--HG-- extra : convert_revision : svn%3A39bc706e-5318-0410-9160-8a85361fbb7c/trunk%401209
		
			
				
	
	
		
			1605 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1605 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains C code routines that are called by the parser
 | |
| ** to handle INSERT statements in SQLite.
 | |
| **
 | |
| ** $Id$
 | |
| */
 | |
| #include "sqliteInt.h"
 | |
| 
 | |
| /*
 | |
| ** Set P3 of the most recently inserted opcode to a column affinity
 | |
| ** string for index pIdx. A column affinity string has one character
 | |
| ** for each column in the table, according to the affinity of the column:
 | |
| **
 | |
| **  Character      Column affinity
 | |
| **  ------------------------------
 | |
| **  'a'            TEXT
 | |
| **  'b'            NONE
 | |
| **  'c'            NUMERIC
 | |
| **  'd'            INTEGER
 | |
| **  'e'            REAL
 | |
| */
 | |
| void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
 | |
|   if( !pIdx->zColAff ){
 | |
|     /* The first time a column affinity string for a particular index is
 | |
|     ** required, it is allocated and populated here. It is then stored as
 | |
|     ** a member of the Index structure for subsequent use.
 | |
|     **
 | |
|     ** The column affinity string will eventually be deleted by
 | |
|     ** sqliteDeleteIndex() when the Index structure itself is cleaned
 | |
|     ** up.
 | |
|     */
 | |
|     int n;
 | |
|     Table *pTab = pIdx->pTable;
 | |
|     pIdx->zColAff = (char *)sqliteMalloc(pIdx->nColumn+1);
 | |
|     if( !pIdx->zColAff ){
 | |
|       return;
 | |
|     }
 | |
|     for(n=0; n<pIdx->nColumn; n++){
 | |
|       pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
 | |
|     }
 | |
|     pIdx->zColAff[pIdx->nColumn] = '\0';
 | |
|   }
 | |
|  
 | |
|   sqlite3VdbeChangeP3(v, -1, pIdx->zColAff, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set P3 of the most recently inserted opcode to a column affinity
 | |
| ** string for table pTab. A column affinity string has one character
 | |
| ** for each column indexed by the index, according to the affinity of the
 | |
| ** column:
 | |
| **
 | |
| **  Character      Column affinity
 | |
| **  ------------------------------
 | |
| **  'a'            TEXT
 | |
| **  'b'            NONE
 | |
| **  'c'            NUMERIC
 | |
| **  'd'            INTEGER
 | |
| **  'e'            REAL
 | |
| */
 | |
| void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
 | |
|   /* The first time a column affinity string for a particular table
 | |
|   ** is required, it is allocated and populated here. It is then 
 | |
|   ** stored as a member of the Table structure for subsequent use.
 | |
|   **
 | |
|   ** The column affinity string will eventually be deleted by
 | |
|   ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
 | |
|   */
 | |
|   if( !pTab->zColAff ){
 | |
|     char *zColAff;
 | |
|     int i;
 | |
| 
 | |
|     zColAff = (char *)sqliteMalloc(pTab->nCol+1);
 | |
|     if( !zColAff ){
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     for(i=0; i<pTab->nCol; i++){
 | |
|       zColAff[i] = pTab->aCol[i].affinity;
 | |
|     }
 | |
|     zColAff[pTab->nCol] = '\0';
 | |
| 
 | |
|     pTab->zColAff = zColAff;
 | |
|   }
 | |
| 
 | |
|   sqlite3VdbeChangeP3(v, -1, pTab->zColAff, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return non-zero if SELECT statement p opens the table with rootpage
 | |
| ** iTab in database iDb.  This is used to see if a statement of the form 
 | |
| ** "INSERT INTO <iDb, iTab> SELECT ..." can run without using temporary
 | |
| ** table for the results of the SELECT. 
 | |
| **
 | |
| ** No checking is done for sub-selects that are part of expressions.
 | |
| */
 | |
| static int selectReadsTable(Select *p, Schema *pSchema, int iTab){
 | |
|   int i;
 | |
|   struct SrcList_item *pItem;
 | |
|   if( p->pSrc==0 ) return 0;
 | |
|   for(i=0, pItem=p->pSrc->a; i<p->pSrc->nSrc; i++, pItem++){
 | |
|     if( pItem->pSelect ){
 | |
|       if( selectReadsTable(pItem->pSelect, pSchema, iTab) ) return 1;
 | |
|     }else{
 | |
|       if( pItem->pTab->pSchema==pSchema && pItem->pTab->tnum==iTab ) return 1;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOINCREMENT
 | |
| /*
 | |
| ** Write out code to initialize the autoincrement logic.  This code
 | |
| ** looks up the current autoincrement value in the sqlite_sequence
 | |
| ** table and stores that value in a memory cell.  Code generated by
 | |
| ** autoIncStep() will keep that memory cell holding the largest
 | |
| ** rowid value.  Code generated by autoIncEnd() will write the new
 | |
| ** largest value of the counter back into the sqlite_sequence table.
 | |
| **
 | |
| ** This routine returns the index of the mem[] cell that contains
 | |
| ** the maximum rowid counter.
 | |
| **
 | |
| ** Two memory cells are allocated.  The next memory cell after the
 | |
| ** one returned holds the rowid in sqlite_sequence where we will
 | |
| ** write back the revised maximum rowid.
 | |
| */
 | |
| static int autoIncBegin(
 | |
|   Parse *pParse,      /* Parsing context */
 | |
|   int iDb,            /* Index of the database holding pTab */
 | |
|   Table *pTab         /* The table we are writing to */
 | |
| ){
 | |
|   int memId = 0;
 | |
|   if( pTab->autoInc ){
 | |
|     Vdbe *v = pParse->pVdbe;
 | |
|     Db *pDb = &pParse->db->aDb[iDb];
 | |
|     int iCur = pParse->nTab;
 | |
|     int addr;
 | |
|     assert( v );
 | |
|     addr = sqlite3VdbeCurrentAddr(v);
 | |
|     memId = pParse->nMem+1;
 | |
|     pParse->nMem += 2;
 | |
|     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
 | |
|     sqlite3VdbeAddOp(v, OP_Rewind, iCur, addr+13);
 | |
|     sqlite3VdbeAddOp(v, OP_Column, iCur, 0);
 | |
|     sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_Ne, 0x100, addr+12);
 | |
|     sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_MemStore, memId-1, 1);
 | |
|     sqlite3VdbeAddOp(v, OP_Column, iCur, 1);
 | |
|     sqlite3VdbeAddOp(v, OP_MemStore, memId, 1);
 | |
|     sqlite3VdbeAddOp(v, OP_Goto, 0, addr+13);
 | |
|     sqlite3VdbeAddOp(v, OP_Next, iCur, addr+4);
 | |
|     sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
 | |
|   }
 | |
|   return memId;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Update the maximum rowid for an autoincrement calculation.
 | |
| **
 | |
| ** This routine should be called when the top of the stack holds a
 | |
| ** new rowid that is about to be inserted.  If that new rowid is
 | |
| ** larger than the maximum rowid in the memId memory cell, then the
 | |
| ** memory cell is updated.  The stack is unchanged.
 | |
| */
 | |
| static void autoIncStep(Parse *pParse, int memId){
 | |
|   if( memId>0 ){
 | |
|     sqlite3VdbeAddOp(pParse->pVdbe, OP_MemMax, memId, 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** After doing one or more inserts, the maximum rowid is stored
 | |
| ** in mem[memId].  Generate code to write this value back into the
 | |
| ** the sqlite_sequence table.
 | |
| */
 | |
| static void autoIncEnd(
 | |
|   Parse *pParse,     /* The parsing context */
 | |
|   int iDb,           /* Index of the database holding pTab */
 | |
|   Table *pTab,       /* Table we are inserting into */
 | |
|   int memId          /* Memory cell holding the maximum rowid */
 | |
| ){
 | |
|   if( pTab->autoInc ){
 | |
|     int iCur = pParse->nTab;
 | |
|     Vdbe *v = pParse->pVdbe;
 | |
|     Db *pDb = &pParse->db->aDb[iDb];
 | |
|     int addr;
 | |
|     assert( v );
 | |
|     addr = sqlite3VdbeCurrentAddr(v);
 | |
|     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
 | |
|     sqlite3VdbeAddOp(v, OP_MemLoad, memId-1, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+7);
 | |
|     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_NewRowid, iCur, 0);
 | |
|     sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_MemLoad, memId, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_MakeRecord, 2, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_Insert, iCur, OPFLAG_APPEND);
 | |
|     sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
 | |
|   }
 | |
| }
 | |
| #else
 | |
| /*
 | |
| ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
 | |
| ** above are all no-ops
 | |
| */
 | |
| # define autoIncBegin(A,B,C) (0)
 | |
| # define autoIncStep(A,B)
 | |
| # define autoIncEnd(A,B,C,D)
 | |
| #endif /* SQLITE_OMIT_AUTOINCREMENT */
 | |
| 
 | |
| 
 | |
| /* Forward declaration */
 | |
| static int xferOptimization(
 | |
|   Parse *pParse,        /* Parser context */
 | |
|   Table *pDest,         /* The table we are inserting into */
 | |
|   Select *pSelect,      /* A SELECT statement to use as the data source */
 | |
|   int onError,          /* How to handle constraint errors */
 | |
|   int iDbDest           /* The database of pDest */
 | |
| );
 | |
| 
 | |
| /*
 | |
| ** This routine is call to handle SQL of the following forms:
 | |
| **
 | |
| **    insert into TABLE (IDLIST) values(EXPRLIST)
 | |
| **    insert into TABLE (IDLIST) select
 | |
| **
 | |
| ** The IDLIST following the table name is always optional.  If omitted,
 | |
| ** then a list of all columns for the table is substituted.  The IDLIST
 | |
| ** appears in the pColumn parameter.  pColumn is NULL if IDLIST is omitted.
 | |
| **
 | |
| ** The pList parameter holds EXPRLIST in the first form of the INSERT
 | |
| ** statement above, and pSelect is NULL.  For the second form, pList is
 | |
| ** NULL and pSelect is a pointer to the select statement used to generate
 | |
| ** data for the insert.
 | |
| **
 | |
| ** The code generated follows one of four templates.  For a simple
 | |
| ** select with data coming from a VALUES clause, the code executes
 | |
| ** once straight down through.  The template looks like this:
 | |
| **
 | |
| **         open write cursor to <table> and its indices
 | |
| **         puts VALUES clause expressions onto the stack
 | |
| **         write the resulting record into <table>
 | |
| **         cleanup
 | |
| **
 | |
| ** The three remaining templates assume the statement is of the form
 | |
| **
 | |
| **   INSERT INTO <table> SELECT ...
 | |
| **
 | |
| ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
 | |
| ** in other words if the SELECT pulls all columns from a single table
 | |
| ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
 | |
| ** if <table2> and <table1> are distinct tables but have identical
 | |
| ** schemas, including all the same indices, then a special optimization
 | |
| ** is invoked that copies raw records from <table2> over to <table1>.
 | |
| ** See the xferOptimization() function for the implementation of this
 | |
| ** template.  This is the second template.
 | |
| **
 | |
| **         open a write cursor to <table>
 | |
| **         open read cursor on <table2>
 | |
| **         transfer all records in <table2> over to <table>
 | |
| **         close cursors
 | |
| **         foreach index on <table>
 | |
| **           open a write cursor on the <table> index
 | |
| **           open a read cursor on the corresponding <table2> index
 | |
| **           transfer all records from the read to the write cursors
 | |
| **           close cursors
 | |
| **         end foreach
 | |
| **
 | |
| ** The third template is for when the second template does not apply
 | |
| ** and the SELECT clause does not read from <table> at any time.
 | |
| ** The generated code follows this template:
 | |
| **
 | |
| **         goto B
 | |
| **      A: setup for the SELECT
 | |
| **         loop over the rows in the SELECT
 | |
| **           gosub C
 | |
| **         end loop
 | |
| **         cleanup after the SELECT
 | |
| **         goto D
 | |
| **      B: open write cursor to <table> and its indices
 | |
| **         goto A
 | |
| **      C: insert the select result into <table>
 | |
| **         return
 | |
| **      D: cleanup
 | |
| **
 | |
| ** The fourth template is used if the insert statement takes its
 | |
| ** values from a SELECT but the data is being inserted into a table
 | |
| ** that is also read as part of the SELECT.  In the third form,
 | |
| ** we have to use a intermediate table to store the results of
 | |
| ** the select.  The template is like this:
 | |
| **
 | |
| **         goto B
 | |
| **      A: setup for the SELECT
 | |
| **         loop over the tables in the SELECT
 | |
| **           gosub C
 | |
| **         end loop
 | |
| **         cleanup after the SELECT
 | |
| **         goto D
 | |
| **      C: insert the select result into the intermediate table
 | |
| **         return
 | |
| **      B: open a cursor to an intermediate table
 | |
| **         goto A
 | |
| **      D: open write cursor to <table> and its indices
 | |
| **         loop over the intermediate table
 | |
| **           transfer values form intermediate table into <table>
 | |
| **         end the loop
 | |
| **         cleanup
 | |
| */
 | |
| void sqlite3Insert(
 | |
|   Parse *pParse,        /* Parser context */
 | |
|   SrcList *pTabList,    /* Name of table into which we are inserting */
 | |
|   ExprList *pList,      /* List of values to be inserted */
 | |
|   Select *pSelect,      /* A SELECT statement to use as the data source */
 | |
|   IdList *pColumn,      /* Column names corresponding to IDLIST. */
 | |
|   int onError           /* How to handle constraint errors */
 | |
| ){
 | |
|   Table *pTab;          /* The table to insert into */
 | |
|   char *zTab;           /* Name of the table into which we are inserting */
 | |
|   const char *zDb;      /* Name of the database holding this table */
 | |
|   int i, j, idx;        /* Loop counters */
 | |
|   Vdbe *v;              /* Generate code into this virtual machine */
 | |
|   Index *pIdx;          /* For looping over indices of the table */
 | |
|   int nColumn;          /* Number of columns in the data */
 | |
|   int base = 0;         /* VDBE Cursor number for pTab */
 | |
|   int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */
 | |
|   sqlite3 *db;          /* The main database structure */
 | |
|   int keyColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
 | |
|   int endOfLoop;        /* Label for the end of the insertion loop */
 | |
|   int useTempTable = 0; /* Store SELECT results in intermediate table */
 | |
|   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
 | |
|   int iSelectLoop = 0;  /* Address of code that implements the SELECT */
 | |
|   int iCleanup = 0;     /* Address of the cleanup code */
 | |
|   int iInsertBlock = 0; /* Address of the subroutine used to insert data */
 | |
|   int iCntMem = 0;      /* Memory cell used for the row counter */
 | |
|   int newIdx = -1;      /* Cursor for the NEW table */
 | |
|   Db *pDb;              /* The database containing table being inserted into */
 | |
|   int counterMem = 0;   /* Memory cell holding AUTOINCREMENT counter */
 | |
|   int appendFlag = 0;   /* True if the insert is likely to be an append */
 | |
|   int iDb;
 | |
| 
 | |
|   int nHidden = 0;
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|   int isView;                 /* True if attempting to insert into a view */
 | |
|   int triggers_exist = 0;     /* True if there are FOR EACH ROW triggers */
 | |
| #endif
 | |
| 
 | |
|   if( pParse->nErr || sqlite3MallocFailed() ){
 | |
|     goto insert_cleanup;
 | |
|   }
 | |
|   db = pParse->db;
 | |
| 
 | |
|   /* Locate the table into which we will be inserting new information.
 | |
|   */
 | |
|   assert( pTabList->nSrc==1 );
 | |
|   zTab = pTabList->a[0].zName;
 | |
|   if( zTab==0 ) goto insert_cleanup;
 | |
|   pTab = sqlite3SrcListLookup(pParse, pTabList);
 | |
|   if( pTab==0 ){
 | |
|     goto insert_cleanup;
 | |
|   }
 | |
|   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | |
|   assert( iDb<db->nDb );
 | |
|   pDb = &db->aDb[iDb];
 | |
|   zDb = pDb->zName;
 | |
|   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
 | |
|     goto insert_cleanup;
 | |
|   }
 | |
| 
 | |
|   /* Figure out if we have any triggers and if the table being
 | |
|   ** inserted into is a view
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|   triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
 | |
|   isView = pTab->pSelect!=0;
 | |
| #else
 | |
| # define triggers_exist 0
 | |
| # define isView 0
 | |
| #endif
 | |
| #ifdef SQLITE_OMIT_VIEW
 | |
| # undef isView
 | |
| # define isView 0
 | |
| #endif
 | |
| 
 | |
|   /* Ensure that:
 | |
|   *  (a) the table is not read-only, 
 | |
|   *  (b) that if it is a view then ON INSERT triggers exist
 | |
|   */
 | |
|   if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
 | |
|     goto insert_cleanup;
 | |
|   }
 | |
|   assert( pTab!=0 );
 | |
| 
 | |
|   /* If pTab is really a view, make sure it has been initialized.
 | |
|   ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual 
 | |
|   ** module table).
 | |
|   */
 | |
|   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
 | |
|     goto insert_cleanup;
 | |
|   }
 | |
| 
 | |
|   /* Allocate a VDBE
 | |
|   */
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v==0 ) goto insert_cleanup;
 | |
|   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
 | |
|   sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
 | |
| 
 | |
|   /* if there are row triggers, allocate a temp table for new.* references. */
 | |
|   if( triggers_exist ){
 | |
|     newIdx = pParse->nTab++;
 | |
|   }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_XFER_OPT
 | |
|   /* If the statement is of the form
 | |
|   **
 | |
|   **       INSERT INTO <table1> SELECT * FROM <table2>;
 | |
|   **
 | |
|   ** Then special optimizations can be applied that make the transfer
 | |
|   ** very fast and which reduce fragmentation of indices.
 | |
|   */
 | |
|   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
 | |
|     assert( !triggers_exist );
 | |
|     assert( pList==0 );
 | |
|     goto insert_cleanup;
 | |
|   }
 | |
| #endif /* SQLITE_OMIT_XFER_OPT */
 | |
| 
 | |
|   /* If this is an AUTOINCREMENT table, look up the sequence number in the
 | |
|   ** sqlite_sequence table and store it in memory cell counterMem.  Also
 | |
|   ** remember the rowid of the sqlite_sequence table entry in memory cell
 | |
|   ** counterRowid.
 | |
|   */
 | |
|   counterMem = autoIncBegin(pParse, iDb, pTab);
 | |
| 
 | |
|   /* Figure out how many columns of data are supplied.  If the data
 | |
|   ** is coming from a SELECT statement, then this step also generates
 | |
|   ** all the code to implement the SELECT statement and invoke a subroutine
 | |
|   ** to process each row of the result. (Template 2.) If the SELECT
 | |
|   ** statement uses the the table that is being inserted into, then the
 | |
|   ** subroutine is also coded here.  That subroutine stores the SELECT
 | |
|   ** results in a temporary table. (Template 3.)
 | |
|   */
 | |
|   if( pSelect ){
 | |
|     /* Data is coming from a SELECT.  Generate code to implement that SELECT
 | |
|     */
 | |
|     int rc, iInitCode;
 | |
|     iInitCode = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
 | |
|     iSelectLoop = sqlite3VdbeCurrentAddr(v);
 | |
|     iInsertBlock = sqlite3VdbeMakeLabel(v);
 | |
| 
 | |
|     /* Resolve the expressions in the SELECT statement and execute it. */
 | |
|     rc = sqlite3Select(pParse, pSelect, SRT_Subroutine, iInsertBlock,0,0,0,0);
 | |
|     if( rc || pParse->nErr || sqlite3MallocFailed() ){
 | |
|       goto insert_cleanup;
 | |
|     }
 | |
| 
 | |
|     iCleanup = sqlite3VdbeMakeLabel(v);
 | |
|     sqlite3VdbeAddOp(v, OP_Goto, 0, iCleanup);
 | |
|     assert( pSelect->pEList );
 | |
|     nColumn = pSelect->pEList->nExpr;
 | |
| 
 | |
|     /* Set useTempTable to TRUE if the result of the SELECT statement
 | |
|     ** should be written into a temporary table.  Set to FALSE if each
 | |
|     ** row of the SELECT can be written directly into the result table.
 | |
|     **
 | |
|     ** A temp table must be used if the table being updated is also one
 | |
|     ** of the tables being read by the SELECT statement.  Also use a 
 | |
|     ** temp table in the case of row triggers.
 | |
|     */
 | |
|     if( triggers_exist || selectReadsTable(pSelect,pTab->pSchema,pTab->tnum) ){
 | |
|       useTempTable = 1;
 | |
|     }
 | |
| 
 | |
|     if( useTempTable ){
 | |
|       /* Generate the subroutine that SELECT calls to process each row of
 | |
|       ** the result.  Store the result in a temporary table
 | |
|       */
 | |
|       srcTab = pParse->nTab++;
 | |
|       sqlite3VdbeResolveLabel(v, iInsertBlock);
 | |
|       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_NewRowid, srcTab, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_Insert, srcTab, OPFLAG_APPEND);
 | |
|       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
 | |
| 
 | |
|       /* The following code runs first because the GOTO at the very top
 | |
|       ** of the program jumps to it.  Create the temporary table, then jump
 | |
|       ** back up and execute the SELECT code above.
 | |
|       */
 | |
|       sqlite3VdbeJumpHere(v, iInitCode);
 | |
|       sqlite3VdbeAddOp(v, OP_OpenEphemeral, srcTab, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_SetNumColumns, srcTab, nColumn);
 | |
|       sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop);
 | |
|       sqlite3VdbeResolveLabel(v, iCleanup);
 | |
|     }else{
 | |
|       sqlite3VdbeJumpHere(v, iInitCode);
 | |
|     }
 | |
|   }else{
 | |
|     /* This is the case if the data for the INSERT is coming from a VALUES
 | |
|     ** clause
 | |
|     */
 | |
|     NameContext sNC;
 | |
|     memset(&sNC, 0, sizeof(sNC));
 | |
|     sNC.pParse = pParse;
 | |
|     srcTab = -1;
 | |
|     useTempTable = 0;
 | |
|     nColumn = pList ? pList->nExpr : 0;
 | |
|     for(i=0; i<nColumn; i++){
 | |
|       if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){
 | |
|         goto insert_cleanup;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Make sure the number of columns in the source data matches the number
 | |
|   ** of columns to be inserted into the table.
 | |
|   */
 | |
|   if( IsVirtual(pTab) ){
 | |
|     for(i=0; i<pTab->nCol; i++){
 | |
|       nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
 | |
|     }
 | |
|   }
 | |
|   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
 | |
|     sqlite3ErrorMsg(pParse, 
 | |
|        "table %S has %d columns but %d values were supplied",
 | |
|        pTabList, 0, pTab->nCol, nColumn);
 | |
|     goto insert_cleanup;
 | |
|   }
 | |
|   if( pColumn!=0 && nColumn!=pColumn->nId ){
 | |
|     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
 | |
|     goto insert_cleanup;
 | |
|   }
 | |
| 
 | |
|   /* If the INSERT statement included an IDLIST term, then make sure
 | |
|   ** all elements of the IDLIST really are columns of the table and 
 | |
|   ** remember the column indices.
 | |
|   **
 | |
|   ** If the table has an INTEGER PRIMARY KEY column and that column
 | |
|   ** is named in the IDLIST, then record in the keyColumn variable
 | |
|   ** the index into IDLIST of the primary key column.  keyColumn is
 | |
|   ** the index of the primary key as it appears in IDLIST, not as
 | |
|   ** is appears in the original table.  (The index of the primary
 | |
|   ** key in the original table is pTab->iPKey.)
 | |
|   */
 | |
|   if( pColumn ){
 | |
|     for(i=0; i<pColumn->nId; i++){
 | |
|       pColumn->a[i].idx = -1;
 | |
|     }
 | |
|     for(i=0; i<pColumn->nId; i++){
 | |
|       for(j=0; j<pTab->nCol; j++){
 | |
|         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
 | |
|           pColumn->a[i].idx = j;
 | |
|           if( j==pTab->iPKey ){
 | |
|             keyColumn = i;
 | |
|           }
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if( j>=pTab->nCol ){
 | |
|         if( sqlite3IsRowid(pColumn->a[i].zName) ){
 | |
|           keyColumn = i;
 | |
|         }else{
 | |
|           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
 | |
|               pTabList, 0, pColumn->a[i].zName);
 | |
|           pParse->nErr++;
 | |
|           goto insert_cleanup;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If there is no IDLIST term but the table has an integer primary
 | |
|   ** key, the set the keyColumn variable to the primary key column index
 | |
|   ** in the original table definition.
 | |
|   */
 | |
|   if( pColumn==0 && nColumn>0 ){
 | |
|     keyColumn = pTab->iPKey;
 | |
|   }
 | |
| 
 | |
|   /* Open the temp table for FOR EACH ROW triggers
 | |
|   */
 | |
|   if( triggers_exist ){
 | |
|     sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol);
 | |
|   }
 | |
|     
 | |
|   /* Initialize the count of rows to be inserted
 | |
|   */
 | |
|   if( db->flags & SQLITE_CountRows ){
 | |
|     iCntMem = pParse->nMem++;
 | |
|     sqlite3VdbeAddOp(v, OP_MemInt, 0, iCntMem);
 | |
|   }
 | |
| 
 | |
|   /* Open tables and indices if there are no row triggers */
 | |
|   if( !triggers_exist ){
 | |
|     base = pParse->nTab;
 | |
|     sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
 | |
|   }
 | |
| 
 | |
|   /* If the data source is a temporary table, then we have to create
 | |
|   ** a loop because there might be multiple rows of data.  If the data
 | |
|   ** source is a subroutine call from the SELECT statement, then we need
 | |
|   ** to launch the SELECT statement processing.
 | |
|   */
 | |
|   if( useTempTable ){
 | |
|     iBreak = sqlite3VdbeMakeLabel(v);
 | |
|     sqlite3VdbeAddOp(v, OP_Rewind, srcTab, iBreak);
 | |
|     iCont = sqlite3VdbeCurrentAddr(v);
 | |
|   }else if( pSelect ){
 | |
|     sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop);
 | |
|     sqlite3VdbeResolveLabel(v, iInsertBlock);
 | |
|   }
 | |
| 
 | |
|   /* Run the BEFORE and INSTEAD OF triggers, if there are any
 | |
|   */
 | |
|   endOfLoop = sqlite3VdbeMakeLabel(v);
 | |
|   if( triggers_exist & TRIGGER_BEFORE ){
 | |
| 
 | |
|     /* build the NEW.* reference row.  Note that if there is an INTEGER
 | |
|     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
 | |
|     ** translated into a unique ID for the row.  But on a BEFORE trigger,
 | |
|     ** we do not know what the unique ID will be (because the insert has
 | |
|     ** not happened yet) so we substitute a rowid of -1
 | |
|     */
 | |
|     if( keyColumn<0 ){
 | |
|       sqlite3VdbeAddOp(v, OP_Integer, -1, 0);
 | |
|     }else if( useTempTable ){
 | |
|       sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn);
 | |
|     }else{
 | |
|       assert( pSelect==0 );  /* Otherwise useTempTable is true */
 | |
|       sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
 | |
|       sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
 | |
|       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_Integer, -1, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
 | |
|     }
 | |
| 
 | |
|     /* Cannot have triggers on a virtual table. If it were possible,
 | |
|     ** this block would have to account for hidden column.
 | |
|     */
 | |
|     assert(!IsVirtual(pTab));
 | |
| 
 | |
|     /* Create the new column data
 | |
|     */
 | |
|     for(i=0; i<pTab->nCol; i++){
 | |
|       if( pColumn==0 ){
 | |
|         j = i;
 | |
|       }else{
 | |
|         for(j=0; j<pColumn->nId; j++){
 | |
|           if( pColumn->a[j].idx==i ) break;
 | |
|         }
 | |
|       }
 | |
|       if( pColumn && j>=pColumn->nId ){
 | |
|         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
 | |
|       }else if( useTempTable ){
 | |
|         sqlite3VdbeAddOp(v, OP_Column, srcTab, j); 
 | |
|       }else{
 | |
|         assert( pSelect==0 ); /* Otherwise useTempTable is true */
 | |
|         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr);
 | |
|       }
 | |
|     }
 | |
|     sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
 | |
| 
 | |
|     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
 | |
|     ** do not attempt any conversions before assembling the record.
 | |
|     ** If this is a real table, attempt conversions as required by the
 | |
|     ** table column affinities.
 | |
|     */
 | |
|     if( !isView ){
 | |
|       sqlite3TableAffinityStr(v, pTab);
 | |
|     }
 | |
|     sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
 | |
| 
 | |
|     /* Fire BEFORE or INSTEAD OF triggers */
 | |
|     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab, 
 | |
|         newIdx, -1, onError, endOfLoop) ){
 | |
|       goto insert_cleanup;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If any triggers exists, the opening of tables and indices is deferred
 | |
|   ** until now.
 | |
|   */
 | |
|   if( triggers_exist && !isView ){
 | |
|     base = pParse->nTab;
 | |
|     sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
 | |
|   }
 | |
| 
 | |
|   /* Push the record number for the new entry onto the stack.  The
 | |
|   ** record number is a randomly generate integer created by NewRowid
 | |
|   ** except when the table has an INTEGER PRIMARY KEY column, in which
 | |
|   ** case the record number is the same as that column. 
 | |
|   */
 | |
|   if( !isView ){
 | |
|     if( IsVirtual(pTab) ){
 | |
|       /* The row that the VUpdate opcode will delete:  none */
 | |
|       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
 | |
|     }
 | |
|     if( keyColumn>=0 ){
 | |
|       if( useTempTable ){
 | |
|         sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn);
 | |
|       }else if( pSelect ){
 | |
|         sqlite3VdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
 | |
|       }else{
 | |
|         VdbeOp *pOp;
 | |
|         sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
 | |
|         pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
 | |
|         if( pOp && pOp->opcode==OP_Null ){
 | |
|           appendFlag = 1;
 | |
|           pOp->opcode = OP_NewRowid;
 | |
|           pOp->p1 = base;
 | |
|           pOp->p2 = counterMem;
 | |
|         }
 | |
|       }
 | |
|       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
 | |
|       ** to generate a unique primary key value.
 | |
|       */
 | |
|       if( !appendFlag ){
 | |
|         sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
 | |
|         sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | |
|         sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem);
 | |
|         sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
 | |
|       }
 | |
|     }else if( IsVirtual(pTab) ){
 | |
|       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
 | |
|     }else{
 | |
|       sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem);
 | |
|       appendFlag = 1;
 | |
|     }
 | |
|     autoIncStep(pParse, counterMem);
 | |
| 
 | |
|     /* Push onto the stack, data for all columns of the new entry, beginning
 | |
|     ** with the first column.
 | |
|     */
 | |
|     nHidden = 0;
 | |
|     for(i=0; i<pTab->nCol; i++){
 | |
|       if( i==pTab->iPKey ){
 | |
|         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
 | |
|         ** Whenever this column is read, the record number will be substituted
 | |
|         ** in its place.  So will fill this column with a NULL to avoid
 | |
|         ** taking up data space with information that will never be used. */
 | |
|         sqlite3VdbeAddOp(v, OP_Null, 0, 0);
 | |
|         continue;
 | |
|       }
 | |
|       if( pColumn==0 ){
 | |
|         if( IsHiddenColumn(&pTab->aCol[i]) ){
 | |
|           assert( IsVirtual(pTab) );
 | |
|           j = -1;
 | |
|           nHidden++;
 | |
|         }else{
 | |
|           j = i - nHidden;
 | |
|         }
 | |
|       }else{
 | |
|         for(j=0; j<pColumn->nId; j++){
 | |
|           if( pColumn->a[j].idx==i ) break;
 | |
|         }
 | |
|       }
 | |
|       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
 | |
|         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
 | |
|       }else if( useTempTable ){
 | |
|         sqlite3VdbeAddOp(v, OP_Column, srcTab, j); 
 | |
|       }else if( pSelect ){
 | |
|         sqlite3VdbeAddOp(v, OP_Dup, i+nColumn-j+IsVirtual(pTab), 1);
 | |
|       }else{
 | |
|         sqlite3ExprCode(pParse, pList->a[j].pExpr);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Generate code to check constraints and generate index keys and
 | |
|     ** do the insertion.
 | |
|     */
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|     if( IsVirtual(pTab) ){
 | |
|       pParse->pVirtualLock = pTab;
 | |
|       sqlite3VdbeOp3(v, OP_VUpdate, 1, pTab->nCol+2,
 | |
|                      (const char*)pTab->pVtab, P3_VTAB);
 | |
|     }else
 | |
| #endif
 | |
|     {
 | |
|       sqlite3GenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0,
 | |
|                                      0, onError, endOfLoop);
 | |
|       sqlite3CompleteInsertion(pParse, pTab, base, 0,0,0,
 | |
|                             (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
 | |
|                             appendFlag);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Update the count of rows that are inserted
 | |
|   */
 | |
|   if( (db->flags & SQLITE_CountRows)!=0 ){
 | |
|     sqlite3VdbeAddOp(v, OP_MemIncr, 1, iCntMem);
 | |
|   }
 | |
| 
 | |
|   if( triggers_exist ){
 | |
|     /* Close all tables opened */
 | |
|     if( !isView ){
 | |
|       sqlite3VdbeAddOp(v, OP_Close, base, 0);
 | |
|       for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
 | |
|         sqlite3VdbeAddOp(v, OP_Close, idx+base, 0);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Code AFTER triggers */
 | |
|     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
 | |
|           newIdx, -1, onError, endOfLoop) ){
 | |
|       goto insert_cleanup;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* The bottom of the loop, if the data source is a SELECT statement
 | |
|   */
 | |
|   sqlite3VdbeResolveLabel(v, endOfLoop);
 | |
|   if( useTempTable ){
 | |
|     sqlite3VdbeAddOp(v, OP_Next, srcTab, iCont);
 | |
|     sqlite3VdbeResolveLabel(v, iBreak);
 | |
|     sqlite3VdbeAddOp(v, OP_Close, srcTab, 0);
 | |
|   }else if( pSelect ){
 | |
|     sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_Return, 0, 0);
 | |
|     sqlite3VdbeResolveLabel(v, iCleanup);
 | |
|   }
 | |
| 
 | |
|   if( !triggers_exist && !IsVirtual(pTab) ){
 | |
|     /* Close all tables opened */
 | |
|     sqlite3VdbeAddOp(v, OP_Close, base, 0);
 | |
|     for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
 | |
|       sqlite3VdbeAddOp(v, OP_Close, idx+base, 0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Update the sqlite_sequence table by storing the content of the
 | |
|   ** counter value in memory counterMem back into the sqlite_sequence
 | |
|   ** table.
 | |
|   */
 | |
|   autoIncEnd(pParse, iDb, pTab, counterMem);
 | |
| 
 | |
|   /*
 | |
|   ** Return the number of rows inserted. If this routine is 
 | |
|   ** generating code because of a call to sqlite3NestedParse(), do not
 | |
|   ** invoke the callback function.
 | |
|   */
 | |
|   if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
 | |
|     sqlite3VdbeAddOp(v, OP_MemLoad, iCntMem, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
 | |
|     sqlite3VdbeSetNumCols(v, 1);
 | |
|     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P3_STATIC);
 | |
|   }
 | |
| 
 | |
| insert_cleanup:
 | |
|   sqlite3SrcListDelete(pTabList);
 | |
|   sqlite3ExprListDelete(pList);
 | |
|   sqlite3SelectDelete(pSelect);
 | |
|   sqlite3IdListDelete(pColumn);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code to do a constraint check prior to an INSERT or an UPDATE.
 | |
| **
 | |
| ** When this routine is called, the stack contains (from bottom to top)
 | |
| ** the following values:
 | |
| **
 | |
| **    1.  The rowid of the row to be updated before the update.  This
 | |
| **        value is omitted unless we are doing an UPDATE that involves a
 | |
| **        change to the record number.
 | |
| **
 | |
| **    2.  The rowid of the row after the update.
 | |
| **
 | |
| **    3.  The data in the first column of the entry after the update.
 | |
| **
 | |
| **    i.  Data from middle columns...
 | |
| **
 | |
| **    N.  The data in the last column of the entry after the update.
 | |
| **
 | |
| ** The old rowid shown as entry (1) above is omitted unless both isUpdate
 | |
| ** and rowidChng are 1.  isUpdate is true for UPDATEs and false for
 | |
| ** INSERTs and rowidChng is true if the record number is being changed.
 | |
| **
 | |
| ** The code generated by this routine pushes additional entries onto
 | |
| ** the stack which are the keys for new index entries for the new record.
 | |
| ** The order of index keys is the same as the order of the indices on
 | |
| ** the pTable->pIndex list.  A key is only created for index i if 
 | |
| ** aIdxUsed!=0 and aIdxUsed[i]!=0.
 | |
| **
 | |
| ** This routine also generates code to check constraints.  NOT NULL,
 | |
| ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
 | |
| ** then the appropriate action is performed.  There are five possible
 | |
| ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
 | |
| **
 | |
| **  Constraint type  Action       What Happens
 | |
| **  ---------------  ----------   ----------------------------------------
 | |
| **  any              ROLLBACK     The current transaction is rolled back and
 | |
| **                                sqlite3_exec() returns immediately with a
 | |
| **                                return code of SQLITE_CONSTRAINT.
 | |
| **
 | |
| **  any              ABORT        Back out changes from the current command
 | |
| **                                only (do not do a complete rollback) then
 | |
| **                                cause sqlite3_exec() to return immediately
 | |
| **                                with SQLITE_CONSTRAINT.
 | |
| **
 | |
| **  any              FAIL         Sqlite_exec() returns immediately with a
 | |
| **                                return code of SQLITE_CONSTRAINT.  The
 | |
| **                                transaction is not rolled back and any
 | |
| **                                prior changes are retained.
 | |
| **
 | |
| **  any              IGNORE       The record number and data is popped from
 | |
| **                                the stack and there is an immediate jump
 | |
| **                                to label ignoreDest.
 | |
| **
 | |
| **  NOT NULL         REPLACE      The NULL value is replace by the default
 | |
| **                                value for that column.  If the default value
 | |
| **                                is NULL, the action is the same as ABORT.
 | |
| **
 | |
| **  UNIQUE           REPLACE      The other row that conflicts with the row
 | |
| **                                being inserted is removed.
 | |
| **
 | |
| **  CHECK            REPLACE      Illegal.  The results in an exception.
 | |
| **
 | |
| ** Which action to take is determined by the overrideError parameter.
 | |
| ** Or if overrideError==OE_Default, then the pParse->onError parameter
 | |
| ** is used.  Or if pParse->onError==OE_Default then the onError value
 | |
| ** for the constraint is used.
 | |
| **
 | |
| ** The calling routine must open a read/write cursor for pTab with
 | |
| ** cursor number "base".  All indices of pTab must also have open
 | |
| ** read/write cursors with cursor number base+i for the i-th cursor.
 | |
| ** Except, if there is no possibility of a REPLACE action then
 | |
| ** cursors do not need to be open for indices where aIdxUsed[i]==0.
 | |
| **
 | |
| ** If the isUpdate flag is true, it means that the "base" cursor is
 | |
| ** initially pointing to an entry that is being updated.  The isUpdate
 | |
| ** flag causes extra code to be generated so that the "base" cursor
 | |
| ** is still pointing at the same entry after the routine returns.
 | |
| ** Without the isUpdate flag, the "base" cursor might be moved.
 | |
| */
 | |
| void sqlite3GenerateConstraintChecks(
 | |
|   Parse *pParse,      /* The parser context */
 | |
|   Table *pTab,        /* the table into which we are inserting */
 | |
|   int base,           /* Index of a read/write cursor pointing at pTab */
 | |
|   char *aIdxUsed,     /* Which indices are used.  NULL means all are used */
 | |
|   int rowidChng,      /* True if the record number will change */
 | |
|   int isUpdate,       /* True for UPDATE, False for INSERT */
 | |
|   int overrideError,  /* Override onError to this if not OE_Default */
 | |
|   int ignoreDest      /* Jump to this label on an OE_Ignore resolution */
 | |
| ){
 | |
|   int i;
 | |
|   Vdbe *v;
 | |
|   int nCol;
 | |
|   int onError;
 | |
|   int addr;
 | |
|   int extra;
 | |
|   int iCur;
 | |
|   Index *pIdx;
 | |
|   int seenReplace = 0;
 | |
|   int jumpInst1=0, jumpInst2;
 | |
|   int hasTwoRowids = (isUpdate && rowidChng);
 | |
| 
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   assert( v!=0 );
 | |
|   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
 | |
|   nCol = pTab->nCol;
 | |
| 
 | |
|   /* Test all NOT NULL constraints.
 | |
|   */
 | |
|   for(i=0; i<nCol; i++){
 | |
|     if( i==pTab->iPKey ){
 | |
|       continue;
 | |
|     }
 | |
|     onError = pTab->aCol[i].notNull;
 | |
|     if( onError==OE_None ) continue;
 | |
|     if( overrideError!=OE_Default ){
 | |
|       onError = overrideError;
 | |
|     }else if( onError==OE_Default ){
 | |
|       onError = OE_Abort;
 | |
|     }
 | |
|     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
 | |
|       onError = OE_Abort;
 | |
|     }
 | |
|     sqlite3VdbeAddOp(v, OP_Dup, nCol-1-i, 1);
 | |
|     addr = sqlite3VdbeAddOp(v, OP_NotNull, 1, 0);
 | |
|     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
 | |
|         || onError==OE_Ignore || onError==OE_Replace );
 | |
|     switch( onError ){
 | |
|       case OE_Rollback:
 | |
|       case OE_Abort:
 | |
|       case OE_Fail: {
 | |
|         char *zMsg = 0;
 | |
|         sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
 | |
|         sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
 | |
|                         " may not be NULL", (char*)0);
 | |
|         sqlite3VdbeChangeP3(v, -1, zMsg, P3_DYNAMIC);
 | |
|         break;
 | |
|       }
 | |
|       case OE_Ignore: {
 | |
|         sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
 | |
|         sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
 | |
|         break;
 | |
|       }
 | |
|       case OE_Replace: {
 | |
|         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
 | |
|         sqlite3VdbeAddOp(v, OP_Push, nCol-i, 0);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     sqlite3VdbeJumpHere(v, addr);
 | |
|   }
 | |
| 
 | |
|   /* Test all CHECK constraints
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_CHECK
 | |
|   if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
 | |
|     int allOk = sqlite3VdbeMakeLabel(v);
 | |
|     assert( pParse->ckOffset==0 );
 | |
|     pParse->ckOffset = nCol;
 | |
|     sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, 1);
 | |
|     assert( pParse->ckOffset==nCol );
 | |
|     pParse->ckOffset = 0;
 | |
|     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
 | |
|     if( onError==OE_Ignore || onError==OE_Replace ){
 | |
|       sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
 | |
|     }else{
 | |
|       sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
 | |
|     }
 | |
|     sqlite3VdbeResolveLabel(v, allOk);
 | |
|   }
 | |
| #endif /* !defined(SQLITE_OMIT_CHECK) */
 | |
| 
 | |
|   /* If we have an INTEGER PRIMARY KEY, make sure the primary key
 | |
|   ** of the new record does not previously exist.  Except, if this
 | |
|   ** is an UPDATE and the primary key is not changing, that is OK.
 | |
|   */
 | |
|   if( rowidChng ){
 | |
|     onError = pTab->keyConf;
 | |
|     if( overrideError!=OE_Default ){
 | |
|       onError = overrideError;
 | |
|     }else if( onError==OE_Default ){
 | |
|       onError = OE_Abort;
 | |
|     }
 | |
|     
 | |
|     if( isUpdate ){
 | |
|       sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
 | |
|       sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
 | |
|       jumpInst1 = sqlite3VdbeAddOp(v, OP_Eq, 0, 0);
 | |
|     }
 | |
|     sqlite3VdbeAddOp(v, OP_Dup, nCol, 1);
 | |
|     jumpInst2 = sqlite3VdbeAddOp(v, OP_NotExists, base, 0);
 | |
|     switch( onError ){
 | |
|       default: {
 | |
|         onError = OE_Abort;
 | |
|         /* Fall thru into the next case */
 | |
|       }
 | |
|       case OE_Rollback:
 | |
|       case OE_Abort:
 | |
|       case OE_Fail: {
 | |
|         sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
 | |
|                          "PRIMARY KEY must be unique", P3_STATIC);
 | |
|         break;
 | |
|       }
 | |
|       case OE_Replace: {
 | |
|         sqlite3GenerateRowIndexDelete(v, pTab, base, 0);
 | |
|         if( isUpdate ){
 | |
|           sqlite3VdbeAddOp(v, OP_Dup, nCol+hasTwoRowids, 1);
 | |
|           sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
 | |
|         }
 | |
|         seenReplace = 1;
 | |
|         break;
 | |
|       }
 | |
|       case OE_Ignore: {
 | |
|         assert( seenReplace==0 );
 | |
|         sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
 | |
|         sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     sqlite3VdbeJumpHere(v, jumpInst2);
 | |
|     if( isUpdate ){
 | |
|       sqlite3VdbeJumpHere(v, jumpInst1);
 | |
|       sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
 | |
|       sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Test all UNIQUE constraints by creating entries for each UNIQUE
 | |
|   ** index and making sure that duplicate entries do not already exist.
 | |
|   ** Add the new records to the indices as we go.
 | |
|   */
 | |
|   extra = -1;
 | |
|   for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
 | |
|     if( aIdxUsed && aIdxUsed[iCur]==0 ) continue;  /* Skip unused indices */
 | |
|     extra++;
 | |
| 
 | |
|     /* Create a key for accessing the index entry */
 | |
|     sqlite3VdbeAddOp(v, OP_Dup, nCol+extra, 1);
 | |
|     for(i=0; i<pIdx->nColumn; i++){
 | |
|       int idx = pIdx->aiColumn[i];
 | |
|       if( idx==pTab->iPKey ){
 | |
|         sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1);
 | |
|       }else{
 | |
|         sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1);
 | |
|       }
 | |
|     }
 | |
|     jumpInst1 = sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0);
 | |
|     sqlite3IndexAffinityStr(v, pIdx);
 | |
| 
 | |
|     /* Find out what action to take in case there is an indexing conflict */
 | |
|     onError = pIdx->onError;
 | |
|     if( onError==OE_None ) continue;  /* pIdx is not a UNIQUE index */
 | |
|     if( overrideError!=OE_Default ){
 | |
|       onError = overrideError;
 | |
|     }else if( onError==OE_Default ){
 | |
|       onError = OE_Abort;
 | |
|     }
 | |
|     if( seenReplace ){
 | |
|       if( onError==OE_Ignore ) onError = OE_Replace;
 | |
|       else if( onError==OE_Fail ) onError = OE_Abort;
 | |
|     }
 | |
|     
 | |
| 
 | |
|     /* Check to see if the new index entry will be unique */
 | |
|     sqlite3VdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRowids, 1);
 | |
|     jumpInst2 = sqlite3VdbeAddOp(v, OP_IsUnique, base+iCur+1, 0);
 | |
| 
 | |
|     /* Generate code that executes if the new index entry is not unique */
 | |
|     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
 | |
|         || onError==OE_Ignore || onError==OE_Replace );
 | |
|     switch( onError ){
 | |
|       case OE_Rollback:
 | |
|       case OE_Abort:
 | |
|       case OE_Fail: {
 | |
|         int j, n1, n2;
 | |
|         char zErrMsg[200];
 | |
|         sqlite3_snprintf(sizeof(zErrMsg), zErrMsg,
 | |
|                          pIdx->nColumn>1 ? "columns " : "column ");
 | |
|         n1 = strlen(zErrMsg);
 | |
|         for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
 | |
|           char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
 | |
|           n2 = strlen(zCol);
 | |
|           if( j>0 ){
 | |
|             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", ");
 | |
|             n1 += 2;
 | |
|           }
 | |
|           if( n1+n2>sizeof(zErrMsg)-30 ){
 | |
|             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "...");
 | |
|             n1 += 3;
 | |
|             break;
 | |
|           }else{
 | |
|             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
 | |
|             n1 += n2;
 | |
|           }
 | |
|         }
 | |
|         sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], 
 | |
|             pIdx->nColumn>1 ? " are not unique" : " is not unique");
 | |
|         sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0);
 | |
|         break;
 | |
|       }
 | |
|       case OE_Ignore: {
 | |
|         assert( seenReplace==0 );
 | |
|         sqlite3VdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRowids, 0);
 | |
|         sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
 | |
|         break;
 | |
|       }
 | |
|       case OE_Replace: {
 | |
|         sqlite3GenerateRowDelete(pParse->db, v, pTab, base, 0);
 | |
|         if( isUpdate ){
 | |
|           sqlite3VdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRowids, 1);
 | |
|           sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
 | |
|         }
 | |
|         seenReplace = 1;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| #if NULL_DISTINCT_FOR_UNIQUE
 | |
|     sqlite3VdbeJumpHere(v, jumpInst1);
 | |
| #endif
 | |
|     sqlite3VdbeJumpHere(v, jumpInst2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine generates code to finish the INSERT or UPDATE operation
 | |
| ** that was started by a prior call to sqlite3GenerateConstraintChecks.
 | |
| ** The stack must contain keys for all active indices followed by data
 | |
| ** and the rowid for the new entry.  This routine creates the new
 | |
| ** entries in all indices and in the main table.
 | |
| **
 | |
| ** The arguments to this routine should be the same as the first six
 | |
| ** arguments to sqlite3GenerateConstraintChecks.
 | |
| */
 | |
| void sqlite3CompleteInsertion(
 | |
|   Parse *pParse,      /* The parser context */
 | |
|   Table *pTab,        /* the table into which we are inserting */
 | |
|   int base,           /* Index of a read/write cursor pointing at pTab */
 | |
|   char *aIdxUsed,     /* Which indices are used.  NULL means all are used */
 | |
|   int rowidChng,      /* True if the record number will change */
 | |
|   int isUpdate,       /* True for UPDATE, False for INSERT */
 | |
|   int newIdx,         /* Index of NEW table for triggers.  -1 if none */
 | |
|   int appendBias      /* True if this is likely to be an append */
 | |
| ){
 | |
|   int i;
 | |
|   Vdbe *v;
 | |
|   int nIdx;
 | |
|   Index *pIdx;
 | |
|   int pik_flags;
 | |
| 
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   assert( v!=0 );
 | |
|   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
 | |
|   for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
 | |
|   for(i=nIdx-1; i>=0; i--){
 | |
|     if( aIdxUsed && aIdxUsed[i]==0 ) continue;
 | |
|     sqlite3VdbeAddOp(v, OP_IdxInsert, base+i+1, 0);
 | |
|   }
 | |
|   sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
 | |
|   sqlite3TableAffinityStr(v, pTab);
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|   if( newIdx>=0 ){
 | |
|     sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
 | |
|   }
 | |
| #endif
 | |
|   if( pParse->nested ){
 | |
|     pik_flags = 0;
 | |
|   }else{
 | |
|     pik_flags = OPFLAG_NCHANGE;
 | |
|     pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
 | |
|   }
 | |
|   if( appendBias ){
 | |
|     pik_flags |= OPFLAG_APPEND;
 | |
|   }
 | |
|   sqlite3VdbeAddOp(v, OP_Insert, base, pik_flags);
 | |
|   if( !pParse->nested ){
 | |
|     sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
 | |
|   }
 | |
|   
 | |
|   if( isUpdate && rowidChng ){
 | |
|     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that will open cursors for a table and for all
 | |
| ** indices of that table.  The "base" parameter is the cursor number used
 | |
| ** for the table.  Indices are opened on subsequent cursors.
 | |
| */
 | |
| void sqlite3OpenTableAndIndices(
 | |
|   Parse *pParse,   /* Parsing context */
 | |
|   Table *pTab,     /* Table to be opened */
 | |
|   int base,        /* Cursor number assigned to the table */
 | |
|   int op           /* OP_OpenRead or OP_OpenWrite */
 | |
| ){
 | |
|   int i;
 | |
|   int iDb;
 | |
|   Index *pIdx;
 | |
|   Vdbe *v;
 | |
| 
 | |
|   if( IsVirtual(pTab) ) return;
 | |
|   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   assert( v!=0 );
 | |
|   sqlite3OpenTable(pParse, base, iDb, pTab, op);
 | |
|   for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
 | |
|     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
 | |
|     assert( pIdx->pSchema==pTab->pSchema );
 | |
|     sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
 | |
|     VdbeComment((v, "# %s", pIdx->zName));
 | |
|     sqlite3VdbeOp3(v, op, i+base, pIdx->tnum, (char*)pKey, P3_KEYINFO_HANDOFF);
 | |
|   }
 | |
|   if( pParse->nTab<=base+i ){
 | |
|     pParse->nTab = base+i;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| /*
 | |
| ** The following global variable is incremented whenever the
 | |
| ** transfer optimization is used.  This is used for testing
 | |
| ** purposes only - to make sure the transfer optimization really
 | |
| ** is happening when it is suppose to.
 | |
| */
 | |
| int sqlite3_xferopt_count;
 | |
| #endif /* SQLITE_TEST */
 | |
| 
 | |
| 
 | |
| #ifndef SQLITE_OMIT_XFER_OPT
 | |
| /*
 | |
| ** Check to collation names to see if they are compatible.
 | |
| */
 | |
| static int xferCompatibleCollation(const char *z1, const char *z2){
 | |
|   if( z1==0 ){
 | |
|     return z2==0;
 | |
|   }
 | |
|   if( z2==0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   return sqlite3StrICmp(z1, z2)==0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Check to see if index pSrc is compatible as a source of data
 | |
| ** for index pDest in an insert transfer optimization.  The rules
 | |
| ** for a compatible index:
 | |
| **
 | |
| **    *   The index is over the same set of columns
 | |
| **    *   The same DESC and ASC markings occurs on all columns
 | |
| **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
 | |
| **    *   The same collating sequence on each column
 | |
| */
 | |
| static int xferCompatibleIndex(Index *pDest, Index *pSrc){
 | |
|   int i;
 | |
|   assert( pDest && pSrc );
 | |
|   assert( pDest->pTable!=pSrc->pTable );
 | |
|   if( pDest->nColumn!=pSrc->nColumn ){
 | |
|     return 0;   /* Different number of columns */
 | |
|   }
 | |
|   if( pDest->onError!=pSrc->onError ){
 | |
|     return 0;   /* Different conflict resolution strategies */
 | |
|   }
 | |
|   for(i=0; i<pSrc->nColumn; i++){
 | |
|     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
 | |
|       return 0;   /* Different columns indexed */
 | |
|     }
 | |
|     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
 | |
|       return 0;   /* Different sort orders */
 | |
|     }
 | |
|     if( pSrc->azColl[i]!=pDest->azColl[i] ){
 | |
|       return 0;   /* Different sort orders */
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If no test above fails then the indices must be compatible */
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Attempt the transfer optimization on INSERTs of the form
 | |
| **
 | |
| **     INSERT INTO tab1 SELECT * FROM tab2;
 | |
| **
 | |
| ** This optimization is only attempted if
 | |
| **
 | |
| **    (1)  tab1 and tab2 have identical schemas including all the
 | |
| **         same indices and constraints
 | |
| **
 | |
| **    (2)  tab1 and tab2 are different tables
 | |
| **
 | |
| **    (3)  There must be no triggers on tab1
 | |
| **
 | |
| **    (4)  The result set of the SELECT statement is "*"
 | |
| **
 | |
| **    (5)  The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
 | |
| **         or LIMIT clause.
 | |
| **
 | |
| **    (6)  The SELECT statement is a simple (not a compound) select that
 | |
| **         contains only tab2 in its FROM clause
 | |
| **
 | |
| ** This method for implementing the INSERT transfers raw records from
 | |
| ** tab2 over to tab1.  The columns are not decoded.  Raw records from
 | |
| ** the indices of tab2 are transfered to tab1 as well.  In so doing,
 | |
| ** the resulting tab1 has much less fragmentation.
 | |
| **
 | |
| ** This routine returns TRUE if the optimization is attempted.  If any
 | |
| ** of the conditions above fail so that the optimization should not
 | |
| ** be attempted, then this routine returns FALSE.
 | |
| */
 | |
| static int xferOptimization(
 | |
|   Parse *pParse,        /* Parser context */
 | |
|   Table *pDest,         /* The table we are inserting into */
 | |
|   Select *pSelect,      /* A SELECT statement to use as the data source */
 | |
|   int onError,          /* How to handle constraint errors */
 | |
|   int iDbDest           /* The database of pDest */
 | |
| ){
 | |
|   ExprList *pEList;                /* The result set of the SELECT */
 | |
|   Table *pSrc;                     /* The table in the FROM clause of SELECT */
 | |
|   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
 | |
|   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
 | |
|   int i;                           /* Loop counter */
 | |
|   int iDbSrc;                      /* The database of pSrc */
 | |
|   int iSrc, iDest;                 /* Cursors from source and destination */
 | |
|   int addr1, addr2;                /* Loop addresses */
 | |
|   int emptyDestTest;               /* Address of test for empty pDest */
 | |
|   int emptySrcTest;                /* Address of test for empty pSrc */
 | |
|   Vdbe *v;                         /* The VDBE we are building */
 | |
|   KeyInfo *pKey;                   /* Key information for an index */
 | |
|   int counterMem;                  /* Memory register used by AUTOINC */
 | |
|   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
 | |
| 
 | |
|   if( pSelect==0 ){
 | |
|     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
 | |
|   }
 | |
|   if( pDest->pTrigger ){
 | |
|     return 0;   /* tab1 must not have triggers */
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   if( pDest->isVirtual ){
 | |
|     return 0;   /* tab1 must not be a virtual table */
 | |
|   }
 | |
| #endif
 | |
|   if( onError==OE_Default ){
 | |
|     onError = OE_Abort;
 | |
|   }
 | |
|   if( onError!=OE_Abort && onError!=OE_Rollback ){
 | |
|     return 0;   /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
 | |
|   }
 | |
|   if( pSelect->pSrc==0 ){
 | |
|     return 0;   /* SELECT must have a FROM clause */
 | |
|   }
 | |
|   if( pSelect->pSrc->nSrc!=1 ){
 | |
|     return 0;   /* FROM clause must have exactly one term */
 | |
|   }
 | |
|   if( pSelect->pSrc->a[0].pSelect ){
 | |
|     return 0;   /* FROM clause cannot contain a subquery */
 | |
|   }
 | |
|   if( pSelect->pWhere ){
 | |
|     return 0;   /* SELECT may not have a WHERE clause */
 | |
|   }
 | |
|   if( pSelect->pOrderBy ){
 | |
|     return 0;   /* SELECT may not have an ORDER BY clause */
 | |
|   }
 | |
|   /* Do not need to test for a HAVING clause.  If HAVING is present but
 | |
|   ** there is no ORDER BY, we will get an error. */
 | |
|   if( pSelect->pGroupBy ){
 | |
|     return 0;   /* SELECT may not have a GROUP BY clause */
 | |
|   }
 | |
|   if( pSelect->pLimit ){
 | |
|     return 0;   /* SELECT may not have a LIMIT clause */
 | |
|   }
 | |
|   assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
 | |
|   if( pSelect->pPrior ){
 | |
|     return 0;   /* SELECT may not be a compound query */
 | |
|   }
 | |
|   if( pSelect->isDistinct ){
 | |
|     return 0;   /* SELECT may not be DISTINCT */
 | |
|   }
 | |
|   pEList = pSelect->pEList;
 | |
|   assert( pEList!=0 );
 | |
|   if( pEList->nExpr!=1 ){
 | |
|     return 0;   /* The result set must have exactly one column */
 | |
|   }
 | |
|   assert( pEList->a[0].pExpr );
 | |
|   if( pEList->a[0].pExpr->op!=TK_ALL ){
 | |
|     return 0;   /* The result set must be the special operator "*" */
 | |
|   }
 | |
| 
 | |
|   /* At this point we have established that the statement is of the
 | |
|   ** correct syntactic form to participate in this optimization.  Now
 | |
|   ** we have to check the semantics.
 | |
|   */
 | |
|   pItem = pSelect->pSrc->a;
 | |
|   pSrc = sqlite3LocateTable(pParse, pItem->zName, pItem->zDatabase);
 | |
|   if( pSrc==0 ){
 | |
|     return 0;   /* FROM clause does not contain a real table */
 | |
|   }
 | |
|   if( pSrc==pDest ){
 | |
|     return 0;   /* tab1 and tab2 may not be the same table */
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   if( pSrc->isVirtual ){
 | |
|     return 0;   /* tab2 must not be a virtual table */
 | |
|   }
 | |
| #endif
 | |
|   if( pSrc->pSelect ){
 | |
|     return 0;   /* tab2 may not be a view */
 | |
|   }
 | |
|   if( pDest->nCol!=pSrc->nCol ){
 | |
|     return 0;   /* Number of columns must be the same in tab1 and tab2 */
 | |
|   }
 | |
|   if( pDest->iPKey!=pSrc->iPKey ){
 | |
|     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
 | |
|   }
 | |
|   for(i=0; i<pDest->nCol; i++){
 | |
|     if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
 | |
|       return 0;    /* Affinity must be the same on all columns */
 | |
|     }
 | |
|     if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
 | |
|       return 0;    /* Collating sequence must be the same on all columns */
 | |
|     }
 | |
|     if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
 | |
|       return 0;    /* tab2 must be NOT NULL if tab1 is */
 | |
|     }
 | |
|   }
 | |
|   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
 | |
|     if( pDestIdx->onError!=OE_None ){
 | |
|       destHasUniqueIdx = 1;
 | |
|     }
 | |
|     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
 | |
|       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
 | |
|     }
 | |
|     if( pSrcIdx==0 ){
 | |
|       return 0;    /* pDestIdx has no corresponding index in pSrc */
 | |
|     }
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_CHECK
 | |
|   if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
 | |
|     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* If we get this far, it means either:
 | |
|   **
 | |
|   **    *   We can always do the transfer if the table contains an
 | |
|   **        an integer primary key
 | |
|   **
 | |
|   **    *   We can conditionally do the transfer if the destination
 | |
|   **        table is empty.
 | |
|   */
 | |
| #ifdef SQLITE_TEST
 | |
|   sqlite3_xferopt_count++;
 | |
| #endif
 | |
|   iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   iSrc = pParse->nTab++;
 | |
|   iDest = pParse->nTab++;
 | |
|   counterMem = autoIncBegin(pParse, iDbDest, pDest);
 | |
|   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
 | |
|   if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
 | |
|     /* If tables do not have an INTEGER PRIMARY KEY and there
 | |
|     ** are indices to be copied and the destination is not empty,
 | |
|     ** we have to disallow the transfer optimization because the
 | |
|     ** the rowids might change which will mess up indexing.
 | |
|     **
 | |
|     ** Or if the destination has a UNIQUE index and is not empty,
 | |
|     ** we also disallow the transfer optimization because we cannot
 | |
|     ** insure that all entries in the union of DEST and SRC will be
 | |
|     ** unique.
 | |
|     */
 | |
|     addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iDest, 0);
 | |
|     emptyDestTest = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
 | |
|     sqlite3VdbeJumpHere(v, addr1);
 | |
|   }else{
 | |
|     emptyDestTest = 0;
 | |
|   }
 | |
|   sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
 | |
|   emptySrcTest = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0);
 | |
|   if( pDest->iPKey>=0 ){
 | |
|     addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
 | |
|     addr2 = sqlite3VdbeAddOp(v, OP_NotExists, iDest, 0);
 | |
|     sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, 
 | |
|                       "PRIMARY KEY must be unique", P3_STATIC);
 | |
|     sqlite3VdbeJumpHere(v, addr2);
 | |
|     autoIncStep(pParse, counterMem);
 | |
|   }else if( pDest->pIndex==0 ){
 | |
|     addr1 = sqlite3VdbeAddOp(v, OP_NewRowid, iDest, 0);
 | |
|   }else{
 | |
|     addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0);
 | |
|     assert( pDest->autoInc==0 );
 | |
|   }
 | |
|   sqlite3VdbeAddOp(v, OP_RowData, iSrc, 0);
 | |
|   sqlite3VdbeOp3(v, OP_Insert, iDest,
 | |
|                     OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND,
 | |
|                     pDest->zName, 0);
 | |
|   sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1);
 | |
|   autoIncEnd(pParse, iDbDest, pDest, counterMem);
 | |
|   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
 | |
|     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
 | |
|       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
 | |
|     }
 | |
|     assert( pSrcIdx );
 | |
|     sqlite3VdbeAddOp(v, OP_Close, iSrc, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_Integer, iDbSrc, 0);
 | |
|     pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
 | |
|     VdbeComment((v, "# %s", pSrcIdx->zName));
 | |
|     sqlite3VdbeOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, 
 | |
|                    (char*)pKey, P3_KEYINFO_HANDOFF);
 | |
|     sqlite3VdbeAddOp(v, OP_Integer, iDbDest, 0);
 | |
|     pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
 | |
|     VdbeComment((v, "# %s", pDestIdx->zName));
 | |
|     sqlite3VdbeOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, 
 | |
|                    (char*)pKey, P3_KEYINFO_HANDOFF);
 | |
|     addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_RowKey, iSrc, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_IdxInsert, iDest, 1);
 | |
|     sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1+1);
 | |
|     sqlite3VdbeJumpHere(v, addr1);
 | |
|   }
 | |
|   sqlite3VdbeJumpHere(v, emptySrcTest);
 | |
|   sqlite3VdbeAddOp(v, OP_Close, iSrc, 0);
 | |
|   sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
 | |
|   if( emptyDestTest ){
 | |
|     sqlite3VdbeAddOp(v, OP_Halt, SQLITE_OK, 0);
 | |
|     sqlite3VdbeJumpHere(v, emptyDestTest);
 | |
|     sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
 | |
|     return 0;
 | |
|   }else{
 | |
|     return 1;
 | |
|   }
 | |
| }
 | |
| #endif /* SQLITE_OMIT_XFER_OPT */
 |