sourcemod/tools/pcre/sljit/sljitNativeMIPS_32.c
2013-03-17 11:32:03 -04:00

405 lines
16 KiB
C

/*
* Stack-less Just-In-Time compiler
*
* Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* mips 32-bit arch dependent functions. */
static sljit_si load_immediate(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm)
{
if (!(imm & ~0xffff))
return push_inst(compiler, ORI | SA(0) | TA(dst_ar) | IMM(imm), dst_ar);
if (imm < 0 && imm >= SIMM_MIN)
return push_inst(compiler, ADDIU | SA(0) | TA(dst_ar) | IMM(imm), dst_ar);
FAIL_IF(push_inst(compiler, LUI | TA(dst_ar) | IMM(imm >> 16), dst_ar));
return (imm & 0xffff) ? push_inst(compiler, ORI | SA(dst_ar) | TA(dst_ar) | IMM(imm), dst_ar) : SLJIT_SUCCESS;
}
#define EMIT_LOGICAL(op_imm, op_norm) \
if (flags & SRC2_IMM) { \
if (op & SLJIT_SET_E) \
FAIL_IF(push_inst(compiler, op_imm | S(src1) | TA(EQUAL_FLAG) | IMM(src2), EQUAL_FLAG)); \
if (CHECK_FLAGS(SLJIT_SET_E)) \
FAIL_IF(push_inst(compiler, op_imm | S(src1) | T(dst) | IMM(src2), DR(dst))); \
} \
else { \
if (op & SLJIT_SET_E) \
FAIL_IF(push_inst(compiler, op_norm | S(src1) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG)); \
if (CHECK_FLAGS(SLJIT_SET_E)) \
FAIL_IF(push_inst(compiler, op_norm | S(src1) | T(src2) | D(dst), DR(dst))); \
}
#define EMIT_SHIFT(op_imm, op_norm) \
if (flags & SRC2_IMM) { \
if (op & SLJIT_SET_E) \
FAIL_IF(push_inst(compiler, op_imm | T(src1) | DA(EQUAL_FLAG) | SH_IMM(src2), EQUAL_FLAG)); \
if (CHECK_FLAGS(SLJIT_SET_E)) \
FAIL_IF(push_inst(compiler, op_imm | T(src1) | D(dst) | SH_IMM(src2), DR(dst))); \
} \
else { \
if (op & SLJIT_SET_E) \
FAIL_IF(push_inst(compiler, op_norm | S(src2) | T(src1) | DA(EQUAL_FLAG), EQUAL_FLAG)); \
if (CHECK_FLAGS(SLJIT_SET_E)) \
FAIL_IF(push_inst(compiler, op_norm | S(src2) | T(src1) | D(dst), DR(dst))); \
}
static SLJIT_INLINE sljit_si emit_single_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags,
sljit_si dst, sljit_si src1, sljit_sw src2)
{
sljit_si overflow_ra = 0;
switch (GET_OPCODE(op)) {
case SLJIT_MOV:
case SLJIT_MOV_UI:
case SLJIT_MOV_SI:
case SLJIT_MOV_P:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
if (dst != src2)
return push_inst(compiler, ADDU | S(src2) | TA(0) | D(dst), DR(dst));
return SLJIT_SUCCESS;
case SLJIT_MOV_UB:
case SLJIT_MOV_SB:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
if (op == SLJIT_MOV_SB) {
#if (defined SLJIT_MIPS_32_64 && SLJIT_MIPS_32_64)
return push_inst(compiler, SEB | T(src2) | D(dst), DR(dst));
#else
FAIL_IF(push_inst(compiler, SLL | T(src2) | D(dst) | SH_IMM(24), DR(dst)));
return push_inst(compiler, SRA | T(dst) | D(dst) | SH_IMM(24), DR(dst));
#endif
}
return push_inst(compiler, ANDI | S(src2) | T(dst) | IMM(0xff), DR(dst));
}
else if (dst != src2)
SLJIT_ASSERT_STOP();
return SLJIT_SUCCESS;
case SLJIT_MOV_UH:
case SLJIT_MOV_SH:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
if (op == SLJIT_MOV_SH) {
#if (defined SLJIT_MIPS_32_64 && SLJIT_MIPS_32_64)
return push_inst(compiler, SEH | T(src2) | D(dst), DR(dst));
#else
FAIL_IF(push_inst(compiler, SLL | T(src2) | D(dst) | SH_IMM(16), DR(dst)));
return push_inst(compiler, SRA | T(dst) | D(dst) | SH_IMM(16), DR(dst));
#endif
}
return push_inst(compiler, ANDI | S(src2) | T(dst) | IMM(0xffff), DR(dst));
}
else if (dst != src2)
SLJIT_ASSERT_STOP();
return SLJIT_SUCCESS;
case SLJIT_NOT:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
if (op & SLJIT_SET_E)
FAIL_IF(push_inst(compiler, NOR | S(src2) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG));
if (CHECK_FLAGS(SLJIT_SET_E))
FAIL_IF(push_inst(compiler, NOR | S(src2) | T(src2) | D(dst), DR(dst)));
return SLJIT_SUCCESS;
case SLJIT_CLZ:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
#if (defined SLJIT_MIPS_32_64 && SLJIT_MIPS_32_64)
if (op & SLJIT_SET_E)
FAIL_IF(push_inst(compiler, CLZ | S(src2) | TA(EQUAL_FLAG) | DA(EQUAL_FLAG), EQUAL_FLAG));
if (CHECK_FLAGS(SLJIT_SET_E))
FAIL_IF(push_inst(compiler, CLZ | S(src2) | T(dst) | D(dst), DR(dst)));
#else
if (SLJIT_UNLIKELY(flags & UNUSED_DEST)) {
FAIL_IF(push_inst(compiler, SRL | T(src2) | DA(EQUAL_FLAG) | SH_IMM(31), EQUAL_FLAG));
return push_inst(compiler, XORI | SA(EQUAL_FLAG) | TA(EQUAL_FLAG) | IMM(1), EQUAL_FLAG);
}
/* Nearly all instructions are unmovable in the following sequence. */
FAIL_IF(push_inst(compiler, ADDU_W | S(src2) | TA(0) | D(TMP_REG1), DR(TMP_REG1)));
/* Check zero. */
FAIL_IF(push_inst(compiler, BEQ | S(TMP_REG1) | TA(0) | IMM(5), UNMOVABLE_INS));
FAIL_IF(push_inst(compiler, ORI | SA(0) | T(dst) | IMM(32), UNMOVABLE_INS));
FAIL_IF(push_inst(compiler, ADDIU_W | SA(0) | T(dst) | IMM(-1), DR(dst)));
/* Loop for searching the highest bit. */
FAIL_IF(push_inst(compiler, ADDIU_W | S(dst) | T(dst) | IMM(1), DR(dst)));
FAIL_IF(push_inst(compiler, BGEZ | S(TMP_REG1) | IMM(-2), UNMOVABLE_INS));
FAIL_IF(push_inst(compiler, SLL | T(TMP_REG1) | D(TMP_REG1) | SH_IMM(1), UNMOVABLE_INS));
if (op & SLJIT_SET_E)
return push_inst(compiler, ADDU_W | S(dst) | TA(0) | DA(EQUAL_FLAG), EQUAL_FLAG);
#endif
return SLJIT_SUCCESS;
case SLJIT_ADD:
if (flags & SRC2_IMM) {
if (op & SLJIT_SET_O) {
FAIL_IF(push_inst(compiler, SRL | T(src1) | DA(TMP_EREG1) | SH_IMM(31), TMP_EREG1));
if (src2 < 0)
FAIL_IF(push_inst(compiler, XORI | SA(TMP_EREG1) | TA(TMP_EREG1) | IMM(1), TMP_EREG1));
}
if (op & SLJIT_SET_E)
FAIL_IF(push_inst(compiler, ADDIU | S(src1) | TA(EQUAL_FLAG) | IMM(src2), EQUAL_FLAG));
if (op & SLJIT_SET_C) {
if (src2 >= 0)
FAIL_IF(push_inst(compiler, ORI | S(src1) | TA(ULESS_FLAG) | IMM(src2), ULESS_FLAG));
else {
FAIL_IF(push_inst(compiler, ADDIU | SA(0) | TA(ULESS_FLAG) | IMM(src2), ULESS_FLAG));
FAIL_IF(push_inst(compiler, OR | S(src1) | TA(ULESS_FLAG) | DA(ULESS_FLAG), ULESS_FLAG));
}
}
/* dst may be the same as src1 or src2. */
if (CHECK_FLAGS(SLJIT_SET_E))
FAIL_IF(push_inst(compiler, ADDIU | S(src1) | T(dst) | IMM(src2), DR(dst)));
if (op & SLJIT_SET_O) {
FAIL_IF(push_inst(compiler, SRL | T(dst) | DA(OVERFLOW_FLAG) | SH_IMM(31), OVERFLOW_FLAG));
if (src2 < 0)
FAIL_IF(push_inst(compiler, XORI | SA(OVERFLOW_FLAG) | TA(OVERFLOW_FLAG) | IMM(1), OVERFLOW_FLAG));
}
}
else {
if (op & SLJIT_SET_O) {
FAIL_IF(push_inst(compiler, XOR | S(src1) | T(src2) | DA(TMP_EREG1), TMP_EREG1));
FAIL_IF(push_inst(compiler, SRL | TA(TMP_EREG1) | DA(TMP_EREG1) | SH_IMM(31), TMP_EREG1));
if (src1 != dst)
overflow_ra = DR(src1);
else if (src2 != dst)
overflow_ra = DR(src2);
else {
/* Rare ocasion. */
FAIL_IF(push_inst(compiler, ADDU | S(src1) | TA(0) | DA(TMP_EREG2), TMP_EREG2));
overflow_ra = TMP_EREG2;
}
}
if (op & SLJIT_SET_E)
FAIL_IF(push_inst(compiler, ADDU | S(src1) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG));
if (op & SLJIT_SET_C)
FAIL_IF(push_inst(compiler, OR | S(src1) | T(src2) | DA(ULESS_FLAG), ULESS_FLAG));
/* dst may be the same as src1 or src2. */
if (CHECK_FLAGS(SLJIT_SET_E))
FAIL_IF(push_inst(compiler, ADDU | S(src1) | T(src2) | D(dst), DR(dst)));
if (op & SLJIT_SET_O) {
FAIL_IF(push_inst(compiler, XOR | S(dst) | TA(overflow_ra) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG));
FAIL_IF(push_inst(compiler, SRL | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG) | SH_IMM(31), OVERFLOW_FLAG));
}
}
/* a + b >= a | b (otherwise, the carry should be set to 1). */
if (op & SLJIT_SET_C)
FAIL_IF(push_inst(compiler, SLTU | S(dst) | TA(ULESS_FLAG) | DA(ULESS_FLAG), ULESS_FLAG));
if (op & SLJIT_SET_O)
return push_inst(compiler, MOVN | SA(0) | TA(TMP_EREG1) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG);
return SLJIT_SUCCESS;
case SLJIT_ADDC:
if (flags & SRC2_IMM) {
if (op & SLJIT_SET_C) {
if (src2 >= 0)
FAIL_IF(push_inst(compiler, ORI | S(src1) | TA(TMP_EREG1) | IMM(src2), TMP_EREG1));
else {
FAIL_IF(push_inst(compiler, ADDIU | SA(0) | TA(TMP_EREG1) | IMM(src2), TMP_EREG1));
FAIL_IF(push_inst(compiler, OR | S(src1) | TA(TMP_EREG1) | DA(TMP_EREG1), TMP_EREG1));
}
}
FAIL_IF(push_inst(compiler, ADDIU | S(src1) | T(dst) | IMM(src2), DR(dst)));
} else {
if (op & SLJIT_SET_C)
FAIL_IF(push_inst(compiler, OR | S(src1) | T(src2) | DA(TMP_EREG1), TMP_EREG1));
/* dst may be the same as src1 or src2. */
FAIL_IF(push_inst(compiler, ADDU | S(src1) | T(src2) | D(dst), DR(dst)));
}
if (op & SLJIT_SET_C)
FAIL_IF(push_inst(compiler, SLTU | S(dst) | TA(TMP_EREG1) | DA(TMP_EREG1), TMP_EREG1));
FAIL_IF(push_inst(compiler, ADDU | S(dst) | TA(ULESS_FLAG) | D(dst), DR(dst)));
if (!(op & SLJIT_SET_C))
return SLJIT_SUCCESS;
/* Set TMP_EREG2 (dst == 0) && (ULESS_FLAG == 1). */
FAIL_IF(push_inst(compiler, SLTIU | S(dst) | TA(TMP_EREG2) | IMM(1), TMP_EREG2));
FAIL_IF(push_inst(compiler, AND | SA(TMP_EREG2) | TA(ULESS_FLAG) | DA(TMP_EREG2), TMP_EREG2));
/* Set carry flag. */
return push_inst(compiler, OR | SA(TMP_EREG2) | TA(TMP_EREG1) | DA(ULESS_FLAG), ULESS_FLAG);
case SLJIT_SUB:
if ((flags & SRC2_IMM) && ((op & (SLJIT_SET_S | SLJIT_SET_U)) || src2 == SIMM_MIN)) {
FAIL_IF(push_inst(compiler, ADDIU | SA(0) | T(TMP_REG2) | IMM(src2), DR(TMP_REG2)));
src2 = TMP_REG2;
flags &= ~SRC2_IMM;
}
if (flags & SRC2_IMM) {
if (op & SLJIT_SET_O) {
FAIL_IF(push_inst(compiler, SRL | T(src1) | DA(TMP_EREG1) | SH_IMM(31), TMP_EREG1));
if (src2 < 0)
FAIL_IF(push_inst(compiler, XORI | SA(TMP_EREG1) | TA(TMP_EREG1) | IMM(1), TMP_EREG1));
if (src1 != dst)
overflow_ra = DR(src1);
else {
/* Rare ocasion. */
FAIL_IF(push_inst(compiler, ADDU | S(src1) | TA(0) | DA(TMP_EREG2), TMP_EREG2));
overflow_ra = TMP_EREG2;
}
}
if (op & SLJIT_SET_E)
FAIL_IF(push_inst(compiler, ADDIU | S(src1) | TA(EQUAL_FLAG) | IMM(-src2), EQUAL_FLAG));
if (op & SLJIT_SET_C)
FAIL_IF(push_inst(compiler, SLTIU | S(src1) | TA(ULESS_FLAG) | IMM(src2), ULESS_FLAG));
/* dst may be the same as src1 or src2. */
if (CHECK_FLAGS(SLJIT_SET_E))
FAIL_IF(push_inst(compiler, ADDIU | S(src1) | T(dst) | IMM(-src2), DR(dst)));
}
else {
if (op & SLJIT_SET_O) {
FAIL_IF(push_inst(compiler, XOR | S(src1) | T(src2) | DA(TMP_EREG1), TMP_EREG1));
FAIL_IF(push_inst(compiler, SRL | TA(TMP_EREG1) | DA(TMP_EREG1) | SH_IMM(31), TMP_EREG1));
if (src1 != dst)
overflow_ra = DR(src1);
else {
/* Rare ocasion. */
FAIL_IF(push_inst(compiler, ADDU | S(src1) | TA(0) | DA(TMP_EREG2), TMP_EREG2));
overflow_ra = TMP_EREG2;
}
}
if (op & SLJIT_SET_E)
FAIL_IF(push_inst(compiler, SUBU | S(src1) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG));
if (op & (SLJIT_SET_U | SLJIT_SET_C))
FAIL_IF(push_inst(compiler, SLTU | S(src1) | T(src2) | DA(ULESS_FLAG), ULESS_FLAG));
if (op & SLJIT_SET_U)
FAIL_IF(push_inst(compiler, SLTU | S(src2) | T(src1) | DA(UGREATER_FLAG), UGREATER_FLAG));
if (op & SLJIT_SET_S) {
FAIL_IF(push_inst(compiler, SLT | S(src1) | T(src2) | DA(LESS_FLAG), LESS_FLAG));
FAIL_IF(push_inst(compiler, SLT | S(src2) | T(src1) | DA(GREATER_FLAG), GREATER_FLAG));
}
/* dst may be the same as src1 or src2. */
if (CHECK_FLAGS(SLJIT_SET_E | SLJIT_SET_S | SLJIT_SET_U | SLJIT_SET_C))
FAIL_IF(push_inst(compiler, SUBU | S(src1) | T(src2) | D(dst), DR(dst)));
}
if (op & SLJIT_SET_O) {
FAIL_IF(push_inst(compiler, XOR | S(dst) | TA(overflow_ra) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG));
FAIL_IF(push_inst(compiler, SRL | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG) | SH_IMM(31), OVERFLOW_FLAG));
return push_inst(compiler, MOVZ | SA(0) | TA(TMP_EREG1) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG);
}
return SLJIT_SUCCESS;
case SLJIT_SUBC:
if ((flags & SRC2_IMM) && src2 == SIMM_MIN) {
FAIL_IF(push_inst(compiler, ADDIU | SA(0) | T(TMP_REG2) | IMM(src2), DR(TMP_REG2)));
src2 = TMP_REG2;
flags &= ~SRC2_IMM;
}
if (flags & SRC2_IMM) {
if (op & SLJIT_SET_C)
FAIL_IF(push_inst(compiler, SLTIU | S(src1) | TA(TMP_EREG1) | IMM(-src2), TMP_EREG1));
/* dst may be the same as src1 or src2. */
FAIL_IF(push_inst(compiler, ADDIU | S(src1) | T(dst) | IMM(-src2), DR(dst)));
}
else {
if (op & SLJIT_SET_C)
FAIL_IF(push_inst(compiler, SLTU | S(src1) | T(src2) | DA(TMP_EREG1), TMP_EREG1));
/* dst may be the same as src1 or src2. */
FAIL_IF(push_inst(compiler, SUBU | S(src1) | T(src2) | D(dst), DR(dst)));
}
if (op & SLJIT_SET_C)
FAIL_IF(push_inst(compiler, MOVZ | SA(ULESS_FLAG) | T(dst) | DA(TMP_EREG1), TMP_EREG1));
FAIL_IF(push_inst(compiler, SUBU | S(dst) | TA(ULESS_FLAG) | D(dst), DR(dst)));
if (op & SLJIT_SET_C)
FAIL_IF(push_inst(compiler, ADDU | SA(TMP_EREG1) | TA(0) | DA(ULESS_FLAG), ULESS_FLAG));
return SLJIT_SUCCESS;
case SLJIT_MUL:
SLJIT_ASSERT(!(flags & SRC2_IMM));
if (!(op & SLJIT_SET_O)) {
#if (defined SLJIT_MIPS_32_64 && SLJIT_MIPS_32_64)
return push_inst(compiler, MUL | S(src1) | T(src2) | D(dst), DR(dst));
#else
FAIL_IF(push_inst(compiler, MULT | S(src1) | T(src2), MOVABLE_INS));
return push_inst(compiler, MFLO | D(dst), DR(dst));
#endif
}
FAIL_IF(push_inst(compiler, MULT | S(src1) | T(src2), MOVABLE_INS));
FAIL_IF(push_inst(compiler, MFHI | DA(TMP_EREG1), TMP_EREG1));
FAIL_IF(push_inst(compiler, MFLO | D(dst), DR(dst)));
FAIL_IF(push_inst(compiler, SRA | T(dst) | DA(TMP_EREG2) | SH_IMM(31), TMP_EREG2));
return push_inst(compiler, SUBU | SA(TMP_EREG1) | TA(TMP_EREG2) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG);
case SLJIT_AND:
EMIT_LOGICAL(ANDI, AND);
return SLJIT_SUCCESS;
case SLJIT_OR:
EMIT_LOGICAL(ORI, OR);
return SLJIT_SUCCESS;
case SLJIT_XOR:
EMIT_LOGICAL(XORI, XOR);
return SLJIT_SUCCESS;
case SLJIT_SHL:
EMIT_SHIFT(SLL, SLLV);
return SLJIT_SUCCESS;
case SLJIT_LSHR:
EMIT_SHIFT(SRL, SRLV);
return SLJIT_SUCCESS;
case SLJIT_ASHR:
EMIT_SHIFT(SRA, SRAV);
return SLJIT_SUCCESS;
}
SLJIT_ASSERT_STOP();
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_si emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw init_value)
{
FAIL_IF(push_inst(compiler, LUI | T(dst) | IMM(init_value >> 16), DR(dst)));
return push_inst(compiler, ORI | S(dst) | T(dst) | IMM(init_value), DR(dst));
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
{
sljit_ins *inst = (sljit_ins*)addr;
inst[0] = (inst[0] & 0xffff0000) | ((new_addr >> 16) & 0xffff);
inst[1] = (inst[1] & 0xffff0000) | (new_addr & 0xffff);
SLJIT_CACHE_FLUSH(inst, inst + 2);
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
{
sljit_ins *inst = (sljit_ins*)addr;
inst[0] = (inst[0] & 0xffff0000) | ((new_constant >> 16) & 0xffff);
inst[1] = (inst[1] & 0xffff0000) | (new_constant & 0xffff);
SLJIT_CACHE_FLUSH(inst, inst + 2);
}