHERE clause.
 | |
| ** NATURAL joins also create extra WHERE clause terms.
 | |
| **
 | |
| ** The terms of a FROM clause are contained in the Select.pSrc structure.
 | |
| ** The left most table is the first entry in Select.pSrc.  The right-most
 | |
| ** table is the last entry.  The join operator is held in the entry to
 | |
| ** the left.  Thus entry 0 contains the join operator for the join between
 | |
| ** entries 0 and 1.  Any ON or USING clauses associated with the join are
 | |
| ** also attached to the left entry.
 | |
| **
 | |
| ** This routine returns the number of errors encountered.
 | |
| */
 | |
| static int sqliteProcessJoin(Parse *pParse, Select *p){
 | |
|   SrcList *pSrc;                  /* All tables in the FROM clause */
 | |
|   int i, j;                       /* Loop counters */
 | |
|   struct SrcList_item *pLeft;     /* Left table being joined */
 | |
|   struct SrcList_item *pRight;    /* Right table being joined */
 | |
| 
 | |
|   pSrc = p->pSrc;
 | |
|   pLeft = &pSrc->a[0];
 | |
|   pRight = &pLeft[1];
 | |
|   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
 | |
|     Table *pLeftTab = pLeft->pTab;
 | |
|     Table *pRightTab = pRight->pTab;
 | |
| 
 | |
|     if( pLeftTab==0 || pRightTab==0 ) continue;
 | |
| 
 | |
|     /* When the NATURAL keyword is present, add WHERE clause terms for
 | |
|     ** every column that the two tables have in common.
 | |
|     */
 | |
|     if( pRight->jointype & JT_NATURAL ){
 | |
|       if( pRight->pOn || pRight->pUsing ){
 | |
|         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
 | |
|            "an ON or USING clause", 0);
 | |
|         return 1;
 | |
|       }
 | |
|       for(j=0; j<pLeftTab->nCol; j++){
 | |
|         char *zName = pLeftTab->aCol[j].zName;
 | |
|         if( columnIndex(pRightTab, zName)>=0 ){
 | |
|           addWhereTerm(zName, pLeftTab, pLeft->zAlias, 
 | |
|                               pRightTab, pRight->zAlias,
 | |
|                               pRight->iCursor, &p->pWhere);
 | |
|           
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Disallow both ON and USING clauses in the same join
 | |
|     */
 | |
|     if( pRight->pOn && pRight->pUsing ){
 | |
|       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
 | |
|         "clauses in the same join");
 | |
|       return 1;
 | |
|     }
 | |
| 
 | |
|     /* Add the ON clause to the end of the WHERE clause, connected by
 | |
|     ** an AND operator.
 | |
|     */
 | |
|     if( pRight->pOn ){
 | |
|       setJoinExpr(pRight->pOn, pRight->iCursor);
 | |
|       p->pWhere = sqlite3ExprAnd(p->pWhere, pRight->pOn);
 | |
|       pRight->pOn = 0;
 | |
|     }
 | |
| 
 | |
|     /* Create extra terms on the WHERE clause for each column named
 | |
|     ** in the USING clause.  Example: If the two tables to be joined are 
 | |
|     ** A and B and the USING clause names X, Y, and Z, then add this
 | |
|     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
 | |
|     ** Report an error if any column mentioned in the USING clause is
 | |
|     ** not contained in both tables to be joined.
 | |
|     */
 | |
|     if( pRight->pUsing ){
 | |
|       IdList *pList = pRight->pUsing;
 | |
|       for(j=0; j<pList->nId; j++){
 | |
|         char *zName = pList->a[j].zName;
 | |
|         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
 | |
|           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
 | |
|             "not present in both tables", zName);
 | |
|           return 1;
 | |
|         }
 | |
|         addWhereTerm(zName, pLeftTab, pLeft->zAlias, 
 | |
|                             pRightTab, pRight->zAlias,
 | |
|                             pRight->iCursor, &p->pWhere);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Insert code into "v" that will push the record on the top of the
 | |
| ** stack into the sorter.
 | |
| */
 | |
| static void pushOntoSorter(
 | |
|   Parse *pParse,         /* Parser context */
 | |
|   ExprList *pOrderBy,    /* The ORDER BY clause */
 | |
|   Select *pSelect        /* The whole SELECT statement */
 | |
| ){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   sqlite3ExprCodeExprList(pParse, pOrderBy);
 | |
|   sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0);
 | |
|   sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0);
 | |
|   sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0);
 | |
|   sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0);
 | |
|   if( pSelect->iLimit>=0 ){
 | |
|     int addr1, addr2;
 | |
|     addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1);
 | |
|     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
 | |
|     sqlite3VdbeJumpHere(v, addr1);
 | |
|     sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0);
 | |
|     sqlite3VdbeJumpHere(v, addr2);
 | |
|     pSelect->iLimit = -1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add code to implement the OFFSET
 | |
| */
 | |
| static void codeOffset(
 | |
|   Vdbe *v,          /* Generate code into this VM */
 | |
|   Select *p,        /* The SELECT statement being coded */
 | |
|   int iContinue,    /* Jump here to skip the current record */
 | |
|   int nPop          /* Number of times to pop stack when jumping */
 | |
| ){
 | |
|   if( p->iOffset>=0 && iContinue!=0 ){
 | |
|     int addr;
 | |
|     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset);
 | |
|     addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0);
 | |
|     if( nPop>0 ){
 | |
|       sqlite3VdbeAddOp(v, OP_Pop, nPop, 0);
 | |
|     }
 | |
|     sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
 | |
|     VdbeComment((v, "# skip OFFSET records"));
 | |
|     sqlite3VdbeJumpHere(v, addr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add code that will check to make sure the top N elements of the
 | |
| ** stack are distinct.  iTab is a sorting index that holds previously
 | |
| ** seen combinations of the N values.  A new entry is made in iTab
 | |
| ** if the current N values are new.
 | |
| **
 | |
| ** A jump to addrRepeat is made and the N+1 values are popped from the
 | |
| ** stack if the top N elements are not distinct.
 | |
| */
 | |
| static void codeDistinct(
 | |
|   Vdbe *v,           /* Generate code into this VM */
 | |
|   int iTab,          /* A sorting index used to test for distinctness */
 | |
|   int addrRepeat,    /* Jump to here if not distinct */
 | |
|   int N              /* The top N elements of the stack must be distinct */
 | |
| ){
 | |
|   sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0);
 | |
|   sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3);
 | |
|   sqlite3VdbeAddOp(v, OP_Pop, N+1, 0);
 | |
|   sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat);
 | |
|   VdbeComment((v, "# skip indistinct records"));
 | |
|   sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate an error message when a SELECT is used within a subexpression
 | |
| ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
 | |
| ** column.  We do this in a subroutine because the error occurs in multiple
 | |
| ** places.
 | |
| */
 | |
| static int checkForMultiColumnSelectError(Parse *pParse, int eDest, int nExpr){
 | |
|   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
 | |
|     sqlite3ErrorMsg(pParse, "only a single result allowed for "
 | |
|        "a SELECT that is part of an expression");
 | |
|     return 1;
 | |
|   }else{
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine generates the code for the inside of the inner loop
 | |
| ** of a SELECT.
 | |
| **
 | |
| ** If srcTab and nColumn are both zero, then the pEList expressions
 | |
| ** are evaluated in order to get the data for this row.  If nColumn>0
 | |
| ** then data is pulled from srcTab and pEList is used only to get the
 | |
| ** datatypes for each column.
 | |
| */
 | |
| static int selectInnerLoop(
 | |
|   Parse *pParse,          /* The parser context */
 | |
|   Select *p,              /* The complete select statement being coded */
 | |
|   ExprList *pEList,       /* List of values being extracted */
 | |
|   int srcTab,             /* Pull data from this table */
 | |
|   int nColumn,            /* Number of columns in the source table */
 | |
|   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
 | |
|   int distinct,           /* If >=0, make sure results are distinct */
 | |
|   int eDest,              /* How to dispose of the results */
 | |
|   int iParm,              /* An argument to the disposal method */
 | |
|   int iContinue,          /* Jump here to continue with next row */
 | |
|   int iBreak,             /* Jump here to break out of the inner loop */
 | |
|   char *aff               /* affinity string if eDest is SRT_Union */
 | |
| ){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int i;
 | |
|   int hasDistinct;        /* True if the DISTINCT keyword is present */
 | |
| 
 | |
|   if( v==0 ) return 0;
 | |
|   assert( pEList!=0 );
 | |
| 
 | |
|   /* If there was a LIMIT clause on the SELECT statement, then do the check
 | |
|   ** to see if this row should be output.
 | |
|   */
 | |
|   hasDistinct = distinct>=0 && pEList->nExpr>0;
 | |
|   if( pOrderBy==0 && !hasDistinct ){
 | |
|     codeOffset(v, p, iContinue, 0);
 | |
|   }
 | |
| 
 | |
|   /* Pull the requested columns.
 | |
|   */
 | |
|   if( nColumn>0 ){
 | |
|     for(i=0; i<nColumn; i++){
 | |
|       sqlite3VdbeAddOp(v, OP_Column, srcTab, i);
 | |
|     }
 | |
|   }else{
 | |
|     nColumn = pEList->nExpr;
 | |
|     sqlite3ExprCodeExprList(pParse, pEList);
 | |
|   }
 | |
| 
 | |
|   /* If the DISTINCT keyword was present on the SELECT statement
 | |
|   ** and this row has been seen before, then do not make this row
 | |
|   ** part of the result.
 | |
|   */
 | |
|   if( hasDistinct ){
 | |
|     assert( pEList!=0 );
 | |
|     assert( pEList->nExpr==nColumn );
 | |
|     codeDistinct(v, distinct, iContinue, nColumn);
 | |
|     if( pOrderBy==0 ){
 | |
|       codeOffset(v, p, iContinue, nColumn);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   switch( eDest ){
 | |
|     /* In this mode, write each query result to the key of the temporary
 | |
|     ** table iParm.
 | |
|     */
 | |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT
 | |
|     case SRT_Union: {
 | |
|       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
 | |
|       if( aff ){
 | |
|         sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
 | |
|       }
 | |
|       sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     /* Construct a record from the query result, but instead of
 | |
|     ** saving that record, use it as a key to delete elements from
 | |
|     ** the temporary table iParm.
 | |
|     */
 | |
|     case SRT_Except: {
 | |
|       int addr;
 | |
|       addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
 | |
|       sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
 | |
|       sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3);
 | |
|       sqlite3VdbeAddOp(v, OP_Delete, iParm, 0);
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Store the result as data using a unique key.
 | |
|     */
 | |
|     case SRT_Table:
 | |
|     case SRT_EphemTab: {
 | |
|       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
 | |
|       if( pOrderBy ){
 | |
|         pushOntoSorter(pParse, pOrderBy, p);
 | |
|       }else{
 | |
|         sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
 | |
|         sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
 | |
|         sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
|     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
 | |
|     ** then there should be a single item on the stack.  Write this
 | |
|     ** item into the set table with bogus data.
 | |
|     */
 | |
|     case SRT_Set: {
 | |
|       int addr1 = sqlite3VdbeCurrentAddr(v);
 | |
|       int addr2;
 | |
| 
 | |
|       assert( nColumn==1 );
 | |
|       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3);
 | |
|       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | |
|       addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
 | |
|       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr,(iParm>>16)&0xff);
 | |
|       if( pOrderBy ){
 | |
|         /* At first glance you would think we could optimize out the
 | |
|         ** ORDER BY in this case since the order of entries in the set
 | |
|         ** does not matter.  But there might be a LIMIT clause, in which
 | |
|         ** case the order does matter */
 | |
|         pushOntoSorter(pParse, pOrderBy, p);
 | |
|       }else{
 | |
|         sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
 | |
|         sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
 | |
|       }
 | |
|       sqlite3VdbeJumpHere(v, addr2);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     /* If any row exist in the result set, record that fact and abort.
 | |
|     */
 | |
|     case SRT_Exists: {
 | |
|       sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm);
 | |
|       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
 | |
|       /* The LIMIT clause will terminate the loop for us */
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     /* If this is a scalar select that is part of an expression, then
 | |
|     ** store the results in the appropriate memory cell and break out
 | |
|     ** of the scan loop.
 | |
|     */
 | |
|     case SRT_Mem: {
 | |
|       assert( nColumn==1 );
 | |
|       if( pOrderBy ){
 | |
|         pushOntoSorter(pParse, pOrderBy, p);
 | |
|       }else{
 | |
|         sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
 | |
|         /* The LIMIT clause will jump out of the loop for us */
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
 | |
| 
 | |
|     /* Send the data to the callback function or to a subroutine.  In the
 | |
|     ** case of a subroutine, the subroutine itself is responsible for
 | |
|     ** popping the data from the stack.
 | |
|     */
 | |
|     case SRT_Subroutine:
 | |
|     case SRT_Callback: {
 | |
|       if( pOrderBy ){
 | |
|         sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
 | |
|         pushOntoSorter(pParse, pOrderBy, p);
 | |
|       }else if( eDest==SRT_Subroutine ){
 | |
|         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
 | |
|       }else{
 | |
|         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_TRIGGER)
 | |
|     /* Discard the results.  This is used for SELECT statements inside
 | |
|     ** the body of a TRIGGER.  The purpose of such selects is to call
 | |
|     ** user-defined functions that have side effects.  We do not care
 | |
|     ** about the actual results of the select.
 | |
|     */
 | |
|     default: {
 | |
|       assert( eDest==SRT_Discard );
 | |
|       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   /* Jump to the end of the loop if the LIMIT is reached.
 | |
|   */
 | |
|   if( p->iLimit>=0 && pOrderBy==0 ){
 | |
|     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
 | |
|     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Given an expression list, generate a KeyInfo structure that records
 | |
| ** the collating sequence for each expression in that expression list.
 | |
| **
 | |
| ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
 | |
| ** KeyInfo structure is appropriate for initializing a virtual index to
 | |
| ** implement that clause.  If the ExprList is the result set of a SELECT
 | |
| ** then the KeyInfo structure is appropriate for initializing a virtual
 | |
| ** index to implement a DISTINCT test.
 | |
| **
 | |
| ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
 | |
| ** function is responsible for seeing that this structure is eventually
 | |
| ** freed.  Add the KeyInfo structure to the P3 field of an opcode using
 | |
| ** P3_KEYINFO_HANDOFF is the usual way of dealing with this.
 | |
| */
 | |
| static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
 | |
|   sqlite3 *db = pParse->db;
 | |
|   int nExpr;
 | |
|   KeyInfo *pInfo;
 | |
|   struct ExprList_item *pItem;
 | |
|   int i;
 | |
| 
 | |
|   nExpr = pList->nExpr;
 | |
|   pInfo = sqliteMalloc( sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
 | |
|   if( pInfo ){
 | |
|     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
 | |
|     pInfo->nField = nExpr;
 | |
|     pInfo->enc = ENC(db);
 | |
|     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
 | |
|       CollSeq *pColl;
 | |
|       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
 | |
|       if( !pColl ){
 | |
|         pColl = db->pDfltColl;
 | |
|       }
 | |
|       pInfo->aColl[i] = pColl;
 | |
|       pInfo->aSortOrder[i] = pItem->sortOrder;
 | |
|     }
 | |
|   }
 | |
|   return pInfo;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** If the inner loop was generated using a non-null pOrderBy argument,
 | |
| ** then the results were placed in a sorter.  After the loop is terminated
 | |
| ** we need to run the sorter and output the results.  The following
 | |
| ** routine generates the code needed to do that.
 | |
| */
 | |
| static void generateSortTail(
 | |
|   Parse *pParse,   /* Parsing context */
 | |
|   Select *p,       /* The SELECT statement */
 | |
|   Vdbe *v,         /* Generate code into this VDBE */
 | |
|   int nColumn,     /* Number of columns of data */
 | |
|   int eDest,       /* Write the sorted results here */
 | |
|   int iParm        /* Optional parameter associated with eDest */
 | |
| ){
 | |
|   int brk = sqlite3VdbeMakeLabel(v);
 | |
|   int cont = sqlite3VdbeMakeLabel(v);
 | |
|   int addr;
 | |
|   int iTab;
 | |
|   int pseudoTab = 0;
 | |
|   ExprList *pOrderBy = p->pOrderBy;
 | |
| 
 | |
|   iTab = pOrderBy->iECursor;
 | |
|   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
 | |
|     pseudoTab = pParse->nTab++;
 | |
|     sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn);
 | |
|   }
 | |
|   addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk);
 | |
|   codeOffset(v, p, cont, 0);
 | |
|   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
 | |
|     sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
 | |
|   }
 | |
|   sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1);
 | |
|   switch( eDest ){
 | |
|     case SRT_Table:
 | |
|     case SRT_EphemTab: {
 | |
|       sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
 | |
|       break;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
|     case SRT_Set: {
 | |
|       assert( nColumn==1 );
 | |
|       sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
 | |
|       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
 | |
|       sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
 | |
|       sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
 | |
|       break;
 | |
|     }
 | |
|     case SRT_Mem: {
 | |
|       assert( nColumn==1 );
 | |
|       sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
 | |
|       /* The LIMIT clause will terminate the loop for us */
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|     case SRT_Callback:
 | |
|     case SRT_Subroutine: {
 | |
|       int i;
 | |
|       sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0);
 | |
|       for(i=0; i<nColumn; i++){
 | |
|         sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i);
 | |
|       }
 | |
|       if( eDest==SRT_Callback ){
 | |
|         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
 | |
|       }else{
 | |
|         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       /* Do nothing */
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Jump to the end of the loop when the LIMIT is reached
 | |
|   */
 | |
|   if( p->iLimit>=0 ){
 | |
|     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
 | |
|     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk);
 | |
|   }
 | |
| 
 | |
|   /* The bottom of the loop
 | |
|   */
 | |
|   sqlite3VdbeResolveLabel(v, cont);
 | |
|   sqlite3VdbeAddOp(v, OP_Next, iTab, addr);
 | |
|   sqlite3VdbeResolveLabel(v, brk);
 | |
|   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
 | |
|     sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0);
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a pointer to a string containing the 'declaration type' of the
 | |
| ** expression pExpr. The string may be treated as static by the caller.
 | |
| **
 | |
| ** The declaration type is the exact datatype definition extracted from the
 | |
| ** original CREATE TABLE statement if the expression is a column. The
 | |
| ** declaration type for a ROWID field is INTEGER. Exactly when an expression
 | |
| ** is considered a column can be complex in the presence of subqueries. The
 | |
| ** result-set expression in all of the following SELECT statements is 
 | |
| ** considered a column by this function.
 | |
| **
 | |
| **   SELECT col FROM tbl;
 | |
| **   SELECT (SELECT col FROM tbl;
 | |
| **   SELECT (SELECT col FROM tbl);
 | |
| **   SELECT abc FROM (SELECT col AS abc FROM tbl);
 | |
| ** 
 | |
| ** The declaration type for any expression other than a column is NULL.
 | |
| */
 | |
| static const char *columnType(
 | |
|   NameContext *pNC, 
 | |
|   Expr *pExpr,
 | |
|   const char **pzOriginDb,
 | |
|   const char **pzOriginTab,
 | |
|   const char **pzOriginCol
 | |
| ){
 | |
|   char const *zType = 0;
 | |
|   char const *zOriginDb = 0;
 | |
|   char const *zOriginTab = 0;
 | |
|   char const *zOriginCol = 0;
 | |
|   int j;
 | |
|   if( pExpr==0 || pNC->pSrcList==0 ) return 0;
 | |
| 
 | |
|   switch( pExpr->op ){
 | |
|     case TK_AGG_COLUMN:
 | |
|     case TK_COLUMN: {
 | |
|       /* The expression is a column. Locate the table the column is being
 | |
|       ** extracted from in NameContext.pSrcList. This table may be real
 | |
|       ** database table or a subquery.
 | |
|       */
 | |
|       Table *pTab = 0;            /* Table structure column is extracted from */
 | |
|       Select *pS = 0;             /* Select the column is extracted from */
 | |
|       int iCol = pExpr->iColumn;  /* Index of column in pTab */
 | |
|       while( pNC && !pTab ){
 | |
|         SrcList *pTabList = pNC->pSrcList;
 | |
|         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
 | |
|         if( j<pTabList->nSrc ){
 | |
|           pTab = pTabList->a[j].pTab;
 | |
|           pS = pTabList->a[j].pSelect;
 | |
|         }else{
 | |
|           pNC = pNC->pNext;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if( pTab==0 ){
 | |
|         /* FIX ME:
 | |
|         ** This can occurs if you have something like "SELECT new.x;" inside
 | |
|         ** a trigger.  In other words, if you reference the special "new"
 | |
|         ** table in the result set of a select.  We do not have a good way
 | |
|         ** to find the actual table type, so call it "TEXT".  This is really
 | |
|         ** something of a bug, but I do not know how to fix it.
 | |
|         **
 | |
|         ** This code does not produce the correct answer - it just prevents
 | |
|         ** a segfault.  See ticket #1229.
 | |
|         */
 | |
|         zType = "TEXT";
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       assert( pTab );
 | |
|       if( pS ){
 | |
|         /* The "table" is actually a sub-select or a view in the FROM clause
 | |
|         ** of the SELECT statement. Return the declaration type and origin
 | |
|         ** data for the result-set column of the sub-select.
 | |
|         */
 | |
|         if( iCol>=0 && iCol<pS->pEList->nExpr ){
 | |
|           /* If iCol is less than zero, then the expression requests the
 | |
|           ** rowid of the sub-select or view. This expression is legal (see 
 | |
|           ** test case misc2.2.2) - it always evaluates to NULL.
 | |
|           */
 | |
|           NameContext sNC;
 | |
|           Expr *p = pS->pEList->a[iCol].pExpr;
 | |
|           sNC.pSrcList = pS->pSrc;
 | |
|           sNC.pNext = 0;
 | |
|           sNC.pParse = pNC->pParse;
 | |
|           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
 | |
|         }
 | |
|       }else if( pTab->pSchema ){
 | |
|         /* A real table */
 | |
|         assert( !pS );
 | |
|         if( iCol<0 ) iCol = pTab->iPKey;
 | |
|         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
 | |
|         if( iCol<0 ){
 | |
|           zType = "INTEGER";
 | |
|           zOriginCol = "rowid";
 | |
|         }else{
 | |
|           zType = pTab->aCol[iCol].zType;
 | |
|           zOriginCol = pTab->aCol[iCol].zName;
 | |
|         }
 | |
|         zOriginTab = pTab->zName;
 | |
|         if( pNC->pParse ){
 | |
|           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
 | |
|           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
|     case TK_SELECT: {
 | |
|       /* The expression is a sub-select. Return the declaration type and
 | |
|       ** origin info for the single column in the result set of the SELECT
 | |
|       ** statement.
 | |
|       */
 | |
|       NameContext sNC;
 | |
|       Select *pS = pExpr->pSelect;
 | |
|       Expr *p = pS->pEList->a[0].pExpr;
 | |
|       sNC.pSrcList = pS->pSrc;
 | |
|       sNC.pNext = pNC;
 | |
|       sNC.pParse = pNC->pParse;
 | |
|       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
|   
 | |
|   if( pzOriginDb ){
 | |
|     assert( pzOriginTab && pzOriginCol );
 | |
|     *pzOriginDb = zOriginDb;
 | |
|     *pzOriginTab = zOriginTab;
 | |
|     *pzOriginCol = zOriginCol;
 | |
|   }
 | |
|   return zType;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that will tell the VDBE the declaration types of columns
 | |
| ** in the result set.
 | |
| */
 | |
| static void generateColumnTypes(
 | |
|   Parse *pParse,      /* Parser context */
 | |
|   SrcList *pTabList,  /* List of tables */
 | |
|   ExprList *pEList    /* Expressions defining the result set */
 | |
| ){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int i;
 | |
|   NameContext sNC;
 | |
|   sNC.pSrcList = pTabList;
 | |
|   sNC.pParse = pParse;
 | |
|   for(i=0; i<pEList->nExpr; i++){
 | |
|     Expr *p = pEList->a[i].pExpr;
 | |
|     const char *zOrigDb = 0;
 | |
|     const char *zOrigTab = 0;
 | |
|     const char *zOrigCol = 0;
 | |
|     const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
 | |
| 
 | |
|     /* The vdbe must make it's own copy of the column-type and other 
 | |
|     ** column specific strings, in case the schema is reset before this
 | |
|     ** virtual machine is deleted.
 | |
|     */
 | |
|     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT);
 | |
|     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT);
 | |
|     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT);
 | |
|     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that will tell the VDBE the names of columns
 | |
| ** in the result set.  This information is used to provide the
 | |
| ** azCol[] values in the callback.
 | |
| */
 | |
| static void generateColumnNames(
 | |
|   Parse *pParse,      /* Parser context */
 | |
|   SrcList *pTabList,  /* List of tables */
 | |
|   ExprList *pEList    /* Expressions defining the result set */
 | |
| ){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int i, j;
 | |
|   sqlite3 *db = pParse->db;
 | |
|   int fullNames, shortNames;
 | |
| 
 | |
| #ifndef SQLITE_OMIT_EXPLAIN
 | |
|   /* If this is an EXPLAIN, skip this step */
 | |
|   if( pParse->explain ){
 | |
|     return;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   assert( v!=0 );
 | |
|   if( pParse->colNamesSet || v==0 || sqlite3MallocFailed() ) return;
 | |
|   pParse->colNamesSet = 1;
 | |
|   fullNames = (db->flags & SQLITE_FullColNames)!=0;
 | |
|   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
 | |
|   sqlite3VdbeSetNumCols(v, pEList->nExpr);
 | |
|   for(i=0; i<pEList->nExpr; i++){
 | |
|     Expr *p;
 | |
|     p = pEList->a[i].pExpr;
 | |
|     if( p==0 ) continue;
 | |
|     if( pEList->a[i].zName ){
 | |
|       char *zName = pEList->a[i].zName;
 | |
|       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
 | |
|       continue;
 | |
|     }
 | |
|     if( p->op==TK_COLUMN && pTabList ){
 | |
|       Table *pTab;
 | |
|       char *zCol;
 | |
|       int iCol = p->iColumn;
 | |
|       for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
 | |
|       assert( j<pTabList->nSrc );
 | |
|       pTab = pTabList->a[j].pTab;
 | |
|       if( iCol<0 ) iCol = pTab->iPKey;
 | |
|       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
 | |
|       if( iCol<0 ){
 | |
|         zCol = "rowid";
 | |
|       }else{
 | |
|         zCol = pTab->aCol[iCol].zName;
 | |
|       }
 | |
|       if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
 | |
|         sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
 | |
|       }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
 | |
|         char *zName = 0;
 | |
|         char *zTab;
 | |
|  
 | |
|         zTab = pTabList->a[j].zAlias;
 | |
|         if( fullNames || zTab==0 ) zTab = pTab->zName;
 | |
|         sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
 | |
|         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC);
 | |
|       }else{
 | |
|         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
 | |
|       }
 | |
|     }else if( p->span.z && p->span.z[0] ){
 | |
|       sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
 | |
|       /* sqlite3VdbeCompressSpace(v, addr); */
 | |
|     }else{
 | |
|       char zName[30];
 | |
|       assert( p->op!=TK_COLUMN || pTabList==0 );
 | |
|       sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1);
 | |
|       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0);
 | |
|     }
 | |
|   }
 | |
|   generateColumnTypes(pParse, pTabList, pEList);
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT
 | |
| /*
 | |
| ** Name of the connection operator, used for error messages.
 | |
| */
 | |
| static const char *selectOpName(int id){
 | |
|   char *z;
 | |
|   switch( id ){
 | |
|     case TK_ALL:       z = "UNION ALL";   break;
 | |
|     case TK_INTERSECT: z = "INTERSECT";   break;
 | |
|     case TK_EXCEPT:    z = "EXCEPT";      break;
 | |
|     default:           z = "UNION";       break;
 | |
|   }
 | |
|   return z;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_COMPOUND_SELECT */
 | |
| 
 | |
| /*
 | |
| ** Forward declaration
 | |
| */
 | |
| static int prepSelectStmt(Parse*, Select*);
 | |
| 
 | |
| /*
 | |
| ** Given a SELECT statement, generate a Table structure that describes
 | |
| ** the result set of that SELECT.
 | |
| */
 | |
| Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
 | |
|   Table *pTab;
 | |
|   int i, j;
 | |
|   ExprList *pEList;
 | |
|   Column *aCol, *pCol;
 | |
| 
 | |
|   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
 | |
|   if( prepSelectStmt(pParse, pSelect) ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( sqlite3SelectResolve(pParse, pSelect, 0) ){
 | |
|     return 0;
 | |
|   }
 | |
|   pTab = sqliteMalloc( sizeof(Table) );
 | |
|   if( pTab==0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   pTab->nRef = 1;
 | |
|   pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0;
 | |
|   pEList = pSelect->pEList;
 | |
|   pTab->nCol = pEList->nExpr;
 | |
|   assert( pTab->nCol>0 );
 | |
|   pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol );
 | |
|   for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
 | |
|     Expr *p, *pR;
 | |
|     char *zType;
 | |
|     char *zName;
 | |
|     int nName;
 | |
|     CollSeq *pColl;
 | |
|     int cnt;
 | |
|     NameContext sNC;
 | |
|     
 | |
|     /* Get an appropriate name for the column
 | |
|     */
 | |
|     p = pEList->a[i].pExpr;
 | |
|     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
 | |
|     if( (zName = pEList->a[i].zName)!=0 ){
 | |
|       /* If the column contains an "AS <name>" phrase, use <name> as the name */
 | |
|       zName = sqliteStrDup(zName);
 | |
|     }else if( p->op==TK_DOT 
 | |
|               && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
 | |
|       /* For columns of the from A.B use B as the name */
 | |
|       zName = sqlite3MPrintf("%T", &pR->token);
 | |
|     }else if( p->span.z && p->span.z[0] ){
 | |
|       /* Use the original text of the column expression as its name */
 | |
|       zName = sqlite3MPrintf("%T", &p->span);
 | |
|     }else{
 | |
|       /* If all else fails, make up a name */
 | |
|       zName = sqlite3MPrintf("column%d", i+1);
 | |
|     }
 | |
|     sqlite3Dequote(zName);
 | |
|     if( sqlite3MallocFailed() ){
 | |
|       sqliteFree(zName);
 | |
|       sqlite3DeleteTable(pTab);
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     /* Make sure the column name is unique.  If the name is not unique,
 | |
|     ** append a integer to the name so that it becomes unique.
 | |
|     */
 | |
|     nName = strlen(zName);
 | |
|     for(j=cnt=0; j<i; j++){
 | |
|       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
 | |
|         zName[nName] = 0;
 | |
|         zName = sqlite3MPrintf("%z:%d", zName, ++cnt);
 | |
|         j = -1;
 | |
|         if( zName==0 ) break;
 | |
|       }
 | |
|     }
 | |
|     pCol->zName = zName;
 | |
| 
 | |
|     /* Get the typename, type affinity, and collating sequence for the
 | |
|     ** column.
 | |
|     */
 | |
|     memset(&sNC, 0, sizeof(sNC));
 | |
|     sNC.pSrcList = pSelect->pSrc;
 | |
|     zType = sqliteStrDup(columnType(&sNC, p, 0, 0, 0));
 | |
|     pCol->zType = zType;
 | |
|     pCol->affinity = sqlite3ExprAffinity(p);
 | |
|     pColl = sqlite3ExprCollSeq(pParse, p);
 | |
|     if( pColl ){
 | |
|       pCol->zColl = sqliteStrDup(pColl->zName);
 | |
|     }
 | |
|   }
 | |
|   pTab->iPKey = -1;
 | |
|   return pTab;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Prepare a SELECT statement for processing by doing the following
 | |
| ** things:
 | |
| **
 | |
| **    (1)  Make sure VDBE cursor numbers have been assigned to every
 | |
| **         element of the FROM clause.
 | |
| **
 | |
| **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that 
 | |
| **         defines FROM clause.  When views appear in the FROM clause,
 | |
| **         fill pTabList->a[].pSelect with a copy of the SELECT statement
 | |
| **         that implements the view.  A copy is made of the view's SELECT
 | |
| **         statement so that we can freely modify or delete that statement
 | |
| **         without worrying about messing up the presistent representation
 | |
| **         of the view.
 | |
| **
 | |
| **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
 | |
| **         on joins and the ON and USING clause of joins.
 | |
| **
 | |
| **    (4)  Scan the list of columns in the result set (pEList) looking
 | |
| **         for instances of the "*" operator or the TABLE.* operator.
 | |
| **         If found, expand each "*" to be every column in every table
 | |
| **         and TABLE.* to be every column in TABLE.
 | |
| **
 | |
| ** Return 0 on success.  If there are problems, leave an error message
 | |
| ** in pParse and return non-zero.
 | |
| */
 | |
| static int prepSelectStmt(Parse *pParse, Select *p){
 | |
|   int i, j, k, rc;
 | |
|   SrcList *pTabList;
 | |
|   ExprList *pEList;
 | |
|   struct SrcList_item *pFrom;
 | |
| 
 | |
|   if( p==0 || p->pSrc==0 || sqlite3MallocFailed() ){
 | |
|     return 1;
 | |
|   }
 | |
|   pTabList = p->pSrc;
 | |
|   pEList = p->pEList;
 | |
| 
 | |
|   /* Make sure cursor numbers have been assigned to all entries in
 | |
|   ** the FROM clause of the SELECT statement.
 | |
|   */
 | |
|   sqlite3SrcListAssignCursors(pParse, p->pSrc);
 | |
| 
 | |
|   /* Look up every table named in the FROM clause of the select.  If
 | |
|   ** an entry of the FROM clause is a subquery instead of a table or view,
 | |
|   ** then create a transient table structure to describe the subquery.
 | |
|   */
 | |
|   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
 | |
|     Table *pTab;
 | |
|     if( pFrom->pTab!=0 ){
 | |
|       /* This statement has already been prepared.  There is no need
 | |
|       ** to go further. */
 | |
|       assert( i==0 );
 | |
|       return 0;
 | |
|     }
 | |
|     if( pFrom->zName==0 ){
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
|       /* A sub-query in the FROM clause of a SELECT */
 | |
|       assert( pFrom->pSelect!=0 );
 | |
|       if( pFrom->zAlias==0 ){
 | |
|         pFrom->zAlias =
 | |
|           sqlite3MPrintf("sqlite_subquery_%p_", (void*)pFrom->pSelect);
 | |
|       }
 | |
|       assert( pFrom->pTab==0 );
 | |
|       pFrom->pTab = pTab = 
 | |
|         sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
 | |
|       if( pTab==0 ){
 | |
|         return 1;
 | |
|       }
 | |
|       /* The isEphem flag indicates that the Table structure has been
 | |
|       ** dynamically allocated and may be freed at any time.  In other words,
 | |
|       ** pTab is not pointing to a persistent table structure that defines
 | |
|       ** part of the schema. */
 | |
|       pTab->isEphem = 1;
 | |
| #endif
 | |
|     }else{
 | |
|       /* An ordinary table or view name in the FROM clause */
 | |
|       assert( pFrom->pTab==0 );
 | |
|       pFrom->pTab = pTab = 
 | |
|         sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase);
 | |
|       if( pTab==0 ){
 | |
|         return 1;
 | |
|       }
 | |
|       pTab->nRef++;
 | |
| #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
 | |
|       if( pTab->pSelect || IsVirtual(pTab) ){
 | |
|         /* We reach here if the named table is a really a view */
 | |
|         if( sqlite3ViewGetColumnNames(pParse, pTab) ){
 | |
|           return 1;
 | |
|         }
 | |
|         /* If pFrom->pSelect!=0 it means we are dealing with a
 | |
|         ** view within a view.  The SELECT structure has already been
 | |
|         ** copied by the outer view so we can skip the copy step here
 | |
|         ** in the inner view.
 | |
|         */
 | |
|         if( pFrom->pSelect==0 ){
 | |
|           pFrom->pSelect = sqlite3SelectDup(pTab->pSelect);
 | |
|         }
 | |
|       }
 | |
| #endif
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Process NATURAL keywords, and ON and USING clauses of joins.
 | |
|   */
 | |
|   if( sqliteProcessJoin(pParse, p) ) return 1;
 | |
| 
 | |
|   /* For every "*" that occurs in the column list, insert the names of
 | |
|   ** all columns in all tables.  And for every TABLE.* insert the names
 | |
|   ** of all columns in TABLE.  The parser inserted a special expression
 | |
|   ** with the TK_ALL operator for each "*" that it found in the column list.
 | |
|   ** The following code just has to locate the TK_ALL expressions and expand
 | |
|   ** each one to the list of all columns in all tables.
 | |
|   **
 | |
|   ** The first loop just checks to see if there are any "*" operators
 | |
|   ** that need expanding.
 | |
|   */
 | |
|   for(k=0; k<pEList->nExpr; k++){
 | |
|     Expr *pE = pEList->a[k].pExpr;
 | |
|     if( pE->op==TK_ALL ) break;
 | |
|     if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
 | |
|          && pE->pLeft && pE->pLeft->op==TK_ID ) break;
 | |
|   }
 | |
|   rc = 0;
 | |
|   if( k<pEList->nExpr ){
 | |
|     /*
 | |
|     ** If we get here it means the result set contains one or more "*"
 | |
|     ** operators that need to be expanded.  Loop through each expression
 | |
|     ** in the result set and expand them one by one.
 | |
|     */
 | |
|     struct ExprList_item *a = pEList->a;
 | |
|     ExprList *pNew = 0;
 | |
|     int flags = pParse->db->flags;
 | |
|     int longNames = (flags & SQLITE_FullColNames)!=0 &&
 | |
|                       (flags & SQLITE_ShortColNames)==0;
 | |
| 
 | |
|     for(k=0; k<pEList->nExpr; k++){
 | |
|       Expr *pE = a[k].pExpr;
 | |
|       if( pE->op!=TK_ALL &&
 | |
|            (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
 | |
|         /* This particular expression does not need to be expanded.
 | |
|         */
 | |
|         pNew = sqlite3ExprListAppend(pNew, a[k].pExpr, 0);
 | |
|         if( pNew ){
 | |
|           pNew->a[pNew->nExpr-1].zName = a[k].zName;
 | |
|         }else{
 | |
|           rc = 1;
 | |
|         }
 | |
|         a[k].pExpr = 0;
 | |
|         a[k].zName = 0;
 | |
|       }else{
 | |
|         /* This expression is a "*" or a "TABLE.*" and needs to be
 | |
|         ** expanded. */
 | |
|         int tableSeen = 0;      /* Set to 1 when TABLE matches */
 | |
|         char *zTName;            /* text of name of TABLE */
 | |
|         if( pE->op==TK_DOT && pE->pLeft ){
 | |
|           zTName = sqlite3NameFromToken(&pE->pLeft->token);
 | |
|         }else{
 | |
|           zTName = 0;
 | |
|         }
 | |
|         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
 | |
|           Table *pTab = pFrom->pTab;
 | |
|           char *zTabName = pFrom->zAlias;
 | |
|           if( zTabName==0 || zTabName[0]==0 ){ 
 | |
|             zTabName = pTab->zName;
 | |
|           }
 | |
|           if( zTName && (zTabName==0 || zTabName[0]==0 || 
 | |
|                  sqlite3StrICmp(zTName, zTabName)!=0) ){
 | |
|             continue;
 | |
|           }
 | |
|           tableSeen = 1;
 | |
|           for(j=0; j<pTab->nCol; j++){
 | |
|             Expr *pExpr, *pRight;
 | |
|             char *zName = pTab->aCol[j].zName;
 | |
| 
 | |
|             /* If a column is marked as 'hidden' (currently only possible
 | |
|             ** for virtual tables), do not include it in the expanded
 | |
|             ** result-set list.
 | |
|             */
 | |
|             if( IsHiddenColumn(&pTab->aCol[j]) ){
 | |
|               assert(IsVirtual(pTab));
 | |
|               continue;
 | |
|             }
 | |
| 
 | |
|             if( i>0 ){
 | |
|               struct SrcList_item *pLeft = &pTabList->a[i-1];
 | |
|               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
 | |
|                         columnIndex(pLeft->pTab, zName)>=0 ){
 | |
|                 /* In a NATURAL join, omit the join columns from the 
 | |
|                 ** table on the right */
 | |
|                 continue;
 | |
|               }
 | |
|               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
 | |
|                 /* In a join with a USING clause, omit columns in the
 | |
|                 ** using clause from the table on the right. */
 | |
|                 continue;
 | |
|               }
 | |
|             }
 | |
|             pRight = sqlite3Expr(TK_ID, 0, 0, 0);
 | |
|             if( pRight==0 ) break;
 | |
|             setQuotedToken(&pRight->token, zName);
 | |
|             if( zTabName && (longNames || pTabList->nSrc>1) ){
 | |
|               Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, 0);
 | |
|               pExpr = sqlite3Expr(TK_DOT, pLeft, pRight, 0);
 | |
|               if( pExpr==0 ) break;
 | |
|               setQuotedToken(&pLeft->token, zTabName);
 | |
|               setToken(&pExpr->span, sqlite3MPrintf("%s.%s", zTabName, zName));
 | |
|               pExpr->span.dyn = 1;
 | |
|               pExpr->token.z = 0;
 | |
|               pExpr->token.n = 0;
 | |
|               pExpr->token.dyn = 0;
 | |
|             }else{
 | |
|               pExpr = pRight;
 | |
|               pExpr->span = pExpr->token;
 | |
|               pExpr->span.dyn = 0;
 | |
|             }
 | |
|             if( longNames ){
 | |
|               pNew = sqlite3ExprListAppend(pNew, pExpr, &pExpr->span);
 | |
|             }else{
 | |
|               pNew = sqlite3ExprListAppend(pNew, pExpr, &pRight->token);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         if( !tableSeen ){
 | |
|           if( zTName ){
 | |
|             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
 | |
|           }else{
 | |
|             sqlite3ErrorMsg(pParse, "no tables specified");
 | |
|           }
 | |
|           rc = 1;
 | |
|         }
 | |
|         sqliteFree(zTName);
 | |
|       }
 | |
|     }
 | |
|     sqlite3ExprListDelete(pEList);
 | |
|     p->pEList = pNew;
 | |
|   }
 | |
|   if( p->pEList && p->pEList->nExpr>SQLITE_MAX_COLUMN ){
 | |
|     sqlite3ErrorMsg(pParse, "too many columns in result set");
 | |
|     rc = SQLITE_ERROR;
 | |
|   }
 | |
|   if( sqlite3MallocFailed() ){
 | |
|     rc = SQLITE_NOMEM;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT
 | |
| /*
 | |
| ** This routine associates entries in an ORDER BY expression list with
 | |
| ** columns in a result.  For each ORDER BY expression, the opcode of
 | |
| ** the top-level node is changed to TK_COLUMN and the iColumn value of
 | |
| ** the top-level node is filled in with column number and the iTable
 | |
| ** value of the top-level node is filled with iTable parameter.
 | |
| **
 | |
| ** If there are prior SELECT clauses, they are processed first.  A match
 | |
| ** in an earlier SELECT takes precedence over a later SELECT.
 | |
| **
 | |
| ** Any entry that does not match is flagged as an error.  The number
 | |
| ** of errors is returned.
 | |
| */
 | |
| static int matchOrderbyToColumn(
 | |
|   Parse *pParse,          /* A place to leave error messages */
 | |
|   Select *pSelect,        /* Match to result columns of this SELECT */
 | |
|   ExprList *pOrderBy,     /* The ORDER BY values to match against columns */
 | |
|   int iTable,             /* Insert this value in iTable */
 | |
|   int mustComplete        /* If TRUE all ORDER BYs must match */
 | |
| ){
 | |
|   int nErr = 0;
 | |
|   int i, j;
 | |
|   ExprList *pEList;
 | |
| 
 | |
|   if( pSelect==0 || pOrderBy==0 ) return 1;
 | |
|   if( mustComplete ){
 | |
|     for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
 | |
|   }
 | |
|   if( prepSelectStmt(pParse, pSelect) ){
 | |
|     return 1;
 | |
|   }
 | |
|   if( pSelect->pPrior ){
 | |
|     if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
|   pEList = pSelect->pEList;
 | |
|   for(i=0; i<pOrderBy->nExpr; i++){
 | |
|     struct ExprList_item *pItem;
 | |
|     Expr *pE = pOrderBy->a[i].pExpr;
 | |
|     int iCol = -1;
 | |
|     char *zLabel;
 | |
| 
 | |
|     if( pOrderBy->a[i].done ) continue;
 | |
|     if( sqlite3ExprIsInteger(pE, &iCol) ){
 | |
|       if( iCol<=0 || iCol>pEList->nExpr ){
 | |
|         sqlite3ErrorMsg(pParse,
 | |
|           "ORDER BY position %d should be between 1 and %d",
 | |
|           iCol, pEList->nExpr);
 | |
|         nErr++;
 | |
|         break;
 | |
|       }
 | |
|       if( !mustComplete ) continue;
 | |
|       iCol--;
 | |
|     }
 | |
|     if( iCol<0 && (zLabel = sqlite3NameFromToken(&pE->token))!=0 ){
 | |
|       for(j=0, pItem=pEList->a; j<pEList->nExpr; j++, pItem++){
 | |
|         char *zName;
 | |
|         int isMatch;
 | |
|         if( pItem->zName ){
 | |
|           zName = sqlite3StrDup(pItem->zName);
 | |
|         }else{
 | |
|           zName = sqlite3NameFromToken(&pItem->pExpr->token);
 | |
|         }
 | |
|         isMatch = zName && sqlite3StrICmp(zName, zLabel)==0;
 | |
|         sqliteFree(zName);
 | |
|         if( isMatch ){
 | |
|           iCol = j;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       sqliteFree(zLabel);
 | |
|     }
 | |
|     if( iCol>=0 ){
 | |
|       pE->op = TK_COLUMN;
 | |
|       pE->iColumn = iCol;
 | |
|       pE->iTable = iTable;
 | |
|       pE->iAgg = -1;
 | |
|       pOrderBy->a[i].done = 1;
 | |
|     }else if( mustComplete ){
 | |
|       sqlite3ErrorMsg(pParse,
 | |
|         "ORDER BY term number %d does not match any result column", i+1);
 | |
|       nErr++;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return nErr;  
 | |
| }
 | |
| #endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */
 | |
| 
 | |
| /*
 | |
| ** Get a VDBE for the given parser context.  Create a new one if necessary.
 | |
| ** If an error occurs, return NULL and leave a message in pParse.
 | |
| */
 | |
| Vdbe *sqlite3GetVdbe(Parse *pParse){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   if( v==0 ){
 | |
|     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
 | |
|   }
 | |
|   return v;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Compute the iLimit and iOffset fields of the SELECT based on the
 | |
| ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
 | |
| ** that appear in the original SQL statement after the LIMIT and OFFSET
 | |
| ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset 
 | |
| ** are the integer memory register numbers for counters used to compute 
 | |
| ** the limit and offset.  If there is no limit and/or offset, then 
 | |
| ** iLimit and iOffset are negative.
 | |
| **
 | |
| ** This routine changes the values of iLimit and iOffset only if
 | |
| ** a limit or offset is defined by pLimit and pOffset.  iLimit and
 | |
| ** iOffset should have been preset to appropriate default values
 | |
| ** (usually but not always -1) prior to calling this routine.
 | |
| ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
 | |
| ** redefined.  The UNION ALL operator uses this property to force
 | |
| ** the reuse of the same limit and offset registers across multiple
 | |
| ** SELECT statements.
 | |
| */
 | |
| static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
 | |
|   Vdbe *v = 0;
 | |
|   int iLimit = 0;
 | |
|   int iOffset;
 | |
|   int addr1, addr2;
 | |
| 
 | |
|   /* 
 | |
|   ** "LIMIT -1" always shows all rows.  There is some
 | |
|   ** contraversy about what the correct behavior should be.
 | |
|   ** The current implementation interprets "LIMIT 0" to mean
 | |
|   ** no rows.
 | |
|   */
 | |
|   if( p->pLimit ){
 | |
|     p->iLimit = iLimit = pParse->nMem;
 | |
|     pParse->nMem += 2;
 | |
|     v = sqlite3GetVdbe(pParse);
 | |
|     if( v==0 ) return;
 | |
|     sqlite3ExprCode(pParse, p->pLimit);
 | |
|     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 1);
 | |
|     VdbeComment((v, "# LIMIT counter"));
 | |
|     sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak);
 | |
|     sqlite3VdbeAddOp(v, OP_MemLoad, iLimit, 0);
 | |
|   }
 | |
|   if( p->pOffset ){
 | |
|     p->iOffset = iOffset = pParse->nMem++;
 | |
|     v = sqlite3GetVdbe(pParse);
 | |
|     if( v==0 ) return;
 | |
|     sqlite3ExprCode(pParse, p->pOffset);
 | |
|     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0);
 | |
|     VdbeComment((v, "# OFFSET counter"));
 | |
|     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
 | |
|     sqlite3VdbeJumpHere(v, addr1);
 | |
|     if( p->pLimit ){
 | |
|       sqlite3VdbeAddOp(v, OP_Add, 0, 0);
 | |
|     }
 | |
|   }
 | |
|   if( p->pLimit ){
 | |
|     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1);
 | |
|     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
 | |
|     sqlite3VdbeJumpHere(v, addr1);
 | |
|     sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1);
 | |
|     VdbeComment((v, "# LIMIT+OFFSET"));
 | |
|     sqlite3VdbeJumpHere(v, addr2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate a virtual index to use for sorting.
 | |
| */
 | |
| static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
 | |
|   if( pOrderBy ){
 | |
|     int addr;
 | |
|     assert( pOrderBy->iECursor==0 );
 | |
|     pOrderBy->iECursor = pParse->nTab++;
 | |
|     addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral,
 | |
|                             pOrderBy->iECursor, pOrderBy->nExpr+1);
 | |
|     assert( p->addrOpenEphm[2] == -1 );
 | |
|     p->addrOpenEphm[2] = addr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT
 | |
| /*
 | |
| ** Return the appropriate collating sequence for the iCol-th column of
 | |
| ** the result set for the compound-select statement "p".  Return NULL if
 | |
| ** the column has no default collating sequence.
 | |
| **
 | |
| ** The collating sequence for the compound select is taken from the
 | |
| ** left-most term of the select that has a collating sequence.
 | |
| */
 | |
| static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
 | |
|   CollSeq *pRet;
 | |
|   if( p->pPrior ){
 | |
|     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
 | |
|   }else{
 | |
|     pRet = 0;
 | |
|   }
 | |
|   if( pRet==0 ){
 | |
|     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
 | |
|   }
 | |
|   return pRet;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_COMPOUND_SELECT */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT
 | |
| /*
 | |
| ** This routine is called to process a query that is really the union
 | |
| ** or intersection of two or more separate queries.
 | |
| **
 | |
| ** "p" points to the right-most of the two queries.  the query on the
 | |
| ** left is p->pPrior.  The left query could also be a compound query
 | |
| ** in which case this routine will be called recursively. 
 | |
| **
 | |
| ** The results of the total query are to be written into a destination
 | |
| ** of type eDest with parameter iParm.
 | |
| **
 | |
| ** Example 1:  Consider a three-way compound SQL statement.
 | |
| **
 | |
| **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
 | |
| **
 | |
| ** This statement is parsed up as follows:
 | |
| **
 | |
| **     SELECT c FROM t3
 | |
| **      |
 | |
| **      `----->  SELECT b FROM t2
 | |
| **                |
 | |
| **                `------>  SELECT a FROM t1
 | |
| **
 | |
| ** The arrows in the diagram above represent the Select.pPrior pointer.
 | |
| ** So if this routine is called with p equal to the t3 query, then
 | |
| ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
 | |
| **
 | |
| ** Notice that because of the way SQLite parses compound SELECTs, the
 | |
| ** individual selects always group from left to right.
 | |
| */
 | |
| static int multiSelect(
 | |
|   Parse *pParse,        /* Parsing context */
 | |
|   Select *p,            /* The right-most of SELECTs to be coded */
 | |
|   int eDest,            /* \___  Store query results as specified */
 | |
|   int iParm,            /* /     by these two parameters.         */
 | |
|   char *aff             /* If eDest is SRT_Union, the affinity string */
 | |
| ){
 | |
|   int rc = SQLITE_OK;   /* Success code from a subroutine */
 | |
|   Select *pPrior;       /* Another SELECT immediately to our left */
 | |
|   Vdbe *v;              /* Generate code to this VDBE */
 | |
|   int nCol;             /* Number of columns in the result set */
 | |
|   ExprList *pOrderBy;   /* The ORDER BY clause on p */
 | |
|   int aSetP2[2];        /* Set P2 value of these op to number of columns */
 | |
|   int nSetP2 = 0;       /* Number of slots in aSetP2[] used */
 | |
| 
 | |
|   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
 | |
|   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
 | |
|   */
 | |
|   if( p==0 || p->pPrior==0 ){
 | |
|     rc = 1;
 | |
|     goto multi_select_end;
 | |
|   }
 | |
|   pPrior = p->pPrior;
 | |
|   assert( pPrior->pRightmost!=pPrior );
 | |
|   assert( pPrior->pRightmost==p->pRightmost );
 | |
|   if( pPrior->pOrderBy ){
 | |
|     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
 | |
|       selectOpName(p->op));
 | |
|     rc = 1;
 | |
|     goto multi_select_end;
 | |
|   }
 | |
|   if( pPrior->pLimit ){
 | |
|     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
 | |
|       selectOpName(p->op));
 | |
|     rc = 1;
 | |
|     goto multi_select_end;
 | |
|   }
 | |
| 
 | |
|   /* Make sure we have a valid query engine.  If not, create a new one.
 | |
|   */
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v==0 ){
 | |
|     rc = 1;
 | |
|     goto multi_select_end;
 | |
|   }
 | |
| 
 | |
|   /* Create the destination temporary table if necessary
 | |
|   */
 | |
|   if( eDest==SRT_EphemTab ){
 | |
|     assert( p->pEList );
 | |
|     assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
 | |
|     aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0);
 | |
|     eDest = SRT_Table;
 | |
|   }
 | |
| 
 | |
|   /* Generate code for the left and right SELECT statements.
 | |
|   */
 | |
|   pOrderBy = p->pOrderBy;
 | |
|   switch( p->op ){
 | |
|     case TK_ALL: {
 | |
|       if( pOrderBy==0 ){
 | |
|         int addr = 0;
 | |
|         assert( !pPrior->pLimit );
 | |
|         pPrior->pLimit = p->pLimit;
 | |
|         pPrior->pOffset = p->pOffset;
 | |
|         rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff);
 | |
|         p->pLimit = 0;
 | |
|         p->pOffset = 0;
 | |
|         if( rc ){
 | |
|           goto multi_select_end;
 | |
|         }
 | |
|         p->pPrior = 0;
 | |
|         p->iLimit = pPrior->iLimit;
 | |
|         p->iOffset = pPrior->iOffset;
 | |
|         if( p->iLimit>=0 ){
 | |
|           addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0);
 | |
|           VdbeComment((v, "# Jump ahead if LIMIT reached"));
 | |
|         }
 | |
|         rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff);
 | |
|         p->pPrior = pPrior;
 | |
|         if( rc ){
 | |
|           goto multi_select_end;
 | |
|         }
 | |
|         if( addr ){
 | |
|           sqlite3VdbeJumpHere(v, addr);
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       /* For UNION ALL ... ORDER BY fall through to the next case */
 | |
|     }
 | |
|     case TK_EXCEPT:
 | |
|     case TK_UNION: {
 | |
|       int unionTab;    /* Cursor number of the temporary table holding result */
 | |
|       int op = 0;      /* One of the SRT_ operations to apply to self */
 | |
|       int priorOp;     /* The SRT_ operation to apply to prior selects */
 | |
|       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
 | |
|       int addr;
 | |
| 
 | |
|       priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
 | |
|       if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){
 | |
|         /* We can reuse a temporary table generated by a SELECT to our
 | |
|         ** right.
 | |
|         */
 | |
|         unionTab = iParm;
 | |
|       }else{
 | |
|         /* We will need to create our own temporary table to hold the
 | |
|         ** intermediate results.
 | |
|         */
 | |
|         unionTab = pParse->nTab++;
 | |
|         if( pOrderBy && matchOrderbyToColumn(pParse, p, pOrderBy, unionTab,1) ){
 | |
|           rc = 1;
 | |
|           goto multi_select_end;
 | |
|         }
 | |
|         addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0);
 | |
|         if( priorOp==SRT_Table ){
 | |
|           assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
 | |
|           aSetP2[nSetP2++] = addr;
 | |
|         }else{
 | |
|           assert( p->addrOpenEphm[0] == -1 );
 | |
|           p->addrOpenEphm[0] = addr;
 | |
|           p->pRightmost->usesEphm = 1;
 | |
|         }
 | |
|         createSortingIndex(pParse, p, pOrderBy);
 | |
|         assert( p->pEList );
 | |
|       }
 | |
| 
 | |
|       /* Code the SELECT statements to our left
 | |
|       */
 | |
|       assert( !pPrior->pOrderBy );
 | |
|       rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff);
 | |
|       if( rc ){
 | |
|         goto multi_select_end;
 | |
|       }
 | |
| 
 | |
|       /* Code the current SELECT statement
 | |
|       */
 | |
|       switch( p->op ){
 | |
|          case TK_EXCEPT:  op = SRT_Except;   break;
 | |
|          case TK_UNION:   op = SRT_Union;    break;
 | |
|          case TK_ALL:     op = SRT_Table;    break;
 | |
|       }
 | |
|       p->pPrior = 0;
 | |
|       p->pOrderBy = 0;
 | |
|       p->disallowOrderBy = pOrderBy!=0;
 | |
|       pLimit = p->pLimit;
 | |
|       p->pLimit = 0;
 | |
|       pOffset = p->pOffset;
 | |
|       p->pOffset = 0;
 | |
|       rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff);
 | |
|       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
 | |
|       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
 | |
|       sqlite3ExprListDelete(p->pOrderBy);
 | |
|       p->pPrior = pPrior;
 | |
|       p->pOrderBy = pOrderBy;
 | |
|       sqlite3ExprDelete(p->pLimit);
 | |
|       p->pLimit = pLimit;
 | |
|       p->pOffset = pOffset;
 | |
|       p->iLimit = -1;
 | |
|       p->iOffset = -1;
 | |
|       if( rc ){
 | |
|         goto multi_select_end;
 | |
|       }
 | |
| 
 | |
| 
 | |
|       /* Convert the data in the temporary table into whatever form
 | |
|       ** it is that we currently need.
 | |
|       */      
 | |
|       if( eDest!=priorOp || unionTab!=iParm ){
 | |
|         int iCont, iBreak, iStart;
 | |
|         assert( p->pEList );
 | |
|         if( eDest==SRT_Callback ){
 | |
|           Select *pFirst = p;
 | |
|           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
 | |
|           generateColumnNames(pParse, 0, pFirst->pEList);
 | |
|         }
 | |
|         iBreak = sqlite3VdbeMakeLabel(v);
 | |
|         iCont = sqlite3VdbeMakeLabel(v);
 | |
|         computeLimitRegisters(pParse, p, iBreak);
 | |
|         sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak);
 | |
|         iStart = sqlite3VdbeCurrentAddr(v);
 | |
|         rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
 | |
|                              pOrderBy, -1, eDest, iParm, 
 | |
|                              iCont, iBreak, 0);
 | |
|         if( rc ){
 | |
|           rc = 1;
 | |
|           goto multi_select_end;
 | |
|         }
 | |
|         sqlite3VdbeResolveLabel(v, iCont);
 | |
|         sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart);
 | |
|         sqlite3VdbeResolveLabel(v, iBreak);
 | |
|         sqlite3VdbeAddOp(v, OP_Close, unionTab, 0);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case TK_INTERSECT: {
 | |
|       int tab1, tab2;
 | |
|       int iCont, iBreak, iStart;
 | |
|       Expr *pLimit, *pOffset;
 | |
|       int addr;
 | |
| 
 | |
|       /* INTERSECT is different from the others since it requires
 | |
|       ** two temporary tables.  Hence it has its own case.  Begin
 | |
|       ** by allocating the tables we will need.
 | |
|       */
 | |
|       tab1 = pParse->nTab++;
 | |
|       tab2 = pParse->nTab++;
 | |
|       if( pOrderBy && matchOrderbyToColumn(pParse,p,pOrderBy,tab1,1) ){
 | |
|         rc = 1;
 | |
|         goto multi_select_end;
 | |
|       }
 | |
|       createSortingIndex(pParse, p, pOrderBy);
 | |
| 
 | |
|       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0);
 | |
|       assert( p->addrOpenEphm[0] == -1 );
 | |
|       p->addrOpenEphm[0] = addr;
 | |
|       p->pRightmost->usesEphm = 1;
 | |
|       assert( p->pEList );
 | |
| 
 | |
|       /* Code the SELECTs to our left into temporary table "tab1".
 | |
|       */
 | |
|       rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff);
 | |
|       if( rc ){
 | |
|         goto multi_select_end;
 | |
|       }
 | |
| 
 | |
|       /* Code the current SELECT into temporary table "tab2"
 | |
|       */
 | |
|       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0);
 | |
|       assert( p->addrOpenEphm[1] == -1 );
 | |
|       p->addrOpenEphm[1] = addr;
 | |
|       p->pPrior = 0;
 | |
|       pLimit = p->pLimit;
 | |
|       p->pLimit = 0;
 | |
|       pOffset = p->pOffset;
 | |
|       p->pOffset = 0;
 | |
|       rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff);
 | |
|       p->pPrior = pPrior;
 | |
|       sqlite3ExprDelete(p->pLimit);
 | |
|       p->pLimit = pLimit;
 | |
|       p->pOffset = pOffset;
 | |
|       if( rc ){
 | |
|         goto multi_select_end;
 | |
|       }
 | |
| 
 | |
|       /* Generate code to take the intersection of the two temporary
 | |
|       ** tables.
 | |
|       */
 | |
|       assert( p->pEList );
 | |
|       if( eDest==SRT_Callback ){
 | |
|         Select *pFirst = p;
 | |
|         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
 | |
|         generateColumnNames(pParse, 0, pFirst->pEList);
 | |
|       }
 | |
|       iBreak = sqlite3VdbeMakeLabel(v);
 | |
|       iCont = sqlite3VdbeMakeLabel(v);
 | |
|       computeLimitRegisters(pParse, p, iBreak);
 | |
|       sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak);
 | |
|       iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont);
 | |
|       rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
 | |
|                              pOrderBy, -1, eDest, iParm, 
 | |
|                              iCont, iBreak, 0);
 | |
|       if( rc ){
 | |
|         rc = 1;
 | |
|         goto multi_select_end;
 | |
|       }
 | |
|       sqlite3VdbeResolveLabel(v, iCont);
 | |
|       sqlite3VdbeAddOp(v, OP_Next, tab1, iStart);
 | |
|       sqlite3VdbeResolveLabel(v, iBreak);
 | |
|       sqlite3VdbeAddOp(v, OP_Close, tab2, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_Close, tab1, 0);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Make sure all SELECTs in the statement have the same number of elements
 | |
|   ** in their result sets.
 | |
|   */
 | |
|   assert( p->pEList && pPrior->pEList );
 | |
|   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
 | |
|     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
 | |
|       " do not have the same number of result columns", selectOpName(p->op));
 | |
|     rc = 1;
 | |
|     goto multi_select_end;
 | |
|   }
 | |
| 
 | |
|   /* Set the number of columns in temporary tables
 | |
|   */
 | |
|   nCol = p->pEList->nExpr;
 | |
|   while( nSetP2 ){
 | |
|     sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol);
 | |
|   }
 | |
| 
 | |
|   /* Compute collating sequences used by either the ORDER BY clause or
 | |
|   ** by any temporary tables needed to implement the compound select.
 | |
|   ** Attach the KeyInfo structure to all temporary tables.  Invoke the
 | |
|   ** ORDER BY processing if there is an ORDER BY clause.
 | |
|   **
 | |
|   ** This section is run by the right-most SELECT statement only.
 | |
|   ** SELECT statements to the left always skip this part.  The right-most
 | |
|   ** SELECT might also skip this part if it has no ORDER BY clause and
 | |
|   ** no temp tables are required.
 | |
|   */
 | |
|   if( pOrderBy || p->usesEphm ){
 | |
|     int i;                        /* Loop counter */
 | |
|     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
 | |
|     Select *pLoop;                /* For looping through SELECT statements */
 | |
|     int nKeyCol;                  /* Number of entries in pKeyInfo->aCol[] */
 | |
|     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
 | |
|     CollSeq **aCopy;              /* A copy of pKeyInfo->aColl[] */
 | |
| 
 | |
|     assert( p->pRightmost==p );
 | |
|     nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0);
 | |
|     pKeyInfo = sqliteMalloc(sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1));
 | |
|     if( !pKeyInfo ){
 | |
|       rc = SQLITE_NOMEM;
 | |
|       goto multi_select_end;
 | |
|     }
 | |
| 
 | |
|     pKeyInfo->enc = ENC(pParse->db);
 | |
|     pKeyInfo->nField = nCol;
 | |
| 
 | |
|     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
 | |
|       *apColl = multiSelectCollSeq(pParse, p, i);
 | |
|       if( 0==*apColl ){
 | |
|         *apColl = pParse->db->pDfltColl;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
 | |
|       for(i=0; i<2; i++){
 | |
|         int addr = pLoop->addrOpenEphm[i];
 | |
|         if( addr<0 ){
 | |
|           /* If [0] is unused then [1] is also unused.  So we can
 | |
|           ** always safely abort as soon as the first unused slot is found */
 | |
|           assert( pLoop->addrOpenEphm[1]<0 );
 | |
|           break;
 | |
|         }
 | |
|         sqlite3VdbeChangeP2(v, addr, nCol);
 | |
|         sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO);
 | |
|         pLoop->addrOpenEphm[i] = -1;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if( pOrderBy ){
 | |
|       struct ExprList_item *pOTerm = pOrderBy->a;
 | |
|       int nOrderByExpr = pOrderBy->nExpr;
 | |
|       int addr;
 | |
|       u8 *pSortOrder;
 | |
| 
 | |
|       /* Reuse the same pKeyInfo for the ORDER BY as was used above for
 | |
|       ** the compound select statements.  Except we have to change out the
 | |
|       ** pKeyInfo->aColl[] values.  Some of the aColl[] values will be
 | |
|       ** reused when constructing the pKeyInfo for the ORDER BY, so make
 | |
|       ** a copy.  Sufficient space to hold both the nCol entries for
 | |
|       ** the compound select and the nOrderbyExpr entries for the ORDER BY
 | |
|       ** was allocated above.  But we need to move the compound select
 | |
|       ** entries out of the way before constructing the ORDER BY entries.
 | |
|       ** Move the compound select entries into aCopy[] where they can be
 | |
|       ** accessed and reused when constructing the ORDER BY entries.
 | |
|       ** Because nCol might be greater than or less than nOrderByExpr
 | |
|       ** we have to use memmove() when doing the copy.
 | |
|       */
 | |
|       aCopy = &pKeyInfo->aColl[nOrderByExpr];
 | |
|       pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol];
 | |
|       memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*));
 | |
| 
 | |
|       apColl = pKeyInfo->aColl;
 | |
|       for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){
 | |
|         Expr *pExpr = pOTerm->pExpr;
 | |
|         if( (pExpr->flags & EP_ExpCollate) ){
 | |
|           assert( pExpr->pColl!=0 );
 | |
|           *apColl = pExpr->pColl;
 | |
|         }else{
 | |
|           *apColl = aCopy[pExpr->iColumn];
 | |
|         }
 | |
|         *pSortOrder = pOTerm->sortOrder;
 | |
|       }
 | |
|       assert( p->pRightmost==p );
 | |
|       assert( p->addrOpenEphm[2]>=0 );
 | |
|       addr = p->addrOpenEphm[2];
 | |
|       sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2);
 | |
|       pKeyInfo->nField = nOrderByExpr;
 | |
|       sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
 | |
|       pKeyInfo = 0;
 | |
|       generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm);
 | |
|     }
 | |
| 
 | |
|     sqliteFree(pKeyInfo);
 | |
|   }
 | |
| 
 | |
| multi_select_end:
 | |
|   return rc;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_COMPOUND_SELECT */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIEW
 | |
| /*
 | |
| ** Scan through the expression pExpr.  Replace every reference to
 | |
| ** a column in table number iTable with a copy of the iColumn-th
 | |
| ** entry in pEList.  (But leave references to the ROWID column 
 | |
| ** unchanged.)
 | |
| **
 | |
| ** This routine is part of the flattening procedure.  A subquery
 | |
| ** whose result set is defined by pEList appears as entry in the
 | |
| ** FROM clause of a SELECT such that the VDBE cursor assigned to that
 | |
| ** FORM clause entry is iTable.  This routine make the necessary 
 | |
| ** changes to pExpr so that it refers directly to the source table
 | |
| ** of the subquery rather the result set of the subquery.
 | |
| */
 | |
| static void substExprList(ExprList*,int,ExprList*);  /* Forward Decl */
 | |
| static void substSelect(Select *, int, ExprList *);  /* Forward Decl */
 | |
| static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){
 | |
|   if( pExpr==0 ) return;
 | |
|   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
 | |
|     if( pExpr->iColumn<0 ){
 | |
|       pExpr->op = TK_NULL;
 | |
|     }else{
 | |
|       Expr *pNew;
 | |
|       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
 | |
|       assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
 | |
|       pNew = pEList->a[pExpr->iColumn].pExpr;
 | |
|       assert( pNew!=0 );
 | |
|       pExpr->op = pNew->op;
 | |
|       assert( pExpr->pLeft==0 );
 | |
|       pExpr->pLeft = sqlite3ExprDup(pNew->pLeft);
 | |
|       assert( pExpr->pRight==0 );
 | |
|       pExpr->pRight = sqlite3ExprDup(pNew->pRight);
 | |
|       assert( pExpr->pList==0 );
 | |
|       pExpr->pList = sqlite3ExprListDup(pNew->pList);
 | |
|       pExpr->iTable = pNew->iTable;
 | |
|       pExpr->pTab = pNew->pTab;
 | |
|       pExpr->iColumn = pNew->iColumn;
 | |
|       pExpr->iAgg = pNew->iAgg;
 | |
|       sqlite3TokenCopy(&pExpr->token, &pNew->token);
 | |
|       sqlite3TokenCopy(&pExpr->span, &pNew->span);
 | |
|       pExpr->pSelect = sqlite3SelectDup(pNew->pSelect);
 | |
|       pExpr->flags = pNew->flags;
 | |
|     }
 | |
|   }else{
 | |
|     substExpr(pExpr->pLeft, iTable, pEList);
 | |
|     substExpr(pExpr->pRight, iTable, pEList);
 | |
|     substSelect(pExpr->pSelect, iTable, pEList);
 | |
|     substExprList(pExpr->pList, iTable, pEList);
 | |
|   }
 | |
| }
 | |
| static void substExprList(ExprList *pList, int iTable, ExprList *pEList){
 | |
|   int i;
 | |
|   if( pList==0 ) return;
 | |
|   for(i=0; i<pList->nExpr; i++){
 | |
|     substExpr(pList->a[i].pExpr, iTable, pEList);
 | |
|   }
 | |
| }
 | |
| static void substSelect(Select *p, int iTable, ExprList *pEList){
 | |
|   if( !p ) return;
 | |
|   substExprList(p->pEList, iTable, pEList);
 | |
|   substExprList(p->pGroupBy, iTable, pEList);
 | |
|   substExprList(p->pOrderBy, iTable, pEList);
 | |
|   substExpr(p->pHaving, iTable, pEList);
 | |
|   substExpr(p->pWhere, iTable, pEList);
 | |
|   substSelect(p->pPrior, iTable, pEList);
 | |
| }
 | |
| #endif /* !defined(SQLITE_OMIT_VIEW) */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIEW
 | |
| /*
 | |
| ** This routine attempts to flatten subqueries in order to speed
 | |
| ** execution.  It returns 1 if it makes changes and 0 if no flattening
 | |
| ** occurs.
 | |
| **
 | |
| ** To understand the concept of flattening, consider the following
 | |
| ** query:
 | |
| **
 | |
| **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
 | |
| **
 | |
| ** The default way of implementing this query is to execute the
 | |
| ** subquery first and store the results in a temporary table, then
 | |
| ** run the outer query on that temporary table.  This requires two
 | |
| ** passes over the data.  Furthermore, because the temporary table
 | |
| ** has no indices, the WHERE clause on the outer query cannot be
 | |
| ** optimized.
 | |
| **
 | |
| ** This routine attempts to rewrite queries such as the above into
 | |
| ** a single flat select, like this:
 | |
| **
 | |
| **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
 | |
| **
 | |
| ** The code generated for this simpification gives the same result
 | |
| ** but only has to scan the data once.  And because indices might 
 | |
| ** exist on the table t1, a complete scan of the data might be
 | |
| ** avoided.
 | |
| **
 | |
| ** Flattening is only attempted if all of the following are true:
 | |
| **
 | |
| **   (1)  The subquery and the outer query do not both use aggregates.
 | |
| **
 | |
| **   (2)  The subquery is not an aggregate or the outer query is not a join.
 | |
| **
 | |
| **   (3)  The subquery is not the right operand of a left outer join, or
 | |
| **        the subquery is not itself a join.  (Ticket #306)
 | |
| **
 | |
| **   (4)  The subquery is not DISTINCT or the outer query is not a join.
 | |
| **
 | |
| **   (5)  The subquery is not DISTINCT or the outer query does not use
 | |
| **        aggregates.
 | |
| **
 | |
| **   (6)  The subquery does not use aggregates or the outer query is not
 | |
| **        DISTINCT.
 | |
| **
 | |
| **   (7)  The subquery has a FROM clause.
 | |
| **
 | |
| **   (8)  The subquery does not use LIMIT or the outer query is not a join.
 | |
| **
 | |
| **   (9)  The subquery does not use LIMIT or the outer query does not use
 | |
| **        aggregates.
 | |
| **
 | |
| **  (10)  The subquery does not use aggregates or the outer query does not
 | |
| **        use LIMIT.
 | |
| **
 | |
| **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
 | |
| **
 | |
| **  (12)  The subquery is not the right term of a LEFT OUTER JOIN or the
 | |
| **        subquery has no WHERE clause.  (added by ticket #350)
 | |
| **
 | |
| **  (13)  The subquery and outer query do not both use LIMIT
 | |
| **
 | |
| **  (14)  The subquery does not use OFFSET
 | |
| **
 | |
| **  (15)  The outer query is not part of a compound select or the
 | |
| **        subquery does not have both an ORDER BY and a LIMIT clause.
 | |
| **        (See ticket #2339)
 | |
| **
 | |
| ** In this routine, the "p" parameter is a pointer to the outer query.
 | |
| ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
 | |
| ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
 | |
| **
 | |
| ** If flattening is not attempted, this routine is a no-op and returns 0.
 | |
| ** If flattening is attempted this routine returns 1.
 | |
| **
 | |
| ** All of the expression analysis must occur on both the outer query and
 | |
| ** the subquery before this routine runs.
 | |
| */
 | |
| static int flattenSubquery(
 | |
|   Select *p,           /* The parent or outer SELECT statement */
 | |
|   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
 | |
|   int isAgg,           /* True if outer SELECT uses aggregate functions */
 | |
|   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
 | |
| ){
 | |
|   Select *pSub;       /* The inner query or "subquery" */
 | |
|   SrcList *pSrc;      /* The FROM clause of the outer query */
 | |
|   SrcList *pSubSrc;   /* The FROM clause of the subquery */
 | |
|   ExprList *pList;    /* The result set of the outer query */
 | |
|   int iParent;        /* VDBE cursor number of the pSub result set temp table */
 | |
|   int i;              /* Loop counter */
 | |
|   Expr *pWhere;                    /* The WHERE clause */
 | |
|   struct SrcList_item *pSubitem;   /* The subquery */
 | |
| 
 | |
|   /* Check to see if flattening is permitted.  Return 0 if not.
 | |
|   */
 | |
|   if( p==0 ) return 0;
 | |
|   pSrc = p->pSrc;
 | |
|   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
 | |
|   pSubitem = &pSrc->a[iFrom];
 | |
|   pSub = pSubitem->pSelect;
 | |
|   assert( pSub!=0 );
 | |
|   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
 | |
|   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
 | |
|   pSubSrc = pSub->pSrc;
 | |
|   assert( pSubSrc );
 | |
|   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
 | |
|   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
 | |
|   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
 | |
|   ** became arbitrary expressions, we were forced to add restrictions (13)
 | |
|   ** and (14). */
 | |
|   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
 | |
|   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
 | |
|   if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
 | |
|     return 0;                                            /* Restriction (15) */
 | |
|   }
 | |
|   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
 | |
|   if( (pSub->isDistinct || pSub->pLimit) 
 | |
|          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
 | |
|      return 0;       
 | |
|   }
 | |
|   if( p->isDistinct && subqueryIsAgg ) return 0;         /* Restriction (6)  */
 | |
|   if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
 | |
|      return 0;                                           /* Restriction (11) */
 | |
|   }
 | |
| 
 | |
|   /* Restriction 3:  If the subquery is a join, make sure the subquery is 
 | |
|   ** not used as the right operand of an outer join.  Examples of why this
 | |
|   ** is not allowed:
 | |
|   **
 | |
|   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
 | |
|   **
 | |
|   ** If we flatten the above, we would get
 | |
|   **
 | |
|   **         (t1 LEFT OUTER JOIN t2) JOIN t3
 | |
|   **
 | |
|   ** which is not at all the same thing.
 | |
|   */
 | |
|   if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /* Restriction 12:  If the subquery is the right operand of a left outer
 | |
|   ** join, make sure the subquery has no WHERE clause.
 | |
|   ** An examples of why this is not allowed:
 | |
|   **
 | |
|   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
 | |
|   **
 | |
|   ** If we flatten the above, we would get
 | |
|   **
 | |
|   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
 | |
|   **
 | |
|   ** But the t2.x>0 test will always fail on a NULL row of t2, which
 | |
|   ** effectively converts the OUTER JOIN into an INNER JOIN.
 | |
|   */
 | |
|   if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /* If we reach this point, it means flattening is permitted for the
 | |
|   ** iFrom-th entry of the FROM clause in the outer query.
 | |
|   */
 | |
| 
 | |
|   /* Move all of the FROM elements of the subquery into the
 | |
|   ** the FROM clause of the outer query.  Before doing this, remember
 | |
|   ** the cursor number for the original outer query FROM element in
 | |
|   ** iParent.  The iParent cursor will never be used.  Subsequent code
 | |
|   ** will scan expressions looking for iParent references and replace
 | |
|   ** those references with expressions that resolve to the subquery FROM
 | |
|   ** elements we are now copying in.
 | |
|   */
 | |
|   iParent = pSubitem->iCursor;
 | |
|   {
 | |
|     int nSubSrc = pSubSrc->nSrc;
 | |
|     int jointype = pSubitem->jointype;
 | |
| 
 | |
|     sqlite3DeleteTable(pSubitem->pTab);
 | |
|     sqliteFree(pSubitem->zDatabase);
 | |
|     sqliteFree(pSubitem->zName);
 | |
|     sqliteFree(pSubitem->zAlias);
 | |
|     if( nSubSrc>1 ){
 | |
|       int extra = nSubSrc - 1;
 | |
|       for(i=1; i<nSubSrc; i++){
 | |
|         pSrc = sqlite3SrcListAppend(pSrc, 0, 0);
 | |
|       }
 | |
|       p->pSrc = pSrc;
 | |
|       for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
 | |
|         pSrc->a[i] = pSrc->a[i-extra];
 | |
|       }
 | |
|     }
 | |
|     for(i=0; i<nSubSrc; i++){
 | |
|       pSrc->a[i+iFrom] = pSubSrc->a[i];
 | |
|       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
 | |
|     }
 | |
|     pSrc->a[iFrom].jointype = jointype;
 | |
|   }
 | |
| 
 | |
|   /* Now begin substituting subquery result set expressions for 
 | |
|   ** references to the iParent in the outer query.
 | |
|   ** 
 | |
|   ** Example:
 | |
|   **
 | |
|   **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
 | |
|   **   \                     \_____________ subquery __________/          /
 | |
|   **    \_____________________ outer query ______________________________/
 | |
|   **
 | |
|   ** We look at every expression in the outer query and every place we see
 | |
|   ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
 | |
|   */
 | |
|   pList = p->pEList;
 | |
|   for(i=0; i<pList->nExpr; i++){
 | |
|     Expr *pExpr;
 | |
|     if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
 | |
|       pList->a[i].zName = sqliteStrNDup((char*)pExpr->span.z, pExpr->span.n);
 | |
|     }
 | |
|   }
 | |
|   substExprList(p->pEList, iParent, pSub->pEList);
 | |
|   if( isAgg ){
 | |
|     substExprList(p->pGroupBy, iParent, pSub->pEList);
 | |
|     substExpr(p->pHaving, iParent, pSub->pEList);
 | |
|   }
 | |
|   if( pSub->pOrderBy ){
 | |
|     assert( p->pOrderBy==0 );
 | |
|     p->pOrderBy = pSub->pOrderBy;
 | |
|     pSub->pOrderBy = 0;
 | |
|   }else if( p->pOrderBy ){
 | |
|     substExprList(p->pOrderBy, iParent, pSub->pEList);
 | |
|   }
 | |
|   if( pSub->pWhere ){
 | |
|     pWhere = sqlite3ExprDup(pSub->pWhere);
 | |
|   }else{
 | |
|     pWhere = 0;
 | |
|   }
 | |
|   if( subqueryIsAgg ){
 | |
|     assert( p->pHaving==0 );
 | |
|     p->pHaving = p->pWhere;
 | |
|     p->pWhere = pWhere;
 | |
|     substExpr(p->pHaving, iParent, pSub->pEList);
 | |
|     p->pHaving = sqlite3ExprAnd(p->pHaving, sqlite3ExprDup(pSub->pHaving));
 | |
|     assert( p->pGroupBy==0 );
 | |
|     p->pGroupBy = sqlite3ExprListDup(pSub->pGroupBy);
 | |
|   }else{
 | |
|     substExpr(p->pWhere, iParent, pSub->pEList);
 | |
|     p->pWhere = sqlite3ExprAnd(p->pWhere, pWhere);
 | |
|   }
 | |
| 
 | |
|   /* The flattened query is distinct if either the inner or the
 | |
|   ** outer query is distinct. 
 | |
|   */
 | |
|   p->isDistinct = p->isDistinct || pSub->isDistinct;
 | |
| 
 | |
|   /*
 | |
|   ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
 | |
|   **
 | |
|   ** One is tempted to try to add a and b to combine the limits.  But this
 | |
|   ** does not work if either limit is negative.
 | |
|   */
 | |
|   if( pSub->pLimit ){
 | |
|     p->pLimit = pSub->pLimit;
 | |
|     pSub->pLimit = 0;
 | |
|   }
 | |
| 
 | |
|   /* Finially, delete what is left of the subquery and return
 | |
|   ** success.
 | |
|   */
 | |
|   sqlite3SelectDelete(pSub);
 | |
|   return 1;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIEW */
 | |
| 
 | |
| /*
 | |
| ** Analyze the SELECT statement passed in as an argument to see if it
 | |
| ** is a simple min() or max() query.  If it is and this query can be
 | |
| ** satisfied using a single seek to the beginning or end of an index,
 | |
| ** then generate the code for this SELECT and return 1.  If this is not a 
 | |
| ** simple min() or max() query, then return 0;
 | |
| **
 | |
| ** A simply min() or max() query looks like this:
 | |
| **
 | |
| **    SELECT min(a) FROM table;
 | |
| **    SELECT max(a) FROM table;
 | |
| **
 | |
| ** The query may have only a single table in its FROM argument.  There
 | |
| ** can be no GROUP BY or HAVING or WHERE clauses.  The result set must
 | |
| ** be the min() or max() of a single column of the table.  The column
 | |
| ** in the min() or max() function must be indexed.
 | |
| **
 | |
| ** The parameters to this routine are the same as for sqlite3Select().
 | |
| ** See the header comment on that routine for additional information.
 | |
| */
 | |
| static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
 | |
|   Expr *pExpr;
 | |
|   int iCol;
 | |
|   Table *pTab;
 | |
|   Index *pIdx;
 | |
|   int base;
 | |
|   Vdbe *v;
 | |
|   int seekOp;
 | |
|   ExprList *pEList, *pList, eList;
 | |
|   struct ExprList_item eListItem;
 | |
|   SrcList *pSrc;
 | |
|   int brk;
 | |
|   int iDb;
 | |
| 
 | |
|   /* Check to see if this query is a simple min() or max() query.  Return
 | |
|   ** zero if it is  not.
 | |
|   */
 | |
|   if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
 | |
|   pSrc = p->pSrc;
 | |
|   if( pSrc->nSrc!=1 ) return 0;
 | |
|   pEList = p->pEList;
 | |
|   if( pEList->nExpr!=1 ) return 0;
 | |
|   pExpr = pEList->a[0].pExpr;
 | |
|   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
 | |
|   pList = pExpr->pList;
 | |
|   if( pList==0 || pList->nExpr!=1 ) return 0;
 | |
|   if( pExpr->token.n!=3 ) return 0;
 | |
|   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
 | |
|     seekOp = OP_Rewind;
 | |
|   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
 | |
|     seekOp = OP_Last;
 | |
|   }else{
 | |
|     return 0;
 | |
|   }
 | |
|   pExpr = pList->a[0].pExpr;
 | |
|   if( pExpr->op!=TK_COLUMN ) return 0;
 | |
|   iCol = pExpr->iColumn;
 | |
|   pTab = pSrc->a[0].pTab;
 | |
| 
 | |
|   /* This optimization cannot be used with virtual tables. */
 | |
|   if( IsVirtual(pTab) ) return 0;
 | |
| 
 | |
|   /* If we get to here, it means the query is of the correct form.
 | |
|   ** Check to make sure we have an index and make pIdx point to the
 | |
|   ** appropriate index.  If the min() or max() is on an INTEGER PRIMARY
 | |
|   ** key column, no index is necessary so set pIdx to NULL.  If no
 | |
|   ** usable index is found, return 0.
 | |
|   */
 | |
|   if( iCol<0 ){
 | |
|     pIdx = 0;
 | |
|   }else{
 | |
|     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr);
 | |
|     if( pColl==0 ) return 0;
 | |
|     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | |
|       assert( pIdx->nColumn>=1 );
 | |
|       if( pIdx->aiColumn[0]==iCol && 
 | |
|           0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if( pIdx==0 ) return 0;
 | |
|   }
 | |
| 
 | |
|   /* Identify column types if we will be using the callback.  This
 | |
|   ** step is skipped if the output is going to a table or a memory cell.
 | |
|   ** The column names have already been generated in the calling function.
 | |
|   */
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v==0 ) return 0;
 | |
| 
 | |
|   /* If the output is destined for a temporary table, open that table.
 | |
|   */
 | |
|   if( eDest==SRT_EphemTab ){
 | |
|     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1);
 | |
|   }
 | |
| 
 | |
|   /* Generating code to find the min or the max.  Basically all we have
 | |
|   ** to do is find the first or the last entry in the chosen index.  If
 | |
|   ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
 | |
|   ** or last entry in the main table.
 | |
|   */
 | |
|   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | |
|   assert( iDb>=0 || pTab->isEphem );
 | |
|   sqlite3CodeVerifySchema(pParse, iDb);
 | |
|   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
 | |
|   base = pSrc->a[0].iCursor;
 | |
|   brk = sqlite3VdbeMakeLabel(v);
 | |
|   computeLimitRegisters(pParse, p, brk);
 | |
|   if( pSrc->a[0].pSelect==0 ){
 | |
|     sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead);
 | |
|   }
 | |
|   if( pIdx==0 ){
 | |
|     sqlite3VdbeAddOp(v, seekOp, base, 0);
 | |
|   }else{
 | |
|     /* Even though the cursor used to open the index here is closed
 | |
|     ** as soon as a single value has been read from it, allocate it
 | |
|     ** using (pParse->nTab++) to prevent the cursor id from being 
 | |
|     ** reused. This is important for statements of the form 
 | |
|     ** "INSERT INTO x SELECT max() FROM x".
 | |
|     */
 | |
|     int iIdx;
 | |
|     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
 | |
|     iIdx = pParse->nTab++;
 | |
|     assert( pIdx->pSchema==pTab->pSchema );
 | |
|     sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
 | |
|     sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum, 
 | |
|         (char*)pKey, P3_KEYINFO_HANDOFF);
 | |
|     if( seekOp==OP_Rewind ){
 | |
|       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0);
 | |
|       seekOp = OP_MoveGt;
 | |
|     }
 | |
|     if( pIdx->aSortOrder[0]==SQLITE_SO_DESC ){
 | |
|       /* Ticket #2514: invert the seek operator if we are using
 | |
|       ** a descending index. */
 | |
|       if( seekOp==OP_Last ){
 | |
|         seekOp = OP_Rewind;
 | |
|       }else{
 | |
|         assert( seekOp==OP_MoveGt );
 | |
|         seekOp = OP_MoveLt;
 | |
|       }
 | |
|     }
 | |
|     sqlite3VdbeAddOp(v, seekOp, iIdx, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
 | |
|   }
 | |
|   eList.nExpr = 1;
 | |
|   memset(&eListItem, 0, sizeof(eListItem));
 | |
|   eList.a = &eListItem;
 | |
|   eList.a[0].pExpr = pExpr;
 | |
|   selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0);
 | |
|   sqlite3VdbeResolveLabel(v, brk);
 | |
|   sqlite3VdbeAddOp(v, OP_Close, base, 0);
 | |
|   
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement.  Return
 | |
| ** the number of errors seen.
 | |
| **
 | |
| ** An ORDER BY or GROUP BY is a list of expressions.  If any expression
 | |
| ** is an integer constant, then that expression is replaced by the
 | |
| ** corresponding entry in the result set.
 | |
| */
 | |
| static int processOrderGroupBy(
 | |
|   NameContext *pNC,     /* Name context of the SELECT statement. */
 | |
|   ExprList *pOrderBy,   /* The ORDER BY or GROUP BY clause to be processed */
 | |
|   const char *zType     /* Either "ORDER" or "GROUP", as appropriate */
 | |
| ){
 | |
|   int i;
 | |
|   ExprList *pEList = pNC->pEList;     /* The result set of the SELECT */
 | |
|   Parse *pParse = pNC->pParse;     /* The result set of the SELECT */
 | |
|   assert( pEList );
 | |
| 
 | |
|   if( pOrderBy==0 ) return 0;
 | |
|   if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){
 | |
|     sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
 | |
|     return 1;
 | |
|   }
 | |
|   for(i=0; i<pOrderBy->nExpr; i++){
 | |
|     int iCol;
 | |
|     Expr *pE = pOrderBy->a[i].pExpr;
 | |
|     if( sqlite3ExprIsInteger(pE, &iCol) ){
 | |
|       if( iCol>0 && iCol<=pEList->nExpr ){
 | |
|         CollSeq *pColl = pE->pColl;
 | |
|         int flags = pE->flags & EP_ExpCollate;
 | |
|         sqlite3ExprDelete(pE);
 | |
|         pE = pOrderBy->a[i].pExpr = sqlite3ExprDup(pEList->a[iCol-1].pExpr);
 | |
|         if( pColl && flags ){
 | |
|           pE->pColl = pColl;
 | |
|           pE->flags |= flags;
 | |
|         }
 | |
|       }else{
 | |
|         sqlite3ErrorMsg(pParse, 
 | |
|            "%s BY column number %d out of range - should be "
 | |
|            "between 1 and %d", zType, iCol, pEList->nExpr);
 | |
|         return 1;
 | |
|       }
 | |
|     }
 | |
|     if( sqlite3ExprResolveNames(pNC, pE) ){
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine resolves any names used in the result set of the
 | |
| ** supplied SELECT statement. If the SELECT statement being resolved
 | |
| ** is a sub-select, then pOuterNC is a pointer to the NameContext 
 | |
| ** of the parent SELECT.
 | |
| */
 | |
| int sqlite3SelectResolve(
 | |
|   Parse *pParse,         /* The parser context */
 | |
|   Select *p,             /* The SELECT statement being coded. */
 | |
|   NameContext *pOuterNC  /* The outer name context. May be NULL. */
 | |
| ){
 | |
|   ExprList *pEList;          /* Result set. */
 | |
|   int i;                     /* For-loop variable used in multiple places */
 | |
|   NameContext sNC;           /* Local name-context */
 | |
|   ExprList *pGroupBy;        /* The group by clause */
 | |
| 
 | |
|   /* If this routine has run before, return immediately. */
 | |
|   if( p->isResolved ){
 | |
|     assert( !pOuterNC );
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   p->isResolved = 1;
 | |
| 
 | |
|   /* If there have already been errors, do nothing. */
 | |
|   if( pParse->nErr>0 ){
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   /* Prepare the select statement. This call will allocate all cursors
 | |
|   ** required to handle the tables and subqueries in the FROM clause.
 | |
|   */
 | |
|   if( prepSelectStmt(pParse, p) ){
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   /* Resolve the expressions in the LIMIT and OFFSET clauses. These
 | |
|   ** are not allowed to refer to any names, so pass an empty NameContext.
 | |
|   */
 | |
|   memset(&sNC, 0, sizeof(sNC));
 | |
|   sNC.pParse = pParse;
 | |
|   if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
 | |
|       sqlite3ExprResolveNames(&sNC, p->pOffset) ){
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   /* Set up the local name-context to pass to ExprResolveNames() to
 | |
|   ** resolve the expression-list.
 | |
|   */
 | |
|   sNC.allowAgg = 1;
 | |
|   sNC.pSrcList = p->pSrc;
 | |
|   sNC.pNext = pOuterNC;
 | |
| 
 | |
|   /* Resolve names in the result set. */
 | |
|   pEList = p->pEList;
 | |
|   if( !pEList ) return SQLITE_ERROR;
 | |
|   for(i=0; i<pEList->nExpr; i++){
 | |
|     Expr *pX = pEList->a[i].pExpr;
 | |
|     if( sqlite3ExprResolveNames(&sNC, pX) ){
 | |
|       return SQLITE_ERROR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If there are no aggregate functions in the result-set, and no GROUP BY 
 | |
|   ** expression, do not allow aggregates in any of the other expressions.
 | |
|   */
 | |
|   assert( !p->isAgg );
 | |
|   pGroupBy = p->pGroupBy;
 | |
|   if( pGroupBy || sNC.hasAgg ){
 | |
|     p->isAgg = 1;
 | |
|   }else{
 | |
|     sNC.allowAgg = 0;
 | |
|   }
 | |
| 
 | |
|   /* If a HAVING clause is present, then there must be a GROUP BY clause.
 | |
|   */
 | |
|   if( p->pHaving && !pGroupBy ){
 | |
|     sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   /* Add the expression list to the name-context before parsing the
 | |
|   ** other expressions in the SELECT statement. This is so that
 | |
|   ** expressions in the WHERE clause (etc.) can refer to expressions by
 | |
|   ** aliases in the result set.
 | |
|   **
 | |
|   ** Minor point: If this is the case, then the expression will be
 | |
|   ** re-evaluated for each reference to it.
 | |
|   */
 | |
|   sNC.pEList = p->pEList;
 | |
|   if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
 | |
|      sqlite3ExprResolveNames(&sNC, p->pHaving) ){
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
|   if( p->pPrior==0 ){
 | |
|     if( processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") ||
 | |
|         processOrderGroupBy(&sNC, pGroupBy, "GROUP") ){
 | |
|       return SQLITE_ERROR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( sqlite3MallocFailed() ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
| 
 | |
|   /* Make sure the GROUP BY clause does not contain aggregate functions.
 | |
|   */
 | |
|   if( pGroupBy ){
 | |
|     struct ExprList_item *pItem;
 | |
|   
 | |
|     for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
 | |
|       if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
 | |
|         sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
 | |
|             "the GROUP BY clause");
 | |
|         return SQLITE_ERROR;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If this is one SELECT of a compound, be sure to resolve names
 | |
|   ** in the other SELECTs.
 | |
|   */
 | |
|   if( p->pPrior ){
 | |
|     return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
 | |
|   }else{
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Reset the aggregate accumulator.
 | |
| **
 | |
| ** The aggregate accumulator is a set of memory cells that hold
 | |
| ** intermediate results while calculating an aggregate.  This
 | |
| ** routine simply stores NULLs in all of those memory cells.
 | |
| */
 | |
| static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int i;
 | |
|   struct AggInfo_func *pFunc;
 | |
|   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
 | |
|     return;
 | |
|   }
 | |
|   for(i=0; i<pAggInfo->nColumn; i++){
 | |
|     sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0);
 | |
|   }
 | |
|   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
 | |
|     sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0);
 | |
|     if( pFunc->iDistinct>=0 ){
 | |
|       Expr *pE = pFunc->pExpr;
 | |
|       if( pE->pList==0 || pE->pList->nExpr!=1 ){
 | |
|         sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
 | |
|            "by an expression");
 | |
|         pFunc->iDistinct = -1;
 | |
|       }else{
 | |
|         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
 | |
|         sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 
 | |
|                           (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Invoke the OP_AggFinalize opcode for every aggregate function
 | |
| ** in the AggInfo structure.
 | |
| */
 | |
| static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int i;
 | |
|   struct AggInfo_func *pF;
 | |
|   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
 | |
|     ExprList *pList = pF->pExpr->pList;
 | |
|     sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0,
 | |
|                       (void*)pF->pFunc, P3_FUNCDEF);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Update the accumulator memory cells for an aggregate based on
 | |
| ** the current cursor position.
 | |
| */
 | |
| static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int i;
 | |
|   struct AggInfo_func *pF;
 | |
|   struct AggInfo_col *pC;
 | |
| 
 | |
|   pAggInfo->directMode = 1;
 | |
|   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
 | |
|     int nArg;
 | |
|     int addrNext = 0;
 | |
|     ExprList *pList = pF->pExpr->pList;
 | |
|     if( pList ){
 | |
|       nArg = pList->nExpr;
 | |
|       sqlite3ExprCodeExprList(pParse, pList);
 | |
|     }else{
 | |
|       nArg = 0;
 | |
|     }
 | |
|     if( pF->iDistinct>=0 ){
 | |
|       addrNext = sqlite3VdbeMakeLabel(v);
 | |
|       assert( nArg==1 );
 | |
|       codeDistinct(v, pF->iDistinct, addrNext, 1);
 | |
|     }
 | |
|     if( pF->pFunc->needCollSeq ){
 | |
|       CollSeq *pColl = 0;
 | |
|       struct ExprList_item *pItem;
 | |
|       int j;
 | |
|       assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
 | |
|       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
 | |
|         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
 | |
|       }
 | |
|       if( !pColl ){
 | |
|         pColl = pParse->db->pDfltColl;
 | |
|       }
 | |
|       sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
 | |
|     }
 | |
|     sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF);
 | |
|     if( addrNext ){
 | |
|       sqlite3VdbeResolveLabel(v, addrNext);
 | |
|     }
 | |
|   }
 | |
|   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
 | |
|     sqlite3ExprCode(pParse, pC->pExpr);
 | |
|     sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1);
 | |
|   }
 | |
|   pAggInfo->directMode = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Generate code for the given SELECT statement.
 | |
| **
 | |
| ** The results are distributed in various ways depending on the
 | |
| ** value of eDest and iParm.
 | |
| **
 | |
| **     eDest Value       Result
 | |
| **     ------------    -------------------------------------------
 | |
| **     SRT_Callback    Invoke the callback for each row of the result.
 | |
| **
 | |
| **     SRT_Mem         Store first result in memory cell iParm
 | |
| **
 | |
| **     SRT_Set         Store results as keys of table iParm.
 | |
| **
 | |
| **     SRT_Union       Store results as a key in a temporary table iParm
 | |
| **
 | |
| **     SRT_Except      Remove results from the temporary table iParm.
 | |
| **
 | |
| **     SRT_Table       Store results in temporary table iParm
 | |
| **
 | |
| ** The table above is incomplete.  Additional eDist value have be added
 | |
| ** since this comment was written.  See the selectInnerLoop() function for
 | |
| ** a complete listing of the allowed values of eDest and their meanings.
 | |
| **
 | |
| ** This routine returns the number of errors.  If any errors are
 | |
| ** encountered, then an appropriate error message is left in
 | |
| ** pParse->zErrMsg.
 | |
| **
 | |
| ** This routine does NOT free the Select structure passed in.  The
 | |
| ** calling function needs to do that.
 | |
| **
 | |
| ** The pParent, parentTab, and *pParentAgg fields are filled in if this
 | |
| ** SELECT is a subquery.  This routine may try to combine this SELECT
 | |
| ** with its parent to form a single flat query.  In so doing, it might
 | |
| ** change the parent query from a non-aggregate to an aggregate query.
 | |
| ** For that reason, the pParentAgg flag is passed as a pointer, so it
 | |
| ** can be changed.
 | |
| **
 | |
| ** Example 1:   The meaning of the pParent parameter.
 | |
| **
 | |
| **    SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
 | |
| **    \                      \_______ subquery _______/        /
 | |
| **     \                                                      /
 | |
| **      \____________________ outer query ___________________/
 | |
| **
 | |
| ** This routine is called for the outer query first.   For that call,
 | |
| ** pParent will be NULL.  During the processing of the outer query, this 
 | |
| ** routine is called recursively to handle the subquery.  For the recursive
 | |
| ** call, pParent will point to the outer query.  Because the subquery is
 | |
| ** the second element in a three-way join, the parentTab parameter will
 | |
| ** be 1 (the 2nd value of a 0-indexed array.)
 | |
| */
 | |
| int sqlite3Select(
 | |
|   Parse *pParse,         /* The parser context */
 | |
|   Select *p,             /* The SELECT statement being coded. */
 | |
|   int eDest,             /* How to dispose of the results */
 | |
|   int iParm,             /* A parameter used by the eDest disposal method */
 | |
|   Select *pParent,       /* Another SELECT for which this is a sub-query */
 | |
|   int parentTab,         /* Index in pParent->pSrc of this query */
 | |
|   int *pParentAgg,       /* True if pParent uses aggregate functions */
 | |
|   char *aff              /* If eDest is SRT_Union, the affinity string */
 | |
| ){
 | |
|   int i, j;              /* Loop counters */
 | |
|   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
 | |
|   Vdbe *v;               /* The virtual machine under construction */
 | |
|   int isAgg;             /* True for select lists like "count(*)" */
 | |
|   ExprList *pEList;      /* List of columns to extract. */
 | |
|   SrcList *pTabList;     /* List of tables to select from */
 | |
|   Expr *pWhere;          /* The WHERE clause.  May be NULL */
 | |
|   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
 | |
|   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
 | |
|   Expr *pHaving;         /* The HAVING clause.  May be NULL */
 | |
|   int isDistinct;        /* True if the DISTINCT keyword is present */
 | |
|   int distinct;          /* Table to use for the distinct set */
 | |
|   int rc = 1;            /* Value to return from this function */
 | |
|   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
 | |
|   AggInfo sAggInfo;      /* Information used by aggregate queries */
 | |
|   int iEnd;              /* Address of the end of the query */
 | |
| 
 | |
|   if( p==0 || sqlite3MallocFailed() || pParse->nErr ){
 | |
|     return 1;
 | |
|   }
 | |
|   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
 | |
|   memset(&sAggInfo, 0, sizeof(sAggInfo));
 | |
| 
 | |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT
 | |
|   /* If there is are a sequence of queries, do the earlier ones first.
 | |
|   */
 | |
|   if( p->pPrior ){
 | |
|     if( p->pRightmost==0 ){
 | |
|       Select *pLoop;
 | |
|       int cnt = 0;
 | |
|       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
 | |
|         pLoop->pRightmost = p;
 | |
|       }
 | |
|       if( SQLITE_MAX_COMPOUND_SELECT>0 && cnt>SQLITE_MAX_COMPOUND_SELECT ){
 | |
|         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
 | |
|         return 1;
 | |
|       }
 | |
|     }
 | |
|     return multiSelect(pParse, p, eDest, iParm, aff);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   pOrderBy = p->pOrderBy;
 | |
|   if( IgnorableOrderby(eDest) ){
 | |
|     p->pOrderBy = 0;
 | |
|   }
 | |
|   if( sqlite3SelectResolve(pParse, p, 0) ){
 | |
|     goto select_end;
 | |
|   }
 | |
|   p->pOrderBy = pOrderBy;
 | |
| 
 | |
|   /* Make local copies of the parameters for this query.
 | |
|   */
 | |
|   pTabList = p->pSrc;
 | |
|   pWhere = p->pWhere;
 | |
|   pGroupBy = p->pGroupBy;
 | |
|   pHaving = p->pHaving;
 | |
|   isAgg = p->isAgg;
 | |
|   isDistinct = p->isDistinct;
 | |
|   pEList = p->pEList;
 | |
|   if( pEList==0 ) goto select_end;
 | |
| 
 | |
|   /* 
 | |
|   ** Do not even attempt to generate any code if we have already seen
 | |
|   ** errors before this routine starts.
 | |
|   */
 | |
|   if( pParse->nErr>0 ) goto select_end;
 | |
| 
 | |
|   /* If writing to memory or generating a set
 | |
|   ** only a single column may be output.
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
|   if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){
 | |
|     goto select_end;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* ORDER BY is ignored for some destinations.
 | |
|   */
 | |
|   if( IgnorableOrderby(eDest) ){
 | |
|     pOrderBy = 0;
 | |
|   }
 | |
| 
 | |
|   /* Begin generating code.
 | |
|   */
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v==0 ) goto select_end;
 | |
| 
 | |
|   /* Generate code for all sub-queries in the FROM clause
 | |
|   */
 | |
| #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
 | |
|   for(i=0; i<pTabList->nSrc; i++){
 | |
|     const char *zSavedAuthContext = 0;
 | |
|     int needRestoreContext;
 | |
|     struct SrcList_item *pItem = &pTabList->a[i];
 | |
| 
 | |
|     if( pItem->pSelect==0 || pItem->isPopulated ) continue;
 | |
|     if( pItem->zName!=0 ){
 | |
|       zSavedAuthContext = pParse->zAuthContext;
 | |
|       pParse->zAuthContext = pItem->zName;
 | |
|       needRestoreContext = 1;
 | |
|     }else{
 | |
|       needRestoreContext = 0;
 | |
|     }
 | |
| #if SQLITE_MAX_EXPR_DEPTH>0
 | |
|     /* Increment Parse.nHeight by the height of the largest expression
 | |
|     ** tree refered to by this, the parent select. The child select
 | |
|     ** may contain expression trees of at most
 | |
|     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
 | |
|     ** more conservative than necessary, but much easier than enforcing
 | |
|     ** an exact limit.
 | |
|     */
 | |
|     pParse->nHeight += sqlite3SelectExprHeight(p);
 | |
| #endif
 | |
|     sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab, 
 | |
|                  pItem->iCursor, p, i, &isAgg, 0);
 | |
| #if SQLITE_MAX_EXPR_DEPTH>0
 | |
|     pParse->nHeight -= sqlite3SelectExprHeight(p);
 | |
| #endif
 | |
|     if( needRestoreContext ){
 | |
|       pParse->zAuthContext = zSavedAuthContext;
 | |
|     }
 | |
|     pTabList = p->pSrc;
 | |
|     pWhere = p->pWhere;
 | |
|     if( !IgnorableOrderby(eDest) ){
 | |
|       pOrderBy = p->pOrderBy;
 | |
|     }
 | |
|     pGroupBy = p->pGroupBy;
 | |
|     pHaving = p->pHaving;
 | |
|     isDistinct = p->isDistinct;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Check for the special case of a min() or max() function by itself
 | |
|   ** in the result set.
 | |
|   */
 | |
|   if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
 | |
|     rc = 0;
 | |
|     goto select_end;
 | |
|   }
 | |
| 
 | |
|   /* Check to see if this is a subquery that can be "flattened" into its parent.
 | |
|   ** If flattening is a possiblity, do so and return immediately.  
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_VIEW
 | |
|   if( pParent && pParentAgg &&
 | |
|       flattenSubquery(pParent, parentTab, *pParentAgg, isAgg) ){
 | |
|     if( isAgg ) *pParentAgg = 1;
 | |
|     goto select_end;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* If there is an ORDER BY clause, then this sorting
 | |
|   ** index might end up being unused if the data can be 
 | |
|   ** extracted in pre-sorted order.  If that is the case, then the
 | |
|   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
 | |
|   ** we figure out that the sorting index is not needed.  The addrSortIndex
 | |
|   ** variable is used to facilitate that change.
 | |
|   */
 | |
|   if( pOrderBy ){
 | |
|     KeyInfo *pKeyInfo;
 | |
|     if( pParse->nErr ){
 | |
|       goto select_end;
 | |
|     }
 | |
|     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
 | |
|     pOrderBy->iECursor = pParse->nTab++;
 | |
|     p->addrOpenEphm[2] = addrSortIndex =
 | |
|       sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2,                     (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
 | |
|   }else{
 | |
|     addrSortIndex = -1;
 | |
|   }
 | |
| 
 | |
|   /* If the output is destined for a temporary table, open that table.
 | |
|   */
 | |
|   if( eDest==SRT_EphemTab ){
 | |
|     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr);
 | |
|   }
 | |
| 
 | |
|   /* Set the limiter.
 | |
|   */
 | |
|   iEnd = sqlite3VdbeMakeLabel(v);
 | |
|   computeLimitRegisters(pParse, p, iEnd);
 | |
| 
 | |
|   /* Open a virtual index to use for the distinct set.
 | |
|   */
 | |
|   if( isDistinct ){
 | |
|     KeyInfo *pKeyInfo;
 | |
|     distinct = pParse->nTab++;
 | |
|     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
 | |
|     sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0, 
 | |
|                         (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
 | |
|   }else{
 | |
|     distinct = -1;
 | |
|   }
 | |
| 
 | |
|   /* Aggregate and non-aggregate queries are handled differently */
 | |
|   if( !isAgg && pGroupBy==0 ){
 | |
|     /* This case is for non-aggregate queries
 | |
|     ** Begin the database scan
 | |
|     */
 | |
|     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy);
 | |
|     if( pWInfo==0 ) goto select_end;
 | |
| 
 | |
|     /* If sorting index that was created by a prior OP_OpenEphemeral 
 | |
|     ** instruction ended up not being needed, then change the OP_OpenEphemeral
 | |
|     ** into an OP_Noop.
 | |
|     */
 | |
|     if( addrSortIndex>=0 && pOrderBy==0 ){
 | |
|       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
 | |
|       p->addrOpenEphm[2] = -1;
 | |
|     }
 | |
| 
 | |
|     /* Use the standard inner loop
 | |
|     */
 | |
|     if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
 | |
|                     iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){
 | |
|        goto select_end;
 | |
|     }
 | |
| 
 | |
|     /* End the database scan loop.
 | |
|     */
 | |
|     sqlite3WhereEnd(pWInfo);
 | |
|   }else{
 | |
|     /* This is the processing for aggregate queries */
 | |
|     NameContext sNC;    /* Name context for processing aggregate information */
 | |
|     int iAMem;          /* First Mem address for storing current GROUP BY */
 | |
|     int iBMem;          /* First Mem address for previous GROUP BY */
 | |
|     int iUseFlag;       /* Mem address holding flag indicating that at least
 | |
|                         ** one row of the input to the aggregator has been
 | |
|                         ** processed */
 | |
|     int iAbortFlag;     /* Mem address which causes query abort if positive */
 | |
|     int groupBySort;    /* Rows come from source in GROUP BY order */
 | |
| 
 | |
| 
 | |
|     /* The following variables hold addresses or labels for parts of the
 | |
|     ** virtual machine program we are putting together */
 | |
|     int addrOutputRow;      /* Start of subroutine that outputs a result row */
 | |
|     int addrSetAbort;       /* Set the abort flag and return */
 | |
|     int addrInitializeLoop; /* Start of code that initializes the input loop */
 | |
|     int addrTopOfLoop;      /* Top of the input loop */
 | |
|     int addrGroupByChange;  /* Code that runs when any GROUP BY term changes */
 | |
|     int addrProcessRow;     /* Code to process a single input row */
 | |
|     int addrEnd;            /* End of all processing */
 | |
|     int addrSortingIdx;     /* The OP_OpenEphemeral for the sorting index */
 | |
|     int addrReset;          /* Subroutine for resetting the accumulator */
 | |
| 
 | |
|     addrEnd = sqlite3VdbeMakeLabel(v);
 | |
| 
 | |
|     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
 | |
|     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
 | |
|     ** SELECT statement.
 | |
|     */
 | |
|     memset(&sNC, 0, sizeof(sNC));
 | |
|     sNC.pParse = pParse;
 | |
|     sNC.pSrcList = pTabList;
 | |
|     sNC.pAggInfo = &sAggInfo;
 | |
|     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
 | |
|     sAggInfo.pGroupBy = pGroupBy;
 | |
|     if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){
 | |
|       goto select_end;
 | |
|     }
 | |
|     if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){
 | |
|       goto select_end;
 | |
|     }
 | |
|     if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){
 | |
|       goto select_end;
 | |
|     }
 | |
|     sAggInfo.nAccumulator = sAggInfo.nColumn;
 | |
|     for(i=0; i<sAggInfo.nFunc; i++){
 | |
|       if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){
 | |
|         goto select_end;
 | |
|       }
 | |
|     }
 | |
|     if( sqlite3MallocFailed() ) goto select_end;
 | |
| 
 | |
|     /* Processing for aggregates with GROUP BY is very different and
 | |
|     ** much more complex tha aggregates without a GROUP BY.
 | |
|     */
 | |
|     if( pGroupBy ){
 | |
|       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
 | |
| 
 | |
|       /* Create labels that we will be needing
 | |
|       */
 | |
|      
 | |
|       addrInitializeLoop = sqlite3VdbeMakeLabel(v);
 | |
|       addrGroupByChange = sqlite3VdbeMakeLabel(v);
 | |
|       addrProcessRow = sqlite3VdbeMakeLabel(v);
 | |
| 
 | |
|       /* If there is a GROUP BY clause we might need a sorting index to
 | |
|       ** implement it.  Allocate that sorting index now.  If it turns out
 | |
|       ** that we do not need it after all, the OpenEphemeral instruction
 | |
|       ** will be converted into a Noop.  
 | |
|       */
 | |
|       sAggInfo.sortingIdx = pParse->nTab++;
 | |
|       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
 | |
|       addrSortingIdx =
 | |
|           sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx,
 | |
|                          sAggInfo.nSortingColumn,
 | |
|                          (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
 | |
| 
 | |
|       /* Initialize memory locations used by GROUP BY aggregate processing
 | |
|       */
 | |
|       iUseFlag = pParse->nMem++;
 | |
|       iAbortFlag = pParse->nMem++;
 | |
|       iAMem = pParse->nMem;
 | |
|       pParse->nMem += pGroupBy->nExpr;
 | |
|       iBMem = pParse->nMem;
 | |
|       pParse->nMem += pGroupBy->nExpr;
 | |
|       sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag);
 | |
|       VdbeComment((v, "# clear abort flag"));
 | |
|       sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag);
 | |
|       VdbeComment((v, "# indicate accumulator empty"));
 | |
|       sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop);
 | |
| 
 | |
|       /* Generate a subroutine that outputs a single row of the result
 | |
|       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
 | |
|       ** is less than or equal to zero, the subroutine is a no-op.  If
 | |
|       ** the processing calls for the query to abort, this subroutine
 | |
|       ** increments the iAbortFlag memory location before returning in
 | |
|       ** order to signal the caller to abort.
 | |
|       */
 | |
|       addrSetAbort = sqlite3VdbeCurrentAddr(v);
 | |
|       sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag);
 | |
|       VdbeComment((v, "# set abort flag"));
 | |
|       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
 | |
|       addrOutputRow = sqlite3VdbeCurrentAddr(v);
 | |
|       sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2);
 | |
|       VdbeComment((v, "# Groupby result generator entry point"));
 | |
|       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
 | |
|       finalizeAggFunctions(pParse, &sAggInfo);
 | |
|       if( pHaving ){
 | |
|         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1);
 | |
|       }
 | |
|       rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
 | |
|                            distinct, eDest, iParm, 
 | |
|                            addrOutputRow+1, addrSetAbort, aff);
 | |
|       if( rc ){
 | |
|         goto select_end;
 | |
|       }
 | |
|       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
 | |
|       VdbeComment((v, "# end groupby result generator"));
 | |
| 
 | |
|       /* Generate a subroutine that will reset the group-by accumulator
 | |
|       */
 | |
|       addrReset = sqlite3VdbeCurrentAddr(v);
 | |
|       resetAccumulator(pParse, &sAggInfo);
 | |
|       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
 | |
| 
 | |
|       /* Begin a loop that will extract all source rows in GROUP BY order.
 | |
|       ** This might involve two separate loops with an OP_Sort in between, or
 | |
|       ** it might be a single loop that uses an index to extract information
 | |
|       ** in the right order to begin with.
 | |
|       */
 | |
|       sqlite3VdbeResolveLabel(v, addrInitializeLoop);
 | |
|       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
 | |
|       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy);
 | |
|       if( pWInfo==0 ) goto select_end;
 | |
|       if( pGroupBy==0 ){
 | |
|         /* The optimizer is able to deliver rows in group by order so
 | |
|         ** we do not have to sort.  The OP_OpenEphemeral table will be
 | |
|         ** cancelled later because we still need to use the pKeyInfo
 | |
|         */
 | |
|         pGroupBy = p->pGroupBy;
 | |
|         groupBySort = 0;
 | |
|       }else{
 | |
|         /* Rows are coming out in undetermined order.  We have to push
 | |
|         ** each row into a sorting index, terminate the first loop,
 | |
|         ** then loop over the sorting index in order to get the output
 | |
|         ** in sorted order
 | |
|         */
 | |
|         groupBySort = 1;
 | |
|         sqlite3ExprCodeExprList(pParse, pGroupBy);
 | |
|         sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0);
 | |
|         j = pGroupBy->nExpr+1;
 | |
|         for(i=0; i<sAggInfo.nColumn; i++){
 | |
|           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
 | |
|           if( pCol->iSorterColumn<j ) continue;
 | |
|           sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable);
 | |
|           j++;
 | |
|         }
 | |
|         sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0);
 | |
|         sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0);
 | |
|         sqlite3WhereEnd(pWInfo);
 | |
|         sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
 | |
|         VdbeComment((v, "# GROUP BY sort"));
 | |
|         sAggInfo.useSortingIdx = 1;
 | |
|       }
 | |
| 
 | |
|       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
 | |
|       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
 | |
|       ** Then compare the current GROUP BY terms against the GROUP BY terms
 | |
|       ** from the previous row currently stored in a0, a1, a2...
 | |
|       */
 | |
|       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
 | |
|       for(j=0; j<pGroupBy->nExpr; j++){
 | |
|         if( groupBySort ){
 | |
|           sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j);
 | |
|         }else{
 | |
|           sAggInfo.directMode = 1;
 | |
|           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr);
 | |
|         }
 | |
|         sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1);
 | |
|       }
 | |
|       for(j=pGroupBy->nExpr-1; j>=0; j--){
 | |
|         if( j<pGroupBy->nExpr-1 ){
 | |
|           sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0);
 | |
|         }
 | |
|         sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0);
 | |
|         if( j==0 ){
 | |
|           sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow);
 | |
|         }else{
 | |
|           sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange);
 | |
|         }
 | |
|         sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ);
 | |
|       }
 | |
| 
 | |
|       /* Generate code that runs whenever the GROUP BY changes.
 | |
|       ** Change in the GROUP BY are detected by the previous code
 | |
|       ** block.  If there were no changes, this block is skipped.
 | |
|       **
 | |
|       ** This code copies current group by terms in b0,b1,b2,...
 | |
|       ** over to a0,a1,a2.  It then calls the output subroutine
 | |
|       ** and resets the aggregate accumulator registers in preparation
 | |
|       ** for the next GROUP BY batch.
 | |
|       */
 | |
|       sqlite3VdbeResolveLabel(v, addrGroupByChange);
 | |
|       for(j=0; j<pGroupBy->nExpr; j++){
 | |
|         sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j);
 | |
|       }
 | |
|       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
 | |
|       VdbeComment((v, "# output one row"));
 | |
|       sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd);
 | |
|       VdbeComment((v, "# check abort flag"));
 | |
|       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
 | |
|       VdbeComment((v, "# reset accumulator"));
 | |
| 
 | |
|       /* Update the aggregate accumulators based on the content of
 | |
|       ** the current row
 | |
|       */
 | |
|       sqlite3VdbeResolveLabel(v, addrProcessRow);
 | |
|       updateAccumulator(pParse, &sAggInfo);
 | |
|       sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag);
 | |
|       VdbeComment((v, "# indicate data in accumulator"));
 | |
| 
 | |
|       /* End of the loop
 | |
|       */
 | |
|       if( groupBySort ){
 | |
|         sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
 | |
|       }else{
 | |
|         sqlite3WhereEnd(pWInfo);
 | |
|         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
 | |
|       }
 | |
| 
 | |
|       /* Output the final row of result
 | |
|       */
 | |
|       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
 | |
|       VdbeComment((v, "# output final row"));
 | |
|       
 | |
|     } /* endif pGroupBy */
 | |
|     else {
 | |
|       /* This case runs if the aggregate has no GROUP BY clause.  The
 | |
|       ** processing is much simpler since there is only a single row
 | |
|       ** of output.
 | |
|       */
 | |
|       resetAccumulator(pParse, &sAggInfo);
 | |
|       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
 | |
|       if( pWInfo==0 ) goto select_end;
 | |
|       updateAccumulator(pParse, &sAggInfo);
 | |
|       sqlite3WhereEnd(pWInfo);
 | |
|       finalizeAggFunctions(pParse, &sAggInfo);
 | |
|       pOrderBy = 0;
 | |
|       if( pHaving ){
 | |
|         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1);
 | |
|       }
 | |
|       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 
 | |
|                       eDest, iParm, addrEnd, addrEnd, aff);
 | |
|     }
 | |
|     sqlite3VdbeResolveLabel(v, addrEnd);
 | |
|     
 | |
|   } /* endif aggregate query */
 | |
| 
 | |
|   /* If there is an ORDER BY clause, then we need to sort the results
 | |
|   ** and send them to the callback one by one.
 | |
|   */
 | |
|   if( pOrderBy ){
 | |
|     generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm);
 | |
|   }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
|   /* If this was a subquery, we have now converted the subquery into a
 | |
|   ** temporary table.  So set the SrcList_item.isPopulated flag to prevent
 | |
|   ** this subquery from being evaluated again and to force the use of
 | |
|   ** the temporary table.
 | |
|   */
 | |
|   if( pParent ){
 | |
|     assert( pParent->pSrc->nSrc>parentTab );
 | |
|     assert( pParent->pSrc->a[parentTab].pSelect==p );
 | |
|     pParent->pSrc->a[parentTab].isPopulated = 1;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Jump here to skip this query
 | |
|   */
 | |
|   sqlite3VdbeResolveLabel(v, iEnd);
 | |
| 
 | |
|   /* The SELECT was successfully coded.   Set the return code to 0
 | |
|   ** to indicate no errors.
 | |
|   */
 | |
|   rc = 0;
 | |
| 
 | |
|   /* Control jumps to here if an error is encountered above, or upon
 | |
|   ** successful coding of the SELECT.
 | |
|   */
 | |
| select_end:
 | |
| 
 | |
|   /* Identify column names if we will be using them in a callback.  This
 | |
|   ** step is skipped if the output is going to some other destination.
 | |
|   */
 | |
|   if( rc==SQLITE_OK && eDest==SRT_Callback ){
 | |
|     generateColumnNames(pParse, pTabList, pEList);
 | |
|   }
 | |
| 
 | |
|   sqliteFree(sAggInfo.aCol);
 | |
|   sqliteFree(sAggInfo.aFunc);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| #if defined(SQLITE_DEBUG)
 | |
| /*
 | |
| *******************************************************************************
 | |
| ** The following code is used for testing and debugging only.  The code
 | |
| ** that follows does not appear in normal builds.
 | |
| **
 | |
| ** These routines are used to print out the content of all or part of a 
 | |
| ** parse structures such as Select or Expr.  Such printouts are useful
 | |
| ** for helping to understand what is happening inside the code generator
 | |
| ** during the execution of complex SELECT statements.
 | |
| **
 | |
| ** These routine are not called anywhere from within the normal
 | |
| ** code base.  Then are intended to be called from within the debugger
 | |
| ** or from temporary "printf" statements inserted for debugging.
 | |
| */
 | |
| void sqlite3PrintExpr(Expr *p){
 | |
|   if( p->token.z && p->token.n>0 ){
 | |
|     sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
 | |
|   }else{
 | |
|     sqlite3DebugPrintf("(%d", p->op);
 | |
|   }
 | |
|   if( p->pLeft ){
 | |
|     sqlite3DebugPrintf(" ");
 | |
|     sqlite3PrintExpr(p->pLeft);
 | |
|   }
 | |
|   if( p->pRight ){
 | |
|     sqlite3DebugPrintf(" ");
 | |
|     sqlite3PrintExpr(p->pRight);
 | |
|   }
 | |
|   sqlite3DebugPrintf(")");
 | |
| }
 | |
| void sqlite3PrintExprList(ExprList *pList){
 | |
|   int i;
 | |
|   for(i=0; i<pList->nExpr; i++){
 | |
|     sqlite3PrintExpr(pList->a[i].pExpr);
 | |
|     if( i<pList->nExpr-1 ){
 | |
|       sqlite3DebugPrintf(", ");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| void sqlite3PrintSelect(Select *p, int indent){
 | |
|   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
 | |
|   sqlite3PrintExprList(p->pEList);
 | |
|   sqlite3DebugPrintf("\n");
 | |
|   if( p->pSrc ){
 | |
|     char *zPrefix;
 | |
|     int i;
 | |
|     zPrefix = "FROM";
 | |
|     for(i=0; i<p->pSrc->nSrc; i++){
 | |
|       struct SrcList_item *pItem = &p->pSrc->a[i];
 | |
|       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
 | |
|       zPrefix = "";
 | |
|       if( pItem->pSelect ){
 | |
|         sqlite3DebugPrintf("(\n");
 | |
|         sqlite3PrintSelect(pItem->pSelect, indent+10);
 | |
|         sqlite3DebugPrintf("%*s)", indent+8, "");
 | |
|       }else if( pItem->zName ){
 | |
|         sqlite3DebugPrintf("%s", pItem->zName);
 | |
|       }
 | |
|       if( pItem->pTab ){
 | |
|         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
 | |
|       }
 | |
|       if( pItem->zAlias ){
 | |
|         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
 | |
|       }
 | |
|       if( i<p->pSrc->nSrc-1 ){
 | |
|         sqlite3DebugPrintf(",");
 | |
|       }
 | |
|       sqlite3DebugPrintf("\n");
 | |
|     }
 | |
|   }
 | |
|   if( p->pWhere ){
 | |
|     sqlite3DebugPrintf("%*s WHERE ", indent, "");
 | |
|     sqlite3PrintExpr(p->pWhere);
 | |
|     sqlite3DebugPrintf("\n");
 | |
|   }
 | |
|   if( p->pGroupBy ){
 | |
|     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
 | |
|     sqlite3PrintExprList(p->pGroupBy);
 | |
|     sqlite3DebugPrintf("\n");
 | |
|   }
 | |
|   if( p->pHaving ){
 | |
|     sqlite3DebugPrintf("%*s HAVING ", indent, "");
 | |
|     sqlite3PrintExpr(p->pHaving);
 | |
|     sqlite3DebugPrintf("\n");
 | |
|   }
 | |
|   if( p->pOrderBy ){
 | |
|     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
 | |
|     sqlite3PrintExprList(p->pOrderBy);
 | |
|     sqlite3DebugPrintf("\n");
 | |
|   }
 | |
| }
 | |
| /* End of the structure debug printing code
 | |
| *****************************************************************************/
 | |
| #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
 |