
libcurl(3) libcurl overview libcurl(3)

NAME
libcurl − client-side URL transfers

DESCRIPTION
This is an short overview on how to use libcurl in your C programs. There are specific man pages for each
function mentioned in here. There are also thelibcurl-easy(3)man page, thelibcurl-multi(3) man page, the
libcurl-share(3)man page and thelibcurl-tutorial(3) man page for in-depth understanding on how to pro-
gram with libcurl.

There are more than thirty custom bindings available that bring libcurl access to your favourite language.
Look elsewhere for documentation on those.

libcurl has a global constant environment that you must set up and maintain while using libcurl.This
essentially means you callcurl_global_init(3)at the start of your program andcurl_global_cleanup(3)at
the end. See GLOBAL CONSTANTS below for details.

To transfer files, you always set up an "easy handle" usingcurl_easy_init(3), but when you want the file(s)
transferred you have the option of using the "easy" interface, or the "multi" interface.

The easy interface is a synchronous interface with which you callcurl_easy_perform(3)and let it perform
the transfer. When it is completed, the function return and you can continue. More details are found in the
libcurl-easy(3)man page.

The multi interface on the other hand is an asynchronous interface, that you call and that performs only a
little piece of the transfer on each invoke. It is perfect if you want to do things while the transfer is in
progress, or similar. The multi interface allows you to select() on libcurl action, and even to easily down-
load multiple files simultaneously using a single thread. See further deails in thelibcurl-multi(3) man page.

You can have multiple easy handles share certain data, even if they are used in different threads. This magic
is setup using the share interface, as described in thelibcurl-share(3)man page.

There is also a series of other helpful functions to use, including these:

curl_version_info()
gets detailed libcurl (and other used libraries) version info

curl_getdate()
converts a date string to time_t

curl_easy_getinfo()
get information about a performed transfer

curl_formadd()
helps building an HTTP form POST

curl_formfree()
free a list built withcurl_formadd(3)

curl_slist_append()
builds a linked list

curl_slist_free_all()
frees a whole curl_slist

LINKING WITH LIBCURL
On unix-like machines, there’s a tool named curl-config that gets installed with the rest of the curl stuff
when ’make install’ is performed.

curl-config is added to make it easier for applications to link with libcurl and developers to learn about

libcurl 7.9.6 19 March 2002 1



libcurl(3) libcurl overview libcurl(3)

libcurl and how to use it.

Run ’curl-config --libs’ to get the (additional) linker options you need to link with the particular version of
libcurl you’ve installed. See thecurl-config(1)man page for further details.

Unix-like operating system that ship libcurl as part of their distributions often don’t provide the curl-config
tool, but simply install the library and headers in the common path for this purpose.

LIBCURL SYMBOL NAMES
All public functions in the libcurl interface are prefixed with ’curl_’ (with a lowercase c). You can find
other functions in the library source code, but other prefixes indicate that the functions are private and may
change without further notice in the next release.

Only use documented functions and functionality!

PORTABILITY
libcurl worksexactly the same, on any of the platforms it compiles and builds on.

THREADS
Never ever call curl-functions simultaneously using the same handle from several threads. libcurl is thread-
safe and can be used in any number of threads, but you must use separate curl handles if you want to use
libcurl in more than one thread simultaneously.

The global environment functions are not thread-safe. See GLOBAL CONSTANTS below for details.

PERSISTENT CONNECTIONS
Persistent connections means that libcurl can re-use the same connection for several transfers, if the condi-
tions are right.

libcurl will always attempt to use persistent connections. Whenever you usecurl_easy_perform(3)or
curl_multi_perform(3), libcurl will attempt to use an existing connection to do the transfer, and if none
exists it’ll open a new one that will be subject for re-use on a possible following call to curl_easy_per-
form(3)or curl_multi_perform(3).

To allow libcurl to take full advantage of persistent connections, you should do as many of your file trans-
fers as possible using the same curl handle. When you callcurl_easy_cleanup(3), all the possibly open con-
nections held by libcurl will be closed and forgotten.

Note that the options set withcurl_easy_setopt(3)will be used in on every repeatedcurl_easy_perform(3)
call.

GLOBAL CONSTANTS
There are a variety of constants that libcurl uses, mainly through its internal use of other libraries, which are
too complicated for the library loader to set up. Therefore, a program must call a library function after the
program is loaded and running to finish setting up the library code.For example, when libcurl is built for
SSL capability via the GNU TLS library, there is an elaborate tree inside that library that describes the SSL
protocol.

curl_global_init() is the function that you must call. This may allocate resources (e.g. the memory for the
GNU TLS tree mentioned above), so the companion functioncurl_global_cleanup()releases them.

The basic rule for constructing a program that uses libcurl is this: Callcurl_global_init(), with a
CURL_GLOBAL_ALLargument, immediately after the program starts, while it is still only one thread and
before it uses libcurl at all.Call curl_global_cleanup()immediately before the program exits, when the

libcurl 7.9.6 19 March 2002 2



libcurl(3) libcurl overview libcurl(3)

program is again only one thread and after its last use of libcurl.

You can call both of these multiple times, as long as all calls meet these requirements and the number of
calls to each is the same.

It isn’t actually required that the functions be called at the beginning and end of the program -- that’s just
usually the easiest way to do it. It is required that the functions be called when no other thread in the pro-
gram is running.

These global constant functions arenot thread safe, so you must not call them when any other thread in the
program is running. It isn’t good enough that no other thread is using libcurl at the time, because these
functions internally call similar functions of other libraries, and those functions are similarly thread-unsafe.
You can’t generally know what these libraries are, or whether other threads are using them.

The global constant situation merits special consideration when the code you are writing to use libcurl is
not the main program, but rather a modular piece of a program, e.g. another library. As a module, your
code doesn’t know about other parts of the program -- it doesn’t know whether they use libcurl or not.And
its code doesn’t necessarily run at the start and end of the whole program.

A module like this must have global constant functions of its own, just like curl_global_init() and
curl_global_cleanup(). The module thus has control at the beginning and end of the program and has a
place to call the libcurl functions. Note that if multiple modules in the program use libcurl, they all will
separately call the libcurl functions, and that’s OK because only the firstcurl_global_init() and the last
curl_global_cleanup()in a program changes anything. (libcurluses a reference count in static memory).

In a C++ module, it is common to deal with the global constant situation by defining a special class that
represents the global constant environment of the module.A program always has exactly one object of the
class, in static storage. That way, the program automatically calls the constructor of the object as the pro-
gram starts up and the destructor as it terminates. As the author of this libcurl-using module, you can make
the constructor callcurl_global_init() and the destructor callcurl_global_cleanup()and satisfy libcurl’s
requirements without your user having to think about it.

curl_global_init()has an argument that tells what particular parts of the global constant environment to set
up. In order to successfully use any value exceptCURL_GLOBAL_ALL(which says to set up the whole
thing), you must have specific knowledge of internal workings of libcurl and all other parts of the program
of which it is part.

A special part of the global constant environment is the identity of the memory allocator. curl_global_init()
selects the system default memory allocator, but you can usecurl_global_init_mem()to supply one of your
own. However, there is no way to usecurl_global_init_mem()in a modular program -- all modules in the
program that might use libcurl would have to agree on one allocator.

There is a failsafe in libcurl that makes it usable in simple situations without you having to worry about the
global constant environment at all:curl_easy_init()sets up the environment itself if it hasn’t been done yet.
The resources it acquires to do so get released by the operating system automatically when the program
exits.

This failsafe feature exists mainly for backward compatibility because there was a time when the global
functions didn’t exist. Becauseit is sufficient only in the simplest of programs, it is not recommended for
any program to rely on it.

libcurl 7.9.6 19 March 2002 3


