1379 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1379 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*  Pawn compiler - code generation (unoptimized "assembler" code)
 | 
						|
 *
 | 
						|
 *  Copyright (c) ITB CompuPhase, 1997-2006
 | 
						|
 *
 | 
						|
 *  This software is provided "as-is", without any express or implied warranty.
 | 
						|
 *  In no event will the authors be held liable for any damages arising from
 | 
						|
 *  the use of this software.
 | 
						|
 *
 | 
						|
 *  Permission is granted to anyone to use this software for any purpose,
 | 
						|
 *  including commercial applications, and to alter it and redistribute it
 | 
						|
 *  freely, subject to the following restrictions:
 | 
						|
 *
 | 
						|
 *  1.  The origin of this software must not be misrepresented; you must not
 | 
						|
 *      claim that you wrote the original software. If you use this software in
 | 
						|
 *      a product, an acknowledgment in the product documentation would be
 | 
						|
 *      appreciated but is not required.
 | 
						|
 *  2.  Altered source versions must be plainly marked as such, and must not be
 | 
						|
 *      misrepresented as being the original software.
 | 
						|
 *  3.  This notice may not be removed or altered from any source distribution.
 | 
						|
 *
 | 
						|
 *  Version: $Id$
 | 
						|
 */
 | 
						|
#include <assert.h>
 | 
						|
#include <ctype.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <stdlib.h>     /* for _MAX_PATH */
 | 
						|
#include <string.h>
 | 
						|
#if defined FORTIFY
 | 
						|
  #include <alloc/fortify.h>
 | 
						|
#endif
 | 
						|
#include "sc.h"
 | 
						|
 | 
						|
static int fcurseg;     /* the file number (fcurrent) for the active segment */
 | 
						|
 | 
						|
 | 
						|
/* When a subroutine returns to address 0, the AMX must halt. In earlier
 | 
						|
 * releases, the RET and RETN opcodes checked for the special case 0 address.
 | 
						|
 * Today, the compiler simply generates a HALT instruction at address 0. So
 | 
						|
 * a subroutine can savely return to 0, and then encounter a HALT.
 | 
						|
 */
 | 
						|
SC_FUNC void writeleader(symbol *root)
 | 
						|
{
 | 
						|
  int lbl_nostate,lbl_table;
 | 
						|
  int statecount;
 | 
						|
  symbol *sym;
 | 
						|
  constvalue *fsa, *state, *stlist;
 | 
						|
  int fsa_id,listid;
 | 
						|
  char lbl_default[sNAMEMAX+1];
 | 
						|
 | 
						|
  assert(code_idx==0);
 | 
						|
 | 
						|
  begcseg();
 | 
						|
  stgwrite(";program exit point\n");
 | 
						|
  stgwrite("\thalt 0\n\n");
 | 
						|
  code_idx+=opcodes(1)+opargs(1);       /* calculate code length */
 | 
						|
 | 
						|
  /* check whether there are any functions that have states */
 | 
						|
  for (sym=root->next; sym!=NULL; sym=sym->next)
 | 
						|
    if (sym->ident==iFUNCTN && (sym->usage & (uPUBLIC | uREAD))!=0 && sym->states!=NULL)
 | 
						|
      break;
 | 
						|
  if (sym==NULL)
 | 
						|
    return;             /* no function has states, nothing to do next */
 | 
						|
 | 
						|
  /* generate an error function that is called for an undefined state */
 | 
						|
  stgwrite("\n;exit point for functions called from the wrong state\n");
 | 
						|
  lbl_nostate=getlabel();
 | 
						|
  setlabel(lbl_nostate);
 | 
						|
  stgwrite("\thalt ");
 | 
						|
  outval(AMX_ERR_INVSTATE,TRUE);
 | 
						|
  code_idx+=opcodes(1)+opargs(1);       /* calculate code length */
 | 
						|
 | 
						|
  /* write the "state-selectors" table with all automatons (update the
 | 
						|
   * automatons structure too, as we are now assigning the address to
 | 
						|
   * each automaton state-selector variable)
 | 
						|
   */
 | 
						|
  assert(glb_declared==0);
 | 
						|
  begdseg();
 | 
						|
  for (fsa=sc_automaton_tab.next; fsa!=NULL; fsa=fsa->next) {
 | 
						|
    defstorage();
 | 
						|
    stgwrite("0\t; automaton ");
 | 
						|
    if (strlen(fsa->name)==0)
 | 
						|
      stgwrite("(anonymous)");
 | 
						|
    else
 | 
						|
      stgwrite(fsa->name);
 | 
						|
    stgwrite("\n");
 | 
						|
    fsa->value=glb_declared*sizeof(cell);
 | 
						|
    glb_declared++;
 | 
						|
  } /* for */
 | 
						|
 | 
						|
  /* write stubs and jump tables for all state functions */
 | 
						|
  begcseg();
 | 
						|
  for (sym=root->next; sym!=NULL; sym=sym->next) {
 | 
						|
    if (sym->ident==iFUNCTN && (sym->usage & (uPUBLIC | uREAD))!=0 && sym->states!=NULL) {
 | 
						|
      stlist=sym->states->next;
 | 
						|
      assert(stlist!=NULL);     /* there should be at least one state item */
 | 
						|
      listid=stlist->index;
 | 
						|
      assert(listid==-1 || listid>0);
 | 
						|
      if (listid==-1 && stlist->next!=NULL) {
 | 
						|
        /* first index is the "fallback", take the next one (if available) */
 | 
						|
        stlist=stlist->next;
 | 
						|
        listid=stlist->index;
 | 
						|
      } /* if */
 | 
						|
      if (listid==-1) {
 | 
						|
        /* first index is the fallback, there is no second... */
 | 
						|
        strcpy(stlist->name,"0"); /* insert dummy label number */
 | 
						|
        /* this is an error, but we postpone adding the error message until the
 | 
						|
         * function definition
 | 
						|
         */
 | 
						|
        continue;
 | 
						|
      } /* if */
 | 
						|
      /* generate label numbers for all statelist ids */
 | 
						|
      for (stlist=sym->states->next; stlist!=NULL; stlist=stlist->next) {
 | 
						|
        assert(strlen(stlist->name)==0);
 | 
						|
        strcpy(stlist->name,itoh(getlabel()));
 | 
						|
      } /* for */
 | 
						|
      if (strcmp(sym->name,uENTRYFUNC)==0)
 | 
						|
        continue;               /* do not generate stubs for this special function */
 | 
						|
      sym->addr=code_idx;       /* fix the function address now */
 | 
						|
      /* get automaton id for this function */
 | 
						|
      assert(listid>0);
 | 
						|
      fsa_id=state_getfsa(listid);
 | 
						|
      assert(fsa_id>=0);        /* automaton 0 exists */
 | 
						|
      fsa=automaton_findid(fsa_id);
 | 
						|
      /* count the number of states actually used; at the sane time, check
 | 
						|
       * whether there is a default state function
 | 
						|
       */
 | 
						|
      statecount=0;
 | 
						|
      strcpy(lbl_default,itoh(lbl_nostate));
 | 
						|
      for (stlist=sym->states->next; stlist!=NULL; stlist=stlist->next) {
 | 
						|
        if (stlist->index==-1) {
 | 
						|
          assert(strlen(stlist->name)<sizeof lbl_default);
 | 
						|
          strcpy(lbl_default,stlist->name);
 | 
						|
        } else {
 | 
						|
          statecount+=state_count(stlist->index);
 | 
						|
        } /* if */
 | 
						|
      } /* for */
 | 
						|
      /* generate a stub entry for the functions */
 | 
						|
      stgwrite("\tload.pri ");
 | 
						|
      outval(fsa->value,FALSE);
 | 
						|
      stgwrite("\t; ");
 | 
						|
      stgwrite(sym->name);
 | 
						|
      stgwrite("\n");
 | 
						|
      code_idx+=opcodes(1)+opargs(1);   /* calculate code length */
 | 
						|
      lbl_table=getlabel();
 | 
						|
      ffswitch(lbl_table);
 | 
						|
      /* generate the jump table */
 | 
						|
      setlabel(lbl_table);
 | 
						|
      ffcase(statecount,lbl_default,TRUE);
 | 
						|
      for (state=sc_state_tab.next; state!=NULL; state=state->next) {
 | 
						|
        if (state->index==fsa_id) {
 | 
						|
          /* find the label for this list id */
 | 
						|
          for (stlist=sym->states->next; stlist!=NULL; stlist=stlist->next) {
 | 
						|
            if (stlist->index!=-1 && state_inlist(stlist->index,(int)state->value)) {
 | 
						|
              ffcase(state->value,stlist->name,FALSE);
 | 
						|
              break;
 | 
						|
            } /* if */
 | 
						|
          } /* for */
 | 
						|
          if (stlist==NULL && strtol(lbl_default,NULL,16)==lbl_nostate)
 | 
						|
            error(230,state->name,sym->name);  /* unimplemented state, no fallback */
 | 
						|
        } /* if (state belongs to automaton of function) */
 | 
						|
      } /* for (state) */
 | 
						|
      stgwrite("\n");
 | 
						|
    } /* if (is function, used & having states) */
 | 
						|
  } /* for (sym) */
 | 
						|
}
 | 
						|
 | 
						|
/*  writetrailer
 | 
						|
 *  Not much left of this once important function.
 | 
						|
 *
 | 
						|
 *  Global references: pc_stksize       (referred to only)
 | 
						|
 *                     sc_dataalign     (referred to only)
 | 
						|
 *                     code_idx         (altered)
 | 
						|
 *                     glb_declared     (altered)
 | 
						|
 */
 | 
						|
SC_FUNC void writetrailer(void)
 | 
						|
{
 | 
						|
  assert(sc_dataalign % opcodes(1) == 0);   /* alignment must be a multiple of
 | 
						|
                                             * the opcode size */
 | 
						|
  assert(sc_dataalign!=0);
 | 
						|
 | 
						|
  /* pad code to align data segment */
 | 
						|
  if ((code_idx % sc_dataalign)!=0) {
 | 
						|
    begcseg();
 | 
						|
    while ((code_idx % sc_dataalign)!=0)
 | 
						|
      nooperation();
 | 
						|
  } /* if */
 | 
						|
 | 
						|
  /* pad data segment to align the stack and the heap */
 | 
						|
  assert(litidx==0);            /* literal queue should have been emptied */
 | 
						|
  assert(sc_dataalign % sizeof(cell) == 0);
 | 
						|
  if (((glb_declared*sizeof(cell)) % sc_dataalign)!=0) {
 | 
						|
    begdseg();
 | 
						|
    defstorage();
 | 
						|
    while (((glb_declared*sizeof(cell)) % sc_dataalign)!=0) {
 | 
						|
      stgwrite("0 ");
 | 
						|
      glb_declared++;
 | 
						|
    } /* while */
 | 
						|
  } /* if */
 | 
						|
 | 
						|
  stgwrite("\nSTKSIZE ");       /* write stack size (align stack top) */
 | 
						|
  outval(pc_stksize - (pc_stksize % sc_dataalign), TRUE);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  Start (or restart) the CODE segment.
 | 
						|
 *
 | 
						|
 *  In fact, the code and data segment specifiers are purely informational;
 | 
						|
 *  the "DUMP" instruction itself already specifies that the following values
 | 
						|
 *  should go to the data segment. All other instructions go to the code
 | 
						|
 *  segment.
 | 
						|
 *
 | 
						|
 *  Global references: curseg
 | 
						|
 *                     fcurrent
 | 
						|
 */
 | 
						|
SC_FUNC void begcseg(void)
 | 
						|
{
 | 
						|
  if (sc_status!=statSKIP && (curseg!=sIN_CSEG || fcurrent!=fcurseg)) {
 | 
						|
    stgwrite("\n");
 | 
						|
    stgwrite("CODE ");
 | 
						|
    outval(fcurrent,FALSE);
 | 
						|
    stgwrite("\t; ");
 | 
						|
    outval(code_idx,TRUE);
 | 
						|
    curseg=sIN_CSEG;
 | 
						|
    fcurseg=fcurrent;
 | 
						|
  } /* endif */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  Start (or restart) the DATA segment.
 | 
						|
 *
 | 
						|
 *  Global references: curseg
 | 
						|
 */
 | 
						|
SC_FUNC void begdseg(void)
 | 
						|
{
 | 
						|
  if (sc_status!=statSKIP && (curseg!=sIN_DSEG || fcurrent!=fcurseg)) {
 | 
						|
    stgwrite("\n");
 | 
						|
    stgwrite("DATA ");
 | 
						|
    outval(fcurrent,FALSE);
 | 
						|
    stgwrite("\t; ");
 | 
						|
    outval((glb_declared-litidx)*sizeof(cell),TRUE);
 | 
						|
    curseg=sIN_DSEG;
 | 
						|
    fcurseg=fcurrent;
 | 
						|
  } /* if */
 | 
						|
}
 | 
						|
 | 
						|
SC_FUNC void setline(int chkbounds)
 | 
						|
{
 | 
						|
  if (sc_asmfile) {
 | 
						|
    stgwrite("\t; line ");
 | 
						|
    outval(fline,TRUE);
 | 
						|
  } /* if */
 | 
						|
  if ((sc_debug & sSYMBOLIC)!=0 || (chkbounds && (sc_debug & sCHKBOUNDS)!=0)) {
 | 
						|
    /* generate a "break" (start statement) opcode rather than a "line" opcode
 | 
						|
     * because earlier versions of Small/Pawn have an incompatible version of the
 | 
						|
     * line opcode
 | 
						|
     */
 | 
						|
    stgwrite("\tbreak\t; ");
 | 
						|
    outval(code_idx,TRUE);
 | 
						|
    code_idx+=opcodes(1);
 | 
						|
  } /* if */
 | 
						|
}
 | 
						|
 | 
						|
SC_FUNC void setfiledirect(char *name)
 | 
						|
{
 | 
						|
  if (sc_status==statFIRST && sc_listing) {
 | 
						|
    assert(name!=NULL);
 | 
						|
    pc_writeasm(outf,"#file ");
 | 
						|
    pc_writeasm(outf,name);
 | 
						|
    pc_writeasm(outf,"\n");
 | 
						|
  } /* if */
 | 
						|
}
 | 
						|
 | 
						|
SC_FUNC void setlinedirect(int line)
 | 
						|
{
 | 
						|
  if (sc_status==statFIRST && sc_listing) {
 | 
						|
    char string[40];
 | 
						|
    sprintf(string,"#line %d\n",line);
 | 
						|
    pc_writeasm(outf,string);
 | 
						|
  } /* if */
 | 
						|
}
 | 
						|
 | 
						|
/*  setlabel
 | 
						|
 *
 | 
						|
 *  Post a code label (specified as a number), on a new line.
 | 
						|
 */
 | 
						|
SC_FUNC void setlabel(int number)
 | 
						|
{
 | 
						|
  assert(number>=0);
 | 
						|
  stgwrite("l.");
 | 
						|
  stgwrite((char *)itoh(number));
 | 
						|
  /* To assist verification of the assembled code, put the address of the
 | 
						|
   * label as a comment. However, labels that occur inside an expression
 | 
						|
   * may move (through optimization or through re-ordering). So write the
 | 
						|
   * address only if it is known to accurate.
 | 
						|
   */
 | 
						|
  if (!staging) {
 | 
						|
    stgwrite("\t\t; ");
 | 
						|
    outval(code_idx,FALSE);
 | 
						|
  } /* if */
 | 
						|
  stgwrite("\n");
 | 
						|
}
 | 
						|
 | 
						|
/* Write a token that signifies the start or end of an expression or special
 | 
						|
 * statement. This allows several simple optimizations by the peephole
 | 
						|
 * optimizer.
 | 
						|
 */
 | 
						|
SC_FUNC void markexpr(optmark type,const char *name,cell offset)
 | 
						|
{
 | 
						|
  switch (type) {
 | 
						|
  case sEXPR:
 | 
						|
    stgwrite("\t;$exp\n");
 | 
						|
    break;
 | 
						|
  case sPARM:
 | 
						|
    stgwrite("\t;$par\n");
 | 
						|
    break;
 | 
						|
  case sLDECL:
 | 
						|
    assert(name!=NULL);
 | 
						|
    stgwrite("\t;$lcl ");
 | 
						|
    stgwrite(name);
 | 
						|
    stgwrite(" ");
 | 
						|
    outval(offset,TRUE);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    assert(0);
 | 
						|
  } /* switch */
 | 
						|
}
 | 
						|
 | 
						|
/*  startfunc   - declare a CODE entry point (function start)
 | 
						|
 *
 | 
						|
 *  Global references: funcstatus  (referred to only)
 | 
						|
 */
 | 
						|
SC_FUNC void startfunc(char *fname)
 | 
						|
{
 | 
						|
  stgwrite("\tproc");
 | 
						|
  if (sc_asmfile) {
 | 
						|
    char symname[2*sNAMEMAX+16];
 | 
						|
    funcdisplayname(symname,fname);
 | 
						|
    stgwrite("\t; ");
 | 
						|
    stgwrite(symname);
 | 
						|
  } /* if */
 | 
						|
  stgwrite("\n");
 | 
						|
  code_idx+=opcodes(1);
 | 
						|
}
 | 
						|
 | 
						|
/*  endfunc
 | 
						|
 *
 | 
						|
 *  Declare a CODE ending point (function end)
 | 
						|
 */
 | 
						|
SC_FUNC void endfunc(void)
 | 
						|
{
 | 
						|
  stgwrite("\n");       /* skip a line */
 | 
						|
}
 | 
						|
 | 
						|
/*  alignframe
 | 
						|
 *
 | 
						|
 *  Aligns the frame (and the stack) of the current function to a multiple
 | 
						|
 *  of the specified byte count. Two caveats: the alignment ("numbytes") should
 | 
						|
 *  be a power of 2, and this alignment must be done right after the frame
 | 
						|
 *  is set up (before the first variable is declared)
 | 
						|
 */
 | 
						|
SC_FUNC void alignframe(int numbytes)
 | 
						|
{
 | 
						|
  #if !defined NDEBUG
 | 
						|
    /* "numbytes" should be a power of 2 for this code to work */
 | 
						|
    int i,count=0;
 | 
						|
    for (i=0; i<sizeof numbytes*8; i++)
 | 
						|
      if (numbytes & (1 << i))
 | 
						|
        count++;
 | 
						|
    assert(count==1);
 | 
						|
  #endif
 | 
						|
 | 
						|
  stgwrite("\tlctrl 4\n");      /* get STK in PRI */
 | 
						|
  stgwrite("\tconst.alt ");     /* get ~(numbytes-1) in ALT */
 | 
						|
  outval(~(numbytes-1),TRUE);
 | 
						|
  stgwrite("\tand\n");          /* PRI = STK "and" ~(numbytes-1) */
 | 
						|
  stgwrite("\tsctrl 4\n");      /* set the new value of STK ... */
 | 
						|
  stgwrite("\tsctrl 5\n");      /* ... and FRM */
 | 
						|
  code_idx+=opcodes(5)+opargs(4);
 | 
						|
}
 | 
						|
 | 
						|
/*  rvalue
 | 
						|
 *
 | 
						|
 *  Generate code to get the value of a symbol into "primary".
 | 
						|
 */
 | 
						|
SC_FUNC void rvalue(value *lval)
 | 
						|
{
 | 
						|
  symbol *sym;
 | 
						|
 | 
						|
  sym=lval->sym;
 | 
						|
  if (lval->ident==iARRAYCELL) {
 | 
						|
    /* indirect fetch, address already in PRI */
 | 
						|
    stgwrite("\tload.i\n");
 | 
						|
    code_idx+=opcodes(1);
 | 
						|
  } else if (lval->ident==iARRAYCHAR) {
 | 
						|
    /* indirect fetch of a character from a pack, address already in PRI */
 | 
						|
    stgwrite("\tlodb.i ");
 | 
						|
    outval(sCHARBITS/8,TRUE);   /* read one or two bytes */
 | 
						|
    code_idx+=opcodes(1)+opargs(1);
 | 
						|
  } else if (lval->ident==iREFERENCE) {
 | 
						|
    /* indirect fetch, but address not yet in PRI */
 | 
						|
    assert(sym!=NULL);
 | 
						|
    assert(sym->vclass==sLOCAL);/* global references don't exist in Pawn */
 | 
						|
    if (sym->vclass==sLOCAL)
 | 
						|
      stgwrite("\tlref.s.pri ");
 | 
						|
    else
 | 
						|
      stgwrite("\tlref.pri ");
 | 
						|
    outval(sym->addr,TRUE);
 | 
						|
    markusage(sym,uREAD);
 | 
						|
    code_idx+=opcodes(1)+opargs(1);
 | 
						|
  } else {
 | 
						|
    /* direct or stack relative fetch */
 | 
						|
    assert(sym!=NULL);
 | 
						|
    if (sym->vclass==sLOCAL)
 | 
						|
      stgwrite("\tload.s.pri ");
 | 
						|
    else
 | 
						|
      stgwrite("\tload.pri ");
 | 
						|
    outval(sym->addr,TRUE);
 | 
						|
    markusage(sym,uREAD);
 | 
						|
    code_idx+=opcodes(1)+opargs(1);
 | 
						|
  } /* if */
 | 
						|
}
 | 
						|
 | 
						|
/* Get the address of a symbol into the primary or alternate register (used
 | 
						|
 * for arrays, and for passing arguments by reference).
 | 
						|
 */
 | 
						|
SC_FUNC void address(symbol *sym,regid reg)
 | 
						|
{
 | 
						|
  assert(sym!=NULL);
 | 
						|
  assert(reg==sPRI || reg==sALT);
 | 
						|
  /* the symbol can be a local array, a global array, or an array
 | 
						|
   * that is passed by reference.
 | 
						|
   */
 | 
						|
  if (sym->ident==iREFARRAY || sym->ident==iREFERENCE) {
 | 
						|
    /* reference to a variable or to an array; currently this is
 | 
						|
     * always a local variable */
 | 
						|
    switch (reg) {
 | 
						|
    case sPRI:
 | 
						|
      stgwrite("\tload.s.pri ");
 | 
						|
      break;
 | 
						|
    case sALT:
 | 
						|
      stgwrite("\tload.s.alt ");
 | 
						|
      break;
 | 
						|
    } /* switch */
 | 
						|
  } else {
 | 
						|
    /* a local array or local variable */
 | 
						|
    switch (reg) {
 | 
						|
    case sPRI:
 | 
						|
      if (sym->vclass==sLOCAL)
 | 
						|
        stgwrite("\taddr.pri ");
 | 
						|
      else
 | 
						|
        stgwrite("\tconst.pri ");
 | 
						|
      break;
 | 
						|
    case sALT:
 | 
						|
      if (sym->vclass==sLOCAL)
 | 
						|
        stgwrite("\taddr.alt ");
 | 
						|
      else
 | 
						|
        stgwrite("\tconst.alt ");
 | 
						|
      break;
 | 
						|
    } /* switch */
 | 
						|
  } /* if */
 | 
						|
  outval(sym->addr,TRUE);
 | 
						|
  markusage(sym,uREAD);
 | 
						|
  code_idx+=opcodes(1)+opargs(1);
 | 
						|
}
 | 
						|
 | 
						|
/*  store
 | 
						|
 *
 | 
						|
 *  Saves the contents of "primary" into a memory cell, either directly
 | 
						|
 *  or indirectly (at the address given in the alternate register).
 | 
						|
 */
 | 
						|
SC_FUNC void store(value *lval)
 | 
						|
{
 | 
						|
  symbol *sym;
 | 
						|
 | 
						|
  sym=lval->sym;
 | 
						|
  if (lval->ident==iARRAYCELL) {
 | 
						|
    /* store at address in ALT */
 | 
						|
    stgwrite("\tstor.i\n");
 | 
						|
    code_idx+=opcodes(1);
 | 
						|
  } else if (lval->ident==iARRAYCHAR) {
 | 
						|
    /* store at address in ALT */
 | 
						|
    stgwrite("\tstrb.i ");
 | 
						|
    outval(sCHARBITS/8,TRUE);   /* write one or two bytes */
 | 
						|
    code_idx+=opcodes(1)+opargs(1);
 | 
						|
  } else if (lval->ident==iREFERENCE) {
 | 
						|
    assert(sym!=NULL);
 | 
						|
    if (sym->vclass==sLOCAL)
 | 
						|
      stgwrite("\tsref.s.pri ");
 | 
						|
    else
 | 
						|
      stgwrite("\tsref.pri ");
 | 
						|
    outval(sym->addr,TRUE);
 | 
						|
    code_idx+=opcodes(1)+opargs(1);
 | 
						|
  } else {
 | 
						|
    assert(sym!=NULL);
 | 
						|
    markusage(sym,uWRITTEN);
 | 
						|
    if (sym->vclass==sLOCAL)
 | 
						|
      stgwrite("\tstor.s.pri ");
 | 
						|
    else
 | 
						|
      stgwrite("\tstor.pri ");
 | 
						|
    outval(sym->addr,TRUE);
 | 
						|
    code_idx+=opcodes(1)+opargs(1);
 | 
						|
  } /* if */
 | 
						|
}
 | 
						|
 | 
						|
/* Get a cell from a fixed address in memory */
 | 
						|
SC_FUNC void loadreg(cell address,regid reg)
 | 
						|
{
 | 
						|
  assert(reg==sPRI || reg==sALT);
 | 
						|
  if (reg==sPRI)
 | 
						|
    stgwrite("\tload.pri ");
 | 
						|
  else
 | 
						|
    stgwrite("\tload.alt ");
 | 
						|
  outval(address,TRUE);
 | 
						|
  code_idx+=opcodes(1)+opargs(1);
 | 
						|
}
 | 
						|
 | 
						|
/* Store a cell into a fixed address in memory */
 | 
						|
SC_FUNC void storereg(cell address,regid reg)
 | 
						|
{
 | 
						|
  assert(reg==sPRI || reg==sALT);
 | 
						|
  if (reg==sPRI)
 | 
						|
    stgwrite("\tstor.pri ");
 | 
						|
  else
 | 
						|
    stgwrite("\tstor.alt ");
 | 
						|
  outval(address,TRUE);
 | 
						|
  code_idx+=opcodes(1)+opargs(1);
 | 
						|
}
 | 
						|
 | 
						|
/* source must in PRI, destination address in ALT. The "size"
 | 
						|
 * parameter is in bytes, not cells.
 | 
						|
 */
 | 
						|
SC_FUNC void memcopy(cell size)
 | 
						|
{
 | 
						|
  stgwrite("\tmovs ");
 | 
						|
  outval(size,TRUE);
 | 
						|
 | 
						|
  code_idx+=opcodes(1)+opargs(1);
 | 
						|
}
 | 
						|
 | 
						|
/* Address of the source must already have been loaded in PRI
 | 
						|
 * "size" is the size in bytes (not cells).
 | 
						|
 */
 | 
						|
SC_FUNC void copyarray(symbol *sym,cell size)
 | 
						|
{
 | 
						|
  assert(sym!=NULL);
 | 
						|
  /* the symbol can be a local array, a global array, or an array
 | 
						|
   * that is passed by reference.
 | 
						|
   */
 | 
						|
  if (sym->ident==iREFARRAY) {
 | 
						|
    /* reference to an array; currently this is always a local variable */
 | 
						|
    assert(sym->vclass==sLOCAL);        /* symbol must be stack relative */
 | 
						|
    stgwrite("\tload.s.alt ");
 | 
						|
  } else {
 | 
						|
    /* a local or global array */
 | 
						|
    if (sym->vclass==sLOCAL)
 | 
						|
      stgwrite("\taddr.alt ");
 | 
						|
    else
 | 
						|
      stgwrite("\tconst.alt ");
 | 
						|
  } /* if */
 | 
						|
  outval(sym->addr,TRUE);
 | 
						|
  markusage(sym,uWRITTEN);
 | 
						|
 | 
						|
  code_idx+=opcodes(1)+opargs(1);
 | 
						|
  memcopy(size);
 | 
						|
}
 | 
						|
 | 
						|
SC_FUNC void fillarray(symbol *sym,cell size,cell value)
 | 
						|
{
 | 
						|
  ldconst(value,sPRI);  /* load value in PRI */
 | 
						|
 | 
						|
  assert(sym!=NULL);
 | 
						|
  /* the symbol can be a local array, a global array, or an array
 | 
						|
   * that is passed by reference.
 | 
						|
   */
 | 
						|
  if (sym->ident==iREFARRAY) {
 | 
						|
    /* reference to an array; currently this is always a local variable */
 | 
						|
    assert(sym->vclass==sLOCAL);        /* symbol must be stack relative */
 | 
						|
    stgwrite("\tload.s.alt ");
 | 
						|
  } else {
 | 
						|
    /* a local or global array */
 | 
						|
    if (sym->vclass==sLOCAL)
 | 
						|
      stgwrite("\taddr.alt ");
 | 
						|
    else
 | 
						|
      stgwrite("\tconst.alt ");
 | 
						|
  } /* if */
 | 
						|
  outval(sym->addr,TRUE);
 | 
						|
  markusage(sym,uWRITTEN);
 | 
						|
 | 
						|
  assert(size>0);
 | 
						|
  stgwrite("\tfill ");
 | 
						|
  outval(size,TRUE);
 | 
						|
 | 
						|
  code_idx+=opcodes(2)+opargs(2);
 | 
						|
}
 | 
						|
 | 
						|
SC_FUNC void stradjust(regid reg)
 | 
						|
{
 | 
						|
  assert(reg==sPRI);
 | 
						|
  stgwrite("\tstradjust.pri\n");
 | 
						|
  code_idx+=opcodes(1);
 | 
						|
}
 | 
						|
 | 
						|
/* Instruction to get an immediate value into the primary or the alternate
 | 
						|
 * register
 | 
						|
 */
 | 
						|
SC_FUNC void ldconst(cell val,regid reg)
 | 
						|
{
 | 
						|
  assert(reg==sPRI || reg==sALT);
 | 
						|
  switch (reg) {
 | 
						|
  case sPRI:
 | 
						|
    if (val==0) {
 | 
						|
      stgwrite("\tzero.pri\n");
 | 
						|
      code_idx+=opcodes(1);
 | 
						|
    } else {
 | 
						|
      stgwrite("\tconst.pri ");
 | 
						|
      outval(val, TRUE);
 | 
						|
      code_idx+=opcodes(1)+opargs(1);
 | 
						|
    } /* if */
 | 
						|
    break;
 | 
						|
  case sALT:
 | 
						|
    if (val==0) {
 | 
						|
      stgwrite("\tzero.alt\n");
 | 
						|
      code_idx+=opcodes(1);
 | 
						|
    } else {
 | 
						|
      stgwrite("\tconst.alt ");
 | 
						|
      outval(val, TRUE);
 | 
						|
      code_idx+=opcodes(1)+opargs(1);
 | 
						|
    } /* if */
 | 
						|
    break;
 | 
						|
  } /* switch */
 | 
						|
}
 | 
						|
 | 
						|
/* Copy value in alternate register to the primary register */
 | 
						|
SC_FUNC void moveto1(void)
 | 
						|
{
 | 
						|
  stgwrite("\tmove.pri\n");
 | 
						|
  code_idx+=opcodes(1)+opargs(0);
 | 
						|
}
 | 
						|
 | 
						|
/* Push primary or the alternate register onto the stack
 | 
						|
 */
 | 
						|
SC_FUNC void pushreg(regid reg)
 | 
						|
{
 | 
						|
  assert(reg==sPRI || reg==sALT);
 | 
						|
  switch (reg) {
 | 
						|
  case sPRI:
 | 
						|
    stgwrite("\tpush.pri\n");
 | 
						|
    break;
 | 
						|
  case sALT:
 | 
						|
    stgwrite("\tpush.alt\n");
 | 
						|
    break;
 | 
						|
  } /* switch */
 | 
						|
  code_idx+=opcodes(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  Push a constant value onto the stack
 | 
						|
 */
 | 
						|
SC_FUNC void pushval(cell val)
 | 
						|
{
 | 
						|
  stgwrite("\tpush.c ");
 | 
						|
  outval(val, TRUE);
 | 
						|
  code_idx+=opcodes(1)+opargs(1);
 | 
						|
}
 | 
						|
 | 
						|
/* Pop stack into the primary or the alternate register
 | 
						|
 */
 | 
						|
SC_FUNC void popreg(regid reg)
 | 
						|
{
 | 
						|
  assert(reg==sPRI || reg==sALT);
 | 
						|
  switch (reg) {
 | 
						|
  case sPRI:
 | 
						|
    stgwrite("\tpop.pri\n");
 | 
						|
    break;
 | 
						|
  case sALT:
 | 
						|
    stgwrite("\tpop.alt\n");
 | 
						|
    break;
 | 
						|
  } /* switch */
 | 
						|
  code_idx+=opcodes(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Generate an array
 | 
						|
 */
 | 
						|
SC_FUNC void genarray(int dims, int _autozero)
 | 
						|
{
 | 
						|
  if (_autozero) {
 | 
						|
    stgwrite("\tgenarray.z ");
 | 
						|
  } else {
 | 
						|
    stgwrite("\tgenarray ");
 | 
						|
  }
 | 
						|
  outval(dims, TRUE);
 | 
						|
  code_idx+=opcodes(1)+opargs(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  swap the top-of-stack with the value in primary register
 | 
						|
 */
 | 
						|
SC_FUNC void swap1(void)
 | 
						|
{
 | 
						|
  stgwrite("\tswap.pri\n");
 | 
						|
  code_idx+=opcodes(1);
 | 
						|
}
 | 
						|
 | 
						|
/* Switch statements
 | 
						|
 * The "switch" statement generates a "case" table using the "CASE" opcode.
 | 
						|
 * The case table contains a list of records, each record holds a comparison
 | 
						|
 * value and a label to branch to on a match. The very first record is an
 | 
						|
 * exception: it holds the size of the table (excluding the first record) and
 | 
						|
 * the label to branch to when none of the values in the case table match.
 | 
						|
 * The case table is sorted on the comparison value. This allows more advanced
 | 
						|
 * abstract machines to sift the case table with a binary search.
 | 
						|
 */
 | 
						|
SC_FUNC void ffswitch(int label)
 | 
						|
{
 | 
						|
  stgwrite("\tswitch ");
 | 
						|
  outval(label,TRUE);           /* the label is the address of the case table */
 | 
						|
  code_idx+=opcodes(1)+opargs(1);
 | 
						|
}
 | 
						|
 | 
						|
SC_FUNC void ffcase(cell value,char *labelname,int newtable)
 | 
						|
{
 | 
						|
  if (newtable) {
 | 
						|
    stgwrite("\tcasetbl\n");
 | 
						|
    code_idx+=opcodes(1);
 | 
						|
  } /* if */
 | 
						|
  stgwrite("\tcase ");
 | 
						|
  outval(value,FALSE);
 | 
						|
  stgwrite(" ");
 | 
						|
  stgwrite(labelname);
 | 
						|
  stgwrite("\n");
 | 
						|
  code_idx+=opcodes(0)+opargs(2);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  Call specified function
 | 
						|
 */
 | 
						|
SC_FUNC void ffcall(symbol *sym,const char *label,int numargs)
 | 
						|
{
 | 
						|
  char symname[2*sNAMEMAX+16];
 | 
						|
  char aliasname[sNAMEMAX+1];
 | 
						|
  int wasAlias = 0;
 | 
						|
 | 
						|
  assert(sym!=NULL);
 | 
						|
  assert(sym->ident==iFUNCTN);
 | 
						|
  if (sc_asmfile)
 | 
						|
    funcdisplayname(symname,sym->name);
 | 
						|
  if ((sym->usage & uNATIVE)!=0) {
 | 
						|
    /* reserve a SYSREQ id if called for the first time */
 | 
						|
    assert(label==NULL);
 | 
						|
    stgwrite("\tsysreq.c ");
 | 
						|
    if (sc_status==statWRITE && (sym->usage & uREAD)==0 && sym->addr>=0)
 | 
						|
      sym->addr=ntv_funcid++;
 | 
						|
    /* Look for an alias */
 | 
						|
    if (lookup_alias(aliasname, sym->name)) {
 | 
						|
      symbol *asym = findglb(aliasname, sGLOBAL);
 | 
						|
      if (asym && asym->ident==iFUNCTN && ((sym->usage & uNATIVE) != 0)) {
 | 
						|
        sym = asym;
 | 
						|
        if (sc_status==statWRITE && (sym->usage & uREAD)==0 && sym->addr>=0) {
 | 
						|
          sym->addr=ntv_funcid++;
 | 
						|
          markusage(sym, uREAD);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    outval(sym->addr,FALSE);
 | 
						|
    if (sc_asmfile) {
 | 
						|
      stgwrite("\t; ");
 | 
						|
      stgwrite(symname);
 | 
						|
    } /* if */
 | 
						|
    stgwrite("\n"); /* write on a separate line, to mark a sequence point for the peephole optimizer */
 | 
						|
    stgwrite("\tstack ");
 | 
						|
    outval((numargs+1)*sizeof(cell), TRUE);
 | 
						|
    code_idx+=opcodes(2)+opargs(2);
 | 
						|
  } else {
 | 
						|
    /* normal function */
 | 
						|
    stgwrite("\tcall ");
 | 
						|
    if (label!=NULL) {
 | 
						|
      stgwrite("l.");
 | 
						|
      stgwrite(label);
 | 
						|
    } else {
 | 
						|
      stgwrite(sym->name);
 | 
						|
    } /* if */
 | 
						|
    if (sc_asmfile
 | 
						|
        && (label!=NULL || (!isalpha(sym->name[0]) && sym->name[0]!='_'  && sym->name[0]!=sc_ctrlchar)))
 | 
						|
    {
 | 
						|
      stgwrite("\t; ");
 | 
						|
      stgwrite(symname);
 | 
						|
    } /* if */
 | 
						|
    stgwrite("\n");
 | 
						|
    code_idx+=opcodes(1)+opargs(1);
 | 
						|
  } /* if */
 | 
						|
}
 | 
						|
 | 
						|
/*  Return from function
 | 
						|
 *
 | 
						|
 *  Global references: funcstatus  (referred to only)
 | 
						|
 */
 | 
						|
SC_FUNC void ffret(int remparams)
 | 
						|
{
 | 
						|
  if (remparams)
 | 
						|
    stgwrite("\tretn\n");
 | 
						|
  else
 | 
						|
    stgwrite("\tret\n");
 | 
						|
  code_idx+=opcodes(1);
 | 
						|
}
 | 
						|
 | 
						|
SC_FUNC void ffabort(int reason)
 | 
						|
{
 | 
						|
  stgwrite("\thalt ");
 | 
						|
  outval(reason,TRUE);
 | 
						|
  code_idx+=opcodes(1)+opargs(1);
 | 
						|
}
 | 
						|
 | 
						|
SC_FUNC void ffbounds(cell size)
 | 
						|
{
 | 
						|
  if ((sc_debug & sCHKBOUNDS)!=0) {
 | 
						|
    stgwrite("\tbounds ");
 | 
						|
    outval(size,TRUE);
 | 
						|
    code_idx+=opcodes(1)+opargs(1);
 | 
						|
  } /* if */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  Jump to local label number (the number is converted to a name)
 | 
						|
 */
 | 
						|
SC_FUNC void jumplabel(int number)
 | 
						|
{
 | 
						|
  stgwrite("\tjump ");
 | 
						|
  outval(number,TRUE);
 | 
						|
  code_idx+=opcodes(1)+opargs(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *   Define storage (global and static variables)
 | 
						|
 */
 | 
						|
SC_FUNC void defstorage(void)
 | 
						|
{
 | 
						|
  stgwrite("dump ");
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  Inclrement/decrement stack pointer. Note that this routine does
 | 
						|
 *  nothing if the delta is zero.
 | 
						|
 */
 | 
						|
SC_FUNC void modstk(int delta)
 | 
						|
{
 | 
						|
  if (delta) {
 | 
						|
    stgwrite("\tstack ");
 | 
						|
    outval(delta, TRUE);
 | 
						|
    code_idx+=opcodes(1)+opargs(1);
 | 
						|
  } /* if */
 | 
						|
}
 | 
						|
 | 
						|
/* set the stack to a hard offset from the frame */
 | 
						|
SC_FUNC void setstk(cell value)
 | 
						|
{
 | 
						|
  stgwrite("\tstackadjust ");
 | 
						|
  assert(value<=0);             /* STK should always become <= FRM */
 | 
						|
  outval(value, TRUE);        /* add (negative) offset */
 | 
						|
  code_idx+=opcodes(1)+opargs(1);
 | 
						|
}
 | 
						|
 | 
						|
SC_FUNC void modheap(int delta)
 | 
						|
{
 | 
						|
  if (delta) {
 | 
						|
    stgwrite("\theap ");
 | 
						|
    outval(delta, TRUE);
 | 
						|
    code_idx+=opcodes(1)+opargs(1);
 | 
						|
  } /* if */
 | 
						|
}
 | 
						|
 | 
						|
SC_FUNC void modheap_i()
 | 
						|
{
 | 
						|
  stgwrite("\ttracker.pop.setheap\n");
 | 
						|
  code_idx+=opcodes(1);
 | 
						|
}
 | 
						|
 | 
						|
SC_FUNC void setheap_save(cell value)
 | 
						|
{
 | 
						|
  assert(value);
 | 
						|
  stgwrite("\ttracker.push.c ");
 | 
						|
  outval(value, TRUE);
 | 
						|
  code_idx+=opcodes(1)+opargs(1);
 | 
						|
}
 | 
						|
 | 
						|
SC_FUNC void setheap_pri(void)
 | 
						|
{
 | 
						|
  stgwrite("\theap ");          /* ALT = HEA++ */
 | 
						|
  outval(sizeof(cell), TRUE);
 | 
						|
  stgwrite("\tstor.i\n");       /* store PRI (default value) at address ALT */
 | 
						|
  stgwrite("\tmove.pri\n");     /* move ALT to PRI: PRI contains the address */
 | 
						|
  code_idx+=opcodes(3)+opargs(1);
 | 
						|
}
 | 
						|
 | 
						|
SC_FUNC void setheap(cell value)
 | 
						|
{
 | 
						|
  stgwrite("\tconst.pri ");     /* load default value in PRI */
 | 
						|
  outval(value, TRUE);
 | 
						|
  code_idx+=opcodes(1)+opargs(1);
 | 
						|
  setheap_pri();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  Convert a cell number to a "byte" address; i.e. double or quadruple
 | 
						|
 *  the primary register.
 | 
						|
 */
 | 
						|
SC_FUNC void cell2addr(void)
 | 
						|
{
 | 
						|
  #if PAWN_CELL_SIZE==16
 | 
						|
    stgwrite("\tshl.c.pri 1\n");
 | 
						|
  #elif PAWN_CELL_SIZE==32
 | 
						|
    stgwrite("\tshl.c.pri 2\n");
 | 
						|
  #elif PAWN_CELL_SIZE==64
 | 
						|
    stgwrite("\tshl.c.pri 3\n");
 | 
						|
  #else
 | 
						|
    #error Unsupported cell size
 | 
						|
  #endif
 | 
						|
  code_idx+=opcodes(1)+opargs(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  Double or quadruple the alternate register.
 | 
						|
 */
 | 
						|
SC_FUNC void cell2addr_alt(void)
 | 
						|
{
 | 
						|
  #if PAWN_CELL_SIZE==16
 | 
						|
    stgwrite("\tshl.c.alt 1\n");
 | 
						|
  #elif PAWN_CELL_SIZE==32
 | 
						|
    stgwrite("\tshl.c.alt 2\n");
 | 
						|
  #elif PAWN_CELL_SIZE==64
 | 
						|
    stgwrite("\tshl.c.alt 3\n");
 | 
						|
  #else
 | 
						|
    #error Unsupported cell size
 | 
						|
  #endif
 | 
						|
  code_idx+=opcodes(1)+opargs(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  Convert "distance of addresses" to "number of cells" in between.
 | 
						|
 *  Or convert a number of packed characters to the number of cells (with
 | 
						|
 *  truncation).
 | 
						|
 */
 | 
						|
SC_FUNC void addr2cell(void)
 | 
						|
{
 | 
						|
  #if PAWN_CELL_SIZE==16
 | 
						|
    stgwrite("\tshr.c.pri 1\n");
 | 
						|
  #elif PAWN_CELL_SIZE==32
 | 
						|
    stgwrite("\tshr.c.pri 2\n");
 | 
						|
  #elif PAWN_CELL_SIZE==64
 | 
						|
    stgwrite("\tshr.c.pri 3\n");
 | 
						|
  #else
 | 
						|
    #error Unsupported cell size
 | 
						|
  #endif
 | 
						|
  code_idx+=opcodes(1)+opargs(1);
 | 
						|
}
 | 
						|
 | 
						|
/* Convert from character index to byte address. This routine does
 | 
						|
 * nothing if a character has the size of a byte.
 | 
						|
 */
 | 
						|
SC_FUNC void char2addr(void)
 | 
						|
{
 | 
						|
  #if sCHARBITS==16
 | 
						|
    stgwrite("\tshl.c.pri 1\n");
 | 
						|
    code_idx+=opcodes(1)+opargs(1);
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
/* Align PRI (which should hold a character index) to an address.
 | 
						|
 * The first character in a "pack" occupies the highest bits of
 | 
						|
 * the cell. This is at the lower memory address on Big Endian
 | 
						|
 * computers and on the higher address on Little Endian computers.
 | 
						|
 * The ALIGN.pri/alt instructions must solve this machine dependence;
 | 
						|
 * that is, on Big Endian computers, ALIGN.pri/alt shuold do nothing
 | 
						|
 * and on Little Endian computers they should toggle the address.
 | 
						|
 *
 | 
						|
 * NOTE: For Source Pawn, this is fliped.  It will do nothing on Little-Endian.
 | 
						|
 */
 | 
						|
SC_FUNC void charalign(void)
 | 
						|
{
 | 
						|
#if 0	/* TEMPORARILY DISABLED BECAUSE WE DON'T USE BIG ENDIAN */
 | 
						|
  stgwrite("\talign.pri ");
 | 
						|
  outval(sCHARBITS/8,TRUE);
 | 
						|
  code_idx+=opcodes(1)+opargs(1);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  Add a constant to the primary register.
 | 
						|
 */
 | 
						|
SC_FUNC void addconst(cell value)
 | 
						|
{
 | 
						|
  if (value!=0) {
 | 
						|
    stgwrite("\tadd.c ");
 | 
						|
    outval(value,TRUE);
 | 
						|
    code_idx+=opcodes(1)+opargs(1);
 | 
						|
  } /* if */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  signed multiply of primary and secundairy registers (result in primary)
 | 
						|
 */
 | 
						|
SC_FUNC void os_mult(void)
 | 
						|
{
 | 
						|
  stgwrite("\tsmul\n");
 | 
						|
  code_idx+=opcodes(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  signed divide of alternate register by primary register (quotient in
 | 
						|
 *  primary; remainder in alternate)
 | 
						|
 */
 | 
						|
SC_FUNC void os_div(void)
 | 
						|
{
 | 
						|
  stgwrite("\tsdiv.alt\n");
 | 
						|
  code_idx+=opcodes(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  modulus of (alternate % primary), result in primary (signed)
 | 
						|
 */
 | 
						|
SC_FUNC void os_mod(void)
 | 
						|
{
 | 
						|
  stgwrite("\tsdiv.alt\n");
 | 
						|
  stgwrite("\tmove.pri\n");     /* move ALT to PRI */
 | 
						|
  code_idx+=opcodes(2);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  Add primary and alternate registers (result in primary).
 | 
						|
 */
 | 
						|
SC_FUNC void ob_add(void)
 | 
						|
{
 | 
						|
  stgwrite("\tadd\n");
 | 
						|
  code_idx+=opcodes(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  subtract primary register from alternate register (result in primary)
 | 
						|
 */
 | 
						|
SC_FUNC void ob_sub(void)
 | 
						|
{
 | 
						|
  stgwrite("\tsub.alt\n");
 | 
						|
  code_idx+=opcodes(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  arithmic shift left alternate register the number of bits
 | 
						|
 *  given in the primary register (result in primary).
 | 
						|
 *  There is no need for a "logical shift left" routine, since
 | 
						|
 *  logical shift left is identical to arithmic shift left.
 | 
						|
 */
 | 
						|
SC_FUNC void ob_sal(void)
 | 
						|
{
 | 
						|
  stgwrite("\txchg\n");
 | 
						|
  stgwrite("\tshl\n");
 | 
						|
  code_idx+=opcodes(2);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  arithmic shift right alternate register the number of bits
 | 
						|
 *  given in the primary register (result in primary).
 | 
						|
 */
 | 
						|
SC_FUNC void os_sar(void)
 | 
						|
{
 | 
						|
  stgwrite("\txchg\n");
 | 
						|
  stgwrite("\tsshr\n");
 | 
						|
  code_idx+=opcodes(2);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  logical (unsigned) shift right of the alternate register by the
 | 
						|
 *  number of bits given in the primary register (result in primary).
 | 
						|
 */
 | 
						|
SC_FUNC void ou_sar(void)
 | 
						|
{
 | 
						|
  stgwrite("\txchg\n");
 | 
						|
  stgwrite("\tshr\n");
 | 
						|
  code_idx+=opcodes(2);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  inclusive "or" of primary and alternate registers (result in primary)
 | 
						|
 */
 | 
						|
SC_FUNC void ob_or(void)
 | 
						|
{
 | 
						|
  stgwrite("\tor\n");
 | 
						|
  code_idx+=opcodes(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  "exclusive or" of primary and alternate registers (result in primary)
 | 
						|
 */
 | 
						|
SC_FUNC void ob_xor(void)
 | 
						|
{
 | 
						|
  stgwrite("\txor\n");
 | 
						|
  code_idx+=opcodes(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  "and" of primary and secundairy registers (result in primary)
 | 
						|
 */
 | 
						|
SC_FUNC void ob_and(void)
 | 
						|
{
 | 
						|
  stgwrite("\tand\n");
 | 
						|
  code_idx+=opcodes(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  test ALT==PRI; result in primary register (1 or 0).
 | 
						|
 */
 | 
						|
SC_FUNC void ob_eq(void)
 | 
						|
{
 | 
						|
  stgwrite("\teq\n");
 | 
						|
  code_idx+=opcodes(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  test ALT!=PRI
 | 
						|
 */
 | 
						|
SC_FUNC void ob_ne(void)
 | 
						|
{
 | 
						|
  stgwrite("\tneq\n");
 | 
						|
  code_idx+=opcodes(1);
 | 
						|
}
 | 
						|
 | 
						|
/* The abstract machine defines the relational instructions so that PRI is
 | 
						|
 * on the left side and ALT on the right side of the operator. For example,
 | 
						|
 * SLESS sets PRI to either 1 or 0 depending on whether the expression
 | 
						|
 * "PRI < ALT" is true.
 | 
						|
 *
 | 
						|
 * The compiler generates comparisons with ALT on the left side of the
 | 
						|
 * relational operator and PRI on the right side. The XCHG instruction
 | 
						|
 * prefixing the relational operators resets this. We leave it to the
 | 
						|
 * peephole optimizer to choose more compact instructions where possible.
 | 
						|
 */
 | 
						|
 | 
						|
/* Relational operator prefix for chained relational expressions. The
 | 
						|
 * "suffix" code restores the stack.
 | 
						|
 * For chained relational operators, the goal is to keep the comparison
 | 
						|
 * result "so far" in PRI and the value of the most recent operand in
 | 
						|
 * ALT, ready for a next comparison.
 | 
						|
 * The "prefix" instruction pushed the comparison result (PRI) onto the
 | 
						|
 * stack and moves the value of ALT into PRI. If there is a next comparison,
 | 
						|
 * PRI can now serve as the "left" operand of the relational operator.
 | 
						|
 */
 | 
						|
SC_FUNC void relop_prefix(void)
 | 
						|
{
 | 
						|
  stgwrite("\tpush.pri\n");
 | 
						|
  stgwrite("\tmove.pri\n");
 | 
						|
  code_idx+=opcodes(2);
 | 
						|
}
 | 
						|
 | 
						|
SC_FUNC void relop_suffix(void)
 | 
						|
{
 | 
						|
  stgwrite("\tswap.alt\n");
 | 
						|
  stgwrite("\tand\n");
 | 
						|
  stgwrite("\tpop.alt\n");
 | 
						|
  code_idx+=opcodes(3);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  test ALT<PRI (signed)
 | 
						|
 */
 | 
						|
SC_FUNC void os_lt(void)
 | 
						|
{
 | 
						|
  stgwrite("\txchg\n");
 | 
						|
  stgwrite("\tsless\n");
 | 
						|
  code_idx+=opcodes(2);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  test ALT<=PRI (signed)
 | 
						|
 */
 | 
						|
SC_FUNC void os_le(void)
 | 
						|
{
 | 
						|
  stgwrite("\txchg\n");
 | 
						|
  stgwrite("\tsleq\n");
 | 
						|
  code_idx+=opcodes(2);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  test ALT>PRI (signed)
 | 
						|
 */
 | 
						|
SC_FUNC void os_gt(void)
 | 
						|
{
 | 
						|
  stgwrite("\txchg\n");
 | 
						|
  stgwrite("\tsgrtr\n");
 | 
						|
  code_idx+=opcodes(2);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  test ALT>=PRI (signed)
 | 
						|
 */
 | 
						|
SC_FUNC void os_ge(void)
 | 
						|
{
 | 
						|
  stgwrite("\txchg\n");
 | 
						|
  stgwrite("\tsgeq\n");
 | 
						|
  code_idx+=opcodes(2);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  logical negation of primary register
 | 
						|
 */
 | 
						|
SC_FUNC void lneg(void)
 | 
						|
{
 | 
						|
  stgwrite("\tnot\n");
 | 
						|
  code_idx+=opcodes(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  two's complement primary register
 | 
						|
 */
 | 
						|
SC_FUNC void neg(void)
 | 
						|
{
 | 
						|
  stgwrite("\tneg\n");
 | 
						|
  code_idx+=opcodes(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  one's complement of primary register
 | 
						|
 */
 | 
						|
SC_FUNC void invert(void)
 | 
						|
{
 | 
						|
  stgwrite("\tinvert\n");
 | 
						|
  code_idx+=opcodes(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  nop
 | 
						|
 */
 | 
						|
SC_FUNC void nooperation(void)
 | 
						|
{
 | 
						|
  stgwrite("\tnop\n");
 | 
						|
  code_idx+=opcodes(1);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*  increment symbol
 | 
						|
 */
 | 
						|
SC_FUNC void inc(value *lval)
 | 
						|
{
 | 
						|
  symbol *sym;
 | 
						|
 | 
						|
  sym=lval->sym;
 | 
						|
  if (lval->ident==iARRAYCELL) {
 | 
						|
    /* indirect increment, address already in PRI */
 | 
						|
    stgwrite("\tinc.i\n");
 | 
						|
    code_idx+=opcodes(1);
 | 
						|
  } else if (lval->ident==iARRAYCHAR) {
 | 
						|
    /* indirect increment of single character, address already in PRI */
 | 
						|
    stgwrite("\tpush.pri\n");
 | 
						|
    stgwrite("\tpush.alt\n");
 | 
						|
    stgwrite("\tmove.alt\n");   /* copy address */
 | 
						|
    stgwrite("\tlodb.i ");      /* read from PRI into PRI */
 | 
						|
    outval(sCHARBITS/8,TRUE);   /* read one or two bytes */
 | 
						|
    stgwrite("\tinc.pri\n");
 | 
						|
    stgwrite("\tstrb.i ");      /* write PRI to ALT */
 | 
						|
    outval(sCHARBITS/8,TRUE);   /* write one or two bytes */
 | 
						|
    stgwrite("\tpop.alt\n");
 | 
						|
    stgwrite("\tpop.pri\n");
 | 
						|
    code_idx+=opcodes(8)+opargs(2);
 | 
						|
  } else if (lval->ident==iREFERENCE) {
 | 
						|
    assert(sym!=NULL);
 | 
						|
    stgwrite("\tpush.pri\n");
 | 
						|
    /* load dereferenced value */
 | 
						|
    assert(sym->vclass==sLOCAL);    /* global references don't exist in Pawn */
 | 
						|
    if (sym->vclass==sLOCAL)
 | 
						|
      stgwrite("\tlref.s.pri ");
 | 
						|
    else
 | 
						|
      stgwrite("\tlref.pri ");
 | 
						|
    outval(sym->addr,TRUE);
 | 
						|
    /* increment */
 | 
						|
    stgwrite("\tinc.pri\n");
 | 
						|
    /* store dereferenced value */
 | 
						|
    if (sym->vclass==sLOCAL)
 | 
						|
      stgwrite("\tsref.s.pri ");
 | 
						|
    else
 | 
						|
      stgwrite("\tsref.pri ");
 | 
						|
    outval(sym->addr,TRUE);
 | 
						|
    stgwrite("\tpop.pri\n");
 | 
						|
    code_idx+=opcodes(5)+opargs(2);
 | 
						|
  } else {
 | 
						|
    /* local or global variable */
 | 
						|
    assert(sym!=NULL);
 | 
						|
    if (sym->vclass==sLOCAL)
 | 
						|
      stgwrite("\tinc.s ");
 | 
						|
    else
 | 
						|
      stgwrite("\tinc ");
 | 
						|
    outval(sym->addr,TRUE);
 | 
						|
    code_idx+=opcodes(1)+opargs(1);
 | 
						|
  } /* if */
 | 
						|
}
 | 
						|
 | 
						|
/*  decrement symbol
 | 
						|
 *
 | 
						|
 *  in case of an integer pointer, the symbol must be incremented by 2.
 | 
						|
 */
 | 
						|
SC_FUNC void dec(value *lval)
 | 
						|
{
 | 
						|
  symbol *sym;
 | 
						|
 | 
						|
  sym=lval->sym;
 | 
						|
  if (lval->ident==iARRAYCELL) {
 | 
						|
    /* indirect decrement, address already in PRI */
 | 
						|
    stgwrite("\tdec.i\n");
 | 
						|
    code_idx+=opcodes(1);
 | 
						|
  } else if (lval->ident==iARRAYCHAR) {
 | 
						|
    /* indirect decrement of single character, address already in PRI */
 | 
						|
    stgwrite("\tpush.pri\n");
 | 
						|
    stgwrite("\tpush.alt\n");
 | 
						|
    stgwrite("\tmove.alt\n");   /* copy address */
 | 
						|
    stgwrite("\tlodb.i ");      /* read from PRI into PRI */
 | 
						|
    outval(sCHARBITS/8,TRUE);   /* read one or two bytes */
 | 
						|
    stgwrite("\tdec.pri\n");
 | 
						|
    stgwrite("\tstrb.i ");      /* write PRI to ALT */
 | 
						|
    outval(sCHARBITS/8,TRUE);   /* write one or two bytes */
 | 
						|
    stgwrite("\tpop.alt\n");
 | 
						|
    stgwrite("\tpop.pri\n");
 | 
						|
    code_idx+=opcodes(8)+opargs(2);
 | 
						|
  } else if (lval->ident==iREFERENCE) {
 | 
						|
    assert(sym!=NULL);
 | 
						|
    stgwrite("\tpush.pri\n");
 | 
						|
    /* load dereferenced value */
 | 
						|
    assert(sym->vclass==sLOCAL);    /* global references don't exist in Pawn */
 | 
						|
    if (sym->vclass==sLOCAL)
 | 
						|
      stgwrite("\tlref.s.pri ");
 | 
						|
    else
 | 
						|
      stgwrite("\tlref.pri ");
 | 
						|
    outval(sym->addr,TRUE);
 | 
						|
    /* decrement */
 | 
						|
    stgwrite("\tdec.pri\n");
 | 
						|
    /* store dereferenced value */
 | 
						|
    if (sym->vclass==sLOCAL)
 | 
						|
      stgwrite("\tsref.s.pri ");
 | 
						|
    else
 | 
						|
      stgwrite("\tsref.pri ");
 | 
						|
    outval(sym->addr,TRUE);
 | 
						|
    stgwrite("\tpop.pri\n");
 | 
						|
    code_idx+=opcodes(5)+opargs(2);
 | 
						|
  } else {
 | 
						|
    /* local or global variable */
 | 
						|
    assert(sym!=NULL);
 | 
						|
    if (sym->vclass==sLOCAL)
 | 
						|
      stgwrite("\tdec.s ");
 | 
						|
    else
 | 
						|
      stgwrite("\tdec ");
 | 
						|
    outval(sym->addr,TRUE);
 | 
						|
    code_idx+=opcodes(1)+opargs(1);
 | 
						|
  } /* if */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  Jumps to "label" if PRI != 0
 | 
						|
 */
 | 
						|
SC_FUNC void jmp_ne0(int number)
 | 
						|
{
 | 
						|
  stgwrite("\tjnz ");
 | 
						|
  outval(number,TRUE);
 | 
						|
  code_idx+=opcodes(1)+opargs(1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  Jumps to "label" if PRI == 0
 | 
						|
 */
 | 
						|
SC_FUNC void jmp_eq0(int number)
 | 
						|
{
 | 
						|
  stgwrite("\tjzer ");
 | 
						|
  outval(number,TRUE);
 | 
						|
  code_idx+=opcodes(1)+opargs(1);
 | 
						|
}
 | 
						|
 | 
						|
/* write a value in hexadecimal; optionally adds a newline */
 | 
						|
SC_FUNC void outval(cell val,int newline)
 | 
						|
{
 | 
						|
  stgwrite(itoh(val));
 | 
						|
  if (newline)
 | 
						|
    stgwrite("\n");
 | 
						|
}
 |