251cced1f8
Various minor things done to project files Updated sample extension project file and updated makefile to the new unified version (more changes likely on the way) Updated regex project file and makefile --HG-- extra : convert_revision : svn%3A39bc706e-5318-0410-9160-8a85361fbb7c/trunk%401971
547 lines
15 KiB
C
547 lines
15 KiB
C
/*
|
|
** 2007 August 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains the C functions that implement a memory
|
|
** allocation subsystem for use by SQLite.
|
|
**
|
|
** $Id$
|
|
*/
|
|
|
|
/*
|
|
** This version of the memory allocator is used only if the
|
|
** SQLITE_MEMDEBUG macro is defined and SQLITE_OMIT_MEMORY_ALLOCATION
|
|
** is not defined.
|
|
*/
|
|
#if defined(SQLITE_MEMDEBUG) && !defined(SQLITE_OMIT_MEMORY_ALLOCATION)
|
|
|
|
/*
|
|
** We will eventually construct multiple memory allocation subsystems
|
|
** suitable for use in various contexts:
|
|
**
|
|
** * Normal multi-threaded builds
|
|
** * Normal single-threaded builds
|
|
** * Debugging builds
|
|
**
|
|
** This version is suitable for use in debugging builds.
|
|
**
|
|
** Features:
|
|
**
|
|
** * Every allocate has guards at both ends.
|
|
** * New allocations are initialized with randomness
|
|
** * Allocations are overwritten with randomness when freed
|
|
** * Optional logs of malloc activity generated
|
|
** * Summary of outstanding allocations with backtraces to the
|
|
** point of allocation.
|
|
** * The ability to simulate memory allocation failure
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#include <stdio.h>
|
|
|
|
/*
|
|
** The backtrace functionality is only available with GLIBC
|
|
*/
|
|
#ifdef __GLIBC__
|
|
extern int backtrace(void**,int);
|
|
extern void backtrace_symbols_fd(void*const*,int,int);
|
|
#else
|
|
# define backtrace(A,B) 0
|
|
# define backtrace_symbols_fd(A,B,C)
|
|
#endif
|
|
|
|
/*
|
|
** Each memory allocation looks like this:
|
|
**
|
|
** ------------------------------------------------------------------------
|
|
** | Title | backtrace pointers | MemBlockHdr | allocation | EndGuard |
|
|
** ------------------------------------------------------------------------
|
|
**
|
|
** The application code sees only a pointer to the allocation. We have
|
|
** to back up from the allocation pointer to find the MemBlockHdr. The
|
|
** MemBlockHdr tells us the size of the allocation and the number of
|
|
** backtrace pointers. There is also a guard word at the end of the
|
|
** MemBlockHdr.
|
|
*/
|
|
struct MemBlockHdr {
|
|
struct MemBlockHdr *pNext, *pPrev; /* Linked list of all unfreed memory */
|
|
int iSize; /* Size of this allocation */
|
|
char nBacktrace; /* Number of backtraces on this alloc */
|
|
char nBacktraceSlots; /* Available backtrace slots */
|
|
short nTitle; /* Bytes of title; includes '\0' */
|
|
int iForeGuard; /* Guard word for sanity */
|
|
};
|
|
|
|
/*
|
|
** Guard words
|
|
*/
|
|
#define FOREGUARD 0x80F5E153
|
|
#define REARGUARD 0xE4676B53
|
|
|
|
/*
|
|
** All of the static variables used by this module are collected
|
|
** into a single structure named "mem". This is to keep the
|
|
** static variables organized and to reduce namespace pollution
|
|
** when this module is combined with other in the amalgamation.
|
|
*/
|
|
static struct {
|
|
/*
|
|
** The alarm callback and its arguments. The mem.mutex lock will
|
|
** be held while the callback is running. Recursive calls into
|
|
** the memory subsystem are allowed, but no new callbacks will be
|
|
** issued. The alarmBusy variable is set to prevent recursive
|
|
** callbacks.
|
|
*/
|
|
sqlite3_int64 alarmThreshold;
|
|
void (*alarmCallback)(void*, sqlite3_int64, int);
|
|
void *alarmArg;
|
|
int alarmBusy;
|
|
|
|
/*
|
|
** Mutex to control access to the memory allocation subsystem.
|
|
*/
|
|
sqlite3_mutex *mutex;
|
|
|
|
/*
|
|
** Current allocation and high-water mark.
|
|
*/
|
|
sqlite3_int64 nowUsed;
|
|
sqlite3_int64 mxUsed;
|
|
|
|
/*
|
|
** Head and tail of a linked list of all outstanding allocations
|
|
*/
|
|
struct MemBlockHdr *pFirst;
|
|
struct MemBlockHdr *pLast;
|
|
|
|
/*
|
|
** The number of levels of backtrace to save in new allocations.
|
|
*/
|
|
int nBacktrace;
|
|
|
|
/*
|
|
** Title text to insert in front of each block
|
|
*/
|
|
int nTitle; /* Bytes of zTitle to save. Includes '\0' and padding */
|
|
char zTitle[100]; /* The title text */
|
|
|
|
/*
|
|
** These values are used to simulate malloc failures. When
|
|
** iFail is 1, simulate a malloc failures and reset the value
|
|
** to iReset.
|
|
*/
|
|
int iFail; /* Decrement and fail malloc when this is 1 */
|
|
int iReset; /* When malloc fails set iiFail to this value */
|
|
int iFailCnt; /* Number of failures */
|
|
int iBenignFailCnt; /* Number of benign failures */
|
|
int iNextIsBenign; /* True if the next call to malloc may fail benignly */
|
|
int iIsBenign; /* All malloc calls may fail benignly */
|
|
|
|
/*
|
|
** sqlite3MallocDisallow() increments the following counter.
|
|
** sqlite3MallocAllow() decrements it.
|
|
*/
|
|
int disallow; /* Do not allow memory allocation */
|
|
|
|
|
|
} mem;
|
|
|
|
|
|
/*
|
|
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
|
|
*/
|
|
static void enterMem(void){
|
|
if( mem.mutex==0 ){
|
|
mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
|
|
}
|
|
sqlite3_mutex_enter(mem.mutex);
|
|
}
|
|
|
|
/*
|
|
** Return the amount of memory currently checked out.
|
|
*/
|
|
sqlite3_int64 sqlite3_memory_used(void){
|
|
sqlite3_int64 n;
|
|
enterMem();
|
|
n = mem.nowUsed;
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Return the maximum amount of memory that has ever been
|
|
** checked out since either the beginning of this process
|
|
** or since the most recent reset.
|
|
*/
|
|
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
|
|
sqlite3_int64 n;
|
|
enterMem();
|
|
n = mem.mxUsed;
|
|
if( resetFlag ){
|
|
mem.mxUsed = mem.nowUsed;
|
|
}
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Change the alarm callback
|
|
*/
|
|
int sqlite3_memory_alarm(
|
|
void(*xCallback)(void *pArg, sqlite3_int64 used, int N),
|
|
void *pArg,
|
|
sqlite3_int64 iThreshold
|
|
){
|
|
enterMem();
|
|
mem.alarmCallback = xCallback;
|
|
mem.alarmArg = pArg;
|
|
mem.alarmThreshold = iThreshold;
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Trigger the alarm
|
|
*/
|
|
static void sqlite3MemsysAlarm(int nByte){
|
|
void (*xCallback)(void*,sqlite3_int64,int);
|
|
sqlite3_int64 nowUsed;
|
|
void *pArg;
|
|
if( mem.alarmCallback==0 || mem.alarmBusy ) return;
|
|
mem.alarmBusy = 1;
|
|
xCallback = mem.alarmCallback;
|
|
nowUsed = mem.nowUsed;
|
|
pArg = mem.alarmArg;
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
xCallback(pArg, nowUsed, nByte);
|
|
sqlite3_mutex_enter(mem.mutex);
|
|
mem.alarmBusy = 0;
|
|
}
|
|
|
|
/*
|
|
** Given an allocation, find the MemBlockHdr for that allocation.
|
|
**
|
|
** This routine checks the guards at either end of the allocation and
|
|
** if they are incorrect it asserts.
|
|
*/
|
|
static struct MemBlockHdr *sqlite3MemsysGetHeader(void *pAllocation){
|
|
struct MemBlockHdr *p;
|
|
int *pInt;
|
|
|
|
p = (struct MemBlockHdr*)pAllocation;
|
|
p--;
|
|
assert( p->iForeGuard==FOREGUARD );
|
|
assert( (p->iSize & 3)==0 );
|
|
pInt = (int*)pAllocation;
|
|
assert( pInt[p->iSize/sizeof(int)]==REARGUARD );
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** This routine is called once the first time a simulated memory
|
|
** failure occurs. The sole purpose of this routine is to provide
|
|
** a convenient place to set a debugger breakpoint when debugging
|
|
** errors related to malloc() failures.
|
|
*/
|
|
static void sqlite3MemsysFailed(void){
|
|
mem.iFailCnt = 0;
|
|
mem.iBenignFailCnt = 0;
|
|
}
|
|
|
|
/*
|
|
** Allocate nByte bytes of memory.
|
|
*/
|
|
void *sqlite3_malloc(int nByte){
|
|
struct MemBlockHdr *pHdr;
|
|
void **pBt;
|
|
char *z;
|
|
int *pInt;
|
|
void *p = 0;
|
|
int totalSize;
|
|
|
|
if( nByte>0 ){
|
|
enterMem();
|
|
assert( mem.disallow==0 );
|
|
if( mem.alarmCallback!=0 && mem.nowUsed+nByte>=mem.alarmThreshold ){
|
|
sqlite3MemsysAlarm(nByte);
|
|
}
|
|
nByte = (nByte+3)&~3;
|
|
totalSize = nByte + sizeof(*pHdr) + sizeof(int) +
|
|
mem.nBacktrace*sizeof(void*) + mem.nTitle;
|
|
if( mem.iFail>0 ){
|
|
if( mem.iFail==1 ){
|
|
p = 0;
|
|
mem.iFail = mem.iReset;
|
|
if( mem.iFailCnt==0 ){
|
|
sqlite3MemsysFailed(); /* A place to set a breakpoint */
|
|
}
|
|
mem.iFailCnt++;
|
|
if( mem.iNextIsBenign || mem.iIsBenign ){
|
|
mem.iBenignFailCnt++;
|
|
}
|
|
}else{
|
|
p = malloc(totalSize);
|
|
mem.iFail--;
|
|
}
|
|
}else{
|
|
p = malloc(totalSize);
|
|
if( p==0 ){
|
|
sqlite3MemsysAlarm(nByte);
|
|
p = malloc(totalSize);
|
|
}
|
|
}
|
|
if( p ){
|
|
z = p;
|
|
pBt = (void**)&z[mem.nTitle];
|
|
pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace];
|
|
pHdr->pNext = 0;
|
|
pHdr->pPrev = mem.pLast;
|
|
if( mem.pLast ){
|
|
mem.pLast->pNext = pHdr;
|
|
}else{
|
|
mem.pFirst = pHdr;
|
|
}
|
|
mem.pLast = pHdr;
|
|
pHdr->iForeGuard = FOREGUARD;
|
|
pHdr->nBacktraceSlots = mem.nBacktrace;
|
|
pHdr->nTitle = mem.nTitle;
|
|
if( mem.nBacktrace ){
|
|
void *aAddr[40];
|
|
pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1;
|
|
memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*));
|
|
}else{
|
|
pHdr->nBacktrace = 0;
|
|
}
|
|
if( mem.nTitle ){
|
|
memcpy(z, mem.zTitle, mem.nTitle);
|
|
}
|
|
pHdr->iSize = nByte;
|
|
pInt = (int*)&pHdr[1];
|
|
pInt[nByte/sizeof(int)] = REARGUARD;
|
|
memset(pInt, 0x65, nByte);
|
|
mem.nowUsed += nByte;
|
|
if( mem.nowUsed>mem.mxUsed ){
|
|
mem.mxUsed = mem.nowUsed;
|
|
}
|
|
p = (void*)pInt;
|
|
}
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
}
|
|
mem.iNextIsBenign = 0;
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Free memory.
|
|
*/
|
|
void sqlite3_free(void *pPrior){
|
|
struct MemBlockHdr *pHdr;
|
|
void **pBt;
|
|
char *z;
|
|
if( pPrior==0 ){
|
|
return;
|
|
}
|
|
assert( mem.mutex!=0 );
|
|
pHdr = sqlite3MemsysGetHeader(pPrior);
|
|
pBt = (void**)pHdr;
|
|
pBt -= pHdr->nBacktraceSlots;
|
|
sqlite3_mutex_enter(mem.mutex);
|
|
mem.nowUsed -= pHdr->iSize;
|
|
if( pHdr->pPrev ){
|
|
assert( pHdr->pPrev->pNext==pHdr );
|
|
pHdr->pPrev->pNext = pHdr->pNext;
|
|
}else{
|
|
assert( mem.pFirst==pHdr );
|
|
mem.pFirst = pHdr->pNext;
|
|
}
|
|
if( pHdr->pNext ){
|
|
assert( pHdr->pNext->pPrev==pHdr );
|
|
pHdr->pNext->pPrev = pHdr->pPrev;
|
|
}else{
|
|
assert( mem.pLast==pHdr );
|
|
mem.pLast = pHdr->pPrev;
|
|
}
|
|
z = (char*)pBt;
|
|
z -= pHdr->nTitle;
|
|
memset(z, 0x2b, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) +
|
|
pHdr->iSize + sizeof(int) + pHdr->nTitle);
|
|
free(z);
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
}
|
|
|
|
/*
|
|
** Change the size of an existing memory allocation.
|
|
**
|
|
** For this debugging implementation, we *always* make a copy of the
|
|
** allocation into a new place in memory. In this way, if the
|
|
** higher level code is using pointer to the old allocation, it is
|
|
** much more likely to break and we are much more liking to find
|
|
** the error.
|
|
*/
|
|
void *sqlite3_realloc(void *pPrior, int nByte){
|
|
struct MemBlockHdr *pOldHdr;
|
|
void *pNew;
|
|
if( pPrior==0 ){
|
|
return sqlite3_malloc(nByte);
|
|
}
|
|
if( nByte<=0 ){
|
|
sqlite3_free(pPrior);
|
|
return 0;
|
|
}
|
|
assert( mem.disallow==0 );
|
|
pOldHdr = sqlite3MemsysGetHeader(pPrior);
|
|
pNew = sqlite3_malloc(nByte);
|
|
if( pNew ){
|
|
memcpy(pNew, pPrior, nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize);
|
|
if( nByte>pOldHdr->iSize ){
|
|
memset(&((char*)pNew)[pOldHdr->iSize], 0x2b, nByte - pOldHdr->iSize);
|
|
}
|
|
sqlite3_free(pPrior);
|
|
}
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** Set the number of backtrace levels kept for each allocation.
|
|
** A value of zero turns of backtracing. The number is always rounded
|
|
** up to a multiple of 2.
|
|
*/
|
|
void sqlite3_memdebug_backtrace(int depth){
|
|
if( depth<0 ){ depth = 0; }
|
|
if( depth>20 ){ depth = 20; }
|
|
depth = (depth+1)&0xfe;
|
|
mem.nBacktrace = depth;
|
|
}
|
|
|
|
/*
|
|
** Set the title string for subsequent allocations.
|
|
*/
|
|
void sqlite3_memdebug_settitle(const char *zTitle){
|
|
int n = strlen(zTitle) + 1;
|
|
enterMem();
|
|
if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1;
|
|
memcpy(mem.zTitle, zTitle, n);
|
|
mem.zTitle[n] = 0;
|
|
mem.nTitle = (n+3)&~3;
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
}
|
|
|
|
/*
|
|
** Open the file indicated and write a log of all unfreed memory
|
|
** allocations into that log.
|
|
*/
|
|
void sqlite3_memdebug_dump(const char *zFilename){
|
|
FILE *out;
|
|
struct MemBlockHdr *pHdr;
|
|
void **pBt;
|
|
out = fopen(zFilename, "w");
|
|
if( out==0 ){
|
|
fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
|
|
zFilename);
|
|
return;
|
|
}
|
|
for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
|
|
char *z = (char*)pHdr;
|
|
z -= pHdr->nBacktraceSlots*sizeof(void*) + pHdr->nTitle;
|
|
fprintf(out, "**** %d bytes at %p from %s ****\n",
|
|
pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???");
|
|
if( pHdr->nBacktrace ){
|
|
fflush(out);
|
|
pBt = (void**)pHdr;
|
|
pBt -= pHdr->nBacktraceSlots;
|
|
backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out));
|
|
fprintf(out, "\n");
|
|
}
|
|
}
|
|
fclose(out);
|
|
}
|
|
|
|
/*
|
|
** This routine is used to simulate malloc failures.
|
|
**
|
|
** After calling this routine, there will be iFail successful
|
|
** memory allocations and then a failure. If iRepeat is 1
|
|
** all subsequent memory allocations will fail. If iRepeat is
|
|
** 0, only a single allocation will fail. If iRepeat is negative
|
|
** then the previous setting for iRepeat is unchanged.
|
|
**
|
|
** Each call to this routine overrides the previous. To disable
|
|
** the simulated allocation failure mechanism, set iFail to -1.
|
|
**
|
|
** This routine returns the number of simulated failures that have
|
|
** occurred since the previous call.
|
|
*/
|
|
int sqlite3_memdebug_fail(int iFail, int iRepeat, int *piBenign){
|
|
int n = mem.iFailCnt;
|
|
if( piBenign ){
|
|
*piBenign = mem.iBenignFailCnt;
|
|
}
|
|
mem.iFail = iFail+1;
|
|
if( iRepeat>=0 ){
|
|
mem.iReset = iRepeat;
|
|
}
|
|
mem.iFailCnt = 0;
|
|
mem.iBenignFailCnt = 0;
|
|
return n;
|
|
}
|
|
|
|
int sqlite3_memdebug_pending(){
|
|
return (mem.iFail-1);
|
|
}
|
|
|
|
/*
|
|
** The following three functions are used to indicate to the test
|
|
** infrastructure which malloc() calls may fail benignly without
|
|
** affecting functionality. This can happen when resizing hash tables
|
|
** (failing to resize a hash-table is a performance hit, but not an
|
|
** error) or sometimes during a rollback operation.
|
|
**
|
|
** If the argument is true, sqlite3MallocBenignFailure() indicates that the
|
|
** next call to allocate memory may fail benignly.
|
|
**
|
|
** If sqlite3MallocEnterBenignBlock() is called with a non-zero argument,
|
|
** then all memory allocations requested before the next call to
|
|
** sqlite3MallocLeaveBenignBlock() may fail benignly.
|
|
*/
|
|
void sqlite3MallocBenignFailure(int isBenign){
|
|
if( isBenign ){
|
|
mem.iNextIsBenign = 1;
|
|
}
|
|
}
|
|
void sqlite3MallocEnterBenignBlock(int isBenign){
|
|
if( isBenign ){
|
|
mem.iIsBenign = 1;
|
|
}
|
|
}
|
|
void sqlite3MallocLeaveBenignBlock(){
|
|
mem.iIsBenign = 0;
|
|
}
|
|
|
|
/*
|
|
** The following two routines are used to assert that no memory
|
|
** allocations occur between one call and the next. The use of
|
|
** these routines does not change the computed results in any way.
|
|
** These routines are like asserts.
|
|
*/
|
|
void sqlite3MallocDisallow(void){
|
|
assert( mem.mutex!=0 );
|
|
sqlite3_mutex_enter(mem.mutex);
|
|
mem.disallow++;
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
}
|
|
void sqlite3MallocAllow(void){
|
|
assert( mem.mutex );
|
|
sqlite3_mutex_enter(mem.mutex);
|
|
assert( mem.disallow>0 );
|
|
mem.disallow--;
|
|
sqlite3_mutex_leave(mem.mutex);
|
|
}
|
|
|
|
#endif /* SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */
|