--HG-- extra : convert_revision : svn%3A39bc706e-5318-0410-9160-8a85361fbb7c/trunk%401209
		
			
				
	
	
		
			411 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			411 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** 2005 July 8
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains code associated with the ANALYZE command.
 | |
| **
 | |
| ** @(#) $Id$
 | |
| */
 | |
| #ifndef SQLITE_OMIT_ANALYZE
 | |
| #include "sqliteInt.h"
 | |
| 
 | |
| /*
 | |
| ** This routine generates code that opens the sqlite_stat1 table on cursor
 | |
| ** iStatCur.
 | |
| **
 | |
| ** If the sqlite_stat1 tables does not previously exist, it is created.
 | |
| ** If it does previously exist, all entires associated with table zWhere
 | |
| ** are removed.  If zWhere==0 then all entries are removed.
 | |
| */
 | |
| static void openStatTable(
 | |
|   Parse *pParse,          /* Parsing context */
 | |
|   int iDb,                /* The database we are looking in */
 | |
|   int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
 | |
|   const char *zWhere      /* Delete entries associated with this table */
 | |
| ){
 | |
|   sqlite3 *db = pParse->db;
 | |
|   Db *pDb;
 | |
|   int iRootPage;
 | |
|   Table *pStat;
 | |
|   Vdbe *v = sqlite3GetVdbe(pParse);
 | |
| 
 | |
|   if( v==0 ) return;
 | |
|   pDb = &db->aDb[iDb];
 | |
|   if( (pStat = sqlite3FindTable(db, "sqlite_stat1", pDb->zName))==0 ){
 | |
|     /* The sqlite_stat1 tables does not exist.  Create it.  
 | |
|     ** Note that a side-effect of the CREATE TABLE statement is to leave
 | |
|     ** the rootpage of the new table on the top of the stack.  This is
 | |
|     ** important because the OpenWrite opcode below will be needing it. */
 | |
|     sqlite3NestedParse(pParse,
 | |
|       "CREATE TABLE %Q.sqlite_stat1(tbl,idx,stat)",
 | |
|       pDb->zName
 | |
|     );
 | |
|     iRootPage = 0;  /* Cause rootpage to be taken from top of stack */
 | |
|   }else if( zWhere ){
 | |
|     /* The sqlite_stat1 table exists.  Delete all entries associated with
 | |
|     ** the table zWhere. */
 | |
|     sqlite3NestedParse(pParse,
 | |
|        "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q",
 | |
|        pDb->zName, zWhere
 | |
|     );
 | |
|     iRootPage = pStat->tnum;
 | |
|   }else{
 | |
|     /* The sqlite_stat1 table already exists.  Delete all rows. */
 | |
|     iRootPage = pStat->tnum;
 | |
|     sqlite3VdbeAddOp(v, OP_Clear, pStat->tnum, iDb);
 | |
|   }
 | |
| 
 | |
|   /* Open the sqlite_stat1 table for writing. Unless it was created
 | |
|   ** by this vdbe program, lock it for writing at the shared-cache level. 
 | |
|   ** If this vdbe did create the sqlite_stat1 table, then it must have 
 | |
|   ** already obtained a schema-lock, making the write-lock redundant.
 | |
|   */
 | |
|   if( iRootPage>0 ){
 | |
|     sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1");
 | |
|   }
 | |
|   sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
 | |
|   sqlite3VdbeAddOp(v, OP_OpenWrite, iStatCur, iRootPage);
 | |
|   sqlite3VdbeAddOp(v, OP_SetNumColumns, iStatCur, 3);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code to do an analysis of all indices associated with
 | |
| ** a single table.
 | |
| */
 | |
| static void analyzeOneTable(
 | |
|   Parse *pParse,   /* Parser context */
 | |
|   Table *pTab,     /* Table whose indices are to be analyzed */
 | |
|   int iStatCur,    /* Cursor that writes to the sqlite_stat1 table */
 | |
|   int iMem         /* Available memory locations begin here */
 | |
| ){
 | |
|   Index *pIdx;     /* An index to being analyzed */
 | |
|   int iIdxCur;     /* Cursor number for index being analyzed */
 | |
|   int nCol;        /* Number of columns in the index */
 | |
|   Vdbe *v;         /* The virtual machine being built up */
 | |
|   int i;           /* Loop counter */
 | |
|   int topOfLoop;   /* The top of the loop */
 | |
|   int endOfLoop;   /* The end of the loop */
 | |
|   int addr;        /* The address of an instruction */
 | |
|   int iDb;         /* Index of database containing pTab */
 | |
| 
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v==0 || pTab==0 || pTab->pIndex==0 ){
 | |
|     /* Do no analysis for tables that have no indices */
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | |
|   assert( iDb>=0 );
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|   if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
 | |
|       pParse->db->aDb[iDb].zName ) ){
 | |
|     return;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Establish a read-lock on the table at the shared-cache level. */
 | |
|   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
 | |
| 
 | |
|   iIdxCur = pParse->nTab;
 | |
|   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | |
|     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
 | |
| 
 | |
|     /* Open a cursor to the index to be analyzed
 | |
|     */
 | |
|     assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) );
 | |
|     sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
 | |
|     VdbeComment((v, "# %s", pIdx->zName));
 | |
|     sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum,
 | |
|         (char *)pKey, P3_KEYINFO_HANDOFF);
 | |
|     nCol = pIdx->nColumn;
 | |
|     if( iMem+nCol*2>=pParse->nMem ){
 | |
|       pParse->nMem = iMem+nCol*2+1;
 | |
|     }
 | |
|     sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, nCol+1);
 | |
| 
 | |
|     /* Memory cells are used as follows:
 | |
|     **
 | |
|     **    mem[iMem]:             The total number of rows in the table.
 | |
|     **    mem[iMem+1]:           Number of distinct values in column 1
 | |
|     **    ...
 | |
|     **    mem[iMem+nCol]:        Number of distinct values in column N
 | |
|     **    mem[iMem+nCol+1]       Last observed value of column 1
 | |
|     **    ...
 | |
|     **    mem[iMem+nCol+nCol]:   Last observed value of column N
 | |
|     **
 | |
|     ** Cells iMem through iMem+nCol are initialized to 0.  The others
 | |
|     ** are initialized to NULL.
 | |
|     */
 | |
|     for(i=0; i<=nCol; i++){
 | |
|       sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem+i);
 | |
|     }
 | |
|     for(i=0; i<nCol; i++){
 | |
|       sqlite3VdbeAddOp(v, OP_MemNull, iMem+nCol+i+1, 0);
 | |
|     }
 | |
| 
 | |
|     /* Do the analysis.
 | |
|     */
 | |
|     endOfLoop = sqlite3VdbeMakeLabel(v);
 | |
|     sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, endOfLoop);
 | |
|     topOfLoop = sqlite3VdbeCurrentAddr(v);
 | |
|     sqlite3VdbeAddOp(v, OP_MemIncr, 1, iMem);
 | |
|     for(i=0; i<nCol; i++){
 | |
|       sqlite3VdbeAddOp(v, OP_Column, iIdxCur, i);
 | |
|       sqlite3VdbeAddOp(v, OP_MemLoad, iMem+nCol+i+1, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_Ne, 0x100, 0);
 | |
|     }
 | |
|     sqlite3VdbeAddOp(v, OP_Goto, 0, endOfLoop);
 | |
|     for(i=0; i<nCol; i++){
 | |
|       addr = sqlite3VdbeAddOp(v, OP_MemIncr, 1, iMem+i+1);
 | |
|       sqlite3VdbeChangeP2(v, topOfLoop + 3*i + 3, addr);
 | |
|       sqlite3VdbeAddOp(v, OP_Column, iIdxCur, i);
 | |
|       sqlite3VdbeAddOp(v, OP_MemStore, iMem+nCol+i+1, 1);
 | |
|     }
 | |
|     sqlite3VdbeResolveLabel(v, endOfLoop);
 | |
|     sqlite3VdbeAddOp(v, OP_Next, iIdxCur, topOfLoop);
 | |
|     sqlite3VdbeAddOp(v, OP_Close, iIdxCur, 0);
 | |
| 
 | |
|     /* Store the results.  
 | |
|     **
 | |
|     ** The result is a single row of the sqlite_stat1 table.  The first
 | |
|     ** two columns are the names of the table and index.  The third column
 | |
|     ** is a string composed of a list of integer statistics about the
 | |
|     ** index.  The first integer in the list is the total number of entires
 | |
|     ** in the index.  There is one additional integer in the list for each
 | |
|     ** column of the table.  This additional integer is a guess of how many
 | |
|     ** rows of the table the index will select.  If D is the count of distinct
 | |
|     ** values and K is the total number of rows, then the integer is computed
 | |
|     ** as:
 | |
|     **
 | |
|     **        I = (K+D-1)/D
 | |
|     **
 | |
|     ** If K==0 then no entry is made into the sqlite_stat1 table.  
 | |
|     ** If K>0 then it is always the case the D>0 so division by zero
 | |
|     ** is never possible.
 | |
|     */
 | |
|     sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
 | |
|     addr = sqlite3VdbeAddOp(v, OP_IfNot, 0, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_NewRowid, iStatCur, 0);
 | |
|     sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
 | |
|     sqlite3VdbeOp3(v, OP_String8, 0, 0, pIdx->zName, 0);
 | |
|     sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
 | |
|     sqlite3VdbeOp3(v, OP_String8, 0, 0, " ", 0);
 | |
|     for(i=0; i<nCol; i++){
 | |
|       sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_MemLoad, iMem+i+1, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_Add, 0, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_MemLoad, iMem+i+1, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_Divide, 0, 0);
 | |
|       sqlite3VdbeAddOp(v, OP_ToInt, 0, 0);
 | |
|       if( i==nCol-1 ){
 | |
|         sqlite3VdbeAddOp(v, OP_Concat, nCol*2-1, 0);
 | |
|       }else{
 | |
|         sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
 | |
|       }
 | |
|     }
 | |
|     sqlite3VdbeOp3(v, OP_MakeRecord, 3, 0, "aaa", 0);
 | |
|     sqlite3VdbeAddOp(v, OP_Insert, iStatCur, OPFLAG_APPEND);
 | |
|     sqlite3VdbeJumpHere(v, addr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that will cause the most recent index analysis to
 | |
| ** be laoded into internal hash tables where is can be used.
 | |
| */
 | |
| static void loadAnalysis(Parse *pParse, int iDb){
 | |
|   Vdbe *v = sqlite3GetVdbe(pParse);
 | |
|   if( v ){
 | |
|     sqlite3VdbeAddOp(v, OP_LoadAnalysis, iDb, 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that will do an analysis of an entire database
 | |
| */
 | |
| static void analyzeDatabase(Parse *pParse, int iDb){
 | |
|   sqlite3 *db = pParse->db;
 | |
|   Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
 | |
|   HashElem *k;
 | |
|   int iStatCur;
 | |
|   int iMem;
 | |
| 
 | |
|   sqlite3BeginWriteOperation(pParse, 0, iDb);
 | |
|   iStatCur = pParse->nTab++;
 | |
|   openStatTable(pParse, iDb, iStatCur, 0);
 | |
|   iMem = pParse->nMem;
 | |
|   for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
 | |
|     Table *pTab = (Table*)sqliteHashData(k);
 | |
|     analyzeOneTable(pParse, pTab, iStatCur, iMem);
 | |
|   }
 | |
|   loadAnalysis(pParse, iDb);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that will do an analysis of a single table in
 | |
| ** a database.
 | |
| */
 | |
| static void analyzeTable(Parse *pParse, Table *pTab){
 | |
|   int iDb;
 | |
|   int iStatCur;
 | |
| 
 | |
|   assert( pTab!=0 );
 | |
|   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | |
|   sqlite3BeginWriteOperation(pParse, 0, iDb);
 | |
|   iStatCur = pParse->nTab++;
 | |
|   openStatTable(pParse, iDb, iStatCur, pTab->zName);
 | |
|   analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem);
 | |
|   loadAnalysis(pParse, iDb);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code for the ANALYZE command.  The parser calls this routine
 | |
| ** when it recognizes an ANALYZE command.
 | |
| **
 | |
| **        ANALYZE                            -- 1
 | |
| **        ANALYZE  <database>                -- 2
 | |
| **        ANALYZE  ?<database>.?<tablename>  -- 3
 | |
| **
 | |
| ** Form 1 causes all indices in all attached databases to be analyzed.
 | |
| ** Form 2 analyzes all indices the single database named.
 | |
| ** Form 3 analyzes all indices associated with the named table.
 | |
| */
 | |
| void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
 | |
|   sqlite3 *db = pParse->db;
 | |
|   int iDb;
 | |
|   int i;
 | |
|   char *z, *zDb;
 | |
|   Table *pTab;
 | |
|   Token *pTableName;
 | |
| 
 | |
|   /* Read the database schema. If an error occurs, leave an error message
 | |
|   ** and code in pParse and return NULL. */
 | |
|   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if( pName1==0 ){
 | |
|     /* Form 1:  Analyze everything */
 | |
|     for(i=0; i<db->nDb; i++){
 | |
|       if( i==1 ) continue;  /* Do not analyze the TEMP database */
 | |
|       analyzeDatabase(pParse, i);
 | |
|     }
 | |
|   }else if( pName2==0 || pName2->n==0 ){
 | |
|     /* Form 2:  Analyze the database or table named */
 | |
|     iDb = sqlite3FindDb(db, pName1);
 | |
|     if( iDb>=0 ){
 | |
|       analyzeDatabase(pParse, iDb);
 | |
|     }else{
 | |
|       z = sqlite3NameFromToken(pName1);
 | |
|       pTab = sqlite3LocateTable(pParse, z, 0);
 | |
|       sqliteFree(z);
 | |
|       if( pTab ){
 | |
|         analyzeTable(pParse, pTab);
 | |
|       }
 | |
|     }
 | |
|   }else{
 | |
|     /* Form 3: Analyze the fully qualified table name */
 | |
|     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
 | |
|     if( iDb>=0 ){
 | |
|       zDb = db->aDb[iDb].zName;
 | |
|       z = sqlite3NameFromToken(pTableName);
 | |
|       if( z ){
 | |
|         pTab = sqlite3LocateTable(pParse, z, zDb);
 | |
|         sqliteFree(z);
 | |
|         if( pTab ){
 | |
|           analyzeTable(pParse, pTab);
 | |
|         }
 | |
|       }
 | |
|     }   
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Used to pass information from the analyzer reader through to the
 | |
| ** callback routine.
 | |
| */
 | |
| typedef struct analysisInfo analysisInfo;
 | |
| struct analysisInfo {
 | |
|   sqlite3 *db;
 | |
|   const char *zDatabase;
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** This callback is invoked once for each index when reading the
 | |
| ** sqlite_stat1 table.  
 | |
| **
 | |
| **     argv[0] = name of the index
 | |
| **     argv[1] = results of analysis - on integer for each column
 | |
| */
 | |
| static int analysisLoader(void *pData, int argc, char **argv, char **azNotUsed){
 | |
|   analysisInfo *pInfo = (analysisInfo*)pData;
 | |
|   Index *pIndex;
 | |
|   int i, c;
 | |
|   unsigned int v;
 | |
|   const char *z;
 | |
| 
 | |
|   assert( argc==2 );
 | |
|   if( argv==0 || argv[0]==0 || argv[1]==0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   pIndex = sqlite3FindIndex(pInfo->db, argv[0], pInfo->zDatabase);
 | |
|   if( pIndex==0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   z = argv[1];
 | |
|   for(i=0; *z && i<=pIndex->nColumn; i++){
 | |
|     v = 0;
 | |
|     while( (c=z[0])>='0' && c<='9' ){
 | |
|       v = v*10 + c - '0';
 | |
|       z++;
 | |
|     }
 | |
|     pIndex->aiRowEst[i] = v;
 | |
|     if( *z==' ' ) z++;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Load the content of the sqlite_stat1 table into the index hash tables.
 | |
| */
 | |
| int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
 | |
|   analysisInfo sInfo;
 | |
|   HashElem *i;
 | |
|   char *zSql;
 | |
|   int rc;
 | |
| 
 | |
|   /* Clear any prior statistics */
 | |
|   for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
 | |
|     Index *pIdx = sqliteHashData(i);
 | |
|     sqlite3DefaultRowEst(pIdx);
 | |
|   }
 | |
| 
 | |
|   /* Check to make sure the sqlite_stat1 table existss */
 | |
|   sInfo.db = db;
 | |
|   sInfo.zDatabase = db->aDb[iDb].zName;
 | |
|   if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
 | |
|      return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* Load new statistics out of the sqlite_stat1 table */
 | |
|   zSql = sqlite3MPrintf("SELECT idx, stat FROM %Q.sqlite_stat1",
 | |
|                         sInfo.zDatabase);
 | |
|   sqlite3SafetyOff(db);
 | |
|   rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
 | |
|   sqlite3SafetyOn(db);
 | |
|   sqliteFree(zSql);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| #endif /* SQLITE_OMIT_ANALYZE */
 |