--HG-- extra : convert_revision : svn%3A39bc706e-5318-0410-9160-8a85361fbb7c/trunk%401209
		
			
				
	
	
		
			3362 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3362 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains C code routines that are called by the SQLite parser
 | |
| ** when syntax rules are reduced.  The routines in this file handle the
 | |
| ** following kinds of SQL syntax:
 | |
| **
 | |
| **     CREATE TABLE
 | |
| **     DROP TABLE
 | |
| **     CREATE INDEX
 | |
| **     DROP INDEX
 | |
| **     creating ID lists
 | |
| **     BEGIN TRANSACTION
 | |
| **     COMMIT
 | |
| **     ROLLBACK
 | |
| **
 | |
| ** $Id$
 | |
| */
 | |
| #include "sqliteInt.h"
 | |
| #include <ctype.h>
 | |
| 
 | |
| /*
 | |
| ** This routine is called when a new SQL statement is beginning to
 | |
| ** be parsed.  Initialize the pParse structure as needed.
 | |
| */
 | |
| void sqlite3BeginParse(Parse *pParse, int explainFlag){
 | |
|   pParse->explain = explainFlag;
 | |
|   pParse->nVar = 0;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_SHARED_CACHE
 | |
| /*
 | |
| ** The TableLock structure is only used by the sqlite3TableLock() and
 | |
| ** codeTableLocks() functions.
 | |
| */
 | |
| struct TableLock {
 | |
|   int iDb;             /* The database containing the table to be locked */
 | |
|   int iTab;            /* The root page of the table to be locked */
 | |
|   u8 isWriteLock;      /* True for write lock.  False for a read lock */
 | |
|   const char *zName;   /* Name of the table */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Record the fact that we want to lock a table at run-time.  
 | |
| **
 | |
| ** The table to be locked has root page iTab and is found in database iDb.
 | |
| ** A read or a write lock can be taken depending on isWritelock.
 | |
| **
 | |
| ** This routine just records the fact that the lock is desired.  The
 | |
| ** code to make the lock occur is generated by a later call to
 | |
| ** codeTableLocks() which occurs during sqlite3FinishCoding().
 | |
| */
 | |
| void sqlite3TableLock(
 | |
|   Parse *pParse,     /* Parsing context */
 | |
|   int iDb,           /* Index of the database containing the table to lock */
 | |
|   int iTab,          /* Root page number of the table to be locked */
 | |
|   u8 isWriteLock,    /* True for a write lock */
 | |
|   const char *zName  /* Name of the table to be locked */
 | |
| ){
 | |
|   int i;
 | |
|   int nBytes;
 | |
|   TableLock *p;
 | |
| 
 | |
|   if( 0==sqlite3ThreadDataReadOnly()->useSharedData || iDb<0 ){
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for(i=0; i<pParse->nTableLock; i++){
 | |
|     p = &pParse->aTableLock[i];
 | |
|     if( p->iDb==iDb && p->iTab==iTab ){
 | |
|       p->isWriteLock = (p->isWriteLock || isWriteLock);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   nBytes = sizeof(TableLock) * (pParse->nTableLock+1);
 | |
|   pParse->aTableLock = sqliteReallocOrFree(pParse->aTableLock, nBytes);
 | |
|   if( pParse->aTableLock ){
 | |
|     p = &pParse->aTableLock[pParse->nTableLock++];
 | |
|     p->iDb = iDb;
 | |
|     p->iTab = iTab;
 | |
|     p->isWriteLock = isWriteLock;
 | |
|     p->zName = zName;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Code an OP_TableLock instruction for each table locked by the
 | |
| ** statement (configured by calls to sqlite3TableLock()).
 | |
| */
 | |
| static void codeTableLocks(Parse *pParse){
 | |
|   int i;
 | |
|   Vdbe *pVdbe; 
 | |
|   assert( sqlite3ThreadDataReadOnly()->useSharedData || pParse->nTableLock==0 );
 | |
| 
 | |
|   if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for(i=0; i<pParse->nTableLock; i++){
 | |
|     TableLock *p = &pParse->aTableLock[i];
 | |
|     int p1 = p->iDb;
 | |
|     if( p->isWriteLock ){
 | |
|       p1 = -1*(p1+1);
 | |
|     }
 | |
|     sqlite3VdbeOp3(pVdbe, OP_TableLock, p1, p->iTab, p->zName, P3_STATIC);
 | |
|   }
 | |
| }
 | |
| #else
 | |
|   #define codeTableLocks(x)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** This routine is called after a single SQL statement has been
 | |
| ** parsed and a VDBE program to execute that statement has been
 | |
| ** prepared.  This routine puts the finishing touches on the
 | |
| ** VDBE program and resets the pParse structure for the next
 | |
| ** parse.
 | |
| **
 | |
| ** Note that if an error occurred, it might be the case that
 | |
| ** no VDBE code was generated.
 | |
| */
 | |
| void sqlite3FinishCoding(Parse *pParse){
 | |
|   sqlite3 *db;
 | |
|   Vdbe *v;
 | |
| 
 | |
|   if( sqlite3MallocFailed() ) return;
 | |
|   if( pParse->nested ) return;
 | |
|   if( !pParse->pVdbe ){
 | |
|     if( pParse->rc==SQLITE_OK && pParse->nErr ){
 | |
|       pParse->rc = SQLITE_ERROR;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Begin by generating some termination code at the end of the
 | |
|   ** vdbe program
 | |
|   */
 | |
|   db = pParse->db;
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v ){
 | |
|     sqlite3VdbeAddOp(v, OP_Halt, 0, 0);
 | |
| 
 | |
|     /* The cookie mask contains one bit for each database file open.
 | |
|     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
 | |
|     ** set for each database that is used.  Generate code to start a
 | |
|     ** transaction on each used database and to verify the schema cookie
 | |
|     ** on each used database.
 | |
|     */
 | |
|     if( pParse->cookieGoto>0 ){
 | |
|       u32 mask;
 | |
|       int iDb;
 | |
|       sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
 | |
|       for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
 | |
|         if( (mask & pParse->cookieMask)==0 ) continue;
 | |
|         sqlite3VdbeAddOp(v, OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
 | |
|         sqlite3VdbeAddOp(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
 | |
|       }
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|       if( pParse->pVirtualLock ){
 | |
|         char *vtab = (char *)pParse->pVirtualLock->pVtab;
 | |
|         sqlite3VdbeOp3(v, OP_VBegin, 0, 0, vtab, P3_VTAB);
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       /* Once all the cookies have been verified and transactions opened, 
 | |
|       ** obtain the required table-locks. This is a no-op unless the 
 | |
|       ** shared-cache feature is enabled.
 | |
|       */
 | |
|       codeTableLocks(pParse);
 | |
|       sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->cookieGoto);
 | |
|     }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRACE
 | |
|     /* Add a No-op that contains the complete text of the compiled SQL
 | |
|     ** statement as its P3 argument.  This does not change the functionality
 | |
|     ** of the program. 
 | |
|     **
 | |
|     ** This is used to implement sqlite3_trace().
 | |
|     */
 | |
|     sqlite3VdbeOp3(v, OP_Noop, 0, 0, pParse->zSql, pParse->zTail-pParse->zSql);
 | |
| #endif /* SQLITE_OMIT_TRACE */
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* Get the VDBE program ready for execution
 | |
|   */
 | |
|   if( v && pParse->nErr==0 && !sqlite3MallocFailed() ){
 | |
| #ifdef SQLITE_DEBUG
 | |
|     FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
 | |
|     sqlite3VdbeTrace(v, trace);
 | |
| #endif
 | |
|     sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
 | |
|                          pParse->nTab+3, pParse->explain);
 | |
|     pParse->rc = SQLITE_DONE;
 | |
|     pParse->colNamesSet = 0;
 | |
|   }else if( pParse->rc==SQLITE_OK ){
 | |
|     pParse->rc = SQLITE_ERROR;
 | |
|   }
 | |
|   pParse->nTab = 0;
 | |
|   pParse->nMem = 0;
 | |
|   pParse->nSet = 0;
 | |
|   pParse->nVar = 0;
 | |
|   pParse->cookieMask = 0;
 | |
|   pParse->cookieGoto = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Run the parser and code generator recursively in order to generate
 | |
| ** code for the SQL statement given onto the end of the pParse context
 | |
| ** currently under construction.  When the parser is run recursively
 | |
| ** this way, the final OP_Halt is not appended and other initialization
 | |
| ** and finalization steps are omitted because those are handling by the
 | |
| ** outermost parser.
 | |
| **
 | |
| ** Not everything is nestable.  This facility is designed to permit
 | |
| ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
 | |
| ** care if you decide to try to use this routine for some other purposes.
 | |
| */
 | |
| void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
 | |
|   va_list ap;
 | |
|   char *zSql;
 | |
| # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
 | |
|   char saveBuf[SAVE_SZ];
 | |
| 
 | |
|   if( pParse->nErr ) return;
 | |
|   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
 | |
|   va_start(ap, zFormat);
 | |
|   zSql = sqlite3VMPrintf(zFormat, ap);
 | |
|   va_end(ap);
 | |
|   if( zSql==0 ){
 | |
|     return;   /* A malloc must have failed */
 | |
|   }
 | |
|   pParse->nested++;
 | |
|   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
 | |
|   memset(&pParse->nVar, 0, SAVE_SZ);
 | |
|   sqlite3RunParser(pParse, zSql, 0);
 | |
|   sqliteFree(zSql);
 | |
|   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
 | |
|   pParse->nested--;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Locate the in-memory structure that describes a particular database
 | |
| ** table given the name of that table and (optionally) the name of the
 | |
| ** database containing the table.  Return NULL if not found.
 | |
| **
 | |
| ** If zDatabase is 0, all databases are searched for the table and the
 | |
| ** first matching table is returned.  (No checking for duplicate table
 | |
| ** names is done.)  The search order is TEMP first, then MAIN, then any
 | |
| ** auxiliary databases added using the ATTACH command.
 | |
| **
 | |
| ** See also sqlite3LocateTable().
 | |
| */
 | |
| Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
 | |
|   Table *p = 0;
 | |
|   int i;
 | |
|   assert( zName!=0 );
 | |
|   for(i=OMIT_TEMPDB; i<db->nDb; i++){
 | |
|     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
 | |
|     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
 | |
|     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName)+1);
 | |
|     if( p ) break;
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Locate the in-memory structure that describes a particular database
 | |
| ** table given the name of that table and (optionally) the name of the
 | |
| ** database containing the table.  Return NULL if not found.  Also leave an
 | |
| ** error message in pParse->zErrMsg.
 | |
| **
 | |
| ** The difference between this routine and sqlite3FindTable() is that this
 | |
| ** routine leaves an error message in pParse->zErrMsg where
 | |
| ** sqlite3FindTable() does not.
 | |
| */
 | |
| Table *sqlite3LocateTable(Parse *pParse, const char *zName, const char *zDbase){
 | |
|   Table *p;
 | |
| 
 | |
|   /* Read the database schema. If an error occurs, leave an error message
 | |
|   ** and code in pParse and return NULL. */
 | |
|   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   p = sqlite3FindTable(pParse->db, zName, zDbase);
 | |
|   if( p==0 ){
 | |
|     if( zDbase ){
 | |
|       sqlite3ErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
 | |
|     }else{
 | |
|       sqlite3ErrorMsg(pParse, "no such table: %s", zName);
 | |
|     }
 | |
|     pParse->checkSchema = 1;
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Locate the in-memory structure that describes 
 | |
| ** a particular index given the name of that index
 | |
| ** and the name of the database that contains the index.
 | |
| ** Return NULL if not found.
 | |
| **
 | |
| ** If zDatabase is 0, all databases are searched for the
 | |
| ** table and the first matching index is returned.  (No checking
 | |
| ** for duplicate index names is done.)  The search order is
 | |
| ** TEMP first, then MAIN, then any auxiliary databases added
 | |
| ** using the ATTACH command.
 | |
| */
 | |
| Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
 | |
|   Index *p = 0;
 | |
|   int i;
 | |
|   for(i=OMIT_TEMPDB; i<db->nDb; i++){
 | |
|     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
 | |
|     Schema *pSchema = db->aDb[j].pSchema;
 | |
|     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
 | |
|     assert( pSchema || (j==1 && !db->aDb[1].pBt) );
 | |
|     if( pSchema ){
 | |
|       p = sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName)+1);
 | |
|     }
 | |
|     if( p ) break;
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Reclaim the memory used by an index
 | |
| */
 | |
| static void freeIndex(Index *p){
 | |
|   sqliteFree(p->zColAff);
 | |
|   sqliteFree(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Remove the given index from the index hash table, and free
 | |
| ** its memory structures.
 | |
| **
 | |
| ** The index is removed from the database hash tables but
 | |
| ** it is not unlinked from the Table that it indexes.
 | |
| ** Unlinking from the Table must be done by the calling function.
 | |
| */
 | |
| static void sqliteDeleteIndex(Index *p){
 | |
|   Index *pOld;
 | |
|   const char *zName = p->zName;
 | |
| 
 | |
|   pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen( zName)+1, 0);
 | |
|   assert( pOld==0 || pOld==p );
 | |
|   freeIndex(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** For the index called zIdxName which is found in the database iDb,
 | |
| ** unlike that index from its Table then remove the index from
 | |
| ** the index hash table and free all memory structures associated
 | |
| ** with the index.
 | |
| */
 | |
| void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
 | |
|   Index *pIndex;
 | |
|   int len;
 | |
|   Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
 | |
| 
 | |
|   len = strlen(zIdxName);
 | |
|   pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0);
 | |
|   if( pIndex ){
 | |
|     if( pIndex->pTable->pIndex==pIndex ){
 | |
|       pIndex->pTable->pIndex = pIndex->pNext;
 | |
|     }else{
 | |
|       Index *p;
 | |
|       for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
 | |
|       if( p && p->pNext==pIndex ){
 | |
|         p->pNext = pIndex->pNext;
 | |
|       }
 | |
|     }
 | |
|     freeIndex(pIndex);
 | |
|   }
 | |
|   db->flags |= SQLITE_InternChanges;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Erase all schema information from the in-memory hash tables of
 | |
| ** a single database.  This routine is called to reclaim memory
 | |
| ** before the database closes.  It is also called during a rollback
 | |
| ** if there were schema changes during the transaction or if a
 | |
| ** schema-cookie mismatch occurs.
 | |
| **
 | |
| ** If iDb<=0 then reset the internal schema tables for all database
 | |
| ** files.  If iDb>=2 then reset the internal schema for only the
 | |
| ** single file indicated.
 | |
| */
 | |
| void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
 | |
|   int i, j;
 | |
| 
 | |
|   assert( iDb>=0 && iDb<db->nDb );
 | |
|   for(i=iDb; i<db->nDb; i++){
 | |
|     Db *pDb = &db->aDb[i];
 | |
|     if( pDb->pSchema ){
 | |
|       sqlite3SchemaFree(pDb->pSchema);
 | |
|     }
 | |
|     if( iDb>0 ) return;
 | |
|   }
 | |
|   assert( iDb==0 );
 | |
|   db->flags &= ~SQLITE_InternChanges;
 | |
| 
 | |
|   /* If one or more of the auxiliary database files has been closed,
 | |
|   ** then remove them from the auxiliary database list.  We take the
 | |
|   ** opportunity to do this here since we have just deleted all of the
 | |
|   ** schema hash tables and therefore do not have to make any changes
 | |
|   ** to any of those tables.
 | |
|   */
 | |
|   for(i=0; i<db->nDb; i++){
 | |
|     struct Db *pDb = &db->aDb[i];
 | |
|     if( pDb->pBt==0 ){
 | |
|       if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
 | |
|       pDb->pAux = 0;
 | |
|     }
 | |
|   }
 | |
|   for(i=j=2; i<db->nDb; i++){
 | |
|     struct Db *pDb = &db->aDb[i];
 | |
|     if( pDb->pBt==0 ){
 | |
|       sqliteFree(pDb->zName);
 | |
|       pDb->zName = 0;
 | |
|       continue;
 | |
|     }
 | |
|     if( j<i ){
 | |
|       db->aDb[j] = db->aDb[i];
 | |
|     }
 | |
|     j++;
 | |
|   }
 | |
|   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
 | |
|   db->nDb = j;
 | |
|   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
 | |
|     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
 | |
|     sqliteFree(db->aDb);
 | |
|     db->aDb = db->aDbStatic;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called when a commit occurs.
 | |
| */
 | |
| void sqlite3CommitInternalChanges(sqlite3 *db){
 | |
|   db->flags &= ~SQLITE_InternChanges;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Clear the column names from a table or view.
 | |
| */
 | |
| static void sqliteResetColumnNames(Table *pTable){
 | |
|   int i;
 | |
|   Column *pCol;
 | |
|   assert( pTable!=0 );
 | |
|   if( (pCol = pTable->aCol)!=0 ){
 | |
|     for(i=0; i<pTable->nCol; i++, pCol++){
 | |
|       sqliteFree(pCol->zName);
 | |
|       sqlite3ExprDelete(pCol->pDflt);
 | |
|       sqliteFree(pCol->zType);
 | |
|       sqliteFree(pCol->zColl);
 | |
|     }
 | |
|     sqliteFree(pTable->aCol);
 | |
|   }
 | |
|   pTable->aCol = 0;
 | |
|   pTable->nCol = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Remove the memory data structures associated with the given
 | |
| ** Table.  No changes are made to disk by this routine.
 | |
| **
 | |
| ** This routine just deletes the data structure.  It does not unlink
 | |
| ** the table data structure from the hash table.  Nor does it remove
 | |
| ** foreign keys from the sqlite.aFKey hash table.  But it does destroy
 | |
| ** memory structures of the indices and foreign keys associated with 
 | |
| ** the table.
 | |
| */
 | |
| void sqlite3DeleteTable(Table *pTable){
 | |
|   Index *pIndex, *pNext;
 | |
|   FKey *pFKey, *pNextFKey;
 | |
| 
 | |
|   if( pTable==0 ) return;
 | |
| 
 | |
|   /* Do not delete the table until the reference count reaches zero. */
 | |
|   pTable->nRef--;
 | |
|   if( pTable->nRef>0 ){
 | |
|     return;
 | |
|   }
 | |
|   assert( pTable->nRef==0 );
 | |
| 
 | |
|   /* Delete all indices associated with this table
 | |
|   */
 | |
|   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
 | |
|     pNext = pIndex->pNext;
 | |
|     assert( pIndex->pSchema==pTable->pSchema );
 | |
|     sqliteDeleteIndex(pIndex);
 | |
|   }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_FOREIGN_KEY
 | |
|   /* Delete all foreign keys associated with this table.  The keys
 | |
|   ** should have already been unlinked from the pSchema->aFKey hash table 
 | |
|   */
 | |
|   for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
 | |
|     pNextFKey = pFKey->pNextFrom;
 | |
|     assert( sqlite3HashFind(&pTable->pSchema->aFKey,
 | |
|                            pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
 | |
|     sqliteFree(pFKey);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Delete the Table structure itself.
 | |
|   */
 | |
|   sqliteResetColumnNames(pTable);
 | |
|   sqliteFree(pTable->zName);
 | |
|   sqliteFree(pTable->zColAff);
 | |
|   sqlite3SelectDelete(pTable->pSelect);
 | |
| #ifndef SQLITE_OMIT_CHECK
 | |
|   sqlite3ExprDelete(pTable->pCheck);
 | |
| #endif
 | |
|   sqlite3VtabClear(pTable);
 | |
|   sqliteFree(pTable);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Unlink the given table from the hash tables and the delete the
 | |
| ** table structure with all its indices and foreign keys.
 | |
| */
 | |
| void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
 | |
|   Table *p;
 | |
|   FKey *pF1, *pF2;
 | |
|   Db *pDb;
 | |
| 
 | |
|   assert( db!=0 );
 | |
|   assert( iDb>=0 && iDb<db->nDb );
 | |
|   assert( zTabName && zTabName[0] );
 | |
|   pDb = &db->aDb[iDb];
 | |
|   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0);
 | |
|   if( p ){
 | |
| #ifndef SQLITE_OMIT_FOREIGN_KEY
 | |
|     for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
 | |
|       int nTo = strlen(pF1->zTo) + 1;
 | |
|       pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo);
 | |
|       if( pF2==pF1 ){
 | |
|         sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo);
 | |
|       }else{
 | |
|         while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
 | |
|         if( pF2 ){
 | |
|           pF2->pNextTo = pF1->pNextTo;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
|     sqlite3DeleteTable(p);
 | |
|   }
 | |
|   db->flags |= SQLITE_InternChanges;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Given a token, return a string that consists of the text of that
 | |
| ** token with any quotations removed.  Space to hold the returned string
 | |
| ** is obtained from sqliteMalloc() and must be freed by the calling
 | |
| ** function.
 | |
| **
 | |
| ** Tokens are often just pointers into the original SQL text and so
 | |
| ** are not \000 terminated and are not persistent.  The returned string
 | |
| ** is \000 terminated and is persistent.
 | |
| */
 | |
| char *sqlite3NameFromToken(Token *pName){
 | |
|   char *zName;
 | |
|   if( pName ){
 | |
|     zName = sqliteStrNDup((char*)pName->z, pName->n);
 | |
|     sqlite3Dequote(zName);
 | |
|   }else{
 | |
|     zName = 0;
 | |
|   }
 | |
|   return zName;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Open the sqlite_master table stored in database number iDb for
 | |
| ** writing. The table is opened using cursor 0.
 | |
| */
 | |
| void sqlite3OpenMasterTable(Parse *p, int iDb){
 | |
|   Vdbe *v = sqlite3GetVdbe(p);
 | |
|   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
 | |
|   sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
 | |
|   sqlite3VdbeAddOp(v, OP_OpenWrite, 0, MASTER_ROOT);
 | |
|   sqlite3VdbeAddOp(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The token *pName contains the name of a database (either "main" or
 | |
| ** "temp" or the name of an attached db). This routine returns the
 | |
| ** index of the named database in db->aDb[], or -1 if the named db 
 | |
| ** does not exist.
 | |
| */
 | |
| int sqlite3FindDb(sqlite3 *db, Token *pName){
 | |
|   int i = -1;    /* Database number */
 | |
|   int n;         /* Number of characters in the name */
 | |
|   Db *pDb;       /* A database whose name space is being searched */
 | |
|   char *zName;   /* Name we are searching for */
 | |
| 
 | |
|   zName = sqlite3NameFromToken(pName);
 | |
|   if( zName ){
 | |
|     n = strlen(zName);
 | |
|     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
 | |
|       if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) && 
 | |
|           0==sqlite3StrICmp(pDb->zName, zName) ){
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     sqliteFree(zName);
 | |
|   }
 | |
|   return i;
 | |
| }
 | |
| 
 | |
| /* The table or view or trigger name is passed to this routine via tokens
 | |
| ** pName1 and pName2. If the table name was fully qualified, for example:
 | |
| **
 | |
| ** CREATE TABLE xxx.yyy (...);
 | |
| ** 
 | |
| ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
 | |
| ** the table name is not fully qualified, i.e.:
 | |
| **
 | |
| ** CREATE TABLE yyy(...);
 | |
| **
 | |
| ** Then pName1 is set to "yyy" and pName2 is "".
 | |
| **
 | |
| ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
 | |
| ** pName2) that stores the unqualified table name.  The index of the
 | |
| ** database "xxx" is returned.
 | |
| */
 | |
| int sqlite3TwoPartName(
 | |
|   Parse *pParse,      /* Parsing and code generating context */
 | |
|   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
 | |
|   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
 | |
|   Token **pUnqual     /* Write the unqualified object name here */
 | |
| ){
 | |
|   int iDb;                    /* Database holding the object */
 | |
|   sqlite3 *db = pParse->db;
 | |
| 
 | |
|   if( pName2 && pName2->n>0 ){
 | |
|     assert( !db->init.busy );
 | |
|     *pUnqual = pName2;
 | |
|     iDb = sqlite3FindDb(db, pName1);
 | |
|     if( iDb<0 ){
 | |
|       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
 | |
|       pParse->nErr++;
 | |
|       return -1;
 | |
|     }
 | |
|   }else{
 | |
|     assert( db->init.iDb==0 || db->init.busy );
 | |
|     iDb = db->init.iDb;
 | |
|     *pUnqual = pName1;
 | |
|   }
 | |
|   return iDb;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is used to check if the UTF-8 string zName is a legal
 | |
| ** unqualified name for a new schema object (table, index, view or
 | |
| ** trigger). All names are legal except those that begin with the string
 | |
| ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
 | |
| ** is reserved for internal use.
 | |
| */
 | |
| int sqlite3CheckObjectName(Parse *pParse, const char *zName){
 | |
|   if( !pParse->db->init.busy && pParse->nested==0 
 | |
|           && (pParse->db->flags & SQLITE_WriteSchema)==0
 | |
|           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
 | |
|     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Begin constructing a new table representation in memory.  This is
 | |
| ** the first of several action routines that get called in response
 | |
| ** to a CREATE TABLE statement.  In particular, this routine is called
 | |
| ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
 | |
| ** flag is true if the table should be stored in the auxiliary database
 | |
| ** file instead of in the main database file.  This is normally the case
 | |
| ** when the "TEMP" or "TEMPORARY" keyword occurs in between
 | |
| ** CREATE and TABLE.
 | |
| **
 | |
| ** The new table record is initialized and put in pParse->pNewTable.
 | |
| ** As more of the CREATE TABLE statement is parsed, additional action
 | |
| ** routines will be called to add more information to this record.
 | |
| ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
 | |
| ** is called to complete the construction of the new table record.
 | |
| */
 | |
| void sqlite3StartTable(
 | |
|   Parse *pParse,   /* Parser context */
 | |
|   Token *pName1,   /* First part of the name of the table or view */
 | |
|   Token *pName2,   /* Second part of the name of the table or view */
 | |
|   int isTemp,      /* True if this is a TEMP table */
 | |
|   int isView,      /* True if this is a VIEW */
 | |
|   int isVirtual,   /* True if this is a VIRTUAL table */
 | |
|   int noErr        /* Do nothing if table already exists */
 | |
| ){
 | |
|   Table *pTable;
 | |
|   char *zName = 0; /* The name of the new table */
 | |
|   sqlite3 *db = pParse->db;
 | |
|   Vdbe *v;
 | |
|   int iDb;         /* Database number to create the table in */
 | |
|   Token *pName;    /* Unqualified name of the table to create */
 | |
| 
 | |
|   /* The table or view name to create is passed to this routine via tokens
 | |
|   ** pName1 and pName2. If the table name was fully qualified, for example:
 | |
|   **
 | |
|   ** CREATE TABLE xxx.yyy (...);
 | |
|   ** 
 | |
|   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
 | |
|   ** the table name is not fully qualified, i.e.:
 | |
|   **
 | |
|   ** CREATE TABLE yyy(...);
 | |
|   **
 | |
|   ** Then pName1 is set to "yyy" and pName2 is "".
 | |
|   **
 | |
|   ** The call below sets the pName pointer to point at the token (pName1 or
 | |
|   ** pName2) that stores the unqualified table name. The variable iDb is
 | |
|   ** set to the index of the database that the table or view is to be
 | |
|   ** created in.
 | |
|   */
 | |
|   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
 | |
|   if( iDb<0 ) return;
 | |
|   if( !OMIT_TEMPDB && isTemp && iDb>1 ){
 | |
|     /* If creating a temp table, the name may not be qualified */
 | |
|     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
 | |
|     return;
 | |
|   }
 | |
|   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
 | |
| 
 | |
|   pParse->sNameToken = *pName;
 | |
|   zName = sqlite3NameFromToken(pName);
 | |
|   if( zName==0 ) return;
 | |
|   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
 | |
|     goto begin_table_error;
 | |
|   }
 | |
|   if( db->init.iDb==1 ) isTemp = 1;
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|   assert( (isTemp & 1)==isTemp );
 | |
|   {
 | |
|     int code;
 | |
|     char *zDb = db->aDb[iDb].zName;
 | |
|     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
 | |
|       goto begin_table_error;
 | |
|     }
 | |
|     if( isView ){
 | |
|       if( !OMIT_TEMPDB && isTemp ){
 | |
|         code = SQLITE_CREATE_TEMP_VIEW;
 | |
|       }else{
 | |
|         code = SQLITE_CREATE_VIEW;
 | |
|       }
 | |
|     }else{
 | |
|       if( !OMIT_TEMPDB && isTemp ){
 | |
|         code = SQLITE_CREATE_TEMP_TABLE;
 | |
|       }else{
 | |
|         code = SQLITE_CREATE_TABLE;
 | |
|       }
 | |
|     }
 | |
|     if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
 | |
|       goto begin_table_error;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Make sure the new table name does not collide with an existing
 | |
|   ** index or table name in the same database.  Issue an error message if
 | |
|   ** it does. The exception is if the statement being parsed was passed
 | |
|   ** to an sqlite3_declare_vtab() call. In that case only the column names
 | |
|   ** and types will be used, so there is no need to test for namespace
 | |
|   ** collisions.
 | |
|   */
 | |
|   if( !IN_DECLARE_VTAB ){
 | |
|     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
 | |
|       goto begin_table_error;
 | |
|     }
 | |
|     pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
 | |
|     if( pTable ){
 | |
|       if( !noErr ){
 | |
|         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
 | |
|       }
 | |
|       goto begin_table_error;
 | |
|     }
 | |
|     if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){
 | |
|       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
 | |
|       goto begin_table_error;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   pTable = sqliteMalloc( sizeof(Table) );
 | |
|   if( pTable==0 ){
 | |
|     pParse->rc = SQLITE_NOMEM;
 | |
|     pParse->nErr++;
 | |
|     goto begin_table_error;
 | |
|   }
 | |
|   pTable->zName = zName;
 | |
|   pTable->iPKey = -1;
 | |
|   pTable->pSchema = db->aDb[iDb].pSchema;
 | |
|   pTable->nRef = 1;
 | |
|   if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable);
 | |
|   pParse->pNewTable = pTable;
 | |
| 
 | |
|   /* If this is the magic sqlite_sequence table used by autoincrement,
 | |
|   ** then record a pointer to this table in the main database structure
 | |
|   ** so that INSERT can find the table easily.
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_AUTOINCREMENT
 | |
|   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
 | |
|     pTable->pSchema->pSeqTab = pTable;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Begin generating the code that will insert the table record into
 | |
|   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
 | |
|   ** and allocate the record number for the table entry now.  Before any
 | |
|   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
 | |
|   ** indices to be created and the table record must come before the 
 | |
|   ** indices.  Hence, the record number for the table must be allocated
 | |
|   ** now.
 | |
|   */
 | |
|   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
 | |
|     int lbl;
 | |
|     int fileFormat;
 | |
|     sqlite3BeginWriteOperation(pParse, 0, iDb);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|     if( isVirtual ){
 | |
|       sqlite3VdbeAddOp(v, OP_VBegin, 0, 0);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* If the file format and encoding in the database have not been set, 
 | |
|     ** set them now.
 | |
|     */
 | |
|     sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1);   /* file_format */
 | |
|     lbl = sqlite3VdbeMakeLabel(v);
 | |
|     sqlite3VdbeAddOp(v, OP_If, 0, lbl);
 | |
|     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
 | |
|                   1 : SQLITE_MAX_FILE_FORMAT;
 | |
|     sqlite3VdbeAddOp(v, OP_Integer, fileFormat, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1);
 | |
|     sqlite3VdbeAddOp(v, OP_Integer, ENC(db), 0);
 | |
|     sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 4);
 | |
|     sqlite3VdbeResolveLabel(v, lbl);
 | |
| 
 | |
|     /* This just creates a place-holder record in the sqlite_master table.
 | |
|     ** The record created does not contain anything yet.  It will be replaced
 | |
|     ** by the real entry in code generated at sqlite3EndTable().
 | |
|     **
 | |
|     ** The rowid for the new entry is left on the top of the stack.
 | |
|     ** The rowid value is needed by the code that sqlite3EndTable will
 | |
|     ** generate.
 | |
|     */
 | |
| #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
 | |
|     if( isView || isVirtual ){
 | |
|       sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
 | |
|     }else
 | |
| #endif
 | |
|     {
 | |
|       sqlite3VdbeAddOp(v, OP_CreateTable, iDb, 0);
 | |
|     }
 | |
|     sqlite3OpenMasterTable(pParse, iDb);
 | |
|     sqlite3VdbeAddOp(v, OP_NewRowid, 0, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_Null, 0, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_Insert, 0, OPFLAG_APPEND);
 | |
|     sqlite3VdbeAddOp(v, OP_Close, 0, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
 | |
|   }
 | |
| 
 | |
|   /* Normal (non-error) return. */
 | |
|   return;
 | |
| 
 | |
|   /* If an error occurs, we jump here */
 | |
| begin_table_error:
 | |
|   sqliteFree(zName);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This macro is used to compare two strings in a case-insensitive manner.
 | |
| ** It is slightly faster than calling sqlite3StrICmp() directly, but
 | |
| ** produces larger code.
 | |
| **
 | |
| ** WARNING: This macro is not compatible with the strcmp() family. It
 | |
| ** returns true if the two strings are equal, otherwise false.
 | |
| */
 | |
| #define STRICMP(x, y) (\
 | |
| sqlite3UpperToLower[*(unsigned char *)(x)]==   \
 | |
| sqlite3UpperToLower[*(unsigned char *)(y)]     \
 | |
| && sqlite3StrICmp((x)+1,(y)+1)==0 )
 | |
| 
 | |
| /*
 | |
| ** Add a new column to the table currently being constructed.
 | |
| **
 | |
| ** The parser calls this routine once for each column declaration
 | |
| ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
 | |
| ** first to get things going.  Then this routine is called for each
 | |
| ** column.
 | |
| */
 | |
| void sqlite3AddColumn(Parse *pParse, Token *pName){
 | |
|   Table *p;
 | |
|   int i;
 | |
|   char *z;
 | |
|   Column *pCol;
 | |
|   if( (p = pParse->pNewTable)==0 ) return;
 | |
|   if( p->nCol+1>SQLITE_MAX_COLUMN ){
 | |
|     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
 | |
|     return;
 | |
|   }
 | |
|   z = sqlite3NameFromToken(pName);
 | |
|   if( z==0 ) return;
 | |
|   for(i=0; i<p->nCol; i++){
 | |
|     if( STRICMP(z, p->aCol[i].zName) ){
 | |
|       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
 | |
|       sqliteFree(z);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   if( (p->nCol & 0x7)==0 ){
 | |
|     Column *aNew;
 | |
|     aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
 | |
|     if( aNew==0 ){
 | |
|       sqliteFree(z);
 | |
|       return;
 | |
|     }
 | |
|     p->aCol = aNew;
 | |
|   }
 | |
|   pCol = &p->aCol[p->nCol];
 | |
|   memset(pCol, 0, sizeof(p->aCol[0]));
 | |
|   pCol->zName = z;
 | |
|  
 | |
|   /* If there is no type specified, columns have the default affinity
 | |
|   ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
 | |
|   ** be called next to set pCol->affinity correctly.
 | |
|   */
 | |
|   pCol->affinity = SQLITE_AFF_NONE;
 | |
|   p->nCol++;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called by the parser while in the middle of
 | |
| ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
 | |
| ** been seen on a column.  This routine sets the notNull flag on
 | |
| ** the column currently under construction.
 | |
| */
 | |
| void sqlite3AddNotNull(Parse *pParse, int onError){
 | |
|   Table *p;
 | |
|   int i;
 | |
|   if( (p = pParse->pNewTable)==0 ) return;
 | |
|   i = p->nCol-1;
 | |
|   if( i>=0 ) p->aCol[i].notNull = onError;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Scan the column type name zType (length nType) and return the
 | |
| ** associated affinity type.
 | |
| **
 | |
| ** This routine does a case-independent search of zType for the 
 | |
| ** substrings in the following table. If one of the substrings is
 | |
| ** found, the corresponding affinity is returned. If zType contains
 | |
| ** more than one of the substrings, entries toward the top of 
 | |
| ** the table take priority. For example, if zType is 'BLOBINT', 
 | |
| ** SQLITE_AFF_INTEGER is returned.
 | |
| **
 | |
| ** Substring     | Affinity
 | |
| ** --------------------------------
 | |
| ** 'INT'         | SQLITE_AFF_INTEGER
 | |
| ** 'CHAR'        | SQLITE_AFF_TEXT
 | |
| ** 'CLOB'        | SQLITE_AFF_TEXT
 | |
| ** 'TEXT'        | SQLITE_AFF_TEXT
 | |
| ** 'BLOB'        | SQLITE_AFF_NONE
 | |
| ** 'REAL'        | SQLITE_AFF_REAL
 | |
| ** 'FLOA'        | SQLITE_AFF_REAL
 | |
| ** 'DOUB'        | SQLITE_AFF_REAL
 | |
| **
 | |
| ** If none of the substrings in the above table are found,
 | |
| ** SQLITE_AFF_NUMERIC is returned.
 | |
| */
 | |
| char sqlite3AffinityType(const Token *pType){
 | |
|   u32 h = 0;
 | |
|   char aff = SQLITE_AFF_NUMERIC;
 | |
|   const unsigned char *zIn = pType->z;
 | |
|   const unsigned char *zEnd = &pType->z[pType->n];
 | |
| 
 | |
|   while( zIn!=zEnd ){
 | |
|     h = (h<<8) + sqlite3UpperToLower[*zIn];
 | |
|     zIn++;
 | |
|     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
 | |
|       aff = SQLITE_AFF_TEXT; 
 | |
|     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
 | |
|       aff = SQLITE_AFF_TEXT;
 | |
|     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
 | |
|       aff = SQLITE_AFF_TEXT;
 | |
|     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
 | |
|         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
 | |
|       aff = SQLITE_AFF_NONE;
 | |
| #ifndef SQLITE_OMIT_FLOATING_POINT
 | |
|     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
 | |
|         && aff==SQLITE_AFF_NUMERIC ){
 | |
|       aff = SQLITE_AFF_REAL;
 | |
|     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
 | |
|         && aff==SQLITE_AFF_NUMERIC ){
 | |
|       aff = SQLITE_AFF_REAL;
 | |
|     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
 | |
|         && aff==SQLITE_AFF_NUMERIC ){
 | |
|       aff = SQLITE_AFF_REAL;
 | |
| #endif
 | |
|     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
 | |
|       aff = SQLITE_AFF_INTEGER;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return aff;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called by the parser while in the middle of
 | |
| ** parsing a CREATE TABLE statement.  The pFirst token is the first
 | |
| ** token in the sequence of tokens that describe the type of the
 | |
| ** column currently under construction.   pLast is the last token
 | |
| ** in the sequence.  Use this information to construct a string
 | |
| ** that contains the typename of the column and store that string
 | |
| ** in zType.
 | |
| */ 
 | |
| void sqlite3AddColumnType(Parse *pParse, Token *pType){
 | |
|   Table *p;
 | |
|   int i;
 | |
|   Column *pCol;
 | |
| 
 | |
|   if( (p = pParse->pNewTable)==0 ) return;
 | |
|   i = p->nCol-1;
 | |
|   if( i<0 ) return;
 | |
|   pCol = &p->aCol[i];
 | |
|   sqliteFree(pCol->zType);
 | |
|   pCol->zType = sqlite3NameFromToken(pType);
 | |
|   pCol->affinity = sqlite3AffinityType(pType);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The expression is the default value for the most recently added column
 | |
| ** of the table currently under construction.
 | |
| **
 | |
| ** Default value expressions must be constant.  Raise an exception if this
 | |
| ** is not the case.
 | |
| **
 | |
| ** This routine is called by the parser while in the middle of
 | |
| ** parsing a CREATE TABLE statement.
 | |
| */
 | |
| void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
 | |
|   Table *p;
 | |
|   Column *pCol;
 | |
|   if( (p = pParse->pNewTable)!=0 ){
 | |
|     pCol = &(p->aCol[p->nCol-1]);
 | |
|     if( !sqlite3ExprIsConstantOrFunction(pExpr) ){
 | |
|       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
 | |
|           pCol->zName);
 | |
|     }else{
 | |
|       Expr *pCopy;
 | |
|       sqlite3ExprDelete(pCol->pDflt);
 | |
|       pCol->pDflt = pCopy = sqlite3ExprDup(pExpr);
 | |
|       if( pCopy ){
 | |
|         sqlite3TokenCopy(&pCopy->span, &pExpr->span);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   sqlite3ExprDelete(pExpr);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Designate the PRIMARY KEY for the table.  pList is a list of names 
 | |
| ** of columns that form the primary key.  If pList is NULL, then the
 | |
| ** most recently added column of the table is the primary key.
 | |
| **
 | |
| ** A table can have at most one primary key.  If the table already has
 | |
| ** a primary key (and this is the second primary key) then create an
 | |
| ** error.
 | |
| **
 | |
| ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
 | |
| ** then we will try to use that column as the rowid.  Set the Table.iPKey
 | |
| ** field of the table under construction to be the index of the
 | |
| ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
 | |
| ** no INTEGER PRIMARY KEY.
 | |
| **
 | |
| ** If the key is not an INTEGER PRIMARY KEY, then create a unique
 | |
| ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
 | |
| */
 | |
| void sqlite3AddPrimaryKey(
 | |
|   Parse *pParse,    /* Parsing context */
 | |
|   ExprList *pList,  /* List of field names to be indexed */
 | |
|   int onError,      /* What to do with a uniqueness conflict */
 | |
|   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
 | |
|   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
 | |
| ){
 | |
|   Table *pTab = pParse->pNewTable;
 | |
|   char *zType = 0;
 | |
|   int iCol = -1, i;
 | |
|   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
 | |
|   if( pTab->hasPrimKey ){
 | |
|     sqlite3ErrorMsg(pParse, 
 | |
|       "table \"%s\" has more than one primary key", pTab->zName);
 | |
|     goto primary_key_exit;
 | |
|   }
 | |
|   pTab->hasPrimKey = 1;
 | |
|   if( pList==0 ){
 | |
|     iCol = pTab->nCol - 1;
 | |
|     pTab->aCol[iCol].isPrimKey = 1;
 | |
|   }else{
 | |
|     for(i=0; i<pList->nExpr; i++){
 | |
|       for(iCol=0; iCol<pTab->nCol; iCol++){
 | |
|         if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if( iCol<pTab->nCol ){
 | |
|         pTab->aCol[iCol].isPrimKey = 1;
 | |
|       }
 | |
|     }
 | |
|     if( pList->nExpr>1 ) iCol = -1;
 | |
|   }
 | |
|   if( iCol>=0 && iCol<pTab->nCol ){
 | |
|     zType = pTab->aCol[iCol].zType;
 | |
|   }
 | |
|   if( zType && sqlite3StrICmp(zType, "INTEGER")==0
 | |
|         && sortOrder==SQLITE_SO_ASC ){
 | |
|     pTab->iPKey = iCol;
 | |
|     pTab->keyConf = onError;
 | |
|     pTab->autoInc = autoInc;
 | |
|   }else if( autoInc ){
 | |
| #ifndef SQLITE_OMIT_AUTOINCREMENT
 | |
|     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
 | |
|        "INTEGER PRIMARY KEY");
 | |
| #endif
 | |
|   }else{
 | |
|     sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
 | |
|     pList = 0;
 | |
|   }
 | |
| 
 | |
| primary_key_exit:
 | |
|   sqlite3ExprListDelete(pList);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add a new CHECK constraint to the table currently under construction.
 | |
| */
 | |
| void sqlite3AddCheckConstraint(
 | |
|   Parse *pParse,    /* Parsing context */
 | |
|   Expr *pCheckExpr  /* The check expression */
 | |
| ){
 | |
| #ifndef SQLITE_OMIT_CHECK
 | |
|   Table *pTab = pParse->pNewTable;
 | |
|   if( pTab && !IN_DECLARE_VTAB ){
 | |
|     /* The CHECK expression must be duplicated so that tokens refer
 | |
|     ** to malloced space and not the (ephemeral) text of the CREATE TABLE
 | |
|     ** statement */
 | |
|     pTab->pCheck = sqlite3ExprAnd(pTab->pCheck, sqlite3ExprDup(pCheckExpr));
 | |
|   }
 | |
| #endif
 | |
|   sqlite3ExprDelete(pCheckExpr);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the collation function of the most recently parsed table column
 | |
| ** to the CollSeq given.
 | |
| */
 | |
| void sqlite3AddCollateType(Parse *pParse, const char *zType, int nType){
 | |
|   Table *p;
 | |
|   int i;
 | |
| 
 | |
|   if( (p = pParse->pNewTable)==0 ) return;
 | |
|   i = p->nCol-1;
 | |
| 
 | |
|   if( sqlite3LocateCollSeq(pParse, zType, nType) ){
 | |
|     Index *pIdx;
 | |
|     p->aCol[i].zColl = sqliteStrNDup(zType, nType);
 | |
|   
 | |
|     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
 | |
|     ** then an index may have been created on this column before the
 | |
|     ** collation type was added. Correct this if it is the case.
 | |
|     */
 | |
|     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
 | |
|       assert( pIdx->nColumn==1 );
 | |
|       if( pIdx->aiColumn[0]==i ){
 | |
|         pIdx->azColl[0] = p->aCol[i].zColl;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function returns the collation sequence for database native text
 | |
| ** encoding identified by the string zName, length nName.
 | |
| **
 | |
| ** If the requested collation sequence is not available, or not available
 | |
| ** in the database native encoding, the collation factory is invoked to
 | |
| ** request it. If the collation factory does not supply such a sequence,
 | |
| ** and the sequence is available in another text encoding, then that is
 | |
| ** returned instead.
 | |
| **
 | |
| ** If no versions of the requested collations sequence are available, or
 | |
| ** another error occurs, NULL is returned and an error message written into
 | |
| ** pParse.
 | |
| **
 | |
| ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
 | |
| ** invokes the collation factory if the named collation cannot be found
 | |
| ** and generates an error message.
 | |
| */
 | |
| CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
 | |
|   sqlite3 *db = pParse->db;
 | |
|   u8 enc = ENC(db);
 | |
|   u8 initbusy = db->init.busy;
 | |
|   CollSeq *pColl;
 | |
| 
 | |
|   pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy);
 | |
|   if( !initbusy && (!pColl || !pColl->xCmp) ){
 | |
|     pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
 | |
|     if( !pColl ){
 | |
|       if( nName<0 ){
 | |
|         nName = strlen(zName);
 | |
|       }
 | |
|       sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
 | |
|       pColl = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return pColl;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Generate code that will increment the schema cookie.
 | |
| **
 | |
| ** The schema cookie is used to determine when the schema for the
 | |
| ** database changes.  After each schema change, the cookie value
 | |
| ** changes.  When a process first reads the schema it records the
 | |
| ** cookie.  Thereafter, whenever it goes to access the database,
 | |
| ** it checks the cookie to make sure the schema has not changed
 | |
| ** since it was last read.
 | |
| **
 | |
| ** This plan is not completely bullet-proof.  It is possible for
 | |
| ** the schema to change multiple times and for the cookie to be
 | |
| ** set back to prior value.  But schema changes are infrequent
 | |
| ** and the probability of hitting the same cookie value is only
 | |
| ** 1 chance in 2^32.  So we're safe enough.
 | |
| */
 | |
| void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){
 | |
|   sqlite3VdbeAddOp(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, 0);
 | |
|   sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Measure the number of characters needed to output the given
 | |
| ** identifier.  The number returned includes any quotes used
 | |
| ** but does not include the null terminator.
 | |
| **
 | |
| ** The estimate is conservative.  It might be larger that what is
 | |
| ** really needed.
 | |
| */
 | |
| static int identLength(const char *z){
 | |
|   int n;
 | |
|   for(n=0; *z; n++, z++){
 | |
|     if( *z=='"' ){ n++; }
 | |
|   }
 | |
|   return n + 2;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Write an identifier onto the end of the given string.  Add
 | |
| ** quote characters as needed.
 | |
| */
 | |
| static void identPut(char *z, int *pIdx, char *zSignedIdent){
 | |
|   unsigned char *zIdent = (unsigned char*)zSignedIdent;
 | |
|   int i, j, needQuote;
 | |
|   i = *pIdx;
 | |
|   for(j=0; zIdent[j]; j++){
 | |
|     if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
 | |
|   }
 | |
|   needQuote =  zIdent[j]!=0 || isdigit(zIdent[0])
 | |
|                   || sqlite3KeywordCode(zIdent, j)!=TK_ID;
 | |
|   if( needQuote ) z[i++] = '"';
 | |
|   for(j=0; zIdent[j]; j++){
 | |
|     z[i++] = zIdent[j];
 | |
|     if( zIdent[j]=='"' ) z[i++] = '"';
 | |
|   }
 | |
|   if( needQuote ) z[i++] = '"';
 | |
|   z[i] = 0;
 | |
|   *pIdx = i;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate a CREATE TABLE statement appropriate for the given
 | |
| ** table.  Memory to hold the text of the statement is obtained
 | |
| ** from sqliteMalloc() and must be freed by the calling function.
 | |
| */
 | |
| static char *createTableStmt(Table *p, int isTemp){
 | |
|   int i, k, n;
 | |
|   char *zStmt;
 | |
|   char *zSep, *zSep2, *zEnd, *z;
 | |
|   Column *pCol;
 | |
|   n = 0;
 | |
|   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
 | |
|     n += identLength(pCol->zName);
 | |
|     z = pCol->zType;
 | |
|     if( z ){
 | |
|       n += (strlen(z) + 1);
 | |
|     }
 | |
|   }
 | |
|   n += identLength(p->zName);
 | |
|   if( n<50 ){
 | |
|     zSep = "";
 | |
|     zSep2 = ",";
 | |
|     zEnd = ")";
 | |
|   }else{
 | |
|     zSep = "\n  ";
 | |
|     zSep2 = ",\n  ";
 | |
|     zEnd = "\n)";
 | |
|   }
 | |
|   n += 35 + 6*p->nCol;
 | |
|   zStmt = sqliteMallocRaw( n );
 | |
|   if( zStmt==0 ) return 0;
 | |
|   sqlite3_snprintf(n, zStmt,
 | |
|                   !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE ");
 | |
|   k = strlen(zStmt);
 | |
|   identPut(zStmt, &k, p->zName);
 | |
|   zStmt[k++] = '(';
 | |
|   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
 | |
|     sqlite3_snprintf(n-k, &zStmt[k], zSep);
 | |
|     k += strlen(&zStmt[k]);
 | |
|     zSep = zSep2;
 | |
|     identPut(zStmt, &k, pCol->zName);
 | |
|     if( (z = pCol->zType)!=0 ){
 | |
|       zStmt[k++] = ' ';
 | |
|       assert( strlen(z)+k+1<=n );
 | |
|       sqlite3_snprintf(n-k, &zStmt[k], "%s", z);
 | |
|       k += strlen(z);
 | |
|     }
 | |
|   }
 | |
|   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
 | |
|   return zStmt;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called to report the final ")" that terminates
 | |
| ** a CREATE TABLE statement.
 | |
| **
 | |
| ** The table structure that other action routines have been building
 | |
| ** is added to the internal hash tables, assuming no errors have
 | |
| ** occurred.
 | |
| **
 | |
| ** An entry for the table is made in the master table on disk, unless
 | |
| ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
 | |
| ** it means we are reading the sqlite_master table because we just
 | |
| ** connected to the database or because the sqlite_master table has
 | |
| ** recently changed, so the entry for this table already exists in
 | |
| ** the sqlite_master table.  We do not want to create it again.
 | |
| **
 | |
| ** If the pSelect argument is not NULL, it means that this routine
 | |
| ** was called to create a table generated from a 
 | |
| ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
 | |
| ** the new table will match the result set of the SELECT.
 | |
| */
 | |
| void sqlite3EndTable(
 | |
|   Parse *pParse,          /* Parse context */
 | |
|   Token *pCons,           /* The ',' token after the last column defn. */
 | |
|   Token *pEnd,            /* The final ')' token in the CREATE TABLE */
 | |
|   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
 | |
| ){
 | |
|   Table *p;
 | |
|   sqlite3 *db = pParse->db;
 | |
|   int iDb;
 | |
| 
 | |
|   if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite3MallocFailed() ) {
 | |
|     return;
 | |
|   }
 | |
|   p = pParse->pNewTable;
 | |
|   if( p==0 ) return;
 | |
| 
 | |
|   assert( !db->init.busy || !pSelect );
 | |
| 
 | |
|   iDb = sqlite3SchemaToIndex(db, p->pSchema);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_CHECK
 | |
|   /* Resolve names in all CHECK constraint expressions.
 | |
|   */
 | |
|   if( p->pCheck ){
 | |
|     SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
 | |
|     NameContext sNC;                /* Name context for pParse->pNewTable */
 | |
| 
 | |
|     memset(&sNC, 0, sizeof(sNC));
 | |
|     memset(&sSrc, 0, sizeof(sSrc));
 | |
|     sSrc.nSrc = 1;
 | |
|     sSrc.a[0].zName = p->zName;
 | |
|     sSrc.a[0].pTab = p;
 | |
|     sSrc.a[0].iCursor = -1;
 | |
|     sNC.pParse = pParse;
 | |
|     sNC.pSrcList = &sSrc;
 | |
|     sNC.isCheck = 1;
 | |
|     if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| #endif /* !defined(SQLITE_OMIT_CHECK) */
 | |
| 
 | |
|   /* If the db->init.busy is 1 it means we are reading the SQL off the
 | |
|   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
 | |
|   ** So do not write to the disk again.  Extract the root page number
 | |
|   ** for the table from the db->init.newTnum field.  (The page number
 | |
|   ** should have been put there by the sqliteOpenCb routine.)
 | |
|   */
 | |
|   if( db->init.busy ){
 | |
|     p->tnum = db->init.newTnum;
 | |
|   }
 | |
| 
 | |
|   /* If not initializing, then create a record for the new table
 | |
|   ** in the SQLITE_MASTER table of the database.  The record number
 | |
|   ** for the new table entry should already be on the stack.
 | |
|   **
 | |
|   ** If this is a TEMPORARY table, write the entry into the auxiliary
 | |
|   ** file instead of into the main database file.
 | |
|   */
 | |
|   if( !db->init.busy ){
 | |
|     int n;
 | |
|     Vdbe *v;
 | |
|     char *zType;    /* "view" or "table" */
 | |
|     char *zType2;   /* "VIEW" or "TABLE" */
 | |
|     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
 | |
| 
 | |
|     v = sqlite3GetVdbe(pParse);
 | |
|     if( v==0 ) return;
 | |
| 
 | |
|     sqlite3VdbeAddOp(v, OP_Close, 0, 0);
 | |
| 
 | |
|     /* Create the rootpage for the new table and push it onto the stack.
 | |
|     ** A view has no rootpage, so just push a zero onto the stack for
 | |
|     ** views.  Initialize zType at the same time.
 | |
|     */
 | |
|     if( p->pSelect==0 ){
 | |
|       /* A regular table */
 | |
|       zType = "table";
 | |
|       zType2 = "TABLE";
 | |
| #ifndef SQLITE_OMIT_VIEW
 | |
|     }else{
 | |
|       /* A view */
 | |
|       zType = "view";
 | |
|       zType2 = "VIEW";
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
 | |
|     ** statement to populate the new table. The root-page number for the
 | |
|     ** new table is on the top of the vdbe stack.
 | |
|     **
 | |
|     ** Once the SELECT has been coded by sqlite3Select(), it is in a
 | |
|     ** suitable state to query for the column names and types to be used
 | |
|     ** by the new table.
 | |
|     **
 | |
|     ** A shared-cache write-lock is not required to write to the new table,
 | |
|     ** as a schema-lock must have already been obtained to create it. Since
 | |
|     ** a schema-lock excludes all other database users, the write-lock would
 | |
|     ** be redundant.
 | |
|     */
 | |
|     if( pSelect ){
 | |
|       Table *pSelTab;
 | |
|       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_OpenWrite, 1, 0);
 | |
|       pParse->nTab = 2;
 | |
|       sqlite3Select(pParse, pSelect, SRT_Table, 1, 0, 0, 0, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_Close, 1, 0);
 | |
|       if( pParse->nErr==0 ){
 | |
|         pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
 | |
|         if( pSelTab==0 ) return;
 | |
|         assert( p->aCol==0 );
 | |
|         p->nCol = pSelTab->nCol;
 | |
|         p->aCol = pSelTab->aCol;
 | |
|         pSelTab->nCol = 0;
 | |
|         pSelTab->aCol = 0;
 | |
|         sqlite3DeleteTable(pSelTab);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Compute the complete text of the CREATE statement */
 | |
|     if( pSelect ){
 | |
|       zStmt = createTableStmt(p, p->pSchema==pParse->db->aDb[1].pSchema);
 | |
|     }else{
 | |
|       n = pEnd->z - pParse->sNameToken.z + 1;
 | |
|       zStmt = sqlite3MPrintf("CREATE %s %.*s", zType2, n, pParse->sNameToken.z);
 | |
|     }
 | |
| 
 | |
|     /* A slot for the record has already been allocated in the 
 | |
|     ** SQLITE_MASTER table.  We just need to update that slot with all
 | |
|     ** the information we've collected.  The rowid for the preallocated
 | |
|     ** slot is the 2nd item on the stack.  The top of the stack is the
 | |
|     ** root page for the new table (or a 0 if this is a view).
 | |
|     */
 | |
|     sqlite3NestedParse(pParse,
 | |
|       "UPDATE %Q.%s "
 | |
|          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#0, sql=%Q "
 | |
|        "WHERE rowid=#1",
 | |
|       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
 | |
|       zType,
 | |
|       p->zName,
 | |
|       p->zName,
 | |
|       zStmt
 | |
|     );
 | |
|     sqliteFree(zStmt);
 | |
|     sqlite3ChangeCookie(db, v, iDb);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOINCREMENT
 | |
|     /* Check to see if we need to create an sqlite_sequence table for
 | |
|     ** keeping track of autoincrement keys.
 | |
|     */
 | |
|     if( p->autoInc ){
 | |
|       Db *pDb = &db->aDb[iDb];
 | |
|       if( pDb->pSchema->pSeqTab==0 ){
 | |
|         sqlite3NestedParse(pParse,
 | |
|           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
 | |
|           pDb->zName
 | |
|         );
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Reparse everything to update our internal data structures */
 | |
|     sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
 | |
|         sqlite3MPrintf("tbl_name='%q'",p->zName), P3_DYNAMIC);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* Add the table to the in-memory representation of the database.
 | |
|   */
 | |
|   if( db->init.busy && pParse->nErr==0 ){
 | |
|     Table *pOld;
 | |
|     FKey *pFKey; 
 | |
|     Schema *pSchema = p->pSchema;
 | |
|     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p);
 | |
|     if( pOld ){
 | |
|       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
 | |
|       return;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_FOREIGN_KEY
 | |
|     for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
 | |
|       int nTo = strlen(pFKey->zTo) + 1;
 | |
|       pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo);
 | |
|       sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey);
 | |
|     }
 | |
| #endif
 | |
|     pParse->pNewTable = 0;
 | |
|     db->nTable++;
 | |
|     db->flags |= SQLITE_InternChanges;
 | |
| 
 | |
| #ifndef SQLITE_OMIT_ALTERTABLE
 | |
|     if( !p->pSelect ){
 | |
|       const char *zName = (const char *)pParse->sNameToken.z;
 | |
|       int nName;
 | |
|       assert( !pSelect && pCons && pEnd );
 | |
|       if( pCons->z==0 ){
 | |
|         pCons = pEnd;
 | |
|       }
 | |
|       nName = (const char *)pCons->z - zName;
 | |
|       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIEW
 | |
| /*
 | |
| ** The parser calls this routine in order to create a new VIEW
 | |
| */
 | |
| void sqlite3CreateView(
 | |
|   Parse *pParse,     /* The parsing context */
 | |
|   Token *pBegin,     /* The CREATE token that begins the statement */
 | |
|   Token *pName1,     /* The token that holds the name of the view */
 | |
|   Token *pName2,     /* The token that holds the name of the view */
 | |
|   Select *pSelect,   /* A SELECT statement that will become the new view */
 | |
|   int isTemp,        /* TRUE for a TEMPORARY view */
 | |
|   int noErr          /* Suppress error messages if VIEW already exists */
 | |
| ){
 | |
|   Table *p;
 | |
|   int n;
 | |
|   const unsigned char *z;
 | |
|   Token sEnd;
 | |
|   DbFixer sFix;
 | |
|   Token *pName;
 | |
|   int iDb;
 | |
| 
 | |
|   if( pParse->nVar>0 ){
 | |
|     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
 | |
|     sqlite3SelectDelete(pSelect);
 | |
|     return;
 | |
|   }
 | |
|   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
 | |
|   p = pParse->pNewTable;
 | |
|   if( p==0 || pParse->nErr ){
 | |
|     sqlite3SelectDelete(pSelect);
 | |
|     return;
 | |
|   }
 | |
|   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
 | |
|   iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
 | |
|   if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
 | |
|     && sqlite3FixSelect(&sFix, pSelect)
 | |
|   ){
 | |
|     sqlite3SelectDelete(pSelect);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   /* Make a copy of the entire SELECT statement that defines the view.
 | |
|   ** This will force all the Expr.token.z values to be dynamically
 | |
|   ** allocated rather than point to the input string - which means that
 | |
|   ** they will persist after the current sqlite3_exec() call returns.
 | |
|   */
 | |
|   p->pSelect = sqlite3SelectDup(pSelect);
 | |
|   sqlite3SelectDelete(pSelect);
 | |
|   if( sqlite3MallocFailed() ){
 | |
|     return;
 | |
|   }
 | |
|   if( !pParse->db->init.busy ){
 | |
|     sqlite3ViewGetColumnNames(pParse, p);
 | |
|   }
 | |
| 
 | |
|   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
 | |
|   ** the end.
 | |
|   */
 | |
|   sEnd = pParse->sLastToken;
 | |
|   if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
 | |
|     sEnd.z += sEnd.n;
 | |
|   }
 | |
|   sEnd.n = 0;
 | |
|   n = sEnd.z - pBegin->z;
 | |
|   z = (const unsigned char*)pBegin->z;
 | |
|   while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
 | |
|   sEnd.z = &z[n-1];
 | |
|   sEnd.n = 1;
 | |
| 
 | |
|   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
 | |
|   sqlite3EndTable(pParse, 0, &sEnd, 0);
 | |
|   return;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIEW */
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
 | |
| /*
 | |
| ** The Table structure pTable is really a VIEW.  Fill in the names of
 | |
| ** the columns of the view in the pTable structure.  Return the number
 | |
| ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
 | |
| */
 | |
| int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
 | |
|   Table *pSelTab;   /* A fake table from which we get the result set */
 | |
|   Select *pSel;     /* Copy of the SELECT that implements the view */
 | |
|   int nErr = 0;     /* Number of errors encountered */
 | |
|   int n;            /* Temporarily holds the number of cursors assigned */
 | |
| 
 | |
|   assert( pTable );
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   if( sqlite3VtabCallConnect(pParse, pTable) ){
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
|   if( IsVirtual(pTable) ) return 0;
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIEW
 | |
|   /* A positive nCol means the columns names for this view are
 | |
|   ** already known.
 | |
|   */
 | |
|   if( pTable->nCol>0 ) return 0;
 | |
| 
 | |
|   /* A negative nCol is a special marker meaning that we are currently
 | |
|   ** trying to compute the column names.  If we enter this routine with
 | |
|   ** a negative nCol, it means two or more views form a loop, like this:
 | |
|   **
 | |
|   **     CREATE VIEW one AS SELECT * FROM two;
 | |
|   **     CREATE VIEW two AS SELECT * FROM one;
 | |
|   **
 | |
|   ** Actually, this error is caught previously and so the following test
 | |
|   ** should always fail.  But we will leave it in place just to be safe.
 | |
|   */
 | |
|   if( pTable->nCol<0 ){
 | |
|     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
 | |
|     return 1;
 | |
|   }
 | |
|   assert( pTable->nCol>=0 );
 | |
| 
 | |
|   /* If we get this far, it means we need to compute the table names.
 | |
|   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
 | |
|   ** "*" elements in the results set of the view and will assign cursors
 | |
|   ** to the elements of the FROM clause.  But we do not want these changes
 | |
|   ** to be permanent.  So the computation is done on a copy of the SELECT
 | |
|   ** statement that defines the view.
 | |
|   */
 | |
|   assert( pTable->pSelect );
 | |
|   pSel = sqlite3SelectDup(pTable->pSelect);
 | |
|   if( pSel ){
 | |
|     n = pParse->nTab;
 | |
|     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
 | |
|     pTable->nCol = -1;
 | |
|     pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
 | |
|     pParse->nTab = n;
 | |
|     if( pSelTab ){
 | |
|       assert( pTable->aCol==0 );
 | |
|       pTable->nCol = pSelTab->nCol;
 | |
|       pTable->aCol = pSelTab->aCol;
 | |
|       pSelTab->nCol = 0;
 | |
|       pSelTab->aCol = 0;
 | |
|       sqlite3DeleteTable(pSelTab);
 | |
|       pTable->pSchema->flags |= DB_UnresetViews;
 | |
|     }else{
 | |
|       pTable->nCol = 0;
 | |
|       nErr++;
 | |
|     }
 | |
|     sqlite3SelectDelete(pSel);
 | |
|   } else {
 | |
|     nErr++;
 | |
|   }
 | |
| #endif /* SQLITE_OMIT_VIEW */
 | |
|   return nErr;  
 | |
| }
 | |
| #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIEW
 | |
| /*
 | |
| ** Clear the column names from every VIEW in database idx.
 | |
| */
 | |
| static void sqliteViewResetAll(sqlite3 *db, int idx){
 | |
|   HashElem *i;
 | |
|   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
 | |
|   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
 | |
|     Table *pTab = sqliteHashData(i);
 | |
|     if( pTab->pSelect ){
 | |
|       sqliteResetColumnNames(pTab);
 | |
|     }
 | |
|   }
 | |
|   DbClearProperty(db, idx, DB_UnresetViews);
 | |
| }
 | |
| #else
 | |
| # define sqliteViewResetAll(A,B)
 | |
| #endif /* SQLITE_OMIT_VIEW */
 | |
| 
 | |
| /*
 | |
| ** This function is called by the VDBE to adjust the internal schema
 | |
| ** used by SQLite when the btree layer moves a table root page. The
 | |
| ** root-page of a table or index in database iDb has changed from iFrom
 | |
| ** to iTo.
 | |
| **
 | |
| ** Ticket #1728:  The symbol table might still contain information
 | |
| ** on tables and/or indices that are the process of being deleted.
 | |
| ** If you are unlucky, one of those deleted indices or tables might
 | |
| ** have the same rootpage number as the real table or index that is
 | |
| ** being moved.  So we cannot stop searching after the first match 
 | |
| ** because the first match might be for one of the deleted indices
 | |
| ** or tables and not the table/index that is actually being moved.
 | |
| ** We must continue looping until all tables and indices with
 | |
| ** rootpage==iFrom have been converted to have a rootpage of iTo
 | |
| ** in order to be certain that we got the right one.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
| void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
 | |
|   HashElem *pElem;
 | |
|   Hash *pHash;
 | |
| 
 | |
|   pHash = &pDb->pSchema->tblHash;
 | |
|   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
 | |
|     Table *pTab = sqliteHashData(pElem);
 | |
|     if( pTab->tnum==iFrom ){
 | |
|       pTab->tnum = iTo;
 | |
|     }
 | |
|   }
 | |
|   pHash = &pDb->pSchema->idxHash;
 | |
|   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
 | |
|     Index *pIdx = sqliteHashData(pElem);
 | |
|     if( pIdx->tnum==iFrom ){
 | |
|       pIdx->tnum = iTo;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Write code to erase the table with root-page iTable from database iDb.
 | |
| ** Also write code to modify the sqlite_master table and internal schema
 | |
| ** if a root-page of another table is moved by the btree-layer whilst
 | |
| ** erasing iTable (this can happen with an auto-vacuum database).
 | |
| */ 
 | |
| static void destroyRootPage(Parse *pParse, int iTable, int iDb){
 | |
|   Vdbe *v = sqlite3GetVdbe(pParse);
 | |
|   sqlite3VdbeAddOp(v, OP_Destroy, iTable, iDb);
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|   /* OP_Destroy pushes an integer onto the stack. If this integer
 | |
|   ** is non-zero, then it is the root page number of a table moved to
 | |
|   ** location iTable. The following code modifies the sqlite_master table to
 | |
|   ** reflect this.
 | |
|   **
 | |
|   ** The "#0" in the SQL is a special constant that means whatever value
 | |
|   ** is on the top of the stack.  See sqlite3RegisterExpr().
 | |
|   */
 | |
|   sqlite3NestedParse(pParse, 
 | |
|      "UPDATE %Q.%s SET rootpage=%d WHERE #0 AND rootpage=#0",
 | |
|      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Write VDBE code to erase table pTab and all associated indices on disk.
 | |
| ** Code to update the sqlite_master tables and internal schema definitions
 | |
| ** in case a root-page belonging to another table is moved by the btree layer
 | |
| ** is also added (this can happen with an auto-vacuum database).
 | |
| */
 | |
| static void destroyTable(Parse *pParse, Table *pTab){
 | |
| #ifdef SQLITE_OMIT_AUTOVACUUM
 | |
|   Index *pIdx;
 | |
|   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | |
|   destroyRootPage(pParse, pTab->tnum, iDb);
 | |
|   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | |
|     destroyRootPage(pParse, pIdx->tnum, iDb);
 | |
|   }
 | |
| #else
 | |
|   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
 | |
|   ** is not defined), then it is important to call OP_Destroy on the
 | |
|   ** table and index root-pages in order, starting with the numerically 
 | |
|   ** largest root-page number. This guarantees that none of the root-pages
 | |
|   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
 | |
|   ** following were coded:
 | |
|   **
 | |
|   ** OP_Destroy 4 0
 | |
|   ** ...
 | |
|   ** OP_Destroy 5 0
 | |
|   **
 | |
|   ** and root page 5 happened to be the largest root-page number in the
 | |
|   ** database, then root page 5 would be moved to page 4 by the 
 | |
|   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
 | |
|   ** a free-list page.
 | |
|   */
 | |
|   int iTab = pTab->tnum;
 | |
|   int iDestroyed = 0;
 | |
| 
 | |
|   while( 1 ){
 | |
|     Index *pIdx;
 | |
|     int iLargest = 0;
 | |
| 
 | |
|     if( iDestroyed==0 || iTab<iDestroyed ){
 | |
|       iLargest = iTab;
 | |
|     }
 | |
|     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | |
|       int iIdx = pIdx->tnum;
 | |
|       assert( pIdx->pSchema==pTab->pSchema );
 | |
|       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
 | |
|         iLargest = iIdx;
 | |
|       }
 | |
|     }
 | |
|     if( iLargest==0 ){
 | |
|       return;
 | |
|     }else{
 | |
|       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | |
|       destroyRootPage(pParse, iLargest, iDb);
 | |
|       iDestroyed = iLargest;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called to do the work of a DROP TABLE statement.
 | |
| ** pName is the name of the table to be dropped.
 | |
| */
 | |
| void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
 | |
|   Table *pTab;
 | |
|   Vdbe *v;
 | |
|   sqlite3 *db = pParse->db;
 | |
|   int iDb;
 | |
| 
 | |
|   if( pParse->nErr || sqlite3MallocFailed() ){
 | |
|     goto exit_drop_table;
 | |
|   }
 | |
|   assert( pName->nSrc==1 );
 | |
|   pTab = sqlite3LocateTable(pParse, pName->a[0].zName, pName->a[0].zDatabase);
 | |
| 
 | |
|   if( pTab==0 ){
 | |
|     if( noErr ){
 | |
|       sqlite3ErrorClear(pParse);
 | |
|     }
 | |
|     goto exit_drop_table;
 | |
|   }
 | |
|   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | |
|   assert( iDb>=0 && iDb<db->nDb );
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|   {
 | |
|     int code;
 | |
|     const char *zTab = SCHEMA_TABLE(iDb);
 | |
|     const char *zDb = db->aDb[iDb].zName;
 | |
|     const char *zArg2 = 0;
 | |
|     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
 | |
|       goto exit_drop_table;
 | |
|     }
 | |
|     if( isView ){
 | |
|       if( !OMIT_TEMPDB && iDb==1 ){
 | |
|         code = SQLITE_DROP_TEMP_VIEW;
 | |
|       }else{
 | |
|         code = SQLITE_DROP_VIEW;
 | |
|       }
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|     }else if( IsVirtual(pTab) ){
 | |
|       if( sqlite3ViewGetColumnNames(pParse, pTab) ){
 | |
|         goto exit_drop_table;
 | |
|       }
 | |
|       code = SQLITE_DROP_VTABLE;
 | |
|       zArg2 = pTab->pMod->zName;
 | |
| #endif
 | |
|     }else{
 | |
|       if( !OMIT_TEMPDB && iDb==1 ){
 | |
|         code = SQLITE_DROP_TEMP_TABLE;
 | |
|       }else{
 | |
|         code = SQLITE_DROP_TABLE;
 | |
|       }
 | |
|     }
 | |
|     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
 | |
|       goto exit_drop_table;
 | |
|     }
 | |
|     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
 | |
|       goto exit_drop_table;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){
 | |
|     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
 | |
|     goto exit_drop_table;
 | |
|   }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIEW
 | |
|   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
 | |
|   ** on a table.
 | |
|   */
 | |
|   if( isView && pTab->pSelect==0 ){
 | |
|     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
 | |
|     goto exit_drop_table;
 | |
|   }
 | |
|   if( !isView && pTab->pSelect ){
 | |
|     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
 | |
|     goto exit_drop_table;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Generate code to remove the table from the master table
 | |
|   ** on disk.
 | |
|   */
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v ){
 | |
|     Trigger *pTrigger;
 | |
|     Db *pDb = &db->aDb[iDb];
 | |
|     sqlite3BeginWriteOperation(pParse, 0, iDb);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|     if( IsVirtual(pTab) ){
 | |
|       Vdbe *v = sqlite3GetVdbe(pParse);
 | |
|       if( v ){
 | |
|         sqlite3VdbeAddOp(v, OP_VBegin, 0, 0);
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Drop all triggers associated with the table being dropped. Code
 | |
|     ** is generated to remove entries from sqlite_master and/or
 | |
|     ** sqlite_temp_master if required.
 | |
|     */
 | |
|     pTrigger = pTab->pTrigger;
 | |
|     while( pTrigger ){
 | |
|       assert( pTrigger->pSchema==pTab->pSchema || 
 | |
|           pTrigger->pSchema==db->aDb[1].pSchema );
 | |
|       sqlite3DropTriggerPtr(pParse, pTrigger);
 | |
|       pTrigger = pTrigger->pNext;
 | |
|     }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOINCREMENT
 | |
|     /* Remove any entries of the sqlite_sequence table associated with
 | |
|     ** the table being dropped. This is done before the table is dropped
 | |
|     ** at the btree level, in case the sqlite_sequence table needs to
 | |
|     ** move as a result of the drop (can happen in auto-vacuum mode).
 | |
|     */
 | |
|     if( pTab->autoInc ){
 | |
|       sqlite3NestedParse(pParse,
 | |
|         "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
 | |
|         pDb->zName, pTab->zName
 | |
|       );
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Drop all SQLITE_MASTER table and index entries that refer to the
 | |
|     ** table. The program name loops through the master table and deletes
 | |
|     ** every row that refers to a table of the same name as the one being
 | |
|     ** dropped. Triggers are handled seperately because a trigger can be
 | |
|     ** created in the temp database that refers to a table in another
 | |
|     ** database.
 | |
|     */
 | |
|     sqlite3NestedParse(pParse, 
 | |
|         "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
 | |
|         pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
 | |
|     if( !isView && !IsVirtual(pTab) ){
 | |
|       destroyTable(pParse, pTab);
 | |
|     }
 | |
| 
 | |
|     /* Remove the table entry from SQLite's internal schema and modify
 | |
|     ** the schema cookie.
 | |
|     */
 | |
|     if( IsVirtual(pTab) ){
 | |
|       sqlite3VdbeOp3(v, OP_VDestroy, iDb, 0, pTab->zName, 0);
 | |
|     }
 | |
|     sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0);
 | |
|     sqlite3ChangeCookie(db, v, iDb);
 | |
|   }
 | |
|   sqliteViewResetAll(db, iDb);
 | |
| 
 | |
| exit_drop_table:
 | |
|   sqlite3SrcListDelete(pName);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called to create a new foreign key on the table
 | |
| ** currently under construction.  pFromCol determines which columns
 | |
| ** in the current table point to the foreign key.  If pFromCol==0 then
 | |
| ** connect the key to the last column inserted.  pTo is the name of
 | |
| ** the table referred to.  pToCol is a list of tables in the other
 | |
| ** pTo table that the foreign key points to.  flags contains all
 | |
| ** information about the conflict resolution algorithms specified
 | |
| ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
 | |
| **
 | |
| ** An FKey structure is created and added to the table currently
 | |
| ** under construction in the pParse->pNewTable field.  The new FKey
 | |
| ** is not linked into db->aFKey at this point - that does not happen
 | |
| ** until sqlite3EndTable().
 | |
| **
 | |
| ** The foreign key is set for IMMEDIATE processing.  A subsequent call
 | |
| ** to sqlite3DeferForeignKey() might change this to DEFERRED.
 | |
| */
 | |
| void sqlite3CreateForeignKey(
 | |
|   Parse *pParse,       /* Parsing context */
 | |
|   ExprList *pFromCol,  /* Columns in this table that point to other table */
 | |
|   Token *pTo,          /* Name of the other table */
 | |
|   ExprList *pToCol,    /* Columns in the other table */
 | |
|   int flags            /* Conflict resolution algorithms. */
 | |
| ){
 | |
| #ifndef SQLITE_OMIT_FOREIGN_KEY
 | |
|   FKey *pFKey = 0;
 | |
|   Table *p = pParse->pNewTable;
 | |
|   int nByte;
 | |
|   int i;
 | |
|   int nCol;
 | |
|   char *z;
 | |
| 
 | |
|   assert( pTo!=0 );
 | |
|   if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end;
 | |
|   if( pFromCol==0 ){
 | |
|     int iCol = p->nCol-1;
 | |
|     if( iCol<0 ) goto fk_end;
 | |
|     if( pToCol && pToCol->nExpr!=1 ){
 | |
|       sqlite3ErrorMsg(pParse, "foreign key on %s"
 | |
|          " should reference only one column of table %T",
 | |
|          p->aCol[iCol].zName, pTo);
 | |
|       goto fk_end;
 | |
|     }
 | |
|     nCol = 1;
 | |
|   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
 | |
|     sqlite3ErrorMsg(pParse,
 | |
|         "number of columns in foreign key does not match the number of "
 | |
|         "columns in the referenced table");
 | |
|     goto fk_end;
 | |
|   }else{
 | |
|     nCol = pFromCol->nExpr;
 | |
|   }
 | |
|   nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
 | |
|   if( pToCol ){
 | |
|     for(i=0; i<pToCol->nExpr; i++){
 | |
|       nByte += strlen(pToCol->a[i].zName) + 1;
 | |
|     }
 | |
|   }
 | |
|   pFKey = sqliteMalloc( nByte );
 | |
|   if( pFKey==0 ) goto fk_end;
 | |
|   pFKey->pFrom = p;
 | |
|   pFKey->pNextFrom = p->pFKey;
 | |
|   z = (char*)&pFKey[1];
 | |
|   pFKey->aCol = (struct sColMap*)z;
 | |
|   z += sizeof(struct sColMap)*nCol;
 | |
|   pFKey->zTo = z;
 | |
|   memcpy(z, pTo->z, pTo->n);
 | |
|   z[pTo->n] = 0;
 | |
|   z += pTo->n+1;
 | |
|   pFKey->pNextTo = 0;
 | |
|   pFKey->nCol = nCol;
 | |
|   if( pFromCol==0 ){
 | |
|     pFKey->aCol[0].iFrom = p->nCol-1;
 | |
|   }else{
 | |
|     for(i=0; i<nCol; i++){
 | |
|       int j;
 | |
|       for(j=0; j<p->nCol; j++){
 | |
|         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
 | |
|           pFKey->aCol[i].iFrom = j;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if( j>=p->nCol ){
 | |
|         sqlite3ErrorMsg(pParse, 
 | |
|           "unknown column \"%s\" in foreign key definition", 
 | |
|           pFromCol->a[i].zName);
 | |
|         goto fk_end;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if( pToCol ){
 | |
|     for(i=0; i<nCol; i++){
 | |
|       int n = strlen(pToCol->a[i].zName);
 | |
|       pFKey->aCol[i].zCol = z;
 | |
|       memcpy(z, pToCol->a[i].zName, n);
 | |
|       z[n] = 0;
 | |
|       z += n+1;
 | |
|     }
 | |
|   }
 | |
|   pFKey->isDeferred = 0;
 | |
|   pFKey->deleteConf = flags & 0xff;
 | |
|   pFKey->updateConf = (flags >> 8 ) & 0xff;
 | |
|   pFKey->insertConf = (flags >> 16 ) & 0xff;
 | |
| 
 | |
|   /* Link the foreign key to the table as the last step.
 | |
|   */
 | |
|   p->pFKey = pFKey;
 | |
|   pFKey = 0;
 | |
| 
 | |
| fk_end:
 | |
|   sqliteFree(pFKey);
 | |
| #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
 | |
|   sqlite3ExprListDelete(pFromCol);
 | |
|   sqlite3ExprListDelete(pToCol);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
 | |
| ** clause is seen as part of a foreign key definition.  The isDeferred
 | |
| ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
 | |
| ** The behavior of the most recently created foreign key is adjusted
 | |
| ** accordingly.
 | |
| */
 | |
| void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
 | |
| #ifndef SQLITE_OMIT_FOREIGN_KEY
 | |
|   Table *pTab;
 | |
|   FKey *pFKey;
 | |
|   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
 | |
|   pFKey->isDeferred = isDeferred;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that will erase and refill index *pIdx.  This is
 | |
| ** used to initialize a newly created index or to recompute the
 | |
| ** content of an index in response to a REINDEX command.
 | |
| **
 | |
| ** if memRootPage is not negative, it means that the index is newly
 | |
| ** created.  The memory cell specified by memRootPage contains the
 | |
| ** root page number of the index.  If memRootPage is negative, then
 | |
| ** the index already exists and must be cleared before being refilled and
 | |
| ** the root page number of the index is taken from pIndex->tnum.
 | |
| */
 | |
| static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
 | |
|   Table *pTab = pIndex->pTable;  /* The table that is indexed */
 | |
|   int iTab = pParse->nTab;       /* Btree cursor used for pTab */
 | |
|   int iIdx = pParse->nTab+1;     /* Btree cursor used for pIndex */
 | |
|   int addr1;                     /* Address of top of loop */
 | |
|   int tnum;                      /* Root page of index */
 | |
|   Vdbe *v;                       /* Generate code into this virtual machine */
 | |
|   KeyInfo *pKey;                 /* KeyInfo for index */
 | |
|   int iDb = sqlite3SchemaToIndex(pParse->db, pIndex->pSchema);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
 | |
|       pParse->db->aDb[iDb].zName ) ){
 | |
|     return;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Require a write-lock on the table to perform this operation */
 | |
|   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
 | |
| 
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v==0 ) return;
 | |
|   if( memRootPage>=0 ){
 | |
|     sqlite3VdbeAddOp(v, OP_MemLoad, memRootPage, 0);
 | |
|     tnum = 0;
 | |
|   }else{
 | |
|     tnum = pIndex->tnum;
 | |
|     sqlite3VdbeAddOp(v, OP_Clear, tnum, iDb);
 | |
|   }
 | |
|   sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
 | |
|   pKey = sqlite3IndexKeyinfo(pParse, pIndex);
 | |
|   sqlite3VdbeOp3(v, OP_OpenWrite, iIdx, tnum, (char *)pKey, P3_KEYINFO_HANDOFF);
 | |
|   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
 | |
|   addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
 | |
|   sqlite3GenerateIndexKey(v, pIndex, iTab);
 | |
|   if( pIndex->onError!=OE_None ){
 | |
|     int curaddr = sqlite3VdbeCurrentAddr(v);
 | |
|     int addr2 = curaddr+4;
 | |
|     sqlite3VdbeChangeP2(v, curaddr-1, addr2);
 | |
|     sqlite3VdbeAddOp(v, OP_Rowid, iTab, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_AddImm, 1, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_IsUnique, iIdx, addr2);
 | |
|     sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort,
 | |
|                     "indexed columns are not unique", P3_STATIC);
 | |
|     assert( sqlite3MallocFailed() || addr2==sqlite3VdbeCurrentAddr(v) );
 | |
|   }
 | |
|   sqlite3VdbeAddOp(v, OP_IdxInsert, iIdx, 0);
 | |
|   sqlite3VdbeAddOp(v, OP_Next, iTab, addr1+1);
 | |
|   sqlite3VdbeJumpHere(v, addr1);
 | |
|   sqlite3VdbeAddOp(v, OP_Close, iTab, 0);
 | |
|   sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a new index for an SQL table.  pName1.pName2 is the name of the index 
 | |
| ** and pTblList is the name of the table that is to be indexed.  Both will 
 | |
| ** be NULL for a primary key or an index that is created to satisfy a
 | |
| ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
 | |
| ** as the table to be indexed.  pParse->pNewTable is a table that is
 | |
| ** currently being constructed by a CREATE TABLE statement.
 | |
| **
 | |
| ** pList is a list of columns to be indexed.  pList will be NULL if this
 | |
| ** is a primary key or unique-constraint on the most recent column added
 | |
| ** to the table currently under construction.  
 | |
| */
 | |
| void sqlite3CreateIndex(
 | |
|   Parse *pParse,     /* All information about this parse */
 | |
|   Token *pName1,     /* First part of index name. May be NULL */
 | |
|   Token *pName2,     /* Second part of index name. May be NULL */
 | |
|   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
 | |
|   ExprList *pList,   /* A list of columns to be indexed */
 | |
|   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
 | |
|   Token *pStart,     /* The CREATE token that begins this statement */
 | |
|   Token *pEnd,       /* The ")" that closes the CREATE INDEX statement */
 | |
|   int sortOrder,     /* Sort order of primary key when pList==NULL */
 | |
|   int ifNotExist     /* Omit error if index already exists */
 | |
| ){
 | |
|   Table *pTab = 0;     /* Table to be indexed */
 | |
|   Index *pIndex = 0;   /* The index to be created */
 | |
|   char *zName = 0;     /* Name of the index */
 | |
|   int nName;           /* Number of characters in zName */
 | |
|   int i, j;
 | |
|   Token nullId;        /* Fake token for an empty ID list */
 | |
|   DbFixer sFix;        /* For assigning database names to pTable */
 | |
|   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
 | |
|   sqlite3 *db = pParse->db;
 | |
|   Db *pDb;             /* The specific table containing the indexed database */
 | |
|   int iDb;             /* Index of the database that is being written */
 | |
|   Token *pName = 0;    /* Unqualified name of the index to create */
 | |
|   struct ExprList_item *pListItem; /* For looping over pList */
 | |
|   int nCol;
 | |
|   int nExtra = 0;
 | |
|   char *zExtra;
 | |
| 
 | |
|   if( pParse->nErr || sqlite3MallocFailed() || IN_DECLARE_VTAB ){
 | |
|     goto exit_create_index;
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   ** Find the table that is to be indexed.  Return early if not found.
 | |
|   */
 | |
|   if( pTblName!=0 ){
 | |
| 
 | |
|     /* Use the two-part index name to determine the database 
 | |
|     ** to search for the table. 'Fix' the table name to this db
 | |
|     ** before looking up the table.
 | |
|     */
 | |
|     assert( pName1 && pName2 );
 | |
|     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
 | |
|     if( iDb<0 ) goto exit_create_index;
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TEMPDB
 | |
|     /* If the index name was unqualified, check if the the table
 | |
|     ** is a temp table. If so, set the database to 1.
 | |
|     */
 | |
|     pTab = sqlite3SrcListLookup(pParse, pTblName);
 | |
|     if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
 | |
|       iDb = 1;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
 | |
|         sqlite3FixSrcList(&sFix, pTblName)
 | |
|     ){
 | |
|       /* Because the parser constructs pTblName from a single identifier,
 | |
|       ** sqlite3FixSrcList can never fail. */
 | |
|       assert(0);
 | |
|     }
 | |
|     pTab = sqlite3LocateTable(pParse, pTblName->a[0].zName, 
 | |
|         pTblName->a[0].zDatabase);
 | |
|     if( !pTab ) goto exit_create_index;
 | |
|     assert( db->aDb[iDb].pSchema==pTab->pSchema );
 | |
|   }else{
 | |
|     assert( pName==0 );
 | |
|     pTab = pParse->pNewTable;
 | |
|     if( !pTab ) goto exit_create_index;
 | |
|     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | |
|   }
 | |
|   pDb = &db->aDb[iDb];
 | |
| 
 | |
|   if( pTab==0 || pParse->nErr ) goto exit_create_index;
 | |
|   if( pTab->readOnly ){
 | |
|     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
 | |
|     goto exit_create_index;
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_VIEW
 | |
|   if( pTab->pSelect ){
 | |
|     sqlite3ErrorMsg(pParse, "views may not be indexed");
 | |
|     goto exit_create_index;
 | |
|   }
 | |
| #endif
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   if( IsVirtual(pTab) ){
 | |
|     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
 | |
|     goto exit_create_index;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /*
 | |
|   ** Find the name of the index.  Make sure there is not already another
 | |
|   ** index or table with the same name.  
 | |
|   **
 | |
|   ** Exception:  If we are reading the names of permanent indices from the
 | |
|   ** sqlite_master table (because some other process changed the schema) and
 | |
|   ** one of the index names collides with the name of a temporary table or
 | |
|   ** index, then we will continue to process this index.
 | |
|   **
 | |
|   ** If pName==0 it means that we are
 | |
|   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
 | |
|   ** own name.
 | |
|   */
 | |
|   if( pName ){
 | |
|     zName = sqlite3NameFromToken(pName);
 | |
|     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
 | |
|     if( zName==0 ) goto exit_create_index;
 | |
|     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
 | |
|       goto exit_create_index;
 | |
|     }
 | |
|     if( !db->init.busy ){
 | |
|       if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
 | |
|       if( sqlite3FindTable(db, zName, 0)!=0 ){
 | |
|         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
 | |
|         goto exit_create_index;
 | |
|       }
 | |
|     }
 | |
|     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
 | |
|       if( !ifNotExist ){
 | |
|         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
 | |
|       }
 | |
|       goto exit_create_index;
 | |
|     }
 | |
|   }else{
 | |
|     char zBuf[30];
 | |
|     int n;
 | |
|     Index *pLoop;
 | |
|     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
 | |
|     sqlite3_snprintf(sizeof(zBuf),zBuf,"_%d",n);
 | |
|     zName = 0;
 | |
|     sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0);
 | |
|     if( zName==0 ) goto exit_create_index;
 | |
|   }
 | |
| 
 | |
|   /* Check for authorization to create an index.
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|   {
 | |
|     const char *zDb = pDb->zName;
 | |
|     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
 | |
|       goto exit_create_index;
 | |
|     }
 | |
|     i = SQLITE_CREATE_INDEX;
 | |
|     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
 | |
|     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
 | |
|       goto exit_create_index;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* If pList==0, it means this routine was called to make a primary
 | |
|   ** key out of the last column added to the table under construction.
 | |
|   ** So create a fake list to simulate this.
 | |
|   */
 | |
|   if( pList==0 ){
 | |
|     nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName;
 | |
|     nullId.n = strlen((char*)nullId.z);
 | |
|     pList = sqlite3ExprListAppend(0, 0, &nullId);
 | |
|     if( pList==0 ) goto exit_create_index;
 | |
|     pList->a[0].sortOrder = sortOrder;
 | |
|   }
 | |
| 
 | |
|   /* Figure out how many bytes of space are required to store explicitly
 | |
|   ** specified collation sequence names.
 | |
|   */
 | |
|   for(i=0; i<pList->nExpr; i++){
 | |
|     Expr *pExpr = pList->a[i].pExpr;
 | |
|     if( pExpr ){
 | |
|       nExtra += (1 + strlen(pExpr->pColl->zName));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* 
 | |
|   ** Allocate the index structure. 
 | |
|   */
 | |
|   nName = strlen(zName);
 | |
|   nCol = pList->nExpr;
 | |
|   pIndex = sqliteMalloc( 
 | |
|       sizeof(Index) +              /* Index structure  */
 | |
|       sizeof(int)*nCol +           /* Index.aiColumn   */
 | |
|       sizeof(int)*(nCol+1) +       /* Index.aiRowEst   */
 | |
|       sizeof(char *)*nCol +        /* Index.azColl     */
 | |
|       sizeof(u8)*nCol +            /* Index.aSortOrder */
 | |
|       nName + 1 +                  /* Index.zName      */
 | |
|       nExtra                       /* Collation sequence names */
 | |
|   );
 | |
|   if( sqlite3MallocFailed() ) goto exit_create_index;
 | |
|   pIndex->azColl = (char**)(&pIndex[1]);
 | |
|   pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
 | |
|   pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
 | |
|   pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
 | |
|   pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
 | |
|   zExtra = (char *)(&pIndex->zName[nName+1]);
 | |
|   memcpy(pIndex->zName, zName, nName+1);
 | |
|   pIndex->pTable = pTab;
 | |
|   pIndex->nColumn = pList->nExpr;
 | |
|   pIndex->onError = onError;
 | |
|   pIndex->autoIndex = pName==0;
 | |
|   pIndex->pSchema = db->aDb[iDb].pSchema;
 | |
| 
 | |
|   /* Check to see if we should honor DESC requests on index columns
 | |
|   */
 | |
|   if( pDb->pSchema->file_format>=4 ){
 | |
|     sortOrderMask = -1;   /* Honor DESC */
 | |
|   }else{
 | |
|     sortOrderMask = 0;    /* Ignore DESC */
 | |
|   }
 | |
| 
 | |
|   /* Scan the names of the columns of the table to be indexed and
 | |
|   ** load the column indices into the Index structure.  Report an error
 | |
|   ** if any column is not found.
 | |
|   */
 | |
|   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
 | |
|     const char *zColName = pListItem->zName;
 | |
|     Column *pTabCol;
 | |
|     int requestedSortOrder;
 | |
|     char *zColl;                   /* Collation sequence name */
 | |
| 
 | |
|     for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
 | |
|       if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
 | |
|     }
 | |
|     if( j>=pTab->nCol ){
 | |
|       sqlite3ErrorMsg(pParse, "table %s has no column named %s",
 | |
|         pTab->zName, zColName);
 | |
|       goto exit_create_index;
 | |
|     }
 | |
|     /* TODO:  Add a test to make sure that the same column is not named
 | |
|     ** more than once within the same index.  Only the first instance of
 | |
|     ** the column will ever be used by the optimizer.  Note that using the
 | |
|     ** same column more than once cannot be an error because that would 
 | |
|     ** break backwards compatibility - it needs to be a warning.
 | |
|     */
 | |
|     pIndex->aiColumn[i] = j;
 | |
|     if( pListItem->pExpr ){
 | |
|       assert( pListItem->pExpr->pColl );
 | |
|       zColl = zExtra;
 | |
|       sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName);
 | |
|       zExtra += (strlen(zColl) + 1);
 | |
|     }else{
 | |
|       zColl = pTab->aCol[j].zColl;
 | |
|       if( !zColl ){
 | |
|         zColl = db->pDfltColl->zName;
 | |
|       }
 | |
|     }
 | |
|     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){
 | |
|       goto exit_create_index;
 | |
|     }
 | |
|     pIndex->azColl[i] = zColl;
 | |
|     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
 | |
|     pIndex->aSortOrder[i] = requestedSortOrder;
 | |
|   }
 | |
|   sqlite3DefaultRowEst(pIndex);
 | |
| 
 | |
|   if( pTab==pParse->pNewTable ){
 | |
|     /* This routine has been called to create an automatic index as a
 | |
|     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
 | |
|     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
 | |
|     ** i.e. one of:
 | |
|     **
 | |
|     ** CREATE TABLE t(x PRIMARY KEY, y);
 | |
|     ** CREATE TABLE t(x, y, UNIQUE(x, y));
 | |
|     **
 | |
|     ** Either way, check to see if the table already has such an index. If
 | |
|     ** so, don't bother creating this one. This only applies to
 | |
|     ** automatically created indices. Users can do as they wish with
 | |
|     ** explicit indices.
 | |
|     */
 | |
|     Index *pIdx;
 | |
|     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | |
|       int k;
 | |
|       assert( pIdx->onError!=OE_None );
 | |
|       assert( pIdx->autoIndex );
 | |
|       assert( pIndex->onError!=OE_None );
 | |
| 
 | |
|       if( pIdx->nColumn!=pIndex->nColumn ) continue;
 | |
|       for(k=0; k<pIdx->nColumn; k++){
 | |
|         const char *z1 = pIdx->azColl[k];
 | |
|         const char *z2 = pIndex->azColl[k];
 | |
|         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
 | |
|         if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break;
 | |
|         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
 | |
|       }
 | |
|       if( k==pIdx->nColumn ){
 | |
|         if( pIdx->onError!=pIndex->onError ){
 | |
|           /* This constraint creates the same index as a previous
 | |
|           ** constraint specified somewhere in the CREATE TABLE statement.
 | |
|           ** However the ON CONFLICT clauses are different. If both this 
 | |
|           ** constraint and the previous equivalent constraint have explicit
 | |
|           ** ON CONFLICT clauses this is an error. Otherwise, use the
 | |
|           ** explicitly specified behaviour for the index.
 | |
|           */
 | |
|           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
 | |
|             sqlite3ErrorMsg(pParse, 
 | |
|                 "conflicting ON CONFLICT clauses specified", 0);
 | |
|           }
 | |
|           if( pIdx->onError==OE_Default ){
 | |
|             pIdx->onError = pIndex->onError;
 | |
|           }
 | |
|         }
 | |
|         goto exit_create_index;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Link the new Index structure to its table and to the other
 | |
|   ** in-memory database structures. 
 | |
|   */
 | |
|   if( db->init.busy ){
 | |
|     Index *p;
 | |
|     p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 
 | |
|                          pIndex->zName, strlen(pIndex->zName)+1, pIndex);
 | |
|     if( p ){
 | |
|       assert( p==pIndex );  /* Malloc must have failed */
 | |
|       goto exit_create_index;
 | |
|     }
 | |
|     db->flags |= SQLITE_InternChanges;
 | |
|     if( pTblName!=0 ){
 | |
|       pIndex->tnum = db->init.newTnum;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If the db->init.busy is 0 then create the index on disk.  This
 | |
|   ** involves writing the index into the master table and filling in the
 | |
|   ** index with the current table contents.
 | |
|   **
 | |
|   ** The db->init.busy is 0 when the user first enters a CREATE INDEX 
 | |
|   ** command.  db->init.busy is 1 when a database is opened and 
 | |
|   ** CREATE INDEX statements are read out of the master table.  In
 | |
|   ** the latter case the index already exists on disk, which is why
 | |
|   ** we don't want to recreate it.
 | |
|   **
 | |
|   ** If pTblName==0 it means this index is generated as a primary key
 | |
|   ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
 | |
|   ** has just been created, it contains no data and the index initialization
 | |
|   ** step can be skipped.
 | |
|   */
 | |
|   else if( db->init.busy==0 ){
 | |
|     Vdbe *v;
 | |
|     char *zStmt;
 | |
|     int iMem = pParse->nMem++;
 | |
| 
 | |
|     v = sqlite3GetVdbe(pParse);
 | |
|     if( v==0 ) goto exit_create_index;
 | |
| 
 | |
| 
 | |
|     /* Create the rootpage for the index
 | |
|     */
 | |
|     sqlite3BeginWriteOperation(pParse, 1, iDb);
 | |
|     sqlite3VdbeAddOp(v, OP_CreateIndex, iDb, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
 | |
| 
 | |
|     /* Gather the complete text of the CREATE INDEX statement into
 | |
|     ** the zStmt variable
 | |
|     */
 | |
|     if( pStart && pEnd ){
 | |
|       /* A named index with an explicit CREATE INDEX statement */
 | |
|       zStmt = sqlite3MPrintf("CREATE%s INDEX %.*s",
 | |
|         onError==OE_None ? "" : " UNIQUE",
 | |
|         pEnd->z - pName->z + 1,
 | |
|         pName->z);
 | |
|     }else{
 | |
|       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
 | |
|       /* zStmt = sqlite3MPrintf(""); */
 | |
|       zStmt = 0;
 | |
|     }
 | |
| 
 | |
|     /* Add an entry in sqlite_master for this index
 | |
|     */
 | |
|     sqlite3NestedParse(pParse, 
 | |
|         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#0,%Q);",
 | |
|         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
 | |
|         pIndex->zName,
 | |
|         pTab->zName,
 | |
|         zStmt
 | |
|     );
 | |
|     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | |
|     sqliteFree(zStmt);
 | |
| 
 | |
|     /* Fill the index with data and reparse the schema. Code an OP_Expire
 | |
|     ** to invalidate all pre-compiled statements.
 | |
|     */
 | |
|     if( pTblName ){
 | |
|       sqlite3RefillIndex(pParse, pIndex, iMem);
 | |
|       sqlite3ChangeCookie(db, v, iDb);
 | |
|       sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
 | |
|          sqlite3MPrintf("name='%q'", pIndex->zName), P3_DYNAMIC);
 | |
|       sqlite3VdbeAddOp(v, OP_Expire, 0, 0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* When adding an index to the list of indices for a table, make
 | |
|   ** sure all indices labeled OE_Replace come after all those labeled
 | |
|   ** OE_Ignore.  This is necessary for the correct operation of UPDATE
 | |
|   ** and INSERT.
 | |
|   */
 | |
|   if( db->init.busy || pTblName==0 ){
 | |
|     if( onError!=OE_Replace || pTab->pIndex==0
 | |
|          || pTab->pIndex->onError==OE_Replace){
 | |
|       pIndex->pNext = pTab->pIndex;
 | |
|       pTab->pIndex = pIndex;
 | |
|     }else{
 | |
|       Index *pOther = pTab->pIndex;
 | |
|       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
 | |
|         pOther = pOther->pNext;
 | |
|       }
 | |
|       pIndex->pNext = pOther->pNext;
 | |
|       pOther->pNext = pIndex;
 | |
|     }
 | |
|     pIndex = 0;
 | |
|   }
 | |
| 
 | |
|   /* Clean up before exiting */
 | |
| exit_create_index:
 | |
|   if( pIndex ){
 | |
|     freeIndex(pIndex);
 | |
|   }
 | |
|   sqlite3ExprListDelete(pList);
 | |
|   sqlite3SrcListDelete(pTblName);
 | |
|   sqliteFree(zName);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code to make sure the file format number is at least minFormat.
 | |
| ** The generated code will increase the file format number if necessary.
 | |
| */
 | |
| void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
 | |
|   Vdbe *v;
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v ){
 | |
|     sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1);
 | |
|     sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_Ge, 0, sqlite3VdbeCurrentAddr(v)+3);
 | |
|     sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Fill the Index.aiRowEst[] array with default information - information
 | |
| ** to be used when we have not run the ANALYZE command.
 | |
| **
 | |
| ** aiRowEst[0] is suppose to contain the number of elements in the index.
 | |
| ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
 | |
| ** number of rows in the table that match any particular value of the
 | |
| ** first column of the index.  aiRowEst[2] is an estimate of the number
 | |
| ** of rows that match any particular combiniation of the first 2 columns
 | |
| ** of the index.  And so forth.  It must always be the case that
 | |
| *
 | |
| **           aiRowEst[N]<=aiRowEst[N-1]
 | |
| **           aiRowEst[N]>=1
 | |
| **
 | |
| ** Apart from that, we have little to go on besides intuition as to
 | |
| ** how aiRowEst[] should be initialized.  The numbers generated here
 | |
| ** are based on typical values found in actual indices.
 | |
| */
 | |
| void sqlite3DefaultRowEst(Index *pIdx){
 | |
|   unsigned *a = pIdx->aiRowEst;
 | |
|   int i;
 | |
|   assert( a!=0 );
 | |
|   a[0] = 1000000;
 | |
|   for(i=pIdx->nColumn; i>=5; i--){
 | |
|     a[i] = 5;
 | |
|   }
 | |
|   while( i>=1 ){
 | |
|     a[i] = 11 - i;
 | |
|     i--;
 | |
|   }
 | |
|   if( pIdx->onError!=OE_None ){
 | |
|     a[pIdx->nColumn] = 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine will drop an existing named index.  This routine
 | |
| ** implements the DROP INDEX statement.
 | |
| */
 | |
| void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
 | |
|   Index *pIndex;
 | |
|   Vdbe *v;
 | |
|   sqlite3 *db = pParse->db;
 | |
|   int iDb;
 | |
| 
 | |
|   if( pParse->nErr || sqlite3MallocFailed() ){
 | |
|     goto exit_drop_index;
 | |
|   }
 | |
|   assert( pName->nSrc==1 );
 | |
|   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
 | |
|     goto exit_drop_index;
 | |
|   }
 | |
|   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
 | |
|   if( pIndex==0 ){
 | |
|     if( !ifExists ){
 | |
|       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
 | |
|     }
 | |
|     pParse->checkSchema = 1;
 | |
|     goto exit_drop_index;
 | |
|   }
 | |
|   if( pIndex->autoIndex ){
 | |
|     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
 | |
|       "or PRIMARY KEY constraint cannot be dropped", 0);
 | |
|     goto exit_drop_index;
 | |
|   }
 | |
|   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|   {
 | |
|     int code = SQLITE_DROP_INDEX;
 | |
|     Table *pTab = pIndex->pTable;
 | |
|     const char *zDb = db->aDb[iDb].zName;
 | |
|     const char *zTab = SCHEMA_TABLE(iDb);
 | |
|     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
 | |
|       goto exit_drop_index;
 | |
|     }
 | |
|     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
 | |
|     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
 | |
|       goto exit_drop_index;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Generate code to remove the index and from the master table */
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v ){
 | |
|     sqlite3NestedParse(pParse,
 | |
|        "DELETE FROM %Q.%s WHERE name=%Q",
 | |
|        db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
 | |
|        pIndex->zName
 | |
|     );
 | |
|     sqlite3ChangeCookie(db, v, iDb);
 | |
|     destroyRootPage(pParse, pIndex->tnum, iDb);
 | |
|     sqlite3VdbeOp3(v, OP_DropIndex, iDb, 0, pIndex->zName, 0);
 | |
|   }
 | |
| 
 | |
| exit_drop_index:
 | |
|   sqlite3SrcListDelete(pName);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** pArray is a pointer to an array of objects.  Each object in the
 | |
| ** array is szEntry bytes in size.  This routine allocates a new
 | |
| ** object on the end of the array.
 | |
| **
 | |
| ** *pnEntry is the number of entries already in use.  *pnAlloc is
 | |
| ** the previously allocated size of the array.  initSize is the
 | |
| ** suggested initial array size allocation.
 | |
| **
 | |
| ** The index of the new entry is returned in *pIdx.
 | |
| **
 | |
| ** This routine returns a pointer to the array of objects.  This
 | |
| ** might be the same as the pArray parameter or it might be a different
 | |
| ** pointer if the array was resized.
 | |
| */
 | |
| void *sqlite3ArrayAllocate(
 | |
|   void *pArray,     /* Array of objects.  Might be reallocated */
 | |
|   int szEntry,      /* Size of each object in the array */
 | |
|   int initSize,     /* Suggested initial allocation, in elements */
 | |
|   int *pnEntry,     /* Number of objects currently in use */
 | |
|   int *pnAlloc,     /* Current size of the allocation, in elements */
 | |
|   int *pIdx         /* Write the index of a new slot here */
 | |
| ){
 | |
|   char *z;
 | |
|   if( *pnEntry >= *pnAlloc ){
 | |
|     void *pNew;
 | |
|     int newSize;
 | |
|     newSize = (*pnAlloc)*2 + initSize;
 | |
|     pNew = sqliteRealloc(pArray, newSize*szEntry);
 | |
|     if( pNew==0 ){
 | |
|       *pIdx = -1;
 | |
|       return pArray;
 | |
|     }
 | |
|     *pnAlloc = newSize;
 | |
|     pArray = pNew;
 | |
|   }
 | |
|   z = (char*)pArray;
 | |
|   memset(&z[*pnEntry * szEntry], 0, szEntry);
 | |
|   *pIdx = *pnEntry;
 | |
|   ++*pnEntry;
 | |
|   return pArray;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Append a new element to the given IdList.  Create a new IdList if
 | |
| ** need be.
 | |
| **
 | |
| ** A new IdList is returned, or NULL if malloc() fails.
 | |
| */
 | |
| IdList *sqlite3IdListAppend(IdList *pList, Token *pToken){
 | |
|   int i;
 | |
|   if( pList==0 ){
 | |
|     pList = sqliteMalloc( sizeof(IdList) );
 | |
|     if( pList==0 ) return 0;
 | |
|     pList->nAlloc = 0;
 | |
|   }
 | |
|   pList->a = sqlite3ArrayAllocate(
 | |
|       pList->a,
 | |
|       sizeof(pList->a[0]),
 | |
|       5,
 | |
|       &pList->nId,
 | |
|       &pList->nAlloc,
 | |
|       &i
 | |
|   );
 | |
|   if( i<0 ){
 | |
|     sqlite3IdListDelete(pList);
 | |
|     return 0;
 | |
|   }
 | |
|   pList->a[i].zName = sqlite3NameFromToken(pToken);
 | |
|   return pList;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete an IdList.
 | |
| */
 | |
| void sqlite3IdListDelete(IdList *pList){
 | |
|   int i;
 | |
|   if( pList==0 ) return;
 | |
|   for(i=0; i<pList->nId; i++){
 | |
|     sqliteFree(pList->a[i].zName);
 | |
|   }
 | |
|   sqliteFree(pList->a);
 | |
|   sqliteFree(pList);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the index in pList of the identifier named zId.  Return -1
 | |
| ** if not found.
 | |
| */
 | |
| int sqlite3IdListIndex(IdList *pList, const char *zName){
 | |
|   int i;
 | |
|   if( pList==0 ) return -1;
 | |
|   for(i=0; i<pList->nId; i++){
 | |
|     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
 | |
|   }
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Append a new table name to the given SrcList.  Create a new SrcList if
 | |
| ** need be.  A new entry is created in the SrcList even if pToken is NULL.
 | |
| **
 | |
| ** A new SrcList is returned, or NULL if malloc() fails.
 | |
| **
 | |
| ** If pDatabase is not null, it means that the table has an optional
 | |
| ** database name prefix.  Like this:  "database.table".  The pDatabase
 | |
| ** points to the table name and the pTable points to the database name.
 | |
| ** The SrcList.a[].zName field is filled with the table name which might
 | |
| ** come from pTable (if pDatabase is NULL) or from pDatabase.  
 | |
| ** SrcList.a[].zDatabase is filled with the database name from pTable,
 | |
| ** or with NULL if no database is specified.
 | |
| **
 | |
| ** In other words, if call like this:
 | |
| **
 | |
| **         sqlite3SrcListAppend(A,B,0);
 | |
| **
 | |
| ** Then B is a table name and the database name is unspecified.  If called
 | |
| ** like this:
 | |
| **
 | |
| **         sqlite3SrcListAppend(A,B,C);
 | |
| **
 | |
| ** Then C is the table name and B is the database name.
 | |
| */
 | |
| SrcList *sqlite3SrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){
 | |
|   struct SrcList_item *pItem;
 | |
|   if( pList==0 ){
 | |
|     pList = sqliteMalloc( sizeof(SrcList) );
 | |
|     if( pList==0 ) return 0;
 | |
|     pList->nAlloc = 1;
 | |
|   }
 | |
|   if( pList->nSrc>=pList->nAlloc ){
 | |
|     SrcList *pNew;
 | |
|     pList->nAlloc *= 2;
 | |
|     pNew = sqliteRealloc(pList,
 | |
|                sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
 | |
|     if( pNew==0 ){
 | |
|       sqlite3SrcListDelete(pList);
 | |
|       return 0;
 | |
|     }
 | |
|     pList = pNew;
 | |
|   }
 | |
|   pItem = &pList->a[pList->nSrc];
 | |
|   memset(pItem, 0, sizeof(pList->a[0]));
 | |
|   if( pDatabase && pDatabase->z==0 ){
 | |
|     pDatabase = 0;
 | |
|   }
 | |
|   if( pDatabase && pTable ){
 | |
|     Token *pTemp = pDatabase;
 | |
|     pDatabase = pTable;
 | |
|     pTable = pTemp;
 | |
|   }
 | |
|   pItem->zName = sqlite3NameFromToken(pTable);
 | |
|   pItem->zDatabase = sqlite3NameFromToken(pDatabase);
 | |
|   pItem->iCursor = -1;
 | |
|   pItem->isPopulated = 0;
 | |
|   pList->nSrc++;
 | |
|   return pList;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Assign cursors to all tables in a SrcList
 | |
| */
 | |
| void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
 | |
|   int i;
 | |
|   struct SrcList_item *pItem;
 | |
|   assert(pList || sqlite3MallocFailed() );
 | |
|   if( pList ){
 | |
|     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
 | |
|       if( pItem->iCursor>=0 ) break;
 | |
|       pItem->iCursor = pParse->nTab++;
 | |
|       if( pItem->pSelect ){
 | |
|         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete an entire SrcList including all its substructure.
 | |
| */
 | |
| void sqlite3SrcListDelete(SrcList *pList){
 | |
|   int i;
 | |
|   struct SrcList_item *pItem;
 | |
|   if( pList==0 ) return;
 | |
|   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
 | |
|     sqliteFree(pItem->zDatabase);
 | |
|     sqliteFree(pItem->zName);
 | |
|     sqliteFree(pItem->zAlias);
 | |
|     sqlite3DeleteTable(pItem->pTab);
 | |
|     sqlite3SelectDelete(pItem->pSelect);
 | |
|     sqlite3ExprDelete(pItem->pOn);
 | |
|     sqlite3IdListDelete(pItem->pUsing);
 | |
|   }
 | |
|   sqliteFree(pList);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called by the parser to add a new term to the
 | |
| ** end of a growing FROM clause.  The "p" parameter is the part of
 | |
| ** the FROM clause that has already been constructed.  "p" is NULL
 | |
| ** if this is the first term of the FROM clause.  pTable and pDatabase
 | |
| ** are the name of the table and database named in the FROM clause term.
 | |
| ** pDatabase is NULL if the database name qualifier is missing - the
 | |
| ** usual case.  If the term has a alias, then pAlias points to the
 | |
| ** alias token.  If the term is a subquery, then pSubquery is the
 | |
| ** SELECT statement that the subquery encodes.  The pTable and
 | |
| ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
 | |
| ** parameters are the content of the ON and USING clauses.
 | |
| **
 | |
| ** Return a new SrcList which encodes is the FROM with the new
 | |
| ** term added.
 | |
| */
 | |
| SrcList *sqlite3SrcListAppendFromTerm(
 | |
|   SrcList *p,             /* The left part of the FROM clause already seen */
 | |
|   Token *pTable,          /* Name of the table to add to the FROM clause */
 | |
|   Token *pDatabase,       /* Name of the database containing pTable */
 | |
|   Token *pAlias,          /* The right-hand side of the AS subexpression */
 | |
|   Select *pSubquery,      /* A subquery used in place of a table name */
 | |
|   Expr *pOn,              /* The ON clause of a join */
 | |
|   IdList *pUsing          /* The USING clause of a join */
 | |
| ){
 | |
|   struct SrcList_item *pItem;
 | |
|   p = sqlite3SrcListAppend(p, pTable, pDatabase);
 | |
|   if( p==0 || p->nSrc==0 ){
 | |
|     sqlite3ExprDelete(pOn);
 | |
|     sqlite3IdListDelete(pUsing);
 | |
|     sqlite3SelectDelete(pSubquery);
 | |
|     return p;
 | |
|   }
 | |
|   pItem = &p->a[p->nSrc-1];
 | |
|   if( pAlias && pAlias->n ){
 | |
|     pItem->zAlias = sqlite3NameFromToken(pAlias);
 | |
|   }
 | |
|   pItem->pSelect = pSubquery;
 | |
|   pItem->pOn = pOn;
 | |
|   pItem->pUsing = pUsing;
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** When building up a FROM clause in the parser, the join operator
 | |
| ** is initially attached to the left operand.  But the code generator
 | |
| ** expects the join operator to be on the right operand.  This routine
 | |
| ** Shifts all join operators from left to right for an entire FROM
 | |
| ** clause.
 | |
| **
 | |
| ** Example: Suppose the join is like this:
 | |
| **
 | |
| **           A natural cross join B
 | |
| **
 | |
| ** The operator is "natural cross join".  The A and B operands are stored
 | |
| ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
 | |
| ** operator with A.  This routine shifts that operator over to B.
 | |
| */
 | |
| void sqlite3SrcListShiftJoinType(SrcList *p){
 | |
|   if( p && p->a ){
 | |
|     int i;
 | |
|     for(i=p->nSrc-1; i>0; i--){
 | |
|       p->a[i].jointype = p->a[i-1].jointype;
 | |
|     }
 | |
|     p->a[0].jointype = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Begin a transaction
 | |
| */
 | |
| void sqlite3BeginTransaction(Parse *pParse, int type){
 | |
|   sqlite3 *db;
 | |
|   Vdbe *v;
 | |
|   int i;
 | |
| 
 | |
|   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
 | |
|   if( pParse->nErr || sqlite3MallocFailed() ) return;
 | |
|   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
 | |
| 
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( !v ) return;
 | |
|   if( type!=TK_DEFERRED ){
 | |
|     for(i=0; i<db->nDb; i++){
 | |
|       sqlite3VdbeAddOp(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
 | |
|     }
 | |
|   }
 | |
|   sqlite3VdbeAddOp(v, OP_AutoCommit, 0, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Commit a transaction
 | |
| */
 | |
| void sqlite3CommitTransaction(Parse *pParse){
 | |
|   sqlite3 *db;
 | |
|   Vdbe *v;
 | |
| 
 | |
|   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
 | |
|   if( pParse->nErr || sqlite3MallocFailed() ) return;
 | |
|   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
 | |
| 
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v ){
 | |
|     sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Rollback a transaction
 | |
| */
 | |
| void sqlite3RollbackTransaction(Parse *pParse){
 | |
|   sqlite3 *db;
 | |
|   Vdbe *v;
 | |
| 
 | |
|   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
 | |
|   if( pParse->nErr || sqlite3MallocFailed() ) return;
 | |
|   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
 | |
| 
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v ){
 | |
|     sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make sure the TEMP database is open and available for use.  Return
 | |
| ** the number of errors.  Leave any error messages in the pParse structure.
 | |
| */
 | |
| int sqlite3OpenTempDatabase(Parse *pParse){
 | |
|   sqlite3 *db = pParse->db;
 | |
|   if( db->aDb[1].pBt==0 && !pParse->explain ){
 | |
|     int rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE,
 | |
|                                  &db->aDb[1].pBt);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
 | |
|         "file for storing temporary tables");
 | |
|       pParse->rc = rc;
 | |
|       return 1;
 | |
|     }
 | |
|     if( db->flags & !db->autoCommit ){
 | |
|       rc = sqlite3BtreeBeginTrans(db->aDb[1].pBt, 1);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         sqlite3ErrorMsg(pParse, "unable to get a write lock on "
 | |
|           "the temporary database file");
 | |
|         pParse->rc = rc;
 | |
|         return 1;
 | |
|       }
 | |
|     }
 | |
|     assert( db->aDb[1].pSchema );
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate VDBE code that will verify the schema cookie and start
 | |
| ** a read-transaction for all named database files.
 | |
| **
 | |
| ** It is important that all schema cookies be verified and all
 | |
| ** read transactions be started before anything else happens in
 | |
| ** the VDBE program.  But this routine can be called after much other
 | |
| ** code has been generated.  So here is what we do:
 | |
| **
 | |
| ** The first time this routine is called, we code an OP_Goto that
 | |
| ** will jump to a subroutine at the end of the program.  Then we
 | |
| ** record every database that needs its schema verified in the
 | |
| ** pParse->cookieMask field.  Later, after all other code has been
 | |
| ** generated, the subroutine that does the cookie verifications and
 | |
| ** starts the transactions will be coded and the OP_Goto P2 value
 | |
| ** will be made to point to that subroutine.  The generation of the
 | |
| ** cookie verification subroutine code happens in sqlite3FinishCoding().
 | |
| **
 | |
| ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
 | |
| ** schema on any databases.  This can be used to position the OP_Goto
 | |
| ** early in the code, before we know if any database tables will be used.
 | |
| */
 | |
| void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
 | |
|   sqlite3 *db;
 | |
|   Vdbe *v;
 | |
|   int mask;
 | |
| 
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v==0 ) return;  /* This only happens if there was a prior error */
 | |
|   db = pParse->db;
 | |
|   if( pParse->cookieGoto==0 ){
 | |
|     pParse->cookieGoto = sqlite3VdbeAddOp(v, OP_Goto, 0, 0)+1;
 | |
|   }
 | |
|   if( iDb>=0 ){
 | |
|     assert( iDb<db->nDb );
 | |
|     assert( db->aDb[iDb].pBt!=0 || iDb==1 );
 | |
|     assert( iDb<SQLITE_MAX_ATTACHED+2 );
 | |
|     mask = 1<<iDb;
 | |
|     if( (pParse->cookieMask & mask)==0 ){
 | |
|       pParse->cookieMask |= mask;
 | |
|       pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
 | |
|       if( !OMIT_TEMPDB && iDb==1 ){
 | |
|         sqlite3OpenTempDatabase(pParse);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate VDBE code that prepares for doing an operation that
 | |
| ** might change the database.
 | |
| **
 | |
| ** This routine starts a new transaction if we are not already within
 | |
| ** a transaction.  If we are already within a transaction, then a checkpoint
 | |
| ** is set if the setStatement parameter is true.  A checkpoint should
 | |
| ** be set for operations that might fail (due to a constraint) part of
 | |
| ** the way through and which will need to undo some writes without having to
 | |
| ** rollback the whole transaction.  For operations where all constraints
 | |
| ** can be checked before any changes are made to the database, it is never
 | |
| ** necessary to undo a write and the checkpoint should not be set.
 | |
| **
 | |
| ** Only database iDb and the temp database are made writable by this call.
 | |
| ** If iDb==0, then the main and temp databases are made writable.   If
 | |
| ** iDb==1 then only the temp database is made writable.  If iDb>1 then the
 | |
| ** specified auxiliary database and the temp database are made writable.
 | |
| */
 | |
| void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
 | |
|   Vdbe *v = sqlite3GetVdbe(pParse);
 | |
|   if( v==0 ) return;
 | |
|   sqlite3CodeVerifySchema(pParse, iDb);
 | |
|   pParse->writeMask |= 1<<iDb;
 | |
|   if( setStatement && pParse->nested==0 ){
 | |
|     sqlite3VdbeAddOp(v, OP_Statement, iDb, 0);
 | |
|   }
 | |
|   if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
 | |
|     sqlite3BeginWriteOperation(pParse, setStatement, 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Check to see if pIndex uses the collating sequence pColl.  Return
 | |
| ** true if it does and false if it does not.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_REINDEX
 | |
| static int collationMatch(const char *zColl, Index *pIndex){
 | |
|   int i;
 | |
|   for(i=0; i<pIndex->nColumn; i++){
 | |
|     const char *z = pIndex->azColl[i];
 | |
|     if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Recompute all indices of pTab that use the collating sequence pColl.
 | |
| ** If pColl==0 then recompute all indices of pTab.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_REINDEX
 | |
| static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
 | |
|   Index *pIndex;              /* An index associated with pTab */
 | |
| 
 | |
|   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
 | |
|     if( zColl==0 || collationMatch(zColl, pIndex) ){
 | |
|       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | |
|       sqlite3BeginWriteOperation(pParse, 0, iDb);
 | |
|       sqlite3RefillIndex(pParse, pIndex, -1);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Recompute all indices of all tables in all databases where the
 | |
| ** indices use the collating sequence pColl.  If pColl==0 then recompute
 | |
| ** all indices everywhere.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_REINDEX
 | |
| static void reindexDatabases(Parse *pParse, char const *zColl){
 | |
|   Db *pDb;                    /* A single database */
 | |
|   int iDb;                    /* The database index number */
 | |
|   sqlite3 *db = pParse->db;   /* The database connection */
 | |
|   HashElem *k;                /* For looping over tables in pDb */
 | |
|   Table *pTab;                /* A table in the database */
 | |
| 
 | |
|   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
 | |
|     assert( pDb!=0 );
 | |
|     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
 | |
|       pTab = (Table*)sqliteHashData(k);
 | |
|       reindexTable(pParse, pTab, zColl);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Generate code for the REINDEX command.
 | |
| **
 | |
| **        REINDEX                            -- 1
 | |
| **        REINDEX  <collation>               -- 2
 | |
| **        REINDEX  ?<database>.?<tablename>  -- 3
 | |
| **        REINDEX  ?<database>.?<indexname>  -- 4
 | |
| **
 | |
| ** Form 1 causes all indices in all attached databases to be rebuilt.
 | |
| ** Form 2 rebuilds all indices in all databases that use the named
 | |
| ** collating function.  Forms 3 and 4 rebuild the named index or all
 | |
| ** indices associated with the named table.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_REINDEX
 | |
| void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
 | |
|   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
 | |
|   char *z;                    /* Name of a table or index */
 | |
|   const char *zDb;            /* Name of the database */
 | |
|   Table *pTab;                /* A table in the database */
 | |
|   Index *pIndex;              /* An index associated with pTab */
 | |
|   int iDb;                    /* The database index number */
 | |
|   sqlite3 *db = pParse->db;   /* The database connection */
 | |
|   Token *pObjName;            /* Name of the table or index to be reindexed */
 | |
| 
 | |
|   /* Read the database schema. If an error occurs, leave an error message
 | |
|   ** and code in pParse and return NULL. */
 | |
|   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if( pName1==0 || pName1->z==0 ){
 | |
|     reindexDatabases(pParse, 0);
 | |
|     return;
 | |
|   }else if( pName2==0 || pName2->z==0 ){
 | |
|     assert( pName1->z );
 | |
|     pColl = sqlite3FindCollSeq(db, ENC(db), (char*)pName1->z, pName1->n, 0);
 | |
|     if( pColl ){
 | |
|       char *zColl = sqliteStrNDup((const char *)pName1->z, pName1->n);
 | |
|       if( zColl ){
 | |
|         reindexDatabases(pParse, zColl);
 | |
|         sqliteFree(zColl);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
 | |
|   if( iDb<0 ) return;
 | |
|   z = sqlite3NameFromToken(pObjName);
 | |
|   if( z==0 ) return;
 | |
|   zDb = db->aDb[iDb].zName;
 | |
|   pTab = sqlite3FindTable(db, z, zDb);
 | |
|   if( pTab ){
 | |
|     reindexTable(pParse, pTab, 0);
 | |
|     sqliteFree(z);
 | |
|     return;
 | |
|   }
 | |
|   pIndex = sqlite3FindIndex(db, z, zDb);
 | |
|   sqliteFree(z);
 | |
|   if( pIndex ){
 | |
|     sqlite3BeginWriteOperation(pParse, 0, iDb);
 | |
|     sqlite3RefillIndex(pParse, pIndex, -1);
 | |
|     return;
 | |
|   }
 | |
|   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Return a dynamicly allocated KeyInfo structure that can be used
 | |
| ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
 | |
| **
 | |
| ** If successful, a pointer to the new structure is returned. In this case
 | |
| ** the caller is responsible for calling sqliteFree() on the returned 
 | |
| ** pointer. If an error occurs (out of memory or missing collation 
 | |
| ** sequence), NULL is returned and the state of pParse updated to reflect
 | |
| ** the error.
 | |
| */
 | |
| KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
 | |
|   int i;
 | |
|   int nCol = pIdx->nColumn;
 | |
|   int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
 | |
|   KeyInfo *pKey = (KeyInfo *)sqliteMalloc(nBytes);
 | |
| 
 | |
|   if( pKey ){
 | |
|     pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
 | |
|     assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
 | |
|     for(i=0; i<nCol; i++){
 | |
|       char *zColl = pIdx->azColl[i];
 | |
|       assert( zColl );
 | |
|       pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1);
 | |
|       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
 | |
|     }
 | |
|     pKey->nField = nCol;
 | |
|   }
 | |
| 
 | |
|   if( pParse->nErr ){
 | |
|     sqliteFree(pKey);
 | |
|     pKey = 0;
 | |
|   }
 | |
|   return pKey;
 | |
| }
 |