used new shared cache functionality (yay) --HG-- extra : convert_revision : svn%3A39bc706e-5318-0410-9160-8a85361fbb7c/trunk%401651
		
			
				
	
	
		
			547 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			547 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| ** 2007 August 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains the C functions that implement a memory
 | |
| ** allocation subsystem for use by SQLite.  
 | |
| **
 | |
| ** $Id$
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** This version of the memory allocator is used only if the
 | |
| ** SQLITE_MEMDEBUG macro is defined and SQLITE_OMIT_MEMORY_ALLOCATION
 | |
| ** is not defined.
 | |
| */
 | |
| #if defined(SQLITE_MEMDEBUG) && !defined(SQLITE_OMIT_MEMORY_ALLOCATION)
 | |
| 
 | |
| /*
 | |
| ** We will eventually construct multiple memory allocation subsystems
 | |
| ** suitable for use in various contexts:
 | |
| **
 | |
| **    *  Normal multi-threaded builds
 | |
| **    *  Normal single-threaded builds
 | |
| **    *  Debugging builds
 | |
| **
 | |
| ** This version is suitable for use in debugging builds.
 | |
| **
 | |
| ** Features:
 | |
| **
 | |
| **    * Every allocate has guards at both ends.
 | |
| **    * New allocations are initialized with randomness
 | |
| **    * Allocations are overwritten with randomness when freed
 | |
| **    * Optional logs of malloc activity generated
 | |
| **    * Summary of outstanding allocations with backtraces to the
 | |
| **      point of allocation.
 | |
| **    * The ability to simulate memory allocation failure
 | |
| */
 | |
| #include "sqliteInt.h"
 | |
| #include <stdio.h>
 | |
| 
 | |
| /*
 | |
| ** The backtrace functionality is only available with GLIBC
 | |
| */
 | |
| #ifdef __GLIBC__
 | |
|   extern int backtrace(void**,int);
 | |
|   extern void backtrace_symbols_fd(void*const*,int,int);
 | |
| #else
 | |
| # define backtrace(A,B) 0
 | |
| # define backtrace_symbols_fd(A,B,C)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Each memory allocation looks like this:
 | |
| **
 | |
| **  ------------------------------------------------------------------------
 | |
| **  | Title |  backtrace pointers |  MemBlockHdr |  allocation |  EndGuard |
 | |
| **  ------------------------------------------------------------------------
 | |
| **
 | |
| ** The application code sees only a pointer to the allocation.  We have
 | |
| ** to back up from the allocation pointer to find the MemBlockHdr.  The
 | |
| ** MemBlockHdr tells us the size of the allocation and the number of
 | |
| ** backtrace pointers.  There is also a guard word at the end of the
 | |
| ** MemBlockHdr.
 | |
| */
 | |
| struct MemBlockHdr {
 | |
|   struct MemBlockHdr *pNext, *pPrev;  /* Linked list of all unfreed memory */
 | |
|   int iSize;                          /* Size of this allocation */
 | |
|   char nBacktrace;                    /* Number of backtraces on this alloc */
 | |
|   char nBacktraceSlots;               /* Available backtrace slots */
 | |
|   short nTitle;                       /* Bytes of title; includes '\0' */
 | |
|   int iForeGuard;                     /* Guard word for sanity */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Guard words
 | |
| */
 | |
| #define FOREGUARD 0x80F5E153
 | |
| #define REARGUARD 0xE4676B53
 | |
| 
 | |
| /*
 | |
| ** All of the static variables used by this module are collected
 | |
| ** into a single structure named "mem".  This is to keep the
 | |
| ** static variables organized and to reduce namespace pollution
 | |
| ** when this module is combined with other in the amalgamation.
 | |
| */
 | |
| static struct {
 | |
|   /*
 | |
|   ** The alarm callback and its arguments.  The mem.mutex lock will
 | |
|   ** be held while the callback is running.  Recursive calls into
 | |
|   ** the memory subsystem are allowed, but no new callbacks will be
 | |
|   ** issued.  The alarmBusy variable is set to prevent recursive
 | |
|   ** callbacks.
 | |
|   */
 | |
|   sqlite3_int64 alarmThreshold;
 | |
|   void (*alarmCallback)(void*, sqlite3_int64, int);
 | |
|   void *alarmArg;
 | |
|   int alarmBusy;
 | |
|   
 | |
|   /*
 | |
|   ** Mutex to control access to the memory allocation subsystem.
 | |
|   */
 | |
|   sqlite3_mutex *mutex;
 | |
|   
 | |
|   /*
 | |
|   ** Current allocation and high-water mark.
 | |
|   */
 | |
|   sqlite3_int64 nowUsed;
 | |
|   sqlite3_int64 mxUsed;
 | |
|   
 | |
|   /*
 | |
|   ** Head and tail of a linked list of all outstanding allocations
 | |
|   */
 | |
|   struct MemBlockHdr *pFirst;
 | |
|   struct MemBlockHdr *pLast;
 | |
|   
 | |
|   /*
 | |
|   ** The number of levels of backtrace to save in new allocations.
 | |
|   */
 | |
|   int nBacktrace;
 | |
| 
 | |
|   /*
 | |
|   ** Title text to insert in front of each block
 | |
|   */
 | |
|   int nTitle;        /* Bytes of zTitle to save.  Includes '\0' and padding */
 | |
|   char zTitle[100];  /* The title text */
 | |
| 
 | |
|   /*
 | |
|   ** These values are used to simulate malloc failures.  When
 | |
|   ** iFail is 1, simulate a malloc failures and reset the value
 | |
|   ** to iReset.
 | |
|   */
 | |
|   int iFail;    /* Decrement and fail malloc when this is 1 */
 | |
|   int iReset;   /* When malloc fails set iiFail to this value */
 | |
|   int iFailCnt;         /* Number of failures */
 | |
|   int iBenignFailCnt;   /* Number of benign failures */
 | |
|   int iNextIsBenign;    /* True if the next call to malloc may fail benignly */
 | |
|   int iIsBenign;        /* All malloc calls may fail benignly */
 | |
| 
 | |
|   /* 
 | |
|   ** sqlite3MallocDisallow() increments the following counter.
 | |
|   ** sqlite3MallocAllow() decrements it.
 | |
|   */
 | |
|   int disallow; /* Do not allow memory allocation */
 | |
|   
 | |
|   
 | |
| } mem;
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
 | |
| */
 | |
| static void enterMem(void){
 | |
|   if( mem.mutex==0 ){
 | |
|     mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
 | |
|   }
 | |
|   sqlite3_mutex_enter(mem.mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the amount of memory currently checked out.
 | |
| */
 | |
| sqlite3_int64 sqlite3_memory_used(void){
 | |
|   sqlite3_int64 n;
 | |
|   enterMem();
 | |
|   n = mem.nowUsed;
 | |
|   sqlite3_mutex_leave(mem.mutex);  
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the maximum amount of memory that has ever been
 | |
| ** checked out since either the beginning of this process
 | |
| ** or since the most recent reset.
 | |
| */
 | |
| sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
 | |
|   sqlite3_int64 n;
 | |
|   enterMem();
 | |
|   n = mem.mxUsed;
 | |
|   if( resetFlag ){
 | |
|     mem.mxUsed = mem.nowUsed;
 | |
|   }
 | |
|   sqlite3_mutex_leave(mem.mutex);  
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the alarm callback
 | |
| */
 | |
| int sqlite3_memory_alarm(
 | |
|   void(*xCallback)(void *pArg, sqlite3_int64 used, int N),
 | |
|   void *pArg,
 | |
|   sqlite3_int64 iThreshold
 | |
| ){
 | |
|   enterMem();
 | |
|   mem.alarmCallback = xCallback;
 | |
|   mem.alarmArg = pArg;
 | |
|   mem.alarmThreshold = iThreshold;
 | |
|   sqlite3_mutex_leave(mem.mutex);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Trigger the alarm 
 | |
| */
 | |
| static void sqlite3MemsysAlarm(int nByte){
 | |
|   void (*xCallback)(void*,sqlite3_int64,int);
 | |
|   sqlite3_int64 nowUsed;
 | |
|   void *pArg;
 | |
|   if( mem.alarmCallback==0 || mem.alarmBusy  ) return;
 | |
|   mem.alarmBusy = 1;
 | |
|   xCallback = mem.alarmCallback;
 | |
|   nowUsed = mem.nowUsed;
 | |
|   pArg = mem.alarmArg;
 | |
|   sqlite3_mutex_leave(mem.mutex);
 | |
|   xCallback(pArg, nowUsed, nByte);
 | |
|   sqlite3_mutex_enter(mem.mutex);
 | |
|   mem.alarmBusy = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Given an allocation, find the MemBlockHdr for that allocation.
 | |
| **
 | |
| ** This routine checks the guards at either end of the allocation and
 | |
| ** if they are incorrect it asserts.
 | |
| */
 | |
| static struct MemBlockHdr *sqlite3MemsysGetHeader(void *pAllocation){
 | |
|   struct MemBlockHdr *p;
 | |
|   int *pInt;
 | |
| 
 | |
|   p = (struct MemBlockHdr*)pAllocation;
 | |
|   p--;
 | |
|   assert( p->iForeGuard==FOREGUARD );
 | |
|   assert( (p->iSize & 3)==0 );
 | |
|   pInt = (int*)pAllocation;
 | |
|   assert( pInt[p->iSize/sizeof(int)]==REARGUARD );
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called once the first time a simulated memory
 | |
| ** failure occurs.  The sole purpose of this routine is to provide
 | |
| ** a convenient place to set a debugger breakpoint when debugging
 | |
| ** errors related to malloc() failures.
 | |
| */
 | |
| static void sqlite3MemsysFailed(void){
 | |
|   mem.iFailCnt = 0;
 | |
|   mem.iBenignFailCnt = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate nByte bytes of memory.
 | |
| */
 | |
| void *sqlite3_malloc(int nByte){
 | |
|   struct MemBlockHdr *pHdr;
 | |
|   void **pBt;
 | |
|   char *z;
 | |
|   int *pInt;
 | |
|   void *p = 0;
 | |
|   int totalSize;
 | |
| 
 | |
|   if( nByte>0 ){
 | |
|     enterMem();
 | |
|     assert( mem.disallow==0 );
 | |
|     if( mem.alarmCallback!=0 && mem.nowUsed+nByte>=mem.alarmThreshold ){
 | |
|       sqlite3MemsysAlarm(nByte);
 | |
|     }
 | |
|     nByte = (nByte+3)&~3;
 | |
|     totalSize = nByte + sizeof(*pHdr) + sizeof(int) +
 | |
|                  mem.nBacktrace*sizeof(void*) + mem.nTitle;
 | |
|     if( mem.iFail>0 ){
 | |
|       if( mem.iFail==1 ){
 | |
|         p = 0;
 | |
|         mem.iFail = mem.iReset;
 | |
|         if( mem.iFailCnt==0 ){
 | |
|           sqlite3MemsysFailed();  /* A place to set a breakpoint */
 | |
|         }
 | |
|         mem.iFailCnt++;
 | |
|         if( mem.iNextIsBenign || mem.iIsBenign ){
 | |
|           mem.iBenignFailCnt++;
 | |
|         }
 | |
|       }else{
 | |
|         p = malloc(totalSize);
 | |
|         mem.iFail--;
 | |
|       }
 | |
|     }else{
 | |
|       p = malloc(totalSize);
 | |
|       if( p==0 ){
 | |
|         sqlite3MemsysAlarm(nByte);
 | |
|         p = malloc(totalSize);
 | |
|       }
 | |
|     }
 | |
|     if( p ){
 | |
|       z = p;
 | |
|       pBt = (void**)&z[mem.nTitle];
 | |
|       pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace];
 | |
|       pHdr->pNext = 0;
 | |
|       pHdr->pPrev = mem.pLast;
 | |
|       if( mem.pLast ){
 | |
|         mem.pLast->pNext = pHdr;
 | |
|       }else{
 | |
|         mem.pFirst = pHdr;
 | |
|       }
 | |
|       mem.pLast = pHdr;
 | |
|       pHdr->iForeGuard = FOREGUARD;
 | |
|       pHdr->nBacktraceSlots = mem.nBacktrace;
 | |
|       pHdr->nTitle = mem.nTitle;
 | |
|       if( mem.nBacktrace ){
 | |
|         void *aAddr[40];
 | |
|         pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1;
 | |
|         memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*));
 | |
|       }else{
 | |
|         pHdr->nBacktrace = 0;
 | |
|       }
 | |
|       if( mem.nTitle ){
 | |
|         memcpy(z, mem.zTitle, mem.nTitle);
 | |
|       }
 | |
|       pHdr->iSize = nByte;
 | |
|       pInt = (int*)&pHdr[1];
 | |
|       pInt[nByte/sizeof(int)] = REARGUARD;
 | |
|       memset(pInt, 0x65, nByte);
 | |
|       mem.nowUsed += nByte;
 | |
|       if( mem.nowUsed>mem.mxUsed ){
 | |
|         mem.mxUsed = mem.nowUsed;
 | |
|       }
 | |
|       p = (void*)pInt;
 | |
|     }
 | |
|     sqlite3_mutex_leave(mem.mutex);
 | |
|   }
 | |
|   mem.iNextIsBenign = 0;
 | |
|   return p; 
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Free memory.
 | |
| */
 | |
| void sqlite3_free(void *pPrior){
 | |
|   struct MemBlockHdr *pHdr;
 | |
|   void **pBt;
 | |
|   char *z;
 | |
|   if( pPrior==0 ){
 | |
|     return;
 | |
|   }
 | |
|   assert( mem.mutex!=0 );
 | |
|   pHdr = sqlite3MemsysGetHeader(pPrior);
 | |
|   pBt = (void**)pHdr;
 | |
|   pBt -= pHdr->nBacktraceSlots;
 | |
|   sqlite3_mutex_enter(mem.mutex);
 | |
|   mem.nowUsed -= pHdr->iSize;
 | |
|   if( pHdr->pPrev ){
 | |
|     assert( pHdr->pPrev->pNext==pHdr );
 | |
|     pHdr->pPrev->pNext = pHdr->pNext;
 | |
|   }else{
 | |
|     assert( mem.pFirst==pHdr );
 | |
|     mem.pFirst = pHdr->pNext;
 | |
|   }
 | |
|   if( pHdr->pNext ){
 | |
|     assert( pHdr->pNext->pPrev==pHdr );
 | |
|     pHdr->pNext->pPrev = pHdr->pPrev;
 | |
|   }else{
 | |
|     assert( mem.pLast==pHdr );
 | |
|     mem.pLast = pHdr->pPrev;
 | |
|   }
 | |
|   z = (char*)pBt;
 | |
|   z -= pHdr->nTitle;
 | |
|   memset(z, 0x2b, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) +
 | |
|                   pHdr->iSize + sizeof(int) + pHdr->nTitle);
 | |
|   free(z);
 | |
|   sqlite3_mutex_leave(mem.mutex);  
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the size of an existing memory allocation.
 | |
| **
 | |
| ** For this debugging implementation, we *always* make a copy of the
 | |
| ** allocation into a new place in memory.  In this way, if the 
 | |
| ** higher level code is using pointer to the old allocation, it is 
 | |
| ** much more likely to break and we are much more liking to find
 | |
| ** the error.
 | |
| */
 | |
| void *sqlite3_realloc(void *pPrior, int nByte){
 | |
|   struct MemBlockHdr *pOldHdr;
 | |
|   void *pNew;
 | |
|   if( pPrior==0 ){
 | |
|     return sqlite3_malloc(nByte);
 | |
|   }
 | |
|   if( nByte<=0 ){
 | |
|     sqlite3_free(pPrior);
 | |
|     return 0;
 | |
|   }
 | |
|   assert( mem.disallow==0 );
 | |
|   pOldHdr = sqlite3MemsysGetHeader(pPrior);
 | |
|   pNew = sqlite3_malloc(nByte);
 | |
|   if( pNew ){
 | |
|     memcpy(pNew, pPrior, nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize);
 | |
|     if( nByte>pOldHdr->iSize ){
 | |
|       memset(&((char*)pNew)[pOldHdr->iSize], 0x2b, nByte - pOldHdr->iSize);
 | |
|     }
 | |
|     sqlite3_free(pPrior);
 | |
|   }
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the number of backtrace levels kept for each allocation.
 | |
| ** A value of zero turns of backtracing.  The number is always rounded
 | |
| ** up to a multiple of 2.
 | |
| */
 | |
| void sqlite3_memdebug_backtrace(int depth){
 | |
|   if( depth<0 ){ depth = 0; }
 | |
|   if( depth>20 ){ depth = 20; }
 | |
|   depth = (depth+1)&0xfe;
 | |
|   mem.nBacktrace = depth;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the title string for subsequent allocations.
 | |
| */
 | |
| void sqlite3_memdebug_settitle(const char *zTitle){
 | |
|   int n = strlen(zTitle) + 1;
 | |
|   enterMem();
 | |
|   if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1;
 | |
|   memcpy(mem.zTitle, zTitle, n);
 | |
|   mem.zTitle[n] = 0;
 | |
|   mem.nTitle = (n+3)&~3;
 | |
|   sqlite3_mutex_leave(mem.mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Open the file indicated and write a log of all unfreed memory 
 | |
| ** allocations into that log.
 | |
| */
 | |
| void sqlite3_memdebug_dump(const char *zFilename){
 | |
|   FILE *out;
 | |
|   struct MemBlockHdr *pHdr;
 | |
|   void **pBt;
 | |
|   out = fopen(zFilename, "w");
 | |
|   if( out==0 ){
 | |
|     fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
 | |
|                     zFilename);
 | |
|     return;
 | |
|   }
 | |
|   for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
 | |
|     char *z = (char*)pHdr;
 | |
|     z -= pHdr->nBacktraceSlots*sizeof(void*) + pHdr->nTitle;
 | |
|     fprintf(out, "**** %d bytes at %p from %s ****\n", 
 | |
|             pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???");
 | |
|     if( pHdr->nBacktrace ){
 | |
|       fflush(out);
 | |
|       pBt = (void**)pHdr;
 | |
|       pBt -= pHdr->nBacktraceSlots;
 | |
|       backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out));
 | |
|       fprintf(out, "\n");
 | |
|     }
 | |
|   }
 | |
|   fclose(out);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is used to simulate malloc failures.
 | |
| **
 | |
| ** After calling this routine, there will be iFail successful
 | |
| ** memory allocations and then a failure.  If iRepeat is 1
 | |
| ** all subsequent memory allocations will fail.  If iRepeat is
 | |
| ** 0, only a single allocation will fail.  If iRepeat is negative
 | |
| ** then the previous setting for iRepeat is unchanged.
 | |
| **
 | |
| ** Each call to this routine overrides the previous.  To disable
 | |
| ** the simulated allocation failure mechanism, set iFail to -1.
 | |
| **
 | |
| ** This routine returns the number of simulated failures that have
 | |
| ** occurred since the previous call.
 | |
| */
 | |
| int sqlite3_memdebug_fail(int iFail, int iRepeat, int *piBenign){
 | |
|   int n = mem.iFailCnt;
 | |
|   if( piBenign ){
 | |
|     *piBenign = mem.iBenignFailCnt;
 | |
|   }
 | |
|   mem.iFail = iFail+1;
 | |
|   if( iRepeat>=0 ){
 | |
|     mem.iReset = iRepeat;
 | |
|   }
 | |
|   mem.iFailCnt = 0;
 | |
|   mem.iBenignFailCnt = 0;
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| int sqlite3_memdebug_pending(){
 | |
|   return (mem.iFail-1);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following three functions are used to indicate to the test 
 | |
| ** infrastructure which malloc() calls may fail benignly without
 | |
| ** affecting functionality. This can happen when resizing hash tables 
 | |
| ** (failing to resize a hash-table is a performance hit, but not an 
 | |
| ** error) or sometimes during a rollback operation.
 | |
| **
 | |
| ** If the argument is true, sqlite3MallocBenignFailure() indicates that the
 | |
| ** next call to allocate memory may fail benignly.
 | |
| **
 | |
| ** If sqlite3MallocEnterBenignBlock() is called with a non-zero argument,
 | |
| ** then all memory allocations requested before the next call to
 | |
| ** sqlite3MallocLeaveBenignBlock() may fail benignly.
 | |
| */
 | |
| void sqlite3MallocBenignFailure(int isBenign){
 | |
|   if( isBenign ){
 | |
|     mem.iNextIsBenign = 1;
 | |
|   }
 | |
| }
 | |
| void sqlite3MallocEnterBenignBlock(int isBenign){
 | |
|   if( isBenign ){
 | |
|     mem.iIsBenign = 1;
 | |
|   }
 | |
| }
 | |
| void sqlite3MallocLeaveBenignBlock(){
 | |
|   mem.iIsBenign = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following two routines are used to assert that no memory
 | |
| ** allocations occur between one call and the next.  The use of
 | |
| ** these routines does not change the computed results in any way.
 | |
| ** These routines are like asserts.
 | |
| */
 | |
| void sqlite3MallocDisallow(void){
 | |
|   assert( mem.mutex!=0 );
 | |
|   sqlite3_mutex_enter(mem.mutex);
 | |
|   mem.disallow++;
 | |
|   sqlite3_mutex_leave(mem.mutex);
 | |
| }
 | |
| void sqlite3MallocAllow(void){
 | |
|   assert( mem.mutex );
 | |
|   sqlite3_mutex_enter(mem.mutex);
 | |
|   assert( mem.disallow>0 );
 | |
|   mem.disallow--;
 | |
|   sqlite3_mutex_leave(mem.mutex);
 | |
| }
 | |
| 
 | |
| #endif /* SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */
 |