libcurl-multi(3) libcurl multi interface libcurl-multi(3)

NAME
libcurl-multi — haw to use the multi interface

DESCRIPTION
This is an werview on how to use the libcurl multi integfice in your C programs. There are specific man
pages for each function mentioned in here. Thkeglsb thelibcurl-tutorial(3) man page for a complete
tutorial to programming with libcurl and tHibcurl-easy(3) man page for anverview of the libcurl easy
interface.

All functions in the multi interface are prefixed with curl_multi.

OBJECTIVES
The multi interface offers seral abilities that the easy interface doésiThey are mainly:

1. Enable a "pull" integfice. The application that uses libcurl decides where and when to ask libcurl to
get/send data.

2. Enable multiple simultaneous transfers in the same thread without making it complicated for the applica-
tion.

3. Enable the application toait for action on its own file descriptors and auflle descriptors simultane-
ous easily.

ONE MULTI HANDLE MANY EASY HANDLES
To use the multi interface, you must first create a 'multi handle’ with multi_init(3). This handle is then
used as input to all further curl_multi_* functions.

Each single transfer isubit up with an easy handle. You must create them, and setup the appropriate
options for each easy handle, as outlined iditteerrl(3) man page, usingurl_easy setopt(3).

When the easy handle is setup for a trangtfien instead of usingurl_easy perform(3) (as when using the

easy interface for transfers), you should instead add the easy handle to the multi handle using
curl_multi_add_handle(3). The multi handle is sometimes referred to as a “multi stack” because attthe f
that it may hold a large amount of easy handles.

Should you change your mind, the easy handle is againvedmfsom the multi stack using
curl_multi_remove_handle(3). Once remwed from the multi handle, you canag use other easy intade
functions likecurl_easy perform(3) on the handle or whater you think is necessary.

Adding the easy handle to the multi handle does not start the traRefeember that one of the main ideas
with this interface is to let your application @i You drive the transfers by iroking curl_multi_per-
form(3). libcurl will then transfer data if there is anythingpitable to transferit’'ll use the callbacks and
evaything else you ha tup in the individual easy handles. It'll transfer data on all current transfers in
the multi stack that are ready to transfer anything. It may be all, it may be none.

Your application can acquire knowledge from libcurl when it would tik get invoked to transfer data, so

that you dort haveto busy-loop and call thaturl_multi_perform(3) like aazy.curl_multi_fdset(3) offers

an interface using which you carteact fd_sets from libcurl to use in select() or poll() calls in order to get

to knav when the transfers in the multi stack might need attention. This also makes it very easy for your
program to wait for input on your own pate file descriptors at the same time or perhaps timeauy e

now and then, should you want that.

A little note here about the return codes from the multi functions, and especiallyltimaulti_perform(3):

if you receve CURLM_CALL MULTI_PERFORM, this basically means that you should call
curl_multi_perform(3) again, before you select() on more actions. You tibaveto do it immediatelybut

the return code means that libcurl mayéaore data @ailable to return or that there may be more data to

libcurl 7.16.0 3 Feb 2007 1



libcurl-multi(3) libcurl multi interface libcurl-multi(3)

send of before it is "satisfied".

curl_multi_perform(3) stores the number of still running transfers in one of its inpyuraents, and by
reading that you can figure out when all the transfers in the multi handles are done. 'done’ does not mean
successful. One or more of the transfers mase Hailed. Tracking when this number changes, youwkno

when one or more transfers are done.

To ¢et information about completed transfers, to figure out success or not and ,similar
curl_multi_info_read(3) should be called. It can return a message about a current or previous .transfer
Repeated wokes o the function get more messages until the message queue is Engpiiyformation you

receve there includes an easy handle pointer which you may use to identify which easy handle the informa-
tion regards.

When a single transfer is completed, the easy handle is still left added to the multi stanked to first
remove the easy handle witturl_multi_remove_handle(3) and then close it withurl_easy cleanup(3), or
possibly set n& options to it and add it again witurl_multi_add_handle(3) to start another transfer.

When all transfers in the multi stack are done, cleanup the multi handleuslitimulti_cleanup(3). Be
careful and please note that ypUST invoke sparatecurl_easy cleanup(3) calls on gery single easy
handle to clean them up properly.

If you want to re-use an easy handle thaswdded to the multi handle for transj@u must first remee it
from the multi stack and then re-add itaag (possibly after having altered some options at yeum o
choice).

MULTI_SOCKET
Since 7.16.0, theurl_multi_socket(3) function offers a way for applications to not onlxoia being forced

to use select(), but it alsofefs a much more high-performing API that will neak sgnificant diference
for applications using large numbers of simultaneous connections.

curl_multi_socket(3) (andcurl_multi_socket_all(3)) is then used instead obrl_multi_perform(3).

BLOCKING

A few aeas in the code are still using blocking codenenvhen used from the multi interface. While we
certainly want and intend for these to get fixed in the future, you shoulddbe af the follaving current
restrictions:

- Name resolves on non-windows unless c-ares is used
- GnuTLS SSL connections

- Active FTP connections

- HTTP proxy CONNECT operations

- TFTP transfers

- file:/l transfers

libcurl 7.16.0 3 Feb 2007 2



