/** * vim: set ts=4 sw=4 tw=99 noet : * ============================================================================= * SourceMod * Copyright (C) 2004-2011 AlliedModders LLC. All rights reserved. * ============================================================================= * * This program is free software; you can redistribute it and/or modify it under * the terms of the GNU General Public License, version 3.0, as published by the * Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . * * As a special exception, AlliedModders LLC gives you permission to link the * code of this program (as well as its derivative works) to "Half-Life 2," the * "Source Engine," the "SourcePawn JIT," and any Game MODs that run on software * by the Valve Corporation. You must obey the GNU General Public License in * all respects for all other code used. Additionally, AlliedModders LLC grants * this exception to all derivative works. AlliedModders LLC defines further * exceptions, found in LICENSE.txt (as of this writing, version JULY-31-2007), * or . */ #include "MemoryUtils.h" #ifdef PLATFORM_LINUX #include #include #include #define PAGE_SIZE 4096 #define PAGE_ALIGN_UP(x) ((x + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1)) #endif #ifdef PLATFORM_APPLE #include #include #include #include #include #endif // PLATFORM_APPLE MemoryUtils g_MemUtils; MemoryUtils::MemoryUtils() { #ifdef PLATFORM_APPLE task_dyld_info_data_t dyld_info; mach_msg_type_number_t count = TASK_DYLD_INFO_COUNT; task_info(mach_task_self(), TASK_DYLD_INFO, (task_info_t)&dyld_info, &count); m_ImageList = (struct dyld_all_image_infos *)dyld_info.all_image_info_addr; #endif } MemoryUtils::~MemoryUtils() { #if defined PLATFORM_LINUX || defined PLATFORM_APPLE for (size_t i = 0; i < m_SymTables.size(); i++) { delete m_SymTables[i]; } m_SymTables.clear(); #endif } void MemoryUtils::OnSourceModAllInitialized() { sharesys->AddInterface(NULL, this); } void *MemoryUtils::FindPattern(const void *libPtr, const char *pattern, size_t len) { DynLibInfo lib; bool found; char *ptr, *end; memset(&lib, 0, sizeof(DynLibInfo)); if (!GetLibraryInfo(libPtr, lib)) { return NULL; } ptr = reinterpret_cast(lib.baseAddress); end = ptr + lib.memorySize - len; while (ptr < end) { found = true; for (register size_t i = 0; i < len; i++) { if (pattern[i] != '\x2A' && pattern[i] != ptr[i]) { found = false; break; } } if (found) return ptr; ptr++; } return NULL; } void *MemoryUtils::ResolveSymbol(void *handle, const char *symbol) { #ifdef PLATFORM_WINDOWS return GetProcAddress((HMODULE)handle, symbol); #elif defined PLATFORM_LINUX #ifdef PLATFORM_X86 typedef Elf32_Ehdr ElfHeader; typedef Elf32_Shdr ElfSHeader; typedef Elf32_Sym ElfSymbol; #define ELF_SYM_TYPE ELF32_ST_TYPE #else typedef Elf64_Ehdr ElfHeader; typedef Elf64_Shdr ElfSHeader; typedef Elf64_Sym ElfSymbol; #define ELF_SYM_TYPE ELF64_ST_TYPE #endif struct link_map *dlmap; struct stat dlstat; int dlfile; uintptr_t map_base; ElfHeader *file_hdr; ElfSHeader *sections, *shstrtab_hdr, *symtab_hdr, *strtab_hdr; ElfSymbol *symtab; const char *shstrtab, *strtab; uint16_t section_count; uint32_t symbol_count; LibSymbolTable *libtable; SymbolTable *table; Symbol *symbol_entry; dlmap = (struct link_map *)handle; symtab_hdr = NULL; strtab_hdr = NULL; table = NULL; /* See if we already have a symbol table for this library */ for (size_t i = 0; i < m_SymTables.size(); i++) { libtable = m_SymTables[i]; if (libtable->lib_base == dlmap->l_addr) { table = &libtable->table; break; } } /* If we don't have a symbol table for this library, then create one */ if (table == NULL) { libtable = new LibSymbolTable(); libtable->table.Initialize(); libtable->lib_base = dlmap->l_addr; libtable->last_pos = 0; table = &libtable->table; m_SymTables.push_back(libtable); } /* See if the symbol is already cached in our table */ symbol_entry = table->FindSymbol(symbol, strlen(symbol)); if (symbol_entry != NULL) { return symbol_entry->address; } /* If symbol isn't in our table, then we have open the actual library */ dlfile = open(dlmap->l_name, O_RDONLY); if (dlfile == -1 || fstat(dlfile, &dlstat) == -1) { close(dlfile); return NULL; } /* Map library file into memory */ file_hdr = (ElfHeader *)mmap(NULL, dlstat.st_size, PROT_READ, MAP_PRIVATE, dlfile, 0); map_base = (uintptr_t)file_hdr; if (file_hdr == MAP_FAILED) { close(dlfile); return NULL; } close(dlfile); if (file_hdr->e_shoff == 0 || file_hdr->e_shstrndx == SHN_UNDEF) { munmap(file_hdr, dlstat.st_size); return NULL; } sections = (ElfSHeader *)(map_base + file_hdr->e_shoff); section_count = file_hdr->e_shnum; /* Get ELF section header string table */ shstrtab_hdr = §ions[file_hdr->e_shstrndx]; shstrtab = (const char *)(map_base + shstrtab_hdr->sh_offset); /* Iterate sections while looking for ELF symbol table and string table */ for (uint16_t i = 0; i < section_count; i++) { ElfSHeader &hdr = sections[i]; const char *section_name = shstrtab + hdr.sh_name; if (strcmp(section_name, ".symtab") == 0) { symtab_hdr = &hdr; } else if (strcmp(section_name, ".strtab") == 0) { strtab_hdr = &hdr; } } /* Uh oh, we don't have a symbol table or a string table */ if (symtab_hdr == NULL || strtab_hdr == NULL) { munmap(file_hdr, dlstat.st_size); return NULL; } symtab = (ElfSymbol *)(map_base + symtab_hdr->sh_offset); strtab = (const char *)(map_base + strtab_hdr->sh_offset); symbol_count = symtab_hdr->sh_size / symtab_hdr->sh_entsize; /* Iterate symbol table starting from the position we were at last time */ for (uint32_t i = libtable->last_pos; i < symbol_count; i++) { ElfSymbol &sym = symtab[i]; unsigned char sym_type = ELF_SYM_TYPE(sym.st_info); const char *sym_name = strtab + sym.st_name; Symbol *cur_sym; /* Skip symbols that are undefined or do not refer to functions or objects */ if (sym.st_shndx == SHN_UNDEF || (sym_type != STT_FUNC && sym_type != STT_OBJECT)) { continue; } /* Caching symbols as we go along */ cur_sym = table->InternSymbol(sym_name, strlen(sym_name), (void *)(dlmap->l_addr + sym.st_value)); if (strcmp(symbol, sym_name) == 0) { symbol_entry = cur_sym; libtable->last_pos = ++i; break; } } munmap(file_hdr, dlstat.st_size); return symbol_entry ? symbol_entry->address : NULL; #elif defined PLATFORM_APPLE #ifdef PLATFORM_X86 typedef struct mach_header MachHeader; typedef struct segment_command MachSegment; typedef struct nlist MachSymbol; const uint32_t MACH_LOADCMD_SEGMENT = LC_SEGMENT; #else typedef struct mach_header_64 MachHeader; typedef struct segment_command_64 MachSegment; typedef struct nlist_64 MachSymbol; const uint32_t MACH_LOADCMD_SEGMENT = LC_SEGMENT_64; #endif typedef struct load_command MachLoadCmd; typedef struct symtab_command MachSymHeader; uintptr_t dlbase, linkedit_addr; uint32_t image_count; MachHeader *file_hdr; MachLoadCmd *loadcmds; MachSegment *linkedit_hdr; MachSymHeader *symtab_hdr; MachSymbol *symtab; const char *strtab; uint32_t loadcmd_count; uint32_t symbol_count; LibSymbolTable *libtable; SymbolTable *table; Symbol *symbol_entry; dlbase = 0; image_count = m_ImageList->infoArrayCount; linkedit_hdr = NULL; symtab_hdr = NULL; table = NULL; /* Loop through mach-o images in process. * We can skip index 0 since that is just the executable. */ for (uint32_t i = 1; i < image_count; i++) { const struct dyld_image_info &info = m_ImageList->infoArray[i]; /* "Load" each one until we get a matching handle */ void *h = dlopen(info.imageFilePath, RTLD_NOLOAD); if (h == handle) { dlbase = (uintptr_t)info.imageLoadAddress; dlclose(h); break; } dlclose(h); } if (!dlbase) { /* Uh oh, we couldn't find a matching handle */ return NULL; } /* See if we already have a symbol table for this library */ for (size_t i = 0; i < m_SymTables.size(); i++) { libtable = m_SymTables[i]; if (libtable->lib_base == dlbase) { table = &libtable->table; break; } } /* If we don't have a symbol table for this library, then create one */ if (table == NULL) { libtable = new LibSymbolTable(); libtable->table.Initialize(); libtable->lib_base = dlbase; libtable->last_pos = 0; table = &libtable->table; m_SymTables.push_back(libtable); } /* See if the symbol is already cached in our table */ symbol_entry = table->FindSymbol(symbol, strlen(symbol)); if (symbol_entry != NULL) { return symbol_entry->address; } /* If symbol isn't in our table, then we have to locate it in memory */ file_hdr = (MachHeader *)dlbase; loadcmds = (MachLoadCmd *)(dlbase + sizeof(MachHeader)); loadcmd_count = file_hdr->ncmds; /* Loop through load commands until we find the ones for the symbol table */ for (uint32_t i = 0; i < loadcmd_count; i++) { if (loadcmds->cmd == MACH_LOADCMD_SEGMENT && !linkedit_hdr) { MachSegment *seg = (MachSegment *)loadcmds; if (strcmp(seg->segname, "__LINKEDIT") == 0) { linkedit_hdr = seg; if (symtab_hdr) { break; } } } else if (loadcmds->cmd == LC_SYMTAB) { symtab_hdr = (MachSymHeader *)loadcmds; if (linkedit_hdr) { break; } } /* Load commands are not of a fixed size which is why we add the size */ loadcmds = (MachLoadCmd *)((uintptr_t)loadcmds + loadcmds->cmdsize); } if (!linkedit_hdr || !symtab_hdr || !symtab_hdr->symoff || !symtab_hdr->stroff) { /* Uh oh, no symbol table */ return NULL; } linkedit_addr = dlbase + linkedit_hdr->vmaddr; symtab = (MachSymbol *)(linkedit_addr + symtab_hdr->symoff - linkedit_hdr->fileoff); strtab = (const char *)(linkedit_addr + symtab_hdr->stroff - linkedit_hdr->fileoff); symbol_count = symtab_hdr->nsyms; /* Iterate symbol table starting from the position we were at last time */ for (uint32_t i = libtable->last_pos; i < symbol_count; i++) { MachSymbol &sym = symtab[i]; /* Ignore the prepended underscore on all symbols, so +1 here */ const char *sym_name = strtab + sym.n_un.n_strx + 1; Symbol *cur_sym; /* Skip symbols that are undefined */ if (sym.n_sect == NO_SECT) { continue; } /* Caching symbols as we go along */ cur_sym = table->InternSymbol(sym_name, strlen(sym_name), (void *)(dlbase + sym.n_value)); if (strcmp(symbol, sym_name) == 0) { symbol_entry = cur_sym; libtable->last_pos = ++i; break; } } return symbol_entry ? symbol_entry->address : NULL; #endif } bool MemoryUtils::GetLibraryInfo(const void *libPtr, DynLibInfo &lib) { uintptr_t baseAddr; if (libPtr == NULL) { return false; } #ifdef PLATFORM_WINDOWS #ifdef PLATFORM_X86 const WORD PE_FILE_MACHINE = IMAGE_FILE_MACHINE_I386; const WORD PE_NT_OPTIONAL_HDR_MAGIC = IMAGE_NT_OPTIONAL_HDR32_MAGIC; #else const WORD PE_FILE_MACHINE = IMAGE_FILE_MACHINE_AMD64; const WORD PE_NT_OPTIONAL_HDR_MAGIC = IMAGE_NT_OPTIONAL_HDR64_MAGIC; #endif MEMORY_BASIC_INFORMATION info; IMAGE_DOS_HEADER *dos; IMAGE_NT_HEADERS *pe; IMAGE_FILE_HEADER *file; IMAGE_OPTIONAL_HEADER *opt; if (!VirtualQuery(libPtr, &info, sizeof(MEMORY_BASIC_INFORMATION))) { return false; } baseAddr = reinterpret_cast(info.AllocationBase); /* All this is for our insane sanity checks :o */ dos = reinterpret_cast(baseAddr); pe = reinterpret_cast(baseAddr + dos->e_lfanew); file = &pe->FileHeader; opt = &pe->OptionalHeader; /* Check PE magic and signature */ if (dos->e_magic != IMAGE_DOS_SIGNATURE || pe->Signature != IMAGE_NT_SIGNATURE || opt->Magic != PE_NT_OPTIONAL_HDR_MAGIC) { return false; } /* Check architecture */ if (file->Machine != PE_FILE_MACHINE) { return false; } /* For our purposes, this must be a dynamic library */ if ((file->Characteristics & IMAGE_FILE_DLL) == 0) { return false; } /* Finally, we can do this */ lib.memorySize = opt->SizeOfImage; #elif defined PLATFORM_LINUX #ifdef PLATFORM_X86 typedef Elf32_Ehdr ElfHeader; typedef Elf32_Phdr ElfPHeader; const unsigned char ELF_CLASS = ELFCLASS32; const uint16_t ELF_MACHINE = EM_386; #else typedef Elf64_Ehdr ElfHeader; typedef Elf64_Phdr ElfPHeader; const unsigned char ELF_CLASS = ELFCLASS64; const uint16_t ELF_MACHINE = EM_X86_64; #endif Dl_info info; ElfHeader *file; ElfPHeader *phdr; uint16_t phdrCount; if (!dladdr(libPtr, &info)) { return false; } if (!info.dli_fbase || !info.dli_fname) { return false; } /* This is for our insane sanity checks :o */ baseAddr = reinterpret_cast(info.dli_fbase); file = reinterpret_cast(baseAddr); /* Check ELF magic */ if (memcmp(ELFMAG, file->e_ident, SELFMAG) != 0) { return false; } /* Check ELF version */ if (file->e_ident[EI_VERSION] != EV_CURRENT) { return false; } /* Check ELF endianness */ if (file->e_ident[EI_DATA] != ELFDATA2LSB) { return false; } /* Check ELF architecture */ if (file->e_ident[EI_CLASS] != ELF_CLASS || file->e_machine != ELF_MACHINE) { return false; } /* For our purposes, this must be a dynamic library/shared object */ if (file->e_type != ET_DYN) { return false; } phdrCount = file->e_phnum; phdr = reinterpret_cast(baseAddr + file->e_phoff); for (uint16_t i = 0; i < phdrCount; i++) { ElfPHeader &hdr = phdr[i]; /* We only really care about the segment with executable code */ if (hdr.p_type == PT_LOAD && hdr.p_flags == (PF_X|PF_R)) { /* From glibc, elf/dl-load.c: * c->mapend = ((ph->p_vaddr + ph->p_filesz + GLRO(dl_pagesize) - 1) * & ~(GLRO(dl_pagesize) - 1)); * * In glibc, the segment file size is aligned up to the nearest page size and * added to the virtual address of the segment. We just want the size here. */ lib.memorySize = PAGE_ALIGN_UP(hdr.p_filesz); break; } } #elif defined PLATFORM_APPLE #ifdef PLATFORM_X86 typedef struct mach_header MachHeader; typedef struct segment_command MachSegment; const uint32_t MACH_MAGIC = MH_MAGIC; const uint32_t MACH_LOADCMD_SEGMENT = LC_SEGMENT; const cpu_type_t MACH_CPU_TYPE = CPU_TYPE_I386; const cpu_subtype_t MACH_CPU_SUBTYPE = CPU_SUBTYPE_I386_ALL; #else typedef struct mach_header_64 MachHeader; typedef struct segment_command_64 MachSegment; const uint32_t MACH_MAGIC = MH_MAGIC_64; const uint32_t MACH_LOADCMD_SEGMENT = LC_SEGMENT_64; const cpu_type_t MACH_CPU_TYPE = CPU_TYPE_X86_64; const cpu_subtype_t MACH_CPU_SUBTYPE = CPU_SUBTYPE_X86_64_ALL; #endif Dl_info info; MachHeader *file; MachSegment *seg; uint32_t cmd_count; if (!dladdr(libPtr, &info)) { return false; } if (!info.dli_fbase || !info.dli_fname) { return false; } /* This is for our insane sanity checks :o */ baseAddr = (uintptr_t)info.dli_fbase; file = (MachHeader *)baseAddr; /* Check Mach-O magic */ if (file->magic != MACH_MAGIC) { return false; } /* Check architecture */ if (file->cputype != MACH_CPU_TYPE || file->cpusubtype != MACH_CPU_SUBTYPE) { return false; } /* For our purposes, this must be a dynamic library */ if (file->filetype != MH_DYLIB) { return false; } cmd_count = file->ncmds; seg = (MachSegment *)(baseAddr + sizeof(MachHeader)); /* Add up memory sizes of mapped segments */ for (uint32_t i = 0; i < cmd_count; i++) { if (seg->cmd == MACH_LOADCMD_SEGMENT) { lib.memorySize += seg->vmsize; } seg = (MachSegment *)((uintptr_t)seg + seg->cmdsize); } #endif lib.baseAddress = reinterpret_cast(baseAddr); return true; }