/* ** 2002 February 23 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement various SQL ** functions of SQLite. ** ** There is only one exported symbol in this file - the function ** sqliteRegisterBuildinFunctions() found at the bottom of the file. ** All other code has file scope. ** ** $Id$ */ #include "sqliteInt.h" #include #include #include #include "vdbeInt.h" /* ** Return the collating function associated with a function. */ static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){ return context->pColl; } /* ** Implementation of the non-aggregate min() and max() functions */ static void minmaxFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ int i; int mask; /* 0 for min() or 0xffffffff for max() */ int iBest; CollSeq *pColl; if( argc==0 ) return; mask = sqlite3_user_data(context)==0 ? 0 : -1; pColl = sqlite3GetFuncCollSeq(context); assert( pColl ); assert( mask==-1 || mask==0 ); iBest = 0; if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; for(i=1; i=0 ){ iBest = i; } } sqlite3_result_value(context, argv[iBest]); } /* ** Return the type of the argument. */ static void typeofFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const char *z = 0; switch( sqlite3_value_type(argv[0]) ){ case SQLITE_NULL: z = "null"; break; case SQLITE_INTEGER: z = "integer"; break; case SQLITE_TEXT: z = "text"; break; case SQLITE_FLOAT: z = "real"; break; case SQLITE_BLOB: z = "blob"; break; } sqlite3_result_text(context, z, -1, SQLITE_STATIC); } /* ** Implementation of the length() function */ static void lengthFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ int len; assert( argc==1 ); switch( sqlite3_value_type(argv[0]) ){ case SQLITE_BLOB: case SQLITE_INTEGER: case SQLITE_FLOAT: { sqlite3_result_int(context, sqlite3_value_bytes(argv[0])); break; } case SQLITE_TEXT: { const unsigned char *z = sqlite3_value_text(argv[0]); if( z==0 ) return; len = 0; while( *z ){ len++; SQLITE_SKIP_UTF8(z); } sqlite3_result_int(context, len); break; } default: { sqlite3_result_null(context); break; } } } /* ** Implementation of the abs() function */ static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ assert( argc==1 ); switch( sqlite3_value_type(argv[0]) ){ case SQLITE_INTEGER: { i64 iVal = sqlite3_value_int64(argv[0]); if( iVal<0 ){ if( (iVal<<1)==0 ){ sqlite3_result_error(context, "integer overflow", -1); return; } iVal = -iVal; } sqlite3_result_int64(context, iVal); break; } case SQLITE_NULL: { sqlite3_result_null(context); break; } default: { double rVal = sqlite3_value_double(argv[0]); if( rVal<0 ) rVal = -rVal; sqlite3_result_double(context, rVal); break; } } } /* ** Implementation of the substr() function. ** ** substr(x,p1,p2) returns p2 characters of x[] beginning with p1. ** p1 is 1-indexed. So substr(x,1,1) returns the first character ** of x. If x is text, then we actually count UTF-8 characters. ** If x is a blob, then we count bytes. ** ** If p1 is negative, then we begin abs(p1) from the end of x[]. */ static void substrFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const unsigned char *z; const unsigned char *z2; int len; int p0type; i64 p1, p2; assert( argc==3 ); p0type = sqlite3_value_type(argv[0]); if( p0type==SQLITE_BLOB ){ len = sqlite3_value_bytes(argv[0]); z = sqlite3_value_blob(argv[0]); if( z==0 ) return; assert( len==sqlite3_value_bytes(argv[0]) ); }else{ z = sqlite3_value_text(argv[0]); if( z==0 ) return; len = 0; for(z2=z; *z2; len++){ SQLITE_SKIP_UTF8(z2); } } p1 = sqlite3_value_int(argv[1]); p2 = sqlite3_value_int(argv[2]); if( p1<0 ){ p1 += len; if( p1<0 ){ p2 += p1; p1 = 0; } }else if( p1>0 ){ p1--; } if( p1+p2>len ){ p2 = len-p1; } if( p0type!=SQLITE_BLOB ){ while( *z && p1 ){ SQLITE_SKIP_UTF8(z); p1--; } for(z2=z; *z2 && p2; p2--){ SQLITE_SKIP_UTF8(z2); } sqlite3_result_text(context, (char*)z, z2-z, SQLITE_TRANSIENT); }else{ if( p2<0 ) p2 = 0; sqlite3_result_blob(context, (char*)&z[p1], p2, SQLITE_TRANSIENT); } } /* ** Implementation of the round() function */ static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ int n = 0; double r; char zBuf[500]; /* larger than the %f representation of the largest double */ assert( argc==1 || argc==2 ); if( argc==2 ){ if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return; n = sqlite3_value_int(argv[1]); if( n>30 ) n = 30; if( n<0 ) n = 0; } if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; r = sqlite3_value_double(argv[0]); sqlite3_snprintf(sizeof(zBuf),zBuf,"%.*f",n,r); sqlite3AtoF(zBuf, &r); sqlite3_result_double(context, r); } /* ** Allocate nByte bytes of space using sqlite3_malloc(). If the ** allocation fails, call sqlite3_result_error_nomem() to notify ** the database handle that malloc() has failed. */ static void *contextMalloc(sqlite3_context *context, int nByte){ char *z = sqlite3_malloc(nByte); if( !z && nByte>0 ){ sqlite3_result_error_nomem(context); } return z; } /* ** Implementation of the upper() and lower() SQL functions. */ static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ char *z1; const char *z2; int i, n; if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return; z2 = (char*)sqlite3_value_text(argv[0]); n = sqlite3_value_bytes(argv[0]); /* Verify that the call to _bytes() does not invalidate the _text() pointer */ assert( z2==(char*)sqlite3_value_text(argv[0]) ); if( z2 ){ z1 = contextMalloc(context, n+1); if( z1 ){ memcpy(z1, z2, n+1); for(i=0; z1[i]; i++){ z1[i] = toupper(z1[i]); } sqlite3_result_text(context, z1, -1, sqlite3_free); } } } static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ char *z1; const char *z2; int i, n; if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return; z2 = (char*)sqlite3_value_text(argv[0]); n = sqlite3_value_bytes(argv[0]); /* Verify that the call to _bytes() does not invalidate the _text() pointer */ assert( z2==(char*)sqlite3_value_text(argv[0]) ); if( z2 ){ z1 = contextMalloc(context, n+1); if( z1 ){ memcpy(z1, z2, n+1); for(i=0; z1[i]; i++){ z1[i] = tolower(z1[i]); } sqlite3_result_text(context, z1, -1, sqlite3_free); } } } /* ** Implementation of the IFNULL(), NVL(), and COALESCE() functions. ** All three do the same thing. They return the first non-NULL ** argument. */ static void ifnullFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ int i; for(i=0; iSQLITE_MAX_LENGTH ){ sqlite3_result_error_toobig(context); return; } p = contextMalloc(context, n); if( p ){ sqlite3Randomness(n, p); sqlite3_result_blob(context, (char*)p, n, sqlite3_free); } } /* ** Implementation of the last_insert_rowid() SQL function. The return ** value is the same as the sqlite3_last_insert_rowid() API function. */ static void last_insert_rowid( sqlite3_context *context, int arg, sqlite3_value **argv ){ sqlite3 *db = sqlite3_user_data(context); sqlite3_result_int64(context, sqlite3_last_insert_rowid(db)); } /* ** Implementation of the changes() SQL function. The return value is the ** same as the sqlite3_changes() API function. */ static void changes( sqlite3_context *context, int arg, sqlite3_value **argv ){ sqlite3 *db = sqlite3_user_data(context); sqlite3_result_int(context, sqlite3_changes(db)); } /* ** Implementation of the total_changes() SQL function. The return value is ** the same as the sqlite3_total_changes() API function. */ static void total_changes( sqlite3_context *context, int arg, sqlite3_value **argv ){ sqlite3 *db = sqlite3_user_data(context); sqlite3_result_int(context, sqlite3_total_changes(db)); } /* ** A structure defining how to do GLOB-style comparisons. */ struct compareInfo { u8 matchAll; u8 matchOne; u8 matchSet; u8 noCase; }; static const struct compareInfo globInfo = { '*', '?', '[', 0 }; /* The correct SQL-92 behavior is for the LIKE operator to ignore ** case. Thus 'a' LIKE 'A' would be true. */ static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 }; /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator ** is case sensitive causing 'a' LIKE 'A' to be false */ static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 }; /* ** Compare two UTF-8 strings for equality where the first string can ** potentially be a "glob" expression. Return true (1) if they ** are the same and false (0) if they are different. ** ** Globbing rules: ** ** '*' Matches any sequence of zero or more characters. ** ** '?' Matches exactly one character. ** ** [...] Matches one character from the enclosed list of ** characters. ** ** [^...] Matches one character not in the enclosed list. ** ** With the [...] and [^...] matching, a ']' character can be included ** in the list by making it the first character after '[' or '^'. A ** range of characters can be specified using '-'. Example: ** "[a-z]" matches any single lower-case letter. To match a '-', make ** it the last character in the list. ** ** This routine is usually quick, but can be N**2 in the worst case. ** ** Hints: to match '*' or '?', put them in "[]". Like this: ** ** abc[*]xyz Matches "abc*xyz" only */ static int patternCompare( const u8 *zPattern, /* The glob pattern */ const u8 *zString, /* The string to compare against the glob */ const struct compareInfo *pInfo, /* Information about how to do the compare */ const int esc /* The escape character */ ){ int c, c2; int invert; int seen; u8 matchOne = pInfo->matchOne; u8 matchAll = pInfo->matchAll; u8 matchSet = pInfo->matchSet; u8 noCase = pInfo->noCase; int prevEscape = 0; /* True if the previous character was 'escape' */ while( (c = sqlite3Utf8Read(zPattern,0,&zPattern))!=0 ){ if( !prevEscape && c==matchAll ){ while( (c=sqlite3Utf8Read(zPattern,0,&zPattern)) == matchAll || c == matchOne ){ if( c==matchOne && sqlite3Utf8Read(zString, 0, &zString)==0 ){ return 0; } } if( c==0 ){ return 1; }else if( c==esc ){ c = sqlite3Utf8Read(zPattern, 0, &zPattern); if( c==0 ){ return 0; } }else if( c==matchSet ){ assert( esc==0 ); /* This is GLOB, not LIKE */ assert( matchSet<0x80 ); /* '[' is a single-byte character */ while( *zString && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){ SQLITE_SKIP_UTF8(zString); } return *zString!=0; } while( (c2 = sqlite3Utf8Read(zString,0,&zString))!=0 ){ if( noCase ){ c2 = c2<0x80 ? sqlite3UpperToLower[c2] : c2; c = c<0x80 ? sqlite3UpperToLower[c] : c; while( c2 != 0 && c2 != c ){ c2 = sqlite3Utf8Read(zString, 0, &zString); if( c2<0x80 ) c2 = sqlite3UpperToLower[c2]; } }else{ while( c2 != 0 && c2 != c ){ c2 = sqlite3Utf8Read(zString, 0, &zString); } } if( c2==0 ) return 0; if( patternCompare(zPattern,zString,pInfo,esc) ) return 1; } return 0; }else if( !prevEscape && c==matchOne ){ if( sqlite3Utf8Read(zString, 0, &zString)==0 ){ return 0; } }else if( c==matchSet ){ int prior_c = 0; assert( esc==0 ); /* This only occurs for GLOB, not LIKE */ seen = 0; invert = 0; c = sqlite3Utf8Read(zString, 0, &zString); if( c==0 ) return 0; c2 = sqlite3Utf8Read(zPattern, 0, &zPattern); if( c2=='^' ){ invert = 1; c2 = sqlite3Utf8Read(zPattern, 0, &zPattern); } if( c2==']' ){ if( c==']' ) seen = 1; c2 = sqlite3Utf8Read(zPattern, 0, &zPattern); } while( c2 && c2!=']' ){ if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){ c2 = sqlite3Utf8Read(zPattern, 0, &zPattern); if( c>=prior_c && c<=c2 ) seen = 1; prior_c = 0; }else{ if( c==c2 ){ seen = 1; } prior_c = c2; } c2 = sqlite3Utf8Read(zPattern, 0, &zPattern); } if( c2==0 || (seen ^ invert)==0 ){ return 0; } }else if( esc==c && !prevEscape ){ prevEscape = 1; }else{ c2 = sqlite3Utf8Read(zString, 0, &zString); if( noCase ){ c = c<0x80 ? sqlite3UpperToLower[c] : c; c2 = c2<0x80 ? sqlite3UpperToLower[c2] : c2; } if( c!=c2 ){ return 0; } prevEscape = 0; } } return *zString==0; } /* ** Count the number of times that the LIKE operator (or GLOB which is ** just a variation of LIKE) gets called. This is used for testing ** only. */ #ifdef SQLITE_TEST int sqlite3_like_count = 0; #endif /* ** Implementation of the like() SQL function. This function implements ** the build-in LIKE operator. The first argument to the function is the ** pattern and the second argument is the string. So, the SQL statements: ** ** A LIKE B ** ** is implemented as like(B,A). ** ** This same function (with a different compareInfo structure) computes ** the GLOB operator. */ static void likeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const unsigned char *zA, *zB; int escape = 0; zB = sqlite3_value_text(argv[0]); zA = sqlite3_value_text(argv[1]); /* Limit the length of the LIKE or GLOB pattern to avoid problems ** of deep recursion and N*N behavior in patternCompare(). */ if( sqlite3_value_bytes(argv[0])>SQLITE_MAX_LIKE_PATTERN_LENGTH ){ sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1); return; } assert( zB==sqlite3_value_text(argv[0]) ); /* Encoding did not change */ if( argc==3 ){ /* The escape character string must consist of a single UTF-8 character. ** Otherwise, return an error. */ const unsigned char *zEsc = sqlite3_value_text(argv[2]); if( zEsc==0 ) return; if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){ sqlite3_result_error(context, "ESCAPE expression must be a single character", -1); return; } escape = sqlite3Utf8Read(zEsc, 0, &zEsc); } if( zA && zB ){ struct compareInfo *pInfo = sqlite3_user_data(context); #ifdef SQLITE_TEST sqlite3_like_count++; #endif sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape)); } } /* ** Implementation of the NULLIF(x,y) function. The result is the first ** argument if the arguments are different. The result is NULL if the ** arguments are equal to each other. */ static void nullifFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ CollSeq *pColl = sqlite3GetFuncCollSeq(context); if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){ sqlite3_result_value(context, argv[0]); } } /* ** Implementation of the VERSION(*) function. The result is the version ** of the SQLite library that is running. */ static void versionFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ sqlite3_result_text(context, sqlite3_version, -1, SQLITE_STATIC); } /* Array for converting from half-bytes (nybbles) into ASCII hex ** digits. */ static const char hexdigits[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' }; /* ** EXPERIMENTAL - This is not an official function. The interface may ** change. This function may disappear. Do not write code that depends ** on this function. ** ** Implementation of the QUOTE() function. This function takes a single ** argument. If the argument is numeric, the return value is the same as ** the argument. If the argument is NULL, the return value is the string ** "NULL". Otherwise, the argument is enclosed in single quotes with ** single-quote escapes. */ static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ if( argc<1 ) return; switch( sqlite3_value_type(argv[0]) ){ case SQLITE_NULL: { sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC); break; } case SQLITE_INTEGER: case SQLITE_FLOAT: { sqlite3_result_value(context, argv[0]); break; } case SQLITE_BLOB: { char *zText = 0; char const *zBlob = sqlite3_value_blob(argv[0]); int nBlob = sqlite3_value_bytes(argv[0]); assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ if( 2*nBlob+4>SQLITE_MAX_LENGTH ){ sqlite3_result_error_toobig(context); return; } zText = (char *)contextMalloc(context, (2*nBlob)+4); if( zText ){ int i; for(i=0; i>4)&0x0F]; zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F]; } zText[(nBlob*2)+2] = '\''; zText[(nBlob*2)+3] = '\0'; zText[0] = 'X'; zText[1] = '\''; sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT); sqlite3_free(zText); } break; } case SQLITE_TEXT: { int i,j; u64 n; const unsigned char *zArg = sqlite3_value_text(argv[0]); char *z; if( zArg==0 ) return; for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; } if( i+n+3>SQLITE_MAX_LENGTH ){ sqlite3_result_error_toobig(context); return; } z = contextMalloc(context, i+n+3); if( z ){ z[0] = '\''; for(i=0, j=1; zArg[i]; i++){ z[j++] = zArg[i]; if( zArg[i]=='\'' ){ z[j++] = '\''; } } z[j++] = '\''; z[j] = 0; sqlite3_result_text(context, z, j, sqlite3_free); } } } } /* ** The hex() function. Interpret the argument as a blob. Return ** a hexadecimal rendering as text. */ static void hexFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ int i, n; const unsigned char *pBlob; char *zHex, *z; assert( argc==1 ); pBlob = sqlite3_value_blob(argv[0]); n = sqlite3_value_bytes(argv[0]); if( n*2+1>SQLITE_MAX_LENGTH ){ sqlite3_result_error_toobig(context); return; } assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ z = zHex = contextMalloc(context, n*2 + 1); if( zHex ){ for(i=0; i>4)&0xf]; *(z++) = hexdigits[c&0xf]; } *z = 0; sqlite3_result_text(context, zHex, n*2, sqlite3_free); } } /* ** The zeroblob(N) function returns a zero-filled blob of size N bytes. */ static void zeroblobFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ i64 n; assert( argc==1 ); n = sqlite3_value_int64(argv[0]); if( n>SQLITE_MAX_LENGTH ){ sqlite3_result_error_toobig(context); }else{ sqlite3_result_zeroblob(context, n); } } /* ** The replace() function. Three arguments are all strings: call ** them A, B, and C. The result is also a string which is derived ** from A by replacing every occurance of B with C. The match ** must be exact. Collating sequences are not used. */ static void replaceFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const unsigned char *zStr; /* The input string A */ const unsigned char *zPattern; /* The pattern string B */ const unsigned char *zRep; /* The replacement string C */ unsigned char *zOut; /* The output */ int nStr; /* Size of zStr */ int nPattern; /* Size of zPattern */ int nRep; /* Size of zRep */ i64 nOut; /* Maximum size of zOut */ int loopLimit; /* Last zStr[] that might match zPattern[] */ int i, j; /* Loop counters */ assert( argc==3 ); zStr = sqlite3_value_text(argv[0]); if( zStr==0 ) return; nStr = sqlite3_value_bytes(argv[0]); assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */ zPattern = sqlite3_value_text(argv[1]); if( zPattern==0 || zPattern[0]==0 ) return; nPattern = sqlite3_value_bytes(argv[1]); assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */ zRep = sqlite3_value_text(argv[2]); if( zRep==0 ) return; nRep = sqlite3_value_bytes(argv[2]); assert( zRep==sqlite3_value_text(argv[2]) ); nOut = nStr + 1; assert( nOut=SQLITE_MAX_LENGTH ){ sqlite3_result_error_toobig(context); sqlite3_free(zOut); return; } zOld = zOut; zOut = sqlite3_realloc(zOut, (int)nOut); if( zOut==0 ){ sqlite3_result_error_nomem(context); sqlite3_free(zOld); return; } memcpy(&zOut[j], zRep, nRep); j += nRep; i += nPattern-1; } } assert( j+nStr-i+1==nOut ); memcpy(&zOut[j], &zStr[i], nStr-i); j += nStr - i; assert( j<=nOut ); zOut[j] = 0; sqlite3_result_text(context, (char*)zOut, j, sqlite3_free); } /* ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions. ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both. */ static void trimFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const unsigned char *zIn; /* Input string */ const unsigned char *zCharSet; /* Set of characters to trim */ int nIn; /* Number of bytes in input */ int flags; /* 1: trimleft 2: trimright 3: trim */ int i; /* Loop counter */ unsigned char *aLen; /* Length of each character in zCharSet */ const unsigned char **azChar; /* Individual characters in zCharSet */ int nChar; /* Number of characters in zCharSet */ if( sqlite3_value_type(argv[0])==SQLITE_NULL ){ return; } zIn = sqlite3_value_text(argv[0]); if( zIn==0 ) return; nIn = sqlite3_value_bytes(argv[0]); assert( zIn==sqlite3_value_text(argv[0]) ); if( argc==1 ){ static const unsigned char lenOne[] = { 1 }; static const unsigned char *azOne[] = { (u8*)" " }; nChar = 1; aLen = (u8*)lenOne; azChar = azOne; zCharSet = 0; }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){ return; }else{ const unsigned char *z; for(z=zCharSet, nChar=0; *z; nChar++){ SQLITE_SKIP_UTF8(z); } if( nChar>0 ){ azChar = contextMalloc(context, nChar*(sizeof(char*)+1)); if( azChar==0 ){ return; } aLen = (unsigned char*)&azChar[nChar]; for(z=zCharSet, nChar=0; *z; nChar++){ azChar[nChar] = z; SQLITE_SKIP_UTF8(z); aLen[nChar] = z - azChar[nChar]; } } } if( nChar>0 ){ flags = (int)sqlite3_user_data(context); if( flags & 1 ){ while( nIn>0 ){ int len; for(i=0; i=nChar ) break; zIn += len; nIn -= len; } } if( flags & 2 ){ while( nIn>0 ){ int len; for(i=0; i=nChar ) break; nIn -= len; } } if( zCharSet ){ sqlite3_free(azChar); } } sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT); } #ifdef SQLITE_SOUNDEX /* ** Compute the soundex encoding of a word. */ static void soundexFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ char zResult[8]; const u8 *zIn; int i, j; static const unsigned char iCode[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, }; assert( argc==1 ); zIn = (u8*)sqlite3_value_text(argv[0]); if( zIn==0 ) zIn = (u8*)""; for(i=0; zIn[i] && !isalpha(zIn[i]); i++){} if( zIn[i] ){ u8 prevcode = iCode[zIn[i]&0x7f]; zResult[0] = toupper(zIn[i]); for(j=1; j<4 && zIn[i]; i++){ int code = iCode[zIn[i]&0x7f]; if( code>0 ){ if( code!=prevcode ){ prevcode = code; zResult[j++] = code + '0'; } }else{ prevcode = 0; } } while( j<4 ){ zResult[j++] = '0'; } zResult[j] = 0; sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT); }else{ sqlite3_result_text(context, "?000", 4, SQLITE_STATIC); } } #endif #ifndef SQLITE_OMIT_LOAD_EXTENSION /* ** A function that loads a shared-library extension then returns NULL. */ static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){ const char *zFile = (const char *)sqlite3_value_text(argv[0]); const char *zProc; sqlite3 *db = sqlite3_user_data(context); char *zErrMsg = 0; if( argc==2 ){ zProc = (const char *)sqlite3_value_text(argv[1]); }else{ zProc = 0; } if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){ sqlite3_result_error(context, zErrMsg, -1); sqlite3_free(zErrMsg); } } #endif #ifdef SQLITE_TEST /* ** This function generates a string of random characters. Used for ** generating test data. */ static void randStr(sqlite3_context *context, int argc, sqlite3_value **argv){ static const unsigned char zSrc[] = "abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "0123456789" ".-!,:*^+=_|?/<> "; int iMin, iMax, n, r, i; unsigned char zBuf[1000]; /* It used to be possible to call randstr() with any number of arguments, ** but now it is registered with SQLite as requiring exactly 2. */ assert(argc==2); iMin = sqlite3_value_int(argv[0]); if( iMin<0 ) iMin = 0; if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1; iMax = sqlite3_value_int(argv[1]); if( iMax=sizeof(zBuf) ) iMax = sizeof(zBuf)-1; n = iMin; if( iMax>iMin ){ sqlite3Randomness(sizeof(r), &r); r &= 0x7fffffff; n += r%(iMax + 1 - iMin); } assert( ncnt++; if( type==SQLITE_INTEGER ){ i64 v = sqlite3_value_int64(argv[0]); p->rSum += v; if( (p->approx|p->overflow)==0 ){ i64 iNewSum = p->iSum + v; int s1 = p->iSum >> (sizeof(i64)*8-1); int s2 = v >> (sizeof(i64)*8-1); int s3 = iNewSum >> (sizeof(i64)*8-1); p->overflow = (s1&s2&~s3) | (~s1&~s2&s3); p->iSum = iNewSum; } }else{ p->rSum += sqlite3_value_double(argv[0]); p->approx = 1; } } } static void sumFinalize(sqlite3_context *context){ SumCtx *p; p = sqlite3_aggregate_context(context, 0); if( p && p->cnt>0 ){ if( p->overflow ){ sqlite3_result_error(context,"integer overflow",-1); }else if( p->approx ){ sqlite3_result_double(context, p->rSum); }else{ sqlite3_result_int64(context, p->iSum); } } } static void avgFinalize(sqlite3_context *context){ SumCtx *p; p = sqlite3_aggregate_context(context, 0); if( p && p->cnt>0 ){ sqlite3_result_double(context, p->rSum/(double)p->cnt); } } static void totalFinalize(sqlite3_context *context){ SumCtx *p; p = sqlite3_aggregate_context(context, 0); sqlite3_result_double(context, p ? p->rSum : 0.0); } /* ** The following structure keeps track of state information for the ** count() aggregate function. */ typedef struct CountCtx CountCtx; struct CountCtx { i64 n; }; /* ** Routines to implement the count() aggregate function. */ static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){ CountCtx *p; p = sqlite3_aggregate_context(context, sizeof(*p)); if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){ p->n++; } } static void countFinalize(sqlite3_context *context){ CountCtx *p; p = sqlite3_aggregate_context(context, 0); sqlite3_result_int64(context, p ? p->n : 0); } /* ** Routines to implement min() and max() aggregate functions. */ static void minmaxStep(sqlite3_context *context, int argc, sqlite3_value **argv){ Mem *pArg = (Mem *)argv[0]; Mem *pBest; if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest)); if( !pBest ) return; if( pBest->flags ){ int max; int cmp; CollSeq *pColl = sqlite3GetFuncCollSeq(context); /* This step function is used for both the min() and max() aggregates, ** the only difference between the two being that the sense of the ** comparison is inverted. For the max() aggregate, the ** sqlite3_user_data() function returns (void *)-1. For min() it ** returns (void *)db, where db is the sqlite3* database pointer. ** Therefore the next statement sets variable 'max' to 1 for the max() ** aggregate, or 0 for min(). */ max = sqlite3_user_data(context)!=0; cmp = sqlite3MemCompare(pBest, pArg, pColl); if( (max && cmp<0) || (!max && cmp>0) ){ sqlite3VdbeMemCopy(pBest, pArg); } }else{ sqlite3VdbeMemCopy(pBest, pArg); } } static void minMaxFinalize(sqlite3_context *context){ sqlite3_value *pRes; pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0); if( pRes ){ if( pRes->flags ){ sqlite3_result_value(context, pRes); } sqlite3VdbeMemRelease(pRes); } } /* ** This function registered all of the above C functions as SQL ** functions. This should be the only routine in this file with ** external linkage. */ void sqlite3RegisterBuiltinFunctions(sqlite3 *db){ static const struct { char *zName; signed char nArg; u8 argType; /* ff: db 1: 0, 2: 1, 3: 2,... N: N-1. */ u8 eTextRep; /* 1: UTF-16. 0: UTF-8 */ u8 needCollSeq; void (*xFunc)(sqlite3_context*,int,sqlite3_value **); } aFuncs[] = { { "min", -1, 0, SQLITE_UTF8, 1, minmaxFunc }, { "min", 0, 0, SQLITE_UTF8, 1, 0 }, { "max", -1, 1, SQLITE_UTF8, 1, minmaxFunc }, { "max", 0, 1, SQLITE_UTF8, 1, 0 }, { "typeof", 1, 0, SQLITE_UTF8, 0, typeofFunc }, { "length", 1, 0, SQLITE_UTF8, 0, lengthFunc }, { "substr", 3, 0, SQLITE_UTF8, 0, substrFunc }, { "abs", 1, 0, SQLITE_UTF8, 0, absFunc }, { "round", 1, 0, SQLITE_UTF8, 0, roundFunc }, { "round", 2, 0, SQLITE_UTF8, 0, roundFunc }, { "upper", 1, 0, SQLITE_UTF8, 0, upperFunc }, { "lower", 1, 0, SQLITE_UTF8, 0, lowerFunc }, { "coalesce", -1, 0, SQLITE_UTF8, 0, ifnullFunc }, { "coalesce", 0, 0, SQLITE_UTF8, 0, 0 }, { "coalesce", 1, 0, SQLITE_UTF8, 0, 0 }, { "hex", 1, 0, SQLITE_UTF8, 0, hexFunc }, { "ifnull", 2, 0, SQLITE_UTF8, 1, ifnullFunc }, { "random", -1, 0, SQLITE_UTF8, 0, randomFunc }, { "randomblob", 1, 0, SQLITE_UTF8, 0, randomBlob }, { "nullif", 2, 0, SQLITE_UTF8, 1, nullifFunc }, { "sqlite_version", 0, 0, SQLITE_UTF8, 0, versionFunc}, { "quote", 1, 0, SQLITE_UTF8, 0, quoteFunc }, { "last_insert_rowid", 0, 0xff, SQLITE_UTF8, 0, last_insert_rowid }, { "changes", 0, 0xff, SQLITE_UTF8, 0, changes }, { "total_changes", 0, 0xff, SQLITE_UTF8, 0, total_changes }, { "replace", 3, 0, SQLITE_UTF8, 0, replaceFunc }, { "ltrim", 1, 1, SQLITE_UTF8, 0, trimFunc }, { "ltrim", 2, 1, SQLITE_UTF8, 0, trimFunc }, { "rtrim", 1, 2, SQLITE_UTF8, 0, trimFunc }, { "rtrim", 2, 2, SQLITE_UTF8, 0, trimFunc }, { "trim", 1, 3, SQLITE_UTF8, 0, trimFunc }, { "trim", 2, 3, SQLITE_UTF8, 0, trimFunc }, { "zeroblob", 1, 0, SQLITE_UTF8, 0, zeroblobFunc }, #ifdef SQLITE_SOUNDEX { "soundex", 1, 0, SQLITE_UTF8, 0, soundexFunc}, #endif #ifndef SQLITE_OMIT_LOAD_EXTENSION { "load_extension", 1, 0xff, SQLITE_UTF8, 0, loadExt }, { "load_extension", 2, 0xff, SQLITE_UTF8, 0, loadExt }, #endif #ifdef SQLITE_TEST { "randstr", 2, 0, SQLITE_UTF8, 0, randStr }, { "test_destructor", 1, 0xff, SQLITE_UTF8, 0, test_destructor}, { "test_destructor_count", 0, 0, SQLITE_UTF8, 0, test_destructor_count}, { "test_auxdata", -1, 0, SQLITE_UTF8, 0, test_auxdata}, { "test_error", 1, 0, SQLITE_UTF8, 0, test_error}, #endif }; static const struct { char *zName; signed char nArg; u8 argType; u8 needCollSeq; void (*xStep)(sqlite3_context*,int,sqlite3_value**); void (*xFinalize)(sqlite3_context*); } aAggs[] = { { "min", 1, 0, 1, minmaxStep, minMaxFinalize }, { "max", 1, 1, 1, minmaxStep, minMaxFinalize }, { "sum", 1, 0, 0, sumStep, sumFinalize }, { "total", 1, 0, 0, sumStep, totalFinalize }, { "avg", 1, 0, 0, sumStep, avgFinalize }, { "count", 0, 0, 0, countStep, countFinalize }, { "count", 1, 0, 0, countStep, countFinalize }, }; int i; for(i=0; ineedCollSeq = 1; } } } #ifndef SQLITE_OMIT_ALTERTABLE sqlite3AlterFunctions(db); #endif #ifndef SQLITE_OMIT_PARSER sqlite3AttachFunctions(db); #endif for(i=0; ineedCollSeq = 1; } } } sqlite3RegisterDateTimeFunctions(db); if( !db->mallocFailed ){ int rc = sqlite3_overload_function(db, "MATCH", 2); assert( rc==SQLITE_NOMEM || rc==SQLITE_OK ); if( rc==SQLITE_NOMEM ){ db->mallocFailed = 1; } } #ifdef SQLITE_SSE (void)sqlite3SseFunctions(db); #endif #ifdef SQLITE_CASE_SENSITIVE_LIKE sqlite3RegisterLikeFunctions(db, 1); #else sqlite3RegisterLikeFunctions(db, 0); #endif } /* ** Set the LIKEOPT flag on the 2-argument function with the given name. */ static void setLikeOptFlag(sqlite3 *db, const char *zName, int flagVal){ FuncDef *pDef; pDef = sqlite3FindFunction(db, zName, strlen(zName), 2, SQLITE_UTF8, 0); if( pDef ){ pDef->flags = flagVal; } } /* ** Register the built-in LIKE and GLOB functions. The caseSensitive ** parameter determines whether or not the LIKE operator is case ** sensitive. GLOB is always case sensitive. */ void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){ struct compareInfo *pInfo; if( caseSensitive ){ pInfo = (struct compareInfo*)&likeInfoAlt; }else{ pInfo = (struct compareInfo*)&likeInfoNorm; } sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0); sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0); sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8, (struct compareInfo*)&globInfo, likeFunc, 0,0); setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE); setLikeOptFlag(db, "like", caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE); } /* ** pExpr points to an expression which implements a function. If ** it is appropriate to apply the LIKE optimization to that function ** then set aWc[0] through aWc[2] to the wildcard characters and ** return TRUE. If the function is not a LIKE-style function then ** return FALSE. */ int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){ FuncDef *pDef; if( pExpr->op!=TK_FUNCTION || !pExpr->pList ){ return 0; } if( pExpr->pList->nExpr!=2 ){ return 0; } pDef = sqlite3FindFunction(db, (char*)pExpr->token.z, pExpr->token.n, 2, SQLITE_UTF8, 0); if( pDef==0 || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){ return 0; } /* The memcpy() statement assumes that the wildcard characters are ** the first three statements in the compareInfo structure. The ** asserts() that follow verify that assumption */ memcpy(aWc, pDef->pUserData, 3); assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll ); assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne ); assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet ); *pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0; return 1; }