--HG-- extra : convert_revision : svn%3A39bc706e-5318-0410-9160-8a85361fbb7c/trunk%401209
		
			
				
	
	
		
			1494 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1494 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** 2002 February 23
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains the C functions that implement various SQL
 | |
| ** functions of SQLite.  
 | |
| **
 | |
| ** There is only one exported symbol in this file - the function
 | |
| ** sqliteRegisterBuildinFunctions() found at the bottom of the file.
 | |
| ** All other code has file scope.
 | |
| **
 | |
| ** $Id$
 | |
| */
 | |
| #include "sqliteInt.h"
 | |
| #include <ctype.h>
 | |
| /* #include <math.h> */
 | |
| #include <stdlib.h>
 | |
| #include <assert.h>
 | |
| #include "vdbeInt.h"
 | |
| #include "os.h"
 | |
| 
 | |
| /*
 | |
| ** Return the collating function associated with a function.
 | |
| */
 | |
| static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
 | |
|   return context->pColl;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the non-aggregate min() and max() functions
 | |
| */
 | |
| static void minmaxFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   int i;
 | |
|   int mask;    /* 0 for min() or 0xffffffff for max() */
 | |
|   int iBest;
 | |
|   CollSeq *pColl;
 | |
| 
 | |
|   if( argc==0 ) return;
 | |
|   mask = sqlite3_user_data(context)==0 ? 0 : -1;
 | |
|   pColl = sqlite3GetFuncCollSeq(context);
 | |
|   assert( pColl );
 | |
|   assert( mask==-1 || mask==0 );
 | |
|   iBest = 0;
 | |
|   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
 | |
|   for(i=1; i<argc; i++){
 | |
|     if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
 | |
|     if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
 | |
|       iBest = i;
 | |
|     }
 | |
|   }
 | |
|   sqlite3_result_value(context, argv[iBest]);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the type of the argument.
 | |
| */
 | |
| static void typeofFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   const char *z = 0;
 | |
|   switch( sqlite3_value_type(argv[0]) ){
 | |
|     case SQLITE_NULL:    z = "null";    break;
 | |
|     case SQLITE_INTEGER: z = "integer"; break;
 | |
|     case SQLITE_TEXT:    z = "text";    break;
 | |
|     case SQLITE_FLOAT:   z = "real";    break;
 | |
|     case SQLITE_BLOB:    z = "blob";    break;
 | |
|   }
 | |
|   sqlite3_result_text(context, z, -1, SQLITE_STATIC);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Implementation of the length() function
 | |
| */
 | |
| static void lengthFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   int len;
 | |
| 
 | |
|   assert( argc==1 );
 | |
|   switch( sqlite3_value_type(argv[0]) ){
 | |
|     case SQLITE_BLOB:
 | |
|     case SQLITE_INTEGER:
 | |
|     case SQLITE_FLOAT: {
 | |
|       sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
 | |
|       break;
 | |
|     }
 | |
|     case SQLITE_TEXT: {
 | |
|       const unsigned char *z = sqlite3_value_text(argv[0]);
 | |
|       if( z==0 ) return;
 | |
|       len = 0;
 | |
|       while( *z ){
 | |
|         len++;
 | |
|         SQLITE_SKIP_UTF8(z);
 | |
|       }
 | |
|       sqlite3_result_int(context, len);
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       sqlite3_result_null(context);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the abs() function
 | |
| */
 | |
| static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
 | |
|   assert( argc==1 );
 | |
|   switch( sqlite3_value_type(argv[0]) ){
 | |
|     case SQLITE_INTEGER: {
 | |
|       i64 iVal = sqlite3_value_int64(argv[0]);
 | |
|       if( iVal<0 ){
 | |
|         if( (iVal<<1)==0 ){
 | |
|           sqlite3_result_error(context, "integer overflow", -1);
 | |
|           return;
 | |
|         }
 | |
|         iVal = -iVal;
 | |
|       } 
 | |
|       sqlite3_result_int64(context, iVal);
 | |
|       break;
 | |
|     }
 | |
|     case SQLITE_NULL: {
 | |
|       sqlite3_result_null(context);
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       double rVal = sqlite3_value_double(argv[0]);
 | |
|       if( rVal<0 ) rVal = -rVal;
 | |
|       sqlite3_result_double(context, rVal);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the substr() function.
 | |
| **
 | |
| ** substr(x,p1,p2)  returns p2 characters of x[] beginning with p1.
 | |
| ** p1 is 1-indexed.  So substr(x,1,1) returns the first character
 | |
| ** of x.  If x is text, then we actually count UTF-8 characters.
 | |
| ** If x is a blob, then we count bytes.
 | |
| **
 | |
| ** If p1 is negative, then we begin abs(p1) from the end of x[].
 | |
| */
 | |
| static void substrFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   const unsigned char *z;
 | |
|   const unsigned char *z2;
 | |
|   int len;
 | |
|   int p0type;
 | |
|   i64 p1, p2;
 | |
| 
 | |
|   assert( argc==3 );
 | |
|   p0type = sqlite3_value_type(argv[0]);
 | |
|   if( p0type==SQLITE_BLOB ){
 | |
|     len = sqlite3_value_bytes(argv[0]);
 | |
|     z = sqlite3_value_blob(argv[0]);
 | |
|     if( z==0 ) return;
 | |
|     assert( len==sqlite3_value_bytes(argv[0]) );
 | |
|   }else{
 | |
|     z = sqlite3_value_text(argv[0]);
 | |
|     if( z==0 ) return;
 | |
|     len = 0;
 | |
|     for(z2=z; *z2; len++){
 | |
|       SQLITE_SKIP_UTF8(z2);
 | |
|     }
 | |
|   }
 | |
|   p1 = sqlite3_value_int(argv[1]);
 | |
|   p2 = sqlite3_value_int(argv[2]);
 | |
|   if( p1<0 ){
 | |
|     p1 += len;
 | |
|     if( p1<0 ){
 | |
|       p2 += p1;
 | |
|       p1 = 0;
 | |
|     }
 | |
|   }else if( p1>0 ){
 | |
|     p1--;
 | |
|   }
 | |
|   if( p1+p2>len ){
 | |
|     p2 = len-p1;
 | |
|   }
 | |
|   if( p0type!=SQLITE_BLOB ){
 | |
|     while( *z && p1 ){
 | |
|       SQLITE_SKIP_UTF8(z);
 | |
|       p1--;
 | |
|     }
 | |
|     for(z2=z; *z2 && p2; p2--){
 | |
|       SQLITE_SKIP_UTF8(z2);
 | |
|     }
 | |
|     sqlite3_result_text(context, (char*)z, z2-z, SQLITE_TRANSIENT);
 | |
|   }else{
 | |
|     if( p2<0 ) p2 = 0;
 | |
|     sqlite3_result_blob(context, (char*)&z[p1], p2, SQLITE_TRANSIENT);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the round() function
 | |
| */
 | |
| static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
 | |
|   int n = 0;
 | |
|   double r;
 | |
|   char zBuf[500];  /* larger than the %f representation of the largest double */
 | |
|   assert( argc==1 || argc==2 );
 | |
|   if( argc==2 ){
 | |
|     if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
 | |
|     n = sqlite3_value_int(argv[1]);
 | |
|     if( n>30 ) n = 30;
 | |
|     if( n<0 ) n = 0;
 | |
|   }
 | |
|   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
 | |
|   r = sqlite3_value_double(argv[0]);
 | |
|   sqlite3_snprintf(sizeof(zBuf),zBuf,"%.*f",n,r);
 | |
|   sqlite3AtoF(zBuf, &r);
 | |
|   sqlite3_result_double(context, r);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the upper() and lower() SQL functions.
 | |
| */
 | |
| static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
 | |
|   char *z1;
 | |
|   const char *z2;
 | |
|   int i, n;
 | |
|   if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
 | |
|   z2 = (char*)sqlite3_value_text(argv[0]);
 | |
|   n = sqlite3_value_bytes(argv[0]);
 | |
|   /* Verify that the call to _bytes() does not invalidate the _text() pointer */
 | |
|   assert( z2==(char*)sqlite3_value_text(argv[0]) );
 | |
|   if( z2 ){
 | |
|     z1 = sqlite3_malloc(n+1);
 | |
|     if( z1 ){
 | |
|       memcpy(z1, z2, n+1);
 | |
|       for(i=0; z1[i]; i++){
 | |
|         z1[i] = toupper(z1[i]);
 | |
|       }
 | |
|       sqlite3_result_text(context, z1, -1, sqlite3_free);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
 | |
|   char *z1;
 | |
|   const char *z2;
 | |
|   int i, n;
 | |
|   if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
 | |
|   z2 = (char*)sqlite3_value_text(argv[0]);
 | |
|   n = sqlite3_value_bytes(argv[0]);
 | |
|   /* Verify that the call to _bytes() does not invalidate the _text() pointer */
 | |
|   assert( z2==(char*)sqlite3_value_text(argv[0]) );
 | |
|   if( z2 ){
 | |
|     z1 = sqlite3_malloc(n+1);
 | |
|     if( z1 ){
 | |
|       memcpy(z1, z2, n+1);
 | |
|       for(i=0; z1[i]; i++){
 | |
|         z1[i] = tolower(z1[i]);
 | |
|       }
 | |
|       sqlite3_result_text(context, z1, -1, sqlite3_free);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the IFNULL(), NVL(), and COALESCE() functions.  
 | |
| ** All three do the same thing.  They return the first non-NULL
 | |
| ** argument.
 | |
| */
 | |
| static void ifnullFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   int i;
 | |
|   for(i=0; i<argc; i++){
 | |
|     if( SQLITE_NULL!=sqlite3_value_type(argv[i]) ){
 | |
|       sqlite3_result_value(context, argv[i]);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of random().  Return a random integer.  
 | |
| */
 | |
| static void randomFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   sqlite_int64 r;
 | |
|   sqlite3Randomness(sizeof(r), &r);
 | |
|   if( (r<<1)==0 ) r = 0;  /* Prevent 0x8000.... as the result so that we */
 | |
|                           /* can always do abs() of the result */
 | |
|   sqlite3_result_int64(context, r);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of randomblob(N).  Return a random blob
 | |
| ** that is N bytes long.
 | |
| */
 | |
| static void randomBlob(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   int n;
 | |
|   unsigned char *p;
 | |
|   assert( argc==1 );
 | |
|   n = sqlite3_value_int(argv[0]);
 | |
|   if( n<1 ){
 | |
|     n = 1;
 | |
|   }
 | |
|   if( n>SQLITE_MAX_LENGTH ){
 | |
|     sqlite3_result_error_toobig(context);
 | |
|     return;
 | |
|   }
 | |
|   p = sqliteMalloc(n);
 | |
|   if( p ){
 | |
|     sqlite3Randomness(n, p);
 | |
|     sqlite3_result_blob(context, (char*)p, n, sqlite3FreeX);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the last_insert_rowid() SQL function.  The return
 | |
| ** value is the same as the sqlite3_last_insert_rowid() API function.
 | |
| */
 | |
| static void last_insert_rowid(
 | |
|   sqlite3_context *context, 
 | |
|   int arg, 
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   sqlite3 *db = sqlite3_user_data(context);
 | |
|   sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the changes() SQL function.  The return value is the
 | |
| ** same as the sqlite3_changes() API function.
 | |
| */
 | |
| static void changes(
 | |
|   sqlite3_context *context,
 | |
|   int arg,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   sqlite3 *db = sqlite3_user_data(context);
 | |
|   sqlite3_result_int(context, sqlite3_changes(db));
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the total_changes() SQL function.  The return value is
 | |
| ** the same as the sqlite3_total_changes() API function.
 | |
| */
 | |
| static void total_changes(
 | |
|   sqlite3_context *context,
 | |
|   int arg,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   sqlite3 *db = sqlite3_user_data(context);
 | |
|   sqlite3_result_int(context, sqlite3_total_changes(db));
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** A structure defining how to do GLOB-style comparisons.
 | |
| */
 | |
| struct compareInfo {
 | |
|   u8 matchAll;
 | |
|   u8 matchOne;
 | |
|   u8 matchSet;
 | |
|   u8 noCase;
 | |
| };
 | |
| 
 | |
| static const struct compareInfo globInfo = { '*', '?', '[', 0 };
 | |
| /* The correct SQL-92 behavior is for the LIKE operator to ignore
 | |
| ** case.  Thus  'a' LIKE 'A' would be true. */
 | |
| static const struct compareInfo likeInfoNorm = { '%', '_',   0, 1 };
 | |
| /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
 | |
| ** is case sensitive causing 'a' LIKE 'A' to be false */
 | |
| static const struct compareInfo likeInfoAlt = { '%', '_',   0, 0 };
 | |
| 
 | |
| /*
 | |
| ** Read a single UTF-8 character and return its value.
 | |
| */
 | |
| u32 sqlite3ReadUtf8(const unsigned char *z){
 | |
|   u32 c;
 | |
|   SQLITE_READ_UTF8(z, c);
 | |
|   return c;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compare two UTF-8 strings for equality where the first string can
 | |
| ** potentially be a "glob" expression.  Return true (1) if they
 | |
| ** are the same and false (0) if they are different.
 | |
| **
 | |
| ** Globbing rules:
 | |
| **
 | |
| **      '*'       Matches any sequence of zero or more characters.
 | |
| **
 | |
| **      '?'       Matches exactly one character.
 | |
| **
 | |
| **     [...]      Matches one character from the enclosed list of
 | |
| **                characters.
 | |
| **
 | |
| **     [^...]     Matches one character not in the enclosed list.
 | |
| **
 | |
| ** With the [...] and [^...] matching, a ']' character can be included
 | |
| ** in the list by making it the first character after '[' or '^'.  A
 | |
| ** range of characters can be specified using '-'.  Example:
 | |
| ** "[a-z]" matches any single lower-case letter.  To match a '-', make
 | |
| ** it the last character in the list.
 | |
| **
 | |
| ** This routine is usually quick, but can be N**2 in the worst case.
 | |
| **
 | |
| ** Hints: to match '*' or '?', put them in "[]".  Like this:
 | |
| **
 | |
| **         abc[*]xyz        Matches "abc*xyz" only
 | |
| */
 | |
| static int patternCompare(
 | |
|   const u8 *zPattern,              /* The glob pattern */
 | |
|   const u8 *zString,               /* The string to compare against the glob */
 | |
|   const struct compareInfo *pInfo, /* Information about how to do the compare */
 | |
|   const int esc                    /* The escape character */
 | |
| ){
 | |
|   register int c;
 | |
|   int invert;
 | |
|   int seen;
 | |
|   int c2;
 | |
|   u8 matchOne = pInfo->matchOne;
 | |
|   u8 matchAll = pInfo->matchAll;
 | |
|   u8 matchSet = pInfo->matchSet;
 | |
|   u8 noCase = pInfo->noCase; 
 | |
|   int prevEscape = 0;     /* True if the previous character was 'escape' */
 | |
| 
 | |
|   while( (c = *zPattern)!=0 ){
 | |
|     if( !prevEscape && c==matchAll ){
 | |
|       while( (c=zPattern[1]) == matchAll || c == matchOne ){
 | |
|         if( c==matchOne ){
 | |
|           if( *zString==0 ) return 0;
 | |
|           SQLITE_SKIP_UTF8(zString);
 | |
|         }
 | |
|         zPattern++;
 | |
|       }
 | |
|       if( c && esc && sqlite3ReadUtf8(&zPattern[1])==esc ){
 | |
|         u8 const *zTemp = &zPattern[1];
 | |
|         SQLITE_SKIP_UTF8(zTemp);
 | |
|         c = *zTemp;
 | |
|       }
 | |
|       if( c==0 ) return 1;
 | |
|       if( c==matchSet ){
 | |
|         assert( esc==0 );   /* This is GLOB, not LIKE */
 | |
|         while( *zString && patternCompare(&zPattern[1],zString,pInfo,esc)==0 ){
 | |
|           SQLITE_SKIP_UTF8(zString);
 | |
|         }
 | |
|         return *zString!=0;
 | |
|       }else{
 | |
|         while( (c2 = *zString)!=0 ){
 | |
|           if( noCase ){
 | |
|             c2 = sqlite3UpperToLower[c2];
 | |
|             c = sqlite3UpperToLower[c];
 | |
|             while( c2 != 0 && c2 != c ){ c2 = sqlite3UpperToLower[*++zString]; }
 | |
|           }else{
 | |
|             while( c2 != 0 && c2 != c ){ c2 = *++zString; }
 | |
|           }
 | |
|           if( c2==0 ) return 0;
 | |
|           if( patternCompare(&zPattern[1],zString,pInfo,esc) ) return 1;
 | |
|           SQLITE_SKIP_UTF8(zString);
 | |
|         }
 | |
|         return 0;
 | |
|       }
 | |
|     }else if( !prevEscape && c==matchOne ){
 | |
|       if( *zString==0 ) return 0;
 | |
|       SQLITE_SKIP_UTF8(zString);
 | |
|       zPattern++;
 | |
|     }else if( c==matchSet ){
 | |
|       int prior_c = 0;
 | |
|       assert( esc==0 );    /* This only occurs for GLOB, not LIKE */
 | |
|       seen = 0;
 | |
|       invert = 0;
 | |
|       c = sqlite3ReadUtf8(zString);
 | |
|       if( c==0 ) return 0;
 | |
|       c2 = *++zPattern;
 | |
|       if( c2=='^' ){ invert = 1; c2 = *++zPattern; }
 | |
|       if( c2==']' ){
 | |
|         if( c==']' ) seen = 1;
 | |
|         c2 = *++zPattern;
 | |
|       }
 | |
|       while( (c2 = sqlite3ReadUtf8(zPattern))!=0 && c2!=']' ){
 | |
|         if( c2=='-' && zPattern[1]!=']' && zPattern[1]!=0 && prior_c>0 ){
 | |
|           zPattern++;
 | |
|           c2 = sqlite3ReadUtf8(zPattern);
 | |
|           if( c>=prior_c && c<=c2 ) seen = 1;
 | |
|           prior_c = 0;
 | |
|         }else if( c==c2 ){
 | |
|           seen = 1;
 | |
|           prior_c = c2;
 | |
|         }else{
 | |
|           prior_c = c2;
 | |
|         }
 | |
|         SQLITE_SKIP_UTF8(zPattern);
 | |
|       }
 | |
|       if( c2==0 || (seen ^ invert)==0 ) return 0;
 | |
|       SQLITE_SKIP_UTF8(zString);
 | |
|       zPattern++;
 | |
|     }else if( esc && !prevEscape && sqlite3ReadUtf8(zPattern)==esc){
 | |
|       prevEscape = 1;
 | |
|       SQLITE_SKIP_UTF8(zPattern);
 | |
|     }else{
 | |
|       if( noCase ){
 | |
|         if( sqlite3UpperToLower[c] != sqlite3UpperToLower[*zString] ) return 0;
 | |
|       }else{
 | |
|         if( c != *zString ) return 0;
 | |
|       }
 | |
|       zPattern++;
 | |
|       zString++;
 | |
|       prevEscape = 0;
 | |
|     }
 | |
|   }
 | |
|   return *zString==0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Count the number of times that the LIKE operator (or GLOB which is
 | |
| ** just a variation of LIKE) gets called.  This is used for testing
 | |
| ** only.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| int sqlite3_like_count = 0;
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Implementation of the like() SQL function.  This function implements
 | |
| ** the build-in LIKE operator.  The first argument to the function is the
 | |
| ** pattern and the second argument is the string.  So, the SQL statements:
 | |
| **
 | |
| **       A LIKE B
 | |
| **
 | |
| ** is implemented as like(B,A).
 | |
| **
 | |
| ** This same function (with a different compareInfo structure) computes
 | |
| ** the GLOB operator.
 | |
| */
 | |
| static void likeFunc(
 | |
|   sqlite3_context *context, 
 | |
|   int argc, 
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   const unsigned char *zA, *zB;
 | |
|   int escape = 0;
 | |
| 
 | |
|   zB = sqlite3_value_text(argv[0]);
 | |
|   zA = sqlite3_value_text(argv[1]);
 | |
| 
 | |
|   /* Limit the length of the LIKE or GLOB pattern to avoid problems
 | |
|   ** of deep recursion and N*N behavior in patternCompare().
 | |
|   */
 | |
|   if( sqlite3_value_bytes(argv[0])>SQLITE_MAX_LIKE_PATTERN_LENGTH ){
 | |
|     sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
 | |
|     return;
 | |
|   }
 | |
|   assert( zB==sqlite3_value_text(argv[0]) );  /* Encoding did not change */
 | |
| 
 | |
|   if( argc==3 ){
 | |
|     /* The escape character string must consist of a single UTF-8 character.
 | |
|     ** Otherwise, return an error.
 | |
|     */
 | |
|     const unsigned char *zEsc = sqlite3_value_text(argv[2]);
 | |
|     if( zEsc==0 ) return;
 | |
|     if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
 | |
|       sqlite3_result_error(context, 
 | |
|           "ESCAPE expression must be a single character", -1);
 | |
|       return;
 | |
|     }
 | |
|     escape = sqlite3ReadUtf8(zEsc);
 | |
|   }
 | |
|   if( zA && zB ){
 | |
|     struct compareInfo *pInfo = sqlite3_user_data(context);
 | |
| #ifdef SQLITE_TEST
 | |
|     sqlite3_like_count++;
 | |
| #endif
 | |
|     
 | |
|     sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the NULLIF(x,y) function.  The result is the first
 | |
| ** argument if the arguments are different.  The result is NULL if the
 | |
| ** arguments are equal to each other.
 | |
| */
 | |
| static void nullifFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   CollSeq *pColl = sqlite3GetFuncCollSeq(context);
 | |
|   if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
 | |
|     sqlite3_result_value(context, argv[0]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the VERSION(*) function.  The result is the version
 | |
| ** of the SQLite library that is running.
 | |
| */
 | |
| static void versionFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   sqlite3_result_text(context, sqlite3_version, -1, SQLITE_STATIC);
 | |
| }
 | |
| 
 | |
| /* Array for converting from half-bytes (nybbles) into ASCII hex
 | |
| ** digits. */
 | |
| static const char hexdigits[] = {
 | |
|   '0', '1', '2', '3', '4', '5', '6', '7',
 | |
|   '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' 
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** EXPERIMENTAL - This is not an official function.  The interface may
 | |
| ** change.  This function may disappear.  Do not write code that depends
 | |
| ** on this function.
 | |
| **
 | |
| ** Implementation of the QUOTE() function.  This function takes a single
 | |
| ** argument.  If the argument is numeric, the return value is the same as
 | |
| ** the argument.  If the argument is NULL, the return value is the string
 | |
| ** "NULL".  Otherwise, the argument is enclosed in single quotes with
 | |
| ** single-quote escapes.
 | |
| */
 | |
| static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
 | |
|   if( argc<1 ) return;
 | |
|   switch( sqlite3_value_type(argv[0]) ){
 | |
|     case SQLITE_NULL: {
 | |
|       sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
 | |
|       break;
 | |
|     }
 | |
|     case SQLITE_INTEGER:
 | |
|     case SQLITE_FLOAT: {
 | |
|       sqlite3_result_value(context, argv[0]);
 | |
|       break;
 | |
|     }
 | |
|     case SQLITE_BLOB: {
 | |
|       char *zText = 0;
 | |
|       char const *zBlob = sqlite3_value_blob(argv[0]);
 | |
|       int nBlob = sqlite3_value_bytes(argv[0]);
 | |
|       assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
 | |
| 
 | |
|       if( 2*nBlob+4>SQLITE_MAX_LENGTH ){
 | |
|         sqlite3_result_error_toobig(context);
 | |
|         return;
 | |
|       }
 | |
|       zText = (char *)sqliteMalloc((2*nBlob)+4); 
 | |
|       if( !zText ){
 | |
|         sqlite3_result_error(context, "out of memory", -1);
 | |
|       }else{
 | |
|         int i;
 | |
|         for(i=0; i<nBlob; i++){
 | |
|           zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
 | |
|           zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
 | |
|         }
 | |
|         zText[(nBlob*2)+2] = '\'';
 | |
|         zText[(nBlob*2)+3] = '\0';
 | |
|         zText[0] = 'X';
 | |
|         zText[1] = '\'';
 | |
|         sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
 | |
|         sqliteFree(zText);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case SQLITE_TEXT: {
 | |
|       int i,j;
 | |
|       u64 n;
 | |
|       const unsigned char *zArg = sqlite3_value_text(argv[0]);
 | |
|       char *z;
 | |
| 
 | |
|       if( zArg==0 ) return;
 | |
|       for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
 | |
|       if( i+n+3>SQLITE_MAX_LENGTH ){
 | |
|         sqlite3_result_error_toobig(context);
 | |
|         return;
 | |
|       }
 | |
|       z = sqliteMalloc( i+n+3 );
 | |
|       if( z==0 ) return;
 | |
|       z[0] = '\'';
 | |
|       for(i=0, j=1; zArg[i]; i++){
 | |
|         z[j++] = zArg[i];
 | |
|         if( zArg[i]=='\'' ){
 | |
|           z[j++] = '\'';
 | |
|         }
 | |
|       }
 | |
|       z[j++] = '\'';
 | |
|       z[j] = 0;
 | |
|       sqlite3_result_text(context, z, j, SQLITE_TRANSIENT);
 | |
|       sqliteFree(z);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The hex() function.  Interpret the argument as a blob.  Return
 | |
| ** a hexadecimal rendering as text.
 | |
| */
 | |
| static void hexFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   int i, n;
 | |
|   const unsigned char *pBlob;
 | |
|   char *zHex, *z;
 | |
|   assert( argc==1 );
 | |
|   pBlob = sqlite3_value_blob(argv[0]);
 | |
|   n = sqlite3_value_bytes(argv[0]);
 | |
|   if( n*2+1>SQLITE_MAX_LENGTH ){
 | |
|     sqlite3_result_error_toobig(context);
 | |
|     return;
 | |
|   }
 | |
|   assert( pBlob==sqlite3_value_blob(argv[0]) );  /* No encoding change */
 | |
|   z = zHex = sqlite3_malloc(n*2 + 1);
 | |
|   if( zHex==0 ) return;
 | |
|   for(i=0; i<n; i++, pBlob++){
 | |
|     unsigned char c = *pBlob;
 | |
|     *(z++) = hexdigits[(c>>4)&0xf];
 | |
|     *(z++) = hexdigits[c&0xf];
 | |
|   }
 | |
|   *z = 0;
 | |
|   sqlite3_result_text(context, zHex, n*2, sqlite3_free);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The zeroblob(N) function returns a zero-filled blob of size N bytes.
 | |
| */
 | |
| static void zeroblobFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   i64 n;
 | |
|   assert( argc==1 );
 | |
|   n = sqlite3_value_int64(argv[0]);
 | |
|   if( n>SQLITE_MAX_LENGTH ){
 | |
|     sqlite3_result_error_toobig(context);
 | |
|   }else{
 | |
|     sqlite3_result_zeroblob(context, n);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The replace() function.  Three arguments are all strings: call
 | |
| ** them A, B, and C. The result is also a string which is derived
 | |
| ** from A by replacing every occurance of B with C.  The match
 | |
| ** must be exact.  Collating sequences are not used.
 | |
| */
 | |
| static void replaceFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   const unsigned char *zStr;        /* The input string A */
 | |
|   const unsigned char *zPattern;    /* The pattern string B */
 | |
|   const unsigned char *zRep;        /* The replacement string C */
 | |
|   unsigned char *zOut;              /* The output */
 | |
|   int nStr;                /* Size of zStr */
 | |
|   int nPattern;            /* Size of zPattern */
 | |
|   int nRep;                /* Size of zRep */
 | |
|   i64 nOut;                /* Maximum size of zOut */
 | |
|   int loopLimit;           /* Last zStr[] that might match zPattern[] */
 | |
|   int i, j;                /* Loop counters */
 | |
| 
 | |
|   assert( argc==3 );
 | |
|   zStr = sqlite3_value_text(argv[0]);
 | |
|   if( zStr==0 ) return;
 | |
|   nStr = sqlite3_value_bytes(argv[0]);
 | |
|   assert( zStr==sqlite3_value_text(argv[0]) );  /* No encoding change */
 | |
|   zPattern = sqlite3_value_text(argv[1]);
 | |
|   if( zPattern==0 || zPattern[0]==0 ) return;
 | |
|   nPattern = sqlite3_value_bytes(argv[1]);
 | |
|   assert( zPattern==sqlite3_value_text(argv[1]) );  /* No encoding change */
 | |
|   zRep = sqlite3_value_text(argv[2]);
 | |
|   if( zRep==0 ) return;
 | |
|   nRep = sqlite3_value_bytes(argv[2]);
 | |
|   assert( zRep==sqlite3_value_text(argv[2]) );
 | |
|   nOut = nStr + 1;
 | |
|   assert( nOut<SQLITE_MAX_LENGTH );
 | |
|   zOut = sqlite3_malloc((int)nOut);
 | |
|   if( zOut==0 ){
 | |
|     return;
 | |
|   }
 | |
|   loopLimit = nStr - nPattern;  
 | |
|   for(i=j=0; i<=loopLimit; i++){
 | |
|     if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
 | |
|       zOut[j++] = zStr[i];
 | |
|     }else{
 | |
|       nOut += nRep - nPattern;
 | |
|       if( nOut>=SQLITE_MAX_LENGTH ){
 | |
|         sqlite3_result_error_toobig(context);
 | |
|         sqlite3_free(zOut);
 | |
|         return;
 | |
|       }
 | |
|       zOut = sqlite3_realloc(zOut, (int)nOut);
 | |
|       if( zOut==0 ){
 | |
|         return;
 | |
|       }
 | |
|       memcpy(&zOut[j], zRep, nRep);
 | |
|       j += nRep;
 | |
|       i += nPattern-1;
 | |
|     }
 | |
|   }
 | |
|   assert( j+nStr-i+1==nOut );
 | |
|   memcpy(&zOut[j], &zStr[i], nStr-i);
 | |
|   j += nStr - i;
 | |
|   assert( j<=nOut );
 | |
|   zOut[j] = 0;
 | |
|   sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
 | |
| ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
 | |
| */
 | |
| static void trimFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   const unsigned char *zIn;         /* Input string */
 | |
|   const unsigned char *zCharSet;    /* Set of characters to trim */
 | |
|   int nIn;                          /* Number of bytes in input */
 | |
|   int flags;                        /* 1: trimleft  2: trimright  3: trim */
 | |
|   int i;                            /* Loop counter */
 | |
|   unsigned char *aLen;              /* Length of each character in zCharSet */
 | |
|   const unsigned char **azChar;     /* Individual characters in zCharSet */
 | |
|   int nChar;                        /* Number of characters in zCharSet */
 | |
| 
 | |
|   if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
 | |
|     return;
 | |
|   }
 | |
|   zIn = sqlite3_value_text(argv[0]);
 | |
|   if( zIn==0 ) return;
 | |
|   nIn = sqlite3_value_bytes(argv[0]);
 | |
|   assert( zIn==sqlite3_value_text(argv[0]) );
 | |
|   if( argc==1 ){
 | |
|     static const unsigned char lenOne[] = { 1 };
 | |
|     static const unsigned char *azOne[] = { (u8*)" " };
 | |
|     nChar = 1;
 | |
|     aLen = (u8*)lenOne;
 | |
|     azChar = azOne;
 | |
|     zCharSet = 0;
 | |
|   }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
 | |
|     return;
 | |
|   }else{
 | |
|     const unsigned char *z;
 | |
|     for(z=zCharSet, nChar=0; *z; nChar++){
 | |
|       SQLITE_SKIP_UTF8(z);
 | |
|     }
 | |
|     if( nChar>0 ){
 | |
|       azChar = sqlite3_malloc( nChar*(sizeof(char*)+1) );
 | |
|       if( azChar==0 ){
 | |
|         return;
 | |
|       }
 | |
|       aLen = (unsigned char*)&azChar[nChar];
 | |
|       for(z=zCharSet, nChar=0; *z; nChar++){
 | |
|         azChar[nChar] = z;
 | |
|         SQLITE_SKIP_UTF8(z);
 | |
|         aLen[nChar] = z - azChar[nChar];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if( nChar>0 ){
 | |
|     flags = (int)sqlite3_user_data(context);
 | |
|     if( flags & 1 ){
 | |
|       while( nIn>0 ){
 | |
|         int len;
 | |
|         for(i=0; i<nChar; i++){
 | |
|           len = aLen[i];
 | |
|           if( memcmp(zIn, azChar[i], len)==0 ) break;
 | |
|         }
 | |
|         if( i>=nChar ) break;
 | |
|         zIn += len;
 | |
|         nIn -= len;
 | |
|       }
 | |
|     }
 | |
|     if( flags & 2 ){
 | |
|       while( nIn>0 ){
 | |
|         int len;
 | |
|         for(i=0; i<nChar; i++){
 | |
|           len = aLen[i];
 | |
|           if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
 | |
|         }
 | |
|         if( i>=nChar ) break;
 | |
|         nIn -= len;
 | |
|       }
 | |
|     }
 | |
|     if( zCharSet ){
 | |
|       sqlite3_free(azChar);
 | |
|     }
 | |
|   }
 | |
|   sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_SOUNDEX
 | |
| /*
 | |
| ** Compute the soundex encoding of a word.
 | |
| */
 | |
| static void soundexFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   char zResult[8];
 | |
|   const u8 *zIn;
 | |
|   int i, j;
 | |
|   static const unsigned char iCode[] = {
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
 | |
|     1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
 | |
|     0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
 | |
|     1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
 | |
|   };
 | |
|   assert( argc==1 );
 | |
|   zIn = (u8*)sqlite3_value_text(argv[0]);
 | |
|   if( zIn==0 ) zIn = (u8*)"";
 | |
|   for(i=0; zIn[i] && !isalpha(zIn[i]); i++){}
 | |
|   if( zIn[i] ){
 | |
|     u8 prevcode = iCode[zIn[i]&0x7f];
 | |
|     zResult[0] = toupper(zIn[i]);
 | |
|     for(j=1; j<4 && zIn[i]; i++){
 | |
|       int code = iCode[zIn[i]&0x7f];
 | |
|       if( code>0 ){
 | |
|         if( code!=prevcode ){
 | |
|           prevcode = code;
 | |
|           zResult[j++] = code + '0';
 | |
|         }
 | |
|       }else{
 | |
|         prevcode = 0;
 | |
|       }
 | |
|     }
 | |
|     while( j<4 ){
 | |
|       zResult[j++] = '0';
 | |
|     }
 | |
|     zResult[j] = 0;
 | |
|     sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
 | |
|   }else{
 | |
|     sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_LOAD_EXTENSION
 | |
| /*
 | |
| ** A function that loads a shared-library extension then returns NULL.
 | |
| */
 | |
| static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
 | |
|   const char *zFile = (const char *)sqlite3_value_text(argv[0]);
 | |
|   const char *zProc;
 | |
|   sqlite3 *db = sqlite3_user_data(context);
 | |
|   char *zErrMsg = 0;
 | |
| 
 | |
|   if( argc==2 ){
 | |
|     zProc = (const char *)sqlite3_value_text(argv[1]);
 | |
|   }else{
 | |
|     zProc = 0;
 | |
|   }
 | |
|   if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
 | |
|     sqlite3_result_error(context, zErrMsg, -1);
 | |
|     sqlite3_free(zErrMsg);
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| /*
 | |
| ** This function generates a string of random characters.  Used for
 | |
| ** generating test data.
 | |
| */
 | |
| static void randStr(sqlite3_context *context, int argc, sqlite3_value **argv){
 | |
|   static const unsigned char zSrc[] = 
 | |
|      "abcdefghijklmnopqrstuvwxyz"
 | |
|      "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 | |
|      "0123456789"
 | |
|      ".-!,:*^+=_|?/<> ";
 | |
|   int iMin, iMax, n, r, i;
 | |
|   unsigned char zBuf[1000];
 | |
|   if( argc>=1 ){
 | |
|     iMin = sqlite3_value_int(argv[0]);
 | |
|     if( iMin<0 ) iMin = 0;
 | |
|     if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1;
 | |
|   }else{
 | |
|     iMin = 1;
 | |
|   }
 | |
|   if( argc>=2 ){
 | |
|     iMax = sqlite3_value_int(argv[1]);
 | |
|     if( iMax<iMin ) iMax = iMin;
 | |
|     if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf)-1;
 | |
|   }else{
 | |
|     iMax = 50;
 | |
|   }
 | |
|   n = iMin;
 | |
|   if( iMax>iMin ){
 | |
|     sqlite3Randomness(sizeof(r), &r);
 | |
|     r &= 0x7fffffff;
 | |
|     n += r%(iMax + 1 - iMin);
 | |
|   }
 | |
|   assert( n<sizeof(zBuf) );
 | |
|   sqlite3Randomness(n, zBuf);
 | |
|   for(i=0; i<n; i++){
 | |
|     zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];
 | |
|   }
 | |
|   zBuf[n] = 0;
 | |
|   sqlite3_result_text(context, (char*)zBuf, n, SQLITE_TRANSIENT);
 | |
| }
 | |
| #endif /* SQLITE_TEST */
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| /*
 | |
| ** The following two SQL functions are used to test returning a text
 | |
| ** result with a destructor. Function 'test_destructor' takes one argument
 | |
| ** and returns the same argument interpreted as TEXT. A destructor is
 | |
| ** passed with the sqlite3_result_text() call.
 | |
| **
 | |
| ** SQL function 'test_destructor_count' returns the number of outstanding 
 | |
| ** allocations made by 'test_destructor';
 | |
| **
 | |
| ** WARNING: Not threadsafe.
 | |
| */
 | |
| static int test_destructor_count_var = 0;
 | |
| static void destructor(void *p){
 | |
|   char *zVal = (char *)p;
 | |
|   assert(zVal);
 | |
|   zVal--;
 | |
|   sqliteFree(zVal);
 | |
|   test_destructor_count_var--;
 | |
| }
 | |
| static void test_destructor(
 | |
|   sqlite3_context *pCtx, 
 | |
|   int nArg,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   char *zVal;
 | |
|   int len;
 | |
|   sqlite3 *db = sqlite3_user_data(pCtx);
 | |
|  
 | |
|   test_destructor_count_var++;
 | |
|   assert( nArg==1 );
 | |
|   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
 | |
|   len = sqlite3ValueBytes(argv[0], ENC(db)); 
 | |
|   zVal = sqliteMalloc(len+3);
 | |
|   zVal[len] = 0;
 | |
|   zVal[len-1] = 0;
 | |
|   assert( zVal );
 | |
|   zVal++;
 | |
|   memcpy(zVal, sqlite3ValueText(argv[0], ENC(db)), len);
 | |
|   if( ENC(db)==SQLITE_UTF8 ){
 | |
|     sqlite3_result_text(pCtx, zVal, -1, destructor);
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
|   }else if( ENC(db)==SQLITE_UTF16LE ){
 | |
|     sqlite3_result_text16le(pCtx, zVal, -1, destructor);
 | |
|   }else{
 | |
|     sqlite3_result_text16be(pCtx, zVal, -1, destructor);
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
|   }
 | |
| }
 | |
| static void test_destructor_count(
 | |
|   sqlite3_context *pCtx, 
 | |
|   int nArg,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   sqlite3_result_int(pCtx, test_destructor_count_var);
 | |
| }
 | |
| #endif /* SQLITE_TEST */
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| /*
 | |
| ** Routines for testing the sqlite3_get_auxdata() and sqlite3_set_auxdata()
 | |
| ** interface.
 | |
| **
 | |
| ** The test_auxdata() SQL function attempts to register each of its arguments
 | |
| ** as auxiliary data.  If there are no prior registrations of aux data for
 | |
| ** that argument (meaning the argument is not a constant or this is its first
 | |
| ** call) then the result for that argument is 0.  If there is a prior
 | |
| ** registration, the result for that argument is 1.  The overall result
 | |
| ** is the individual argument results separated by spaces.
 | |
| */
 | |
| static void free_test_auxdata(void *p) {sqliteFree(p);}
 | |
| static void test_auxdata(
 | |
|   sqlite3_context *pCtx, 
 | |
|   int nArg,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   int i;
 | |
|   char *zRet = sqliteMalloc(nArg*2);
 | |
|   if( !zRet ) return;
 | |
|   for(i=0; i<nArg; i++){
 | |
|     char const *z = (char*)sqlite3_value_text(argv[i]);
 | |
|     if( z ){
 | |
|       char *zAux = sqlite3_get_auxdata(pCtx, i);
 | |
|       if( zAux ){
 | |
|         zRet[i*2] = '1';
 | |
|         if( strcmp(zAux, z) ){
 | |
|           sqlite3_result_error(pCtx, "Auxilary data corruption", -1);
 | |
|           return;
 | |
|         }
 | |
|       }else{
 | |
|         zRet[i*2] = '0';
 | |
|         zAux = sqliteStrDup(z);
 | |
|         sqlite3_set_auxdata(pCtx, i, zAux, free_test_auxdata);
 | |
|       }
 | |
|       zRet[i*2+1] = ' ';
 | |
|     }
 | |
|   }
 | |
|   sqlite3_result_text(pCtx, zRet, 2*nArg-1, free_test_auxdata);
 | |
| }
 | |
| #endif /* SQLITE_TEST */
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| /*
 | |
| ** A function to test error reporting from user functions. This function
 | |
| ** returns a copy of it's first argument as an error.
 | |
| */
 | |
| static void test_error(
 | |
|   sqlite3_context *pCtx, 
 | |
|   int nArg,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   sqlite3_result_error(pCtx, (char*)sqlite3_value_text(argv[0]), 0);
 | |
| }
 | |
| #endif /* SQLITE_TEST */
 | |
| 
 | |
| /*
 | |
| ** An instance of the following structure holds the context of a
 | |
| ** sum() or avg() aggregate computation.
 | |
| */
 | |
| typedef struct SumCtx SumCtx;
 | |
| struct SumCtx {
 | |
|   double rSum;      /* Floating point sum */
 | |
|   i64 iSum;         /* Integer sum */   
 | |
|   i64 cnt;          /* Number of elements summed */
 | |
|   u8 overflow;      /* True if integer overflow seen */
 | |
|   u8 approx;        /* True if non-integer value was input to the sum */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Routines used to compute the sum, average, and total.
 | |
| **
 | |
| ** The SUM() function follows the (broken) SQL standard which means
 | |
| ** that it returns NULL if it sums over no inputs.  TOTAL returns
 | |
| ** 0.0 in that case.  In addition, TOTAL always returns a float where
 | |
| ** SUM might return an integer if it never encounters a floating point
 | |
| ** value.  TOTAL never fails, but SUM might through an exception if
 | |
| ** it overflows an integer.
 | |
| */
 | |
| static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
 | |
|   SumCtx *p;
 | |
|   int type;
 | |
|   assert( argc==1 );
 | |
|   p = sqlite3_aggregate_context(context, sizeof(*p));
 | |
|   type = sqlite3_value_numeric_type(argv[0]);
 | |
|   if( p && type!=SQLITE_NULL ){
 | |
|     p->cnt++;
 | |
|     if( type==SQLITE_INTEGER ){
 | |
|       i64 v = sqlite3_value_int64(argv[0]);
 | |
|       p->rSum += v;
 | |
|       if( (p->approx|p->overflow)==0 ){
 | |
|         i64 iNewSum = p->iSum + v;
 | |
|         int s1 = p->iSum >> (sizeof(i64)*8-1);
 | |
|         int s2 = v       >> (sizeof(i64)*8-1);
 | |
|         int s3 = iNewSum >> (sizeof(i64)*8-1);
 | |
|         p->overflow = (s1&s2&~s3) | (~s1&~s2&s3);
 | |
|         p->iSum = iNewSum;
 | |
|       }
 | |
|     }else{
 | |
|       p->rSum += sqlite3_value_double(argv[0]);
 | |
|       p->approx = 1;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| static void sumFinalize(sqlite3_context *context){
 | |
|   SumCtx *p;
 | |
|   p = sqlite3_aggregate_context(context, 0);
 | |
|   if( p && p->cnt>0 ){
 | |
|     if( p->overflow ){
 | |
|       sqlite3_result_error(context,"integer overflow",-1);
 | |
|     }else if( p->approx ){
 | |
|       sqlite3_result_double(context, p->rSum);
 | |
|     }else{
 | |
|       sqlite3_result_int64(context, p->iSum);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| static void avgFinalize(sqlite3_context *context){
 | |
|   SumCtx *p;
 | |
|   p = sqlite3_aggregate_context(context, 0);
 | |
|   if( p && p->cnt>0 ){
 | |
|     sqlite3_result_double(context, p->rSum/(double)p->cnt);
 | |
|   }
 | |
| }
 | |
| static void totalFinalize(sqlite3_context *context){
 | |
|   SumCtx *p;
 | |
|   p = sqlite3_aggregate_context(context, 0);
 | |
|   sqlite3_result_double(context, p ? p->rSum : 0.0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following structure keeps track of state information for the
 | |
| ** count() aggregate function.
 | |
| */
 | |
| typedef struct CountCtx CountCtx;
 | |
| struct CountCtx {
 | |
|   i64 n;
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Routines to implement the count() aggregate function.
 | |
| */
 | |
| static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
 | |
|   CountCtx *p;
 | |
|   p = sqlite3_aggregate_context(context, sizeof(*p));
 | |
|   if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
 | |
|     p->n++;
 | |
|   }
 | |
| }   
 | |
| static void countFinalize(sqlite3_context *context){
 | |
|   CountCtx *p;
 | |
|   p = sqlite3_aggregate_context(context, 0);
 | |
|   sqlite3_result_int64(context, p ? p->n : 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Routines to implement min() and max() aggregate functions.
 | |
| */
 | |
| static void minmaxStep(sqlite3_context *context, int argc, sqlite3_value **argv){
 | |
|   Mem *pArg  = (Mem *)argv[0];
 | |
|   Mem *pBest;
 | |
| 
 | |
|   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
 | |
|   pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
 | |
|   if( !pBest ) return;
 | |
| 
 | |
|   if( pBest->flags ){
 | |
|     int max;
 | |
|     int cmp;
 | |
|     CollSeq *pColl = sqlite3GetFuncCollSeq(context);
 | |
|     /* This step function is used for both the min() and max() aggregates,
 | |
|     ** the only difference between the two being that the sense of the
 | |
|     ** comparison is inverted. For the max() aggregate, the
 | |
|     ** sqlite3_user_data() function returns (void *)-1. For min() it
 | |
|     ** returns (void *)db, where db is the sqlite3* database pointer.
 | |
|     ** Therefore the next statement sets variable 'max' to 1 for the max()
 | |
|     ** aggregate, or 0 for min().
 | |
|     */
 | |
|     max = sqlite3_user_data(context)!=0;
 | |
|     cmp = sqlite3MemCompare(pBest, pArg, pColl);
 | |
|     if( (max && cmp<0) || (!max && cmp>0) ){
 | |
|       sqlite3VdbeMemCopy(pBest, pArg);
 | |
|     }
 | |
|   }else{
 | |
|     sqlite3VdbeMemCopy(pBest, pArg);
 | |
|   }
 | |
| }
 | |
| static void minMaxFinalize(sqlite3_context *context){
 | |
|   sqlite3_value *pRes;
 | |
|   pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
 | |
|   if( pRes ){
 | |
|     if( pRes->flags ){
 | |
|       sqlite3_result_value(context, pRes);
 | |
|     }
 | |
|     sqlite3VdbeMemRelease(pRes);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This function registered all of the above C functions as SQL
 | |
| ** functions.  This should be the only routine in this file with
 | |
| ** external linkage.
 | |
| */
 | |
| void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
 | |
|   static const struct {
 | |
|      char *zName;
 | |
|      signed char nArg;
 | |
|      u8 argType;           /* ff: db   1: 0, 2: 1, 3: 2,...  N:  N-1. */
 | |
|      u8 eTextRep;          /* 1: UTF-16.  0: UTF-8 */
 | |
|      u8 needCollSeq;
 | |
|      void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
 | |
|   } aFuncs[] = {
 | |
|     { "min",               -1, 0, SQLITE_UTF8,    1, minmaxFunc },
 | |
|     { "min",                0, 0, SQLITE_UTF8,    1, 0          },
 | |
|     { "max",               -1, 1, SQLITE_UTF8,    1, minmaxFunc },
 | |
|     { "max",                0, 1, SQLITE_UTF8,    1, 0          },
 | |
|     { "typeof",             1, 0, SQLITE_UTF8,    0, typeofFunc },
 | |
|     { "length",             1, 0, SQLITE_UTF8,    0, lengthFunc },
 | |
|     { "substr",             3, 0, SQLITE_UTF8,    0, substrFunc },
 | |
|     { "abs",                1, 0, SQLITE_UTF8,    0, absFunc    },
 | |
|     { "round",              1, 0, SQLITE_UTF8,    0, roundFunc  },
 | |
|     { "round",              2, 0, SQLITE_UTF8,    0, roundFunc  },
 | |
|     { "upper",              1, 0, SQLITE_UTF8,    0, upperFunc  },
 | |
|     { "lower",              1, 0, SQLITE_UTF8,    0, lowerFunc  },
 | |
|     { "coalesce",          -1, 0, SQLITE_UTF8,    0, ifnullFunc },
 | |
|     { "coalesce",           0, 0, SQLITE_UTF8,    0, 0          },
 | |
|     { "coalesce",           1, 0, SQLITE_UTF8,    0, 0          },
 | |
|     { "hex",                1, 0, SQLITE_UTF8,    0, hexFunc    },
 | |
|     { "ifnull",             2, 0, SQLITE_UTF8,    1, ifnullFunc },
 | |
|     { "random",            -1, 0, SQLITE_UTF8,    0, randomFunc },
 | |
|     { "randomblob",         1, 0, SQLITE_UTF8,    0, randomBlob },
 | |
|     { "nullif",             2, 0, SQLITE_UTF8,    1, nullifFunc },
 | |
|     { "sqlite_version",     0, 0, SQLITE_UTF8,    0, versionFunc},
 | |
|     { "quote",              1, 0, SQLITE_UTF8,    0, quoteFunc  },
 | |
|     { "last_insert_rowid",  0, 0xff, SQLITE_UTF8, 0, last_insert_rowid },
 | |
|     { "changes",            0, 0xff, SQLITE_UTF8, 0, changes           },
 | |
|     { "total_changes",      0, 0xff, SQLITE_UTF8, 0, total_changes     },
 | |
|     { "replace",            3, 0, SQLITE_UTF8,    0, replaceFunc       },
 | |
|     { "ltrim",              1, 1, SQLITE_UTF8,    0, trimFunc          },
 | |
|     { "ltrim",              2, 1, SQLITE_UTF8,    0, trimFunc          },
 | |
|     { "rtrim",              1, 2, SQLITE_UTF8,    0, trimFunc          },
 | |
|     { "rtrim",              2, 2, SQLITE_UTF8,    0, trimFunc          },
 | |
|     { "trim",               1, 3, SQLITE_UTF8,    0, trimFunc          },
 | |
|     { "trim",               2, 3, SQLITE_UTF8,    0, trimFunc          },
 | |
|     { "zeroblob",           1, 0, SQLITE_UTF8,    0, zeroblobFunc      },
 | |
| #ifdef SQLITE_SOUNDEX
 | |
|     { "soundex",            1, 0, SQLITE_UTF8,    0, soundexFunc},
 | |
| #endif
 | |
| #ifndef SQLITE_OMIT_LOAD_EXTENSION
 | |
|     { "load_extension",     1, 0xff, SQLITE_UTF8, 0, loadExt },
 | |
|     { "load_extension",     2, 0xff, SQLITE_UTF8, 0, loadExt },
 | |
| #endif
 | |
| #ifdef SQLITE_TEST
 | |
|     { "randstr",               2, 0,    SQLITE_UTF8, 0, randStr    },
 | |
|     { "test_destructor",       1, 0xff, SQLITE_UTF8, 0, test_destructor},
 | |
|     { "test_destructor_count", 0, 0,    SQLITE_UTF8, 0, test_destructor_count},
 | |
|     { "test_auxdata",         -1, 0,    SQLITE_UTF8, 0, test_auxdata},
 | |
|     { "test_error",            1, 0,    SQLITE_UTF8, 0, test_error},
 | |
| #endif
 | |
|   };
 | |
|   static const struct {
 | |
|     char *zName;
 | |
|     signed char nArg;
 | |
|     u8 argType;
 | |
|     u8 needCollSeq;
 | |
|     void (*xStep)(sqlite3_context*,int,sqlite3_value**);
 | |
|     void (*xFinalize)(sqlite3_context*);
 | |
|   } aAggs[] = {
 | |
|     { "min",    1, 0, 1, minmaxStep,   minMaxFinalize },
 | |
|     { "max",    1, 1, 1, minmaxStep,   minMaxFinalize },
 | |
|     { "sum",    1, 0, 0, sumStep,      sumFinalize    },
 | |
|     { "total",  1, 0, 0, sumStep,      totalFinalize    },
 | |
|     { "avg",    1, 0, 0, sumStep,      avgFinalize    },
 | |
|     { "count",  0, 0, 0, countStep,    countFinalize  },
 | |
|     { "count",  1, 0, 0, countStep,    countFinalize  },
 | |
|   };
 | |
|   int i;
 | |
| 
 | |
|   for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
 | |
|     void *pArg;
 | |
|     u8 argType = aFuncs[i].argType;
 | |
|     if( argType==0xff ){
 | |
|       pArg = db;
 | |
|     }else{
 | |
|       pArg = (void*)(int)argType;
 | |
|     }
 | |
|     sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
 | |
|         aFuncs[i].eTextRep, pArg, aFuncs[i].xFunc, 0, 0);
 | |
|     if( aFuncs[i].needCollSeq ){
 | |
|       FuncDef *pFunc = sqlite3FindFunction(db, aFuncs[i].zName, 
 | |
|           strlen(aFuncs[i].zName), aFuncs[i].nArg, aFuncs[i].eTextRep, 0);
 | |
|       if( pFunc && aFuncs[i].needCollSeq ){
 | |
|         pFunc->needCollSeq = 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_ALTERTABLE
 | |
|   sqlite3AlterFunctions(db);
 | |
| #endif
 | |
| #ifndef SQLITE_OMIT_PARSER
 | |
|   sqlite3AttachFunctions(db);
 | |
| #endif
 | |
|   for(i=0; i<sizeof(aAggs)/sizeof(aAggs[0]); i++){
 | |
|     void *pArg = (void*)(int)aAggs[i].argType;
 | |
|     sqlite3CreateFunc(db, aAggs[i].zName, aAggs[i].nArg, SQLITE_UTF8, 
 | |
|         pArg, 0, aAggs[i].xStep, aAggs[i].xFinalize);
 | |
|     if( aAggs[i].needCollSeq ){
 | |
|       FuncDef *pFunc = sqlite3FindFunction( db, aAggs[i].zName,
 | |
|           strlen(aAggs[i].zName), aAggs[i].nArg, SQLITE_UTF8, 0);
 | |
|       if( pFunc && aAggs[i].needCollSeq ){
 | |
|         pFunc->needCollSeq = 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   sqlite3RegisterDateTimeFunctions(db);
 | |
|   if( !sqlite3MallocFailed() ){
 | |
|     int rc = sqlite3_overload_function(db, "MATCH", 2);
 | |
|     assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
 | |
|     if( rc==SQLITE_NOMEM ){
 | |
|       sqlite3FailedMalloc();
 | |
|     }
 | |
|   }
 | |
| #ifdef SQLITE_SSE
 | |
|   (void)sqlite3SseFunctions(db);
 | |
| #endif
 | |
| #ifdef SQLITE_CASE_SENSITIVE_LIKE
 | |
|   sqlite3RegisterLikeFunctions(db, 1);
 | |
| #else
 | |
|   sqlite3RegisterLikeFunctions(db, 0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the LIKEOPT flag on the 2-argument function with the given name.
 | |
| */
 | |
| static void setLikeOptFlag(sqlite3 *db, const char *zName, int flagVal){
 | |
|   FuncDef *pDef;
 | |
|   pDef = sqlite3FindFunction(db, zName, strlen(zName), 2, SQLITE_UTF8, 0);
 | |
|   if( pDef ){
 | |
|     pDef->flags = flagVal;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Register the built-in LIKE and GLOB functions.  The caseSensitive
 | |
| ** parameter determines whether or not the LIKE operator is case
 | |
| ** sensitive.  GLOB is always case sensitive.
 | |
| */
 | |
| void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
 | |
|   struct compareInfo *pInfo;
 | |
|   if( caseSensitive ){
 | |
|     pInfo = (struct compareInfo*)&likeInfoAlt;
 | |
|   }else{
 | |
|     pInfo = (struct compareInfo*)&likeInfoNorm;
 | |
|   }
 | |
|   sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
 | |
|   sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
 | |
|   sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8, 
 | |
|       (struct compareInfo*)&globInfo, likeFunc, 0,0);
 | |
|   setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
 | |
|   setLikeOptFlag(db, "like", 
 | |
|       caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** pExpr points to an expression which implements a function.  If
 | |
| ** it is appropriate to apply the LIKE optimization to that function
 | |
| ** then set aWc[0] through aWc[2] to the wildcard characters and
 | |
| ** return TRUE.  If the function is not a LIKE-style function then
 | |
| ** return FALSE.
 | |
| */
 | |
| int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
 | |
|   FuncDef *pDef;
 | |
|   if( pExpr->op!=TK_FUNCTION || !pExpr->pList ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( pExpr->pList->nExpr!=2 ){
 | |
|     return 0;
 | |
|   }
 | |
|   pDef = sqlite3FindFunction(db, (char*)pExpr->token.z, pExpr->token.n, 2,
 | |
|                              SQLITE_UTF8, 0);
 | |
|   if( pDef==0 || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /* The memcpy() statement assumes that the wildcard characters are
 | |
|   ** the first three statements in the compareInfo structure.  The
 | |
|   ** asserts() that follow verify that assumption
 | |
|   */
 | |
|   memcpy(aWc, pDef->pUserData, 3);
 | |
|   assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
 | |
|   assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
 | |
|   assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
 | |
|   *pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0;
 | |
|   return 1;
 | |
| }
 |