--HG-- extra : convert_revision : svn%3A39bc706e-5318-0410-9160-8a85361fbb7c/trunk%401209
		
			
				
	
	
		
			1037 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1037 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** 2003 October 31
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains the C functions that implement date and time
 | |
| ** functions for SQLite.  
 | |
| **
 | |
| ** There is only one exported symbol in this file - the function
 | |
| ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
 | |
| ** All other code has file scope.
 | |
| **
 | |
| ** $Id$
 | |
| **
 | |
| ** SQLite processes all times and dates as Julian Day numbers.  The
 | |
| ** dates and times are stored as the number of days since noon
 | |
| ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
 | |
| ** calendar system. 
 | |
| **
 | |
| ** 1970-01-01 00:00:00 is JD 2440587.5
 | |
| ** 2000-01-01 00:00:00 is JD 2451544.5
 | |
| **
 | |
| ** This implemention requires years to be expressed as a 4-digit number
 | |
| ** which means that only dates between 0000-01-01 and 9999-12-31 can
 | |
| ** be represented, even though julian day numbers allow a much wider
 | |
| ** range of dates.
 | |
| **
 | |
| ** The Gregorian calendar system is used for all dates and times,
 | |
| ** even those that predate the Gregorian calendar.  Historians usually
 | |
| ** use the Julian calendar for dates prior to 1582-10-15 and for some
 | |
| ** dates afterwards, depending on locale.  Beware of this difference.
 | |
| **
 | |
| ** The conversion algorithms are implemented based on descriptions
 | |
| ** in the following text:
 | |
| **
 | |
| **      Jean Meeus
 | |
| **      Astronomical Algorithms, 2nd Edition, 1998
 | |
| **      ISBM 0-943396-61-1
 | |
| **      Willmann-Bell, Inc
 | |
| **      Richmond, Virginia (USA)
 | |
| */
 | |
| #include "sqliteInt.h"
 | |
| #include "os.h"
 | |
| #include <ctype.h>
 | |
| #include <stdlib.h>
 | |
| #include <assert.h>
 | |
| #include <time.h>
 | |
| 
 | |
| #ifndef SQLITE_OMIT_DATETIME_FUNCS
 | |
| 
 | |
| /*
 | |
| ** A structure for holding a single date and time.
 | |
| */
 | |
| typedef struct DateTime DateTime;
 | |
| struct DateTime {
 | |
|   double rJD;      /* The julian day number */
 | |
|   int Y, M, D;     /* Year, month, and day */
 | |
|   int h, m;        /* Hour and minutes */
 | |
|   int tz;          /* Timezone offset in minutes */
 | |
|   double s;        /* Seconds */
 | |
|   char validYMD;   /* True if Y,M,D are valid */
 | |
|   char validHMS;   /* True if h,m,s are valid */
 | |
|   char validJD;    /* True if rJD is valid */
 | |
|   char validTZ;    /* True if tz is valid */
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Convert zDate into one or more integers.  Additional arguments
 | |
| ** come in groups of 5 as follows:
 | |
| **
 | |
| **       N       number of digits in the integer
 | |
| **       min     minimum allowed value of the integer
 | |
| **       max     maximum allowed value of the integer
 | |
| **       nextC   first character after the integer
 | |
| **       pVal    where to write the integers value.
 | |
| **
 | |
| ** Conversions continue until one with nextC==0 is encountered.
 | |
| ** The function returns the number of successful conversions.
 | |
| */
 | |
| static int getDigits(const char *zDate, ...){
 | |
|   va_list ap;
 | |
|   int val;
 | |
|   int N;
 | |
|   int min;
 | |
|   int max;
 | |
|   int nextC;
 | |
|   int *pVal;
 | |
|   int cnt = 0;
 | |
|   va_start(ap, zDate);
 | |
|   do{
 | |
|     N = va_arg(ap, int);
 | |
|     min = va_arg(ap, int);
 | |
|     max = va_arg(ap, int);
 | |
|     nextC = va_arg(ap, int);
 | |
|     pVal = va_arg(ap, int*);
 | |
|     val = 0;
 | |
|     while( N-- ){
 | |
|       if( !isdigit(*(u8*)zDate) ){
 | |
|         goto end_getDigits;
 | |
|       }
 | |
|       val = val*10 + *zDate - '0';
 | |
|       zDate++;
 | |
|     }
 | |
|     if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
 | |
|       goto end_getDigits;
 | |
|     }
 | |
|     *pVal = val;
 | |
|     zDate++;
 | |
|     cnt++;
 | |
|   }while( nextC );
 | |
| end_getDigits:
 | |
|   va_end(ap);
 | |
|   return cnt;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Read text from z[] and convert into a floating point number.  Return
 | |
| ** the number of digits converted.
 | |
| */
 | |
| #define getValue sqlite3AtoF
 | |
| 
 | |
| /*
 | |
| ** Parse a timezone extension on the end of a date-time.
 | |
| ** The extension is of the form:
 | |
| **
 | |
| **        (+/-)HH:MM
 | |
| **
 | |
| ** If the parse is successful, write the number of minutes
 | |
| ** of change in *pnMin and return 0.  If a parser error occurs,
 | |
| ** return 0.
 | |
| **
 | |
| ** A missing specifier is not considered an error.
 | |
| */
 | |
| static int parseTimezone(const char *zDate, DateTime *p){
 | |
|   int sgn = 0;
 | |
|   int nHr, nMn;
 | |
|   while( isspace(*(u8*)zDate) ){ zDate++; }
 | |
|   p->tz = 0;
 | |
|   if( *zDate=='-' ){
 | |
|     sgn = -1;
 | |
|   }else if( *zDate=='+' ){
 | |
|     sgn = +1;
 | |
|   }else{
 | |
|     return *zDate!=0;
 | |
|   }
 | |
|   zDate++;
 | |
|   if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
 | |
|     return 1;
 | |
|   }
 | |
|   zDate += 5;
 | |
|   p->tz = sgn*(nMn + nHr*60);
 | |
|   while( isspace(*(u8*)zDate) ){ zDate++; }
 | |
|   return *zDate!=0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
 | |
| ** The HH, MM, and SS must each be exactly 2 digits.  The
 | |
| ** fractional seconds FFFF can be one or more digits.
 | |
| **
 | |
| ** Return 1 if there is a parsing error and 0 on success.
 | |
| */
 | |
| static int parseHhMmSs(const char *zDate, DateTime *p){
 | |
|   int h, m, s;
 | |
|   double ms = 0.0;
 | |
|   if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
 | |
|     return 1;
 | |
|   }
 | |
|   zDate += 5;
 | |
|   if( *zDate==':' ){
 | |
|     zDate++;
 | |
|     if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
 | |
|       return 1;
 | |
|     }
 | |
|     zDate += 2;
 | |
|     if( *zDate=='.' && isdigit((u8)zDate[1]) ){
 | |
|       double rScale = 1.0;
 | |
|       zDate++;
 | |
|       while( isdigit(*(u8*)zDate) ){
 | |
|         ms = ms*10.0 + *zDate - '0';
 | |
|         rScale *= 10.0;
 | |
|         zDate++;
 | |
|       }
 | |
|       ms /= rScale;
 | |
|     }
 | |
|   }else{
 | |
|     s = 0;
 | |
|   }
 | |
|   p->validJD = 0;
 | |
|   p->validHMS = 1;
 | |
|   p->h = h;
 | |
|   p->m = m;
 | |
|   p->s = s + ms;
 | |
|   if( parseTimezone(zDate, p) ) return 1;
 | |
|   p->validTZ = p->tz!=0;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Convert from YYYY-MM-DD HH:MM:SS to julian day.  We always assume
 | |
| ** that the YYYY-MM-DD is according to the Gregorian calendar.
 | |
| **
 | |
| ** Reference:  Meeus page 61
 | |
| */
 | |
| static void computeJD(DateTime *p){
 | |
|   int Y, M, D, A, B, X1, X2;
 | |
| 
 | |
|   if( p->validJD ) return;
 | |
|   if( p->validYMD ){
 | |
|     Y = p->Y;
 | |
|     M = p->M;
 | |
|     D = p->D;
 | |
|   }else{
 | |
|     Y = 2000;  /* If no YMD specified, assume 2000-Jan-01 */
 | |
|     M = 1;
 | |
|     D = 1;
 | |
|   }
 | |
|   if( M<=2 ){
 | |
|     Y--;
 | |
|     M += 12;
 | |
|   }
 | |
|   A = Y/100;
 | |
|   B = 2 - A + (A/4);
 | |
|   X1 = 365.25*(Y+4716);
 | |
|   X2 = 30.6001*(M+1);
 | |
|   p->rJD = X1 + X2 + D + B - 1524.5;
 | |
|   p->validJD = 1;
 | |
|   if( p->validHMS ){
 | |
|     p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
 | |
|     if( p->validTZ ){
 | |
|       p->rJD -= p->tz*60/86400.0;
 | |
|       p->validYMD = 0;
 | |
|       p->validHMS = 0;
 | |
|       p->validTZ = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Parse dates of the form
 | |
| **
 | |
| **     YYYY-MM-DD HH:MM:SS.FFF
 | |
| **     YYYY-MM-DD HH:MM:SS
 | |
| **     YYYY-MM-DD HH:MM
 | |
| **     YYYY-MM-DD
 | |
| **
 | |
| ** Write the result into the DateTime structure and return 0
 | |
| ** on success and 1 if the input string is not a well-formed
 | |
| ** date.
 | |
| */
 | |
| static int parseYyyyMmDd(const char *zDate, DateTime *p){
 | |
|   int Y, M, D, neg;
 | |
| 
 | |
|   if( zDate[0]=='-' ){
 | |
|     zDate++;
 | |
|     neg = 1;
 | |
|   }else{
 | |
|     neg = 0;
 | |
|   }
 | |
|   if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
 | |
|     return 1;
 | |
|   }
 | |
|   zDate += 10;
 | |
|   while( isspace(*(u8*)zDate) || 'T'==*(u8*)zDate ){ zDate++; }
 | |
|   if( parseHhMmSs(zDate, p)==0 ){
 | |
|     /* We got the time */
 | |
|   }else if( *zDate==0 ){
 | |
|     p->validHMS = 0;
 | |
|   }else{
 | |
|     return 1;
 | |
|   }
 | |
|   p->validJD = 0;
 | |
|   p->validYMD = 1;
 | |
|   p->Y = neg ? -Y : Y;
 | |
|   p->M = M;
 | |
|   p->D = D;
 | |
|   if( p->validTZ ){
 | |
|     computeJD(p);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Attempt to parse the given string into a Julian Day Number.  Return
 | |
| ** the number of errors.
 | |
| **
 | |
| ** The following are acceptable forms for the input string:
 | |
| **
 | |
| **      YYYY-MM-DD HH:MM:SS.FFF  +/-HH:MM
 | |
| **      DDDD.DD 
 | |
| **      now
 | |
| **
 | |
| ** In the first form, the +/-HH:MM is always optional.  The fractional
 | |
| ** seconds extension (the ".FFF") is optional.  The seconds portion
 | |
| ** (":SS.FFF") is option.  The year and date can be omitted as long
 | |
| ** as there is a time string.  The time string can be omitted as long
 | |
| ** as there is a year and date.
 | |
| */
 | |
| static int parseDateOrTime(const char *zDate, DateTime *p){
 | |
|   memset(p, 0, sizeof(*p));
 | |
|   if( parseYyyyMmDd(zDate,p)==0 ){
 | |
|     return 0;
 | |
|   }else if( parseHhMmSs(zDate, p)==0 ){
 | |
|     return 0;
 | |
|   }else if( sqlite3StrICmp(zDate,"now")==0){
 | |
|     double r;
 | |
|     sqlite3OsCurrentTime(&r);
 | |
|     p->rJD = r;
 | |
|     p->validJD = 1;
 | |
|     return 0;
 | |
|   }else if( sqlite3IsNumber(zDate, 0, SQLITE_UTF8) ){
 | |
|     getValue(zDate, &p->rJD);
 | |
|     p->validJD = 1;
 | |
|     return 0;
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compute the Year, Month, and Day from the julian day number.
 | |
| */
 | |
| static void computeYMD(DateTime *p){
 | |
|   int Z, A, B, C, D, E, X1;
 | |
|   if( p->validYMD ) return;
 | |
|   if( !p->validJD ){
 | |
|     p->Y = 2000;
 | |
|     p->M = 1;
 | |
|     p->D = 1;
 | |
|   }else{
 | |
|     Z = p->rJD + 0.5;
 | |
|     A = (Z - 1867216.25)/36524.25;
 | |
|     A = Z + 1 + A - (A/4);
 | |
|     B = A + 1524;
 | |
|     C = (B - 122.1)/365.25;
 | |
|     D = 365.25*C;
 | |
|     E = (B-D)/30.6001;
 | |
|     X1 = 30.6001*E;
 | |
|     p->D = B - D - X1;
 | |
|     p->M = E<14 ? E-1 : E-13;
 | |
|     p->Y = p->M>2 ? C - 4716 : C - 4715;
 | |
|   }
 | |
|   p->validYMD = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compute the Hour, Minute, and Seconds from the julian day number.
 | |
| */
 | |
| static void computeHMS(DateTime *p){
 | |
|   int Z, s;
 | |
|   if( p->validHMS ) return;
 | |
|   computeJD(p);
 | |
|   Z = p->rJD + 0.5;
 | |
|   s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
 | |
|   p->s = 0.001*s;
 | |
|   s = p->s;
 | |
|   p->s -= s;
 | |
|   p->h = s/3600;
 | |
|   s -= p->h*3600;
 | |
|   p->m = s/60;
 | |
|   p->s += s - p->m*60;
 | |
|   p->validHMS = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compute both YMD and HMS
 | |
| */
 | |
| static void computeYMD_HMS(DateTime *p){
 | |
|   computeYMD(p);
 | |
|   computeHMS(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Clear the YMD and HMS and the TZ
 | |
| */
 | |
| static void clearYMD_HMS_TZ(DateTime *p){
 | |
|   p->validYMD = 0;
 | |
|   p->validHMS = 0;
 | |
|   p->validTZ = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compute the difference (in days) between localtime and UTC (a.k.a. GMT)
 | |
| ** for the time value p where p is in UTC.
 | |
| */
 | |
| static double localtimeOffset(DateTime *p){
 | |
|   DateTime x, y;
 | |
|   time_t t;
 | |
|   x = *p;
 | |
|   computeYMD_HMS(&x);
 | |
|   if( x.Y<1971 || x.Y>=2038 ){
 | |
|     x.Y = 2000;
 | |
|     x.M = 1;
 | |
|     x.D = 1;
 | |
|     x.h = 0;
 | |
|     x.m = 0;
 | |
|     x.s = 0.0;
 | |
|   } else {
 | |
|     int s = x.s + 0.5;
 | |
|     x.s = s;
 | |
|   }
 | |
|   x.tz = 0;
 | |
|   x.validJD = 0;
 | |
|   computeJD(&x);
 | |
|   t = (x.rJD-2440587.5)*86400.0 + 0.5;
 | |
| #ifdef HAVE_LOCALTIME_R
 | |
|   {
 | |
|     struct tm sLocal;
 | |
|     localtime_r(&t, &sLocal);
 | |
|     y.Y = sLocal.tm_year + 1900;
 | |
|     y.M = sLocal.tm_mon + 1;
 | |
|     y.D = sLocal.tm_mday;
 | |
|     y.h = sLocal.tm_hour;
 | |
|     y.m = sLocal.tm_min;
 | |
|     y.s = sLocal.tm_sec;
 | |
|   }
 | |
| #else
 | |
|   {
 | |
|     struct tm *pTm;
 | |
|     sqlite3OsEnterMutex();
 | |
|     pTm = localtime(&t);
 | |
|     y.Y = pTm->tm_year + 1900;
 | |
|     y.M = pTm->tm_mon + 1;
 | |
|     y.D = pTm->tm_mday;
 | |
|     y.h = pTm->tm_hour;
 | |
|     y.m = pTm->tm_min;
 | |
|     y.s = pTm->tm_sec;
 | |
|     sqlite3OsLeaveMutex();
 | |
|   }
 | |
| #endif
 | |
|   y.validYMD = 1;
 | |
|   y.validHMS = 1;
 | |
|   y.validJD = 0;
 | |
|   y.validTZ = 0;
 | |
|   computeJD(&y);
 | |
|   return y.rJD - x.rJD;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Process a modifier to a date-time stamp.  The modifiers are
 | |
| ** as follows:
 | |
| **
 | |
| **     NNN days
 | |
| **     NNN hours
 | |
| **     NNN minutes
 | |
| **     NNN.NNNN seconds
 | |
| **     NNN months
 | |
| **     NNN years
 | |
| **     start of month
 | |
| **     start of year
 | |
| **     start of week
 | |
| **     start of day
 | |
| **     weekday N
 | |
| **     unixepoch
 | |
| **     localtime
 | |
| **     utc
 | |
| **
 | |
| ** Return 0 on success and 1 if there is any kind of error.
 | |
| */
 | |
| static int parseModifier(const char *zMod, DateTime *p){
 | |
|   int rc = 1;
 | |
|   int n;
 | |
|   double r;
 | |
|   char *z, zBuf[30];
 | |
|   z = zBuf;
 | |
|   for(n=0; n<sizeof(zBuf)-1 && zMod[n]; n++){
 | |
|     z[n] = tolower(zMod[n]);
 | |
|   }
 | |
|   z[n] = 0;
 | |
|   switch( z[0] ){
 | |
|     case 'l': {
 | |
|       /*    localtime
 | |
|       **
 | |
|       ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
 | |
|       ** show local time.
 | |
|       */
 | |
|       if( strcmp(z, "localtime")==0 ){
 | |
|         computeJD(p);
 | |
|         p->rJD += localtimeOffset(p);
 | |
|         clearYMD_HMS_TZ(p);
 | |
|         rc = 0;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case 'u': {
 | |
|       /*
 | |
|       **    unixepoch
 | |
|       **
 | |
|       ** Treat the current value of p->rJD as the number of
 | |
|       ** seconds since 1970.  Convert to a real julian day number.
 | |
|       */
 | |
|       if( strcmp(z, "unixepoch")==0 && p->validJD ){
 | |
|         p->rJD = p->rJD/86400.0 + 2440587.5;
 | |
|         clearYMD_HMS_TZ(p);
 | |
|         rc = 0;
 | |
|       }else if( strcmp(z, "utc")==0 ){
 | |
|         double c1;
 | |
|         computeJD(p);
 | |
|         c1 = localtimeOffset(p);
 | |
|         p->rJD -= c1;
 | |
|         clearYMD_HMS_TZ(p);
 | |
|         p->rJD += c1 - localtimeOffset(p);
 | |
|         rc = 0;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case 'w': {
 | |
|       /*
 | |
|       **    weekday N
 | |
|       **
 | |
|       ** Move the date to the same time on the next occurrence of
 | |
|       ** weekday N where 0==Sunday, 1==Monday, and so forth.  If the
 | |
|       ** date is already on the appropriate weekday, this is a no-op.
 | |
|       */
 | |
|       if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
 | |
|                  && (n=r)==r && n>=0 && r<7 ){
 | |
|         int Z;
 | |
|         computeYMD_HMS(p);
 | |
|         p->validTZ = 0;
 | |
|         p->validJD = 0;
 | |
|         computeJD(p);
 | |
|         Z = p->rJD + 1.5;
 | |
|         Z %= 7;
 | |
|         if( Z>n ) Z -= 7;
 | |
|         p->rJD += n - Z;
 | |
|         clearYMD_HMS_TZ(p);
 | |
|         rc = 0;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case 's': {
 | |
|       /*
 | |
|       **    start of TTTTT
 | |
|       **
 | |
|       ** Move the date backwards to the beginning of the current day,
 | |
|       ** or month or year.
 | |
|       */
 | |
|       if( strncmp(z, "start of ", 9)!=0 ) break;
 | |
|       z += 9;
 | |
|       computeYMD(p);
 | |
|       p->validHMS = 1;
 | |
|       p->h = p->m = 0;
 | |
|       p->s = 0.0;
 | |
|       p->validTZ = 0;
 | |
|       p->validJD = 0;
 | |
|       if( strcmp(z,"month")==0 ){
 | |
|         p->D = 1;
 | |
|         rc = 0;
 | |
|       }else if( strcmp(z,"year")==0 ){
 | |
|         computeYMD(p);
 | |
|         p->M = 1;
 | |
|         p->D = 1;
 | |
|         rc = 0;
 | |
|       }else if( strcmp(z,"day")==0 ){
 | |
|         rc = 0;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case '+':
 | |
|     case '-':
 | |
|     case '0':
 | |
|     case '1':
 | |
|     case '2':
 | |
|     case '3':
 | |
|     case '4':
 | |
|     case '5':
 | |
|     case '6':
 | |
|     case '7':
 | |
|     case '8':
 | |
|     case '9': {
 | |
|       n = getValue(z, &r);
 | |
|       assert( n>=1 );
 | |
|       if( z[n]==':' ){
 | |
|         /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
 | |
|         ** specified number of hours, minutes, seconds, and fractional seconds
 | |
|         ** to the time.  The ".FFF" may be omitted.  The ":SS.FFF" may be
 | |
|         ** omitted.
 | |
|         */
 | |
|         const char *z2 = z;
 | |
|         DateTime tx;
 | |
|         int day;
 | |
|         if( !isdigit(*(u8*)z2) ) z2++;
 | |
|         memset(&tx, 0, sizeof(tx));
 | |
|         if( parseHhMmSs(z2, &tx) ) break;
 | |
|         computeJD(&tx);
 | |
|         tx.rJD -= 0.5;
 | |
|         day = (int)tx.rJD;
 | |
|         tx.rJD -= day;
 | |
|         if( z[0]=='-' ) tx.rJD = -tx.rJD;
 | |
|         computeJD(p);
 | |
|         clearYMD_HMS_TZ(p);
 | |
|         p->rJD += tx.rJD;
 | |
|         rc = 0;
 | |
|         break;
 | |
|       }
 | |
|       z += n;
 | |
|       while( isspace(*(u8*)z) ) z++;
 | |
|       n = strlen(z);
 | |
|       if( n>10 || n<3 ) break;
 | |
|       if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
 | |
|       computeJD(p);
 | |
|       rc = 0;
 | |
|       if( n==3 && strcmp(z,"day")==0 ){
 | |
|         p->rJD += r;
 | |
|       }else if( n==4 && strcmp(z,"hour")==0 ){
 | |
|         p->rJD += r/24.0;
 | |
|       }else if( n==6 && strcmp(z,"minute")==0 ){
 | |
|         p->rJD += r/(24.0*60.0);
 | |
|       }else if( n==6 && strcmp(z,"second")==0 ){
 | |
|         p->rJD += r/(24.0*60.0*60.0);
 | |
|       }else if( n==5 && strcmp(z,"month")==0 ){
 | |
|         int x, y;
 | |
|         computeYMD_HMS(p);
 | |
|         p->M += r;
 | |
|         x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
 | |
|         p->Y += x;
 | |
|         p->M -= x*12;
 | |
|         p->validJD = 0;
 | |
|         computeJD(p);
 | |
|         y = r;
 | |
|         if( y!=r ){
 | |
|           p->rJD += (r - y)*30.0;
 | |
|         }
 | |
|       }else if( n==4 && strcmp(z,"year")==0 ){
 | |
|         computeYMD_HMS(p);
 | |
|         p->Y += r;
 | |
|         p->validJD = 0;
 | |
|         computeJD(p);
 | |
|       }else{
 | |
|         rc = 1;
 | |
|       }
 | |
|       clearYMD_HMS_TZ(p);
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Process time function arguments.  argv[0] is a date-time stamp.
 | |
| ** argv[1] and following are modifiers.  Parse them all and write
 | |
| ** the resulting time into the DateTime structure p.  Return 0
 | |
| ** on success and 1 if there are any errors.
 | |
| */
 | |
| static int isDate(int argc, sqlite3_value **argv, DateTime *p){
 | |
|   int i;
 | |
|   const unsigned char *z;
 | |
|   if( argc==0 ) return 1;
 | |
|   if( (z = sqlite3_value_text(argv[0]))==0 || parseDateOrTime((char*)z, p) ){
 | |
|     return 1;
 | |
|   }
 | |
|   for(i=1; i<argc; i++){
 | |
|     if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The following routines implement the various date and time functions
 | |
| ** of SQLite.
 | |
| */
 | |
| 
 | |
| /*
 | |
| **    julianday( TIMESTRING, MOD, MOD, ...)
 | |
| **
 | |
| ** Return the julian day number of the date specified in the arguments
 | |
| */
 | |
| static void juliandayFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   DateTime x;
 | |
|   if( isDate(argc, argv, &x)==0 ){
 | |
|     computeJD(&x);
 | |
|     sqlite3_result_double(context, x.rJD);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| **    datetime( TIMESTRING, MOD, MOD, ...)
 | |
| **
 | |
| ** Return YYYY-MM-DD HH:MM:SS
 | |
| */
 | |
| static void datetimeFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   DateTime x;
 | |
|   if( isDate(argc, argv, &x)==0 ){
 | |
|     char zBuf[100];
 | |
|     computeYMD_HMS(&x);
 | |
|     sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
 | |
|                      x.Y, x.M, x.D, x.h, x.m, (int)(x.s));
 | |
|     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| **    time( TIMESTRING, MOD, MOD, ...)
 | |
| **
 | |
| ** Return HH:MM:SS
 | |
| */
 | |
| static void timeFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   DateTime x;
 | |
|   if( isDate(argc, argv, &x)==0 ){
 | |
|     char zBuf[100];
 | |
|     computeHMS(&x);
 | |
|     sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
 | |
|     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| **    date( TIMESTRING, MOD, MOD, ...)
 | |
| **
 | |
| ** Return YYYY-MM-DD
 | |
| */
 | |
| static void dateFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   DateTime x;
 | |
|   if( isDate(argc, argv, &x)==0 ){
 | |
|     char zBuf[100];
 | |
|     computeYMD(&x);
 | |
|     sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
 | |
|     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| **    strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
 | |
| **
 | |
| ** Return a string described by FORMAT.  Conversions as follows:
 | |
| **
 | |
| **   %d  day of month
 | |
| **   %f  ** fractional seconds  SS.SSS
 | |
| **   %H  hour 00-24
 | |
| **   %j  day of year 000-366
 | |
| **   %J  ** Julian day number
 | |
| **   %m  month 01-12
 | |
| **   %M  minute 00-59
 | |
| **   %s  seconds since 1970-01-01
 | |
| **   %S  seconds 00-59
 | |
| **   %w  day of week 0-6  sunday==0
 | |
| **   %W  week of year 00-53
 | |
| **   %Y  year 0000-9999
 | |
| **   %%  %
 | |
| */
 | |
| static void strftimeFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   DateTime x;
 | |
|   u64 n;
 | |
|   int i, j;
 | |
|   char *z;
 | |
|   const char *zFmt = (const char*)sqlite3_value_text(argv[0]);
 | |
|   char zBuf[100];
 | |
|   if( zFmt==0 || isDate(argc-1, argv+1, &x) ) return;
 | |
|   for(i=0, n=1; zFmt[i]; i++, n++){
 | |
|     if( zFmt[i]=='%' ){
 | |
|       switch( zFmt[i+1] ){
 | |
|         case 'd':
 | |
|         case 'H':
 | |
|         case 'm':
 | |
|         case 'M':
 | |
|         case 'S':
 | |
|         case 'W':
 | |
|           n++;
 | |
|           /* fall thru */
 | |
|         case 'w':
 | |
|         case '%':
 | |
|           break;
 | |
|         case 'f':
 | |
|           n += 8;
 | |
|           break;
 | |
|         case 'j':
 | |
|           n += 3;
 | |
|           break;
 | |
|         case 'Y':
 | |
|           n += 8;
 | |
|           break;
 | |
|         case 's':
 | |
|         case 'J':
 | |
|           n += 50;
 | |
|           break;
 | |
|         default:
 | |
|           return;  /* ERROR.  return a NULL */
 | |
|       }
 | |
|       i++;
 | |
|     }
 | |
|   }
 | |
|   if( n<sizeof(zBuf) ){
 | |
|     z = zBuf;
 | |
|   }else if( n>SQLITE_MAX_LENGTH ){
 | |
|     sqlite3_result_error_toobig(context);
 | |
|     return;
 | |
|   }else{
 | |
|     z = sqliteMalloc( n );
 | |
|     if( z==0 ) return;
 | |
|   }
 | |
|   computeJD(&x);
 | |
|   computeYMD_HMS(&x);
 | |
|   for(i=j=0; zFmt[i]; i++){
 | |
|     if( zFmt[i]!='%' ){
 | |
|       z[j++] = zFmt[i];
 | |
|     }else{
 | |
|       i++;
 | |
|       switch( zFmt[i] ){
 | |
|         case 'd':  sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
 | |
|         case 'f': {
 | |
|           double s = x.s;
 | |
|           if( s>59.999 ) s = 59.999;
 | |
|           sqlite3_snprintf(7, &z[j],"%06.3f", s);
 | |
|           j += strlen(&z[j]);
 | |
|           break;
 | |
|         }
 | |
|         case 'H':  sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
 | |
|         case 'W': /* Fall thru */
 | |
|         case 'j': {
 | |
|           int nDay;             /* Number of days since 1st day of year */
 | |
|           DateTime y = x;
 | |
|           y.validJD = 0;
 | |
|           y.M = 1;
 | |
|           y.D = 1;
 | |
|           computeJD(&y);
 | |
|           nDay = x.rJD - y.rJD + 0.5;
 | |
|           if( zFmt[i]=='W' ){
 | |
|             int wd;   /* 0=Monday, 1=Tuesday, ... 6=Sunday */
 | |
|             wd = ((int)(x.rJD+0.5)) % 7;
 | |
|             sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
 | |
|             j += 2;
 | |
|           }else{
 | |
|             sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
 | |
|             j += 3;
 | |
|           }
 | |
|           break;
 | |
|         }
 | |
|         case 'J': {
 | |
|           sqlite3_snprintf(20, &z[j],"%.16g",x.rJD);
 | |
|           j+=strlen(&z[j]);
 | |
|           break;
 | |
|         }
 | |
|         case 'm':  sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
 | |
|         case 'M':  sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
 | |
|         case 's': {
 | |
|           sqlite3_snprintf(30,&z[j],"%d",
 | |
|                            (int)((x.rJD-2440587.5)*86400.0 + 0.5));
 | |
|           j += strlen(&z[j]);
 | |
|           break;
 | |
|         }
 | |
|         case 'S':  sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
 | |
|         case 'w':  z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break;
 | |
|         case 'Y':  sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=strlen(&z[j]);break;
 | |
|         case '%':  z[j++] = '%'; break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   z[j] = 0;
 | |
|   sqlite3_result_text(context, z, -1, SQLITE_TRANSIENT);
 | |
|   if( z!=zBuf ){
 | |
|     sqliteFree(z);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** current_time()
 | |
| **
 | |
| ** This function returns the same value as time('now').
 | |
| */
 | |
| static void ctimeFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   sqlite3_value *pVal = sqlite3ValueNew();
 | |
|   if( pVal ){
 | |
|     sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
 | |
|     timeFunc(context, 1, &pVal);
 | |
|     sqlite3ValueFree(pVal);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** current_date()
 | |
| **
 | |
| ** This function returns the same value as date('now').
 | |
| */
 | |
| static void cdateFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   sqlite3_value *pVal = sqlite3ValueNew();
 | |
|   if( pVal ){
 | |
|     sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
 | |
|     dateFunc(context, 1, &pVal);
 | |
|     sqlite3ValueFree(pVal);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** current_timestamp()
 | |
| **
 | |
| ** This function returns the same value as datetime('now').
 | |
| */
 | |
| static void ctimestampFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   sqlite3_value *pVal = sqlite3ValueNew();
 | |
|   if( pVal ){
 | |
|     sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
 | |
|     datetimeFunc(context, 1, &pVal);
 | |
|     sqlite3ValueFree(pVal);
 | |
|   }
 | |
| }
 | |
| #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
 | |
| 
 | |
| #ifdef SQLITE_OMIT_DATETIME_FUNCS
 | |
| /*
 | |
| ** If the library is compiled to omit the full-scale date and time
 | |
| ** handling (to get a smaller binary), the following minimal version
 | |
| ** of the functions current_time(), current_date() and current_timestamp()
 | |
| ** are included instead. This is to support column declarations that
 | |
| ** include "DEFAULT CURRENT_TIME" etc.
 | |
| **
 | |
| ** This function uses the C-library functions time(), gmtime()
 | |
| ** and strftime(). The format string to pass to strftime() is supplied
 | |
| ** as the user-data for the function.
 | |
| */
 | |
| static void currentTimeFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   time_t t;
 | |
|   char *zFormat = (char *)sqlite3_user_data(context);
 | |
|   char zBuf[20];
 | |
| 
 | |
|   time(&t);
 | |
| #ifdef SQLITE_TEST
 | |
|   {
 | |
|     extern int sqlite3_current_time;  /* See os_XXX.c */
 | |
|     if( sqlite3_current_time ){
 | |
|       t = sqlite3_current_time;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_GMTIME_R
 | |
|   {
 | |
|     struct tm sNow;
 | |
|     gmtime_r(&t, &sNow);
 | |
|     strftime(zBuf, 20, zFormat, &sNow);
 | |
|   }
 | |
| #else
 | |
|   {
 | |
|     struct tm *pTm;
 | |
|     sqlite3OsEnterMutex();
 | |
|     pTm = gmtime(&t);
 | |
|     strftime(zBuf, 20, zFormat, pTm);
 | |
|     sqlite3OsLeaveMutex();
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** This function registered all of the above C functions as SQL
 | |
| ** functions.  This should be the only routine in this file with
 | |
| ** external linkage.
 | |
| */
 | |
| void sqlite3RegisterDateTimeFunctions(sqlite3 *db){
 | |
| #ifndef SQLITE_OMIT_DATETIME_FUNCS
 | |
|   static const struct {
 | |
|      char *zName;
 | |
|      int nArg;
 | |
|      void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
 | |
|   } aFuncs[] = {
 | |
|     { "julianday", -1, juliandayFunc   },
 | |
|     { "date",      -1, dateFunc        },
 | |
|     { "time",      -1, timeFunc        },
 | |
|     { "datetime",  -1, datetimeFunc    },
 | |
|     { "strftime",  -1, strftimeFunc    },
 | |
|     { "current_time",       0, ctimeFunc      },
 | |
|     { "current_timestamp",  0, ctimestampFunc },
 | |
|     { "current_date",       0, cdateFunc      },
 | |
|   };
 | |
|   int i;
 | |
| 
 | |
|   for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
 | |
|     sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
 | |
|         SQLITE_UTF8, 0, aFuncs[i].xFunc, 0, 0);
 | |
|   }
 | |
| #else
 | |
|   static const struct {
 | |
|      char *zName;
 | |
|      char *zFormat;
 | |
|   } aFuncs[] = {
 | |
|     { "current_time", "%H:%M:%S" },
 | |
|     { "current_date", "%Y-%m-%d" },
 | |
|     { "current_timestamp", "%Y-%m-%d %H:%M:%S" }
 | |
|   };
 | |
|   int i;
 | |
| 
 | |
|   for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
 | |
|     sqlite3CreateFunc(db, aFuncs[i].zName, 0, SQLITE_UTF8, 
 | |
|         aFuncs[i].zFormat, currentTimeFunc, 0, 0);
 | |
|   }
 | |
| #endif
 | |
| }
 |