/* ** 2006 June 10 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to help implement virtual tables. ** ** $Id$ */ #ifndef SQLITE_OMIT_VIRTUALTABLE #include "sqliteInt.h" static int createModule( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux, /* Context pointer for xCreate/xConnect */ void (*xDestroy)(void *) /* Module destructor function */ ) { int nName = strlen(zName); Module *pMod = (Module *)sqliteMallocRaw(sizeof(Module) + nName + 1); if( pMod ){ char *zCopy = (char *)(&pMod[1]); memcpy(zCopy, zName, nName+1); pMod->zName = zCopy; pMod->pModule = pModule; pMod->pAux = pAux; pMod->xDestroy = xDestroy; pMod = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod); if( pMod && pMod->xDestroy ){ pMod->xDestroy(pMod->pAux); } sqliteFree(pMod); sqlite3ResetInternalSchema(db, 0); } return sqlite3ApiExit(db, SQLITE_OK); } /* ** External API function used to create a new virtual-table module. */ int sqlite3_create_module( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux /* Context pointer for xCreate/xConnect */ ){ return createModule(db, zName, pModule, pAux, 0); } /* ** External API function used to create a new virtual-table module. */ int sqlite3_create_module_v2( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux, /* Context pointer for xCreate/xConnect */ void (*xDestroy)(void *) /* Module destructor function */ ){ return createModule(db, zName, pModule, pAux, xDestroy); } /* ** Lock the virtual table so that it cannot be disconnected. ** Locks nest. Every lock should have a corresponding unlock. ** If an unlock is omitted, resources leaks will occur. ** ** If a disconnect is attempted while a virtual table is locked, ** the disconnect is deferred until all locks have been removed. */ void sqlite3VtabLock(sqlite3_vtab *pVtab){ pVtab->nRef++; } /* ** Unlock a virtual table. When the last lock is removed, ** disconnect the virtual table. */ void sqlite3VtabUnlock(sqlite3 *db, sqlite3_vtab *pVtab){ pVtab->nRef--; assert(db); assert(!sqlite3SafetyCheck(db)); if( pVtab->nRef==0 ){ if( db->magic==SQLITE_MAGIC_BUSY ){ sqlite3SafetyOff(db); pVtab->pModule->xDisconnect(pVtab); sqlite3SafetyOn(db); } else { pVtab->pModule->xDisconnect(pVtab); } } } /* ** Clear any and all virtual-table information from the Table record. ** This routine is called, for example, just before deleting the Table ** record. */ void sqlite3VtabClear(Table *p){ sqlite3_vtab *pVtab = p->pVtab; if( pVtab ){ assert( p->pMod && p->pMod->pModule ); sqlite3VtabUnlock(p->pSchema->db, pVtab); p->pVtab = 0; } if( p->azModuleArg ){ int i; for(i=0; inModuleArg; i++){ sqliteFree(p->azModuleArg[i]); } sqliteFree(p->azModuleArg); } } /* ** Add a new module argument to pTable->azModuleArg[]. ** The string is not copied - the pointer is stored. The ** string will be freed automatically when the table is ** deleted. */ static void addModuleArgument(Table *pTable, char *zArg){ int i = pTable->nModuleArg++; int nBytes = sizeof(char *)*(1+pTable->nModuleArg); char **azModuleArg; azModuleArg = sqliteRealloc(pTable->azModuleArg, nBytes); if( azModuleArg==0 ){ int j; for(j=0; jazModuleArg[j]); } sqliteFree(zArg); sqliteFree(pTable->azModuleArg); pTable->nModuleArg = 0; }else{ azModuleArg[i] = zArg; azModuleArg[i+1] = 0; } pTable->azModuleArg = azModuleArg; } /* ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE ** statement. The module name has been parsed, but the optional list ** of parameters that follow the module name are still pending. */ void sqlite3VtabBeginParse( Parse *pParse, /* Parsing context */ Token *pName1, /* Name of new table, or database name */ Token *pName2, /* Name of new table or NULL */ Token *pModuleName /* Name of the module for the virtual table */ ){ int iDb; /* The database the table is being created in */ Table *pTable; /* The new virtual table */ #ifndef SQLITE_OMIT_SHARED_CACHE if( sqlite3ThreadDataReadOnly()->useSharedData ){ sqlite3ErrorMsg(pParse, "Cannot use virtual tables in shared-cache mode"); return; } #endif sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, 0); pTable = pParse->pNewTable; if( pTable==0 || pParse->nErr ) return; assert( 0==pTable->pIndex ); iDb = sqlite3SchemaToIndex(pParse->db, pTable->pSchema); assert( iDb>=0 ); pTable->isVirtual = 1; pTable->nModuleArg = 0; addModuleArgument(pTable, sqlite3NameFromToken(pModuleName)); addModuleArgument(pTable, sqlite3StrDup(pParse->db->aDb[iDb].zName)); addModuleArgument(pTable, sqlite3StrDup(pTable->zName)); pParse->sNameToken.n = pModuleName->z + pModuleName->n - pName1->z; #ifndef SQLITE_OMIT_AUTHORIZATION /* Creating a virtual table invokes the authorization callback twice. ** The first invocation, to obtain permission to INSERT a row into the ** sqlite_master table, has already been made by sqlite3StartTable(). ** The second call, to obtain permission to create the table, is made now. */ if( pTable->azModuleArg ){ sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, pTable->azModuleArg[0], pParse->db->aDb[iDb].zName); } #endif } /* ** This routine takes the module argument that has been accumulating ** in pParse->zArg[] and appends it to the list of arguments on the ** virtual table currently under construction in pParse->pTable. */ static void addArgumentToVtab(Parse *pParse){ if( pParse->sArg.z && pParse->pNewTable ){ const char *z = (const char*)pParse->sArg.z; int n = pParse->sArg.n; addModuleArgument(pParse->pNewTable, sqliteStrNDup(z, n)); } } /* ** The parser calls this routine after the CREATE VIRTUAL TABLE statement ** has been completely parsed. */ void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ Table *pTab; /* The table being constructed */ sqlite3 *db; /* The database connection */ char *zModule; /* The module name of the table: USING modulename */ Module *pMod = 0; addArgumentToVtab(pParse); pParse->sArg.z = 0; /* Lookup the module name. */ pTab = pParse->pNewTable; if( pTab==0 ) return; db = pParse->db; if( pTab->nModuleArg<1 ) return; zModule = pTab->azModuleArg[0]; pMod = (Module *)sqlite3HashFind(&db->aModule, zModule, strlen(zModule)); pTab->pMod = pMod; /* If the CREATE VIRTUAL TABLE statement is being entered for the ** first time (in other words if the virtual table is actually being ** created now instead of just being read out of sqlite_master) then ** do additional initialization work and store the statement text ** in the sqlite_master table. */ if( !db->init.busy ){ char *zStmt; char *zWhere; int iDb; Vdbe *v; /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ if( pEnd ){ pParse->sNameToken.n = pEnd->z - pParse->sNameToken.z + pEnd->n; } zStmt = sqlite3MPrintf("CREATE VIRTUAL TABLE %T", &pParse->sNameToken); /* A slot for the record has already been allocated in the ** SQLITE_MASTER table. We just need to update that slot with all ** the information we've collected. ** ** The top of the stack is the rootpage allocated by sqlite3StartTable(). ** This value is always 0 and is ignored, a virtual table does not have a ** rootpage. The next entry on the stack is the rowid of the record ** in the sqlite_master table. */ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); sqlite3NestedParse(pParse, "UPDATE %Q.%s " "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " "WHERE rowid=#1", db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pTab->zName, pTab->zName, zStmt ); sqliteFree(zStmt); v = sqlite3GetVdbe(pParse); sqlite3ChangeCookie(db, v, iDb); sqlite3VdbeAddOp(v, OP_Expire, 0, 0); zWhere = sqlite3MPrintf("name='%q'", pTab->zName); sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 1, zWhere, P3_DYNAMIC); sqlite3VdbeOp3(v, OP_VCreate, iDb, 0, pTab->zName, strlen(pTab->zName) + 1); } /* If we are rereading the sqlite_master table create the in-memory ** record of the table. If the module has already been registered, ** also call the xConnect method here. */ else { Table *pOld; Schema *pSchema = pTab->pSchema; const char *zName = pTab->zName; int nName = strlen(zName) + 1; pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab); if( pOld ){ assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ return; } pSchema->db = pParse->db; pParse->pNewTable = 0; } } /* ** The parser calls this routine when it sees the first token ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. */ void sqlite3VtabArgInit(Parse *pParse){ addArgumentToVtab(pParse); pParse->sArg.z = 0; pParse->sArg.n = 0; } /* ** The parser calls this routine for each token after the first token ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. */ void sqlite3VtabArgExtend(Parse *pParse, Token *p){ Token *pArg = &pParse->sArg; if( pArg->z==0 ){ pArg->z = p->z; pArg->n = p->n; }else{ assert(pArg->z < p->z); pArg->n = (p->z + p->n - pArg->z); } } /* ** Invoke a virtual table constructor (either xCreate or xConnect). The ** pointer to the function to invoke is passed as the fourth parameter ** to this procedure. */ static int vtabCallConstructor( sqlite3 *db, Table *pTab, Module *pMod, int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), char **pzErr ){ int rc; int rc2; sqlite3_vtab *pVtab; const char *const*azArg = (const char *const*)pTab->azModuleArg; int nArg = pTab->nModuleArg; char *zErr = 0; char *zModuleName = sqlite3MPrintf("%s", pTab->zName); if( !zModuleName ){ return SQLITE_NOMEM; } assert( !db->pVTab ); assert( xConstruct ); db->pVTab = pTab; rc = sqlite3SafetyOff(db); assert( rc==SQLITE_OK ); rc = xConstruct(db, pMod->pAux, nArg, azArg, &pTab->pVtab, &zErr); rc2 = sqlite3SafetyOn(db); pVtab = pTab->pVtab; if( rc==SQLITE_OK && pVtab ){ pVtab->pModule = pMod->pModule; pVtab->nRef = 1; } if( SQLITE_OK!=rc ){ if( zErr==0 ){ *pzErr = sqlite3MPrintf("vtable constructor failed: %s", zModuleName); }else { *pzErr = sqlite3MPrintf("%s", zErr); sqlite3_free(zErr); } }else if( db->pVTab ){ const char *zFormat = "vtable constructor did not declare schema: %s"; *pzErr = sqlite3MPrintf(zFormat, pTab->zName); rc = SQLITE_ERROR; } if( rc==SQLITE_OK ){ rc = rc2; } db->pVTab = 0; sqliteFree(zModuleName); /* If everything went according to plan, loop through the columns ** of the table to see if any of them contain the token "hidden". ** If so, set the Column.isHidden flag and remove the token from ** the type string. */ if( rc==SQLITE_OK ){ int iCol; for(iCol=0; iColnCol; iCol++){ char *zType = pTab->aCol[iCol].zType; int nType; int i = 0; if( !zType ) continue; nType = strlen(zType); if( sqlite3StrNICmp("hidden", zType, 6) || (zType[6] && zType[6]!=' ') ){ for(i=0; i0 ){ assert(zType[i-1]==' '); zType[i-1] = '\0'; } pTab->aCol[iCol].isHidden = 1; } } } return rc; } /* ** This function is invoked by the parser to call the xConnect() method ** of the virtual table pTab. If an error occurs, an error code is returned ** and an error left in pParse. ** ** This call is a no-op if table pTab is not a virtual table. */ int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ Module *pMod; int rc = SQLITE_OK; if( !pTab || !pTab->isVirtual || pTab->pVtab ){ return SQLITE_OK; } pMod = pTab->pMod; if( !pMod ){ const char *zModule = pTab->azModuleArg[0]; sqlite3ErrorMsg(pParse, "no such module: %s", zModule); rc = SQLITE_ERROR; } else { char *zErr = 0; sqlite3 *db = pParse->db; rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); if( rc!=SQLITE_OK ){ sqlite3ErrorMsg(pParse, "%s", zErr); } sqliteFree(zErr); } return rc; } /* ** Add the virtual table pVtab to the array sqlite3.aVTrans[]. */ static int addToVTrans(sqlite3 *db, sqlite3_vtab *pVtab){ const int ARRAY_INCR = 5; /* Grow the sqlite3.aVTrans array if required */ if( (db->nVTrans%ARRAY_INCR)==0 ){ sqlite3_vtab **aVTrans; int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR); aVTrans = sqliteRealloc((void *)db->aVTrans, nBytes); if( !aVTrans ){ return SQLITE_NOMEM; } memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); db->aVTrans = aVTrans; } /* Add pVtab to the end of sqlite3.aVTrans */ db->aVTrans[db->nVTrans++] = pVtab; sqlite3VtabLock(pVtab); return SQLITE_OK; } /* ** This function is invoked by the vdbe to call the xCreate method ** of the virtual table named zTab in database iDb. ** ** If an error occurs, *pzErr is set to point an an English language ** description of the error and an SQLITE_XXX error code is returned. ** In this case the caller must call sqliteFree() on *pzErr. */ int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ int rc = SQLITE_OK; Table *pTab; Module *pMod; const char *zModule; pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); assert(pTab && pTab->isVirtual && !pTab->pVtab); pMod = pTab->pMod; zModule = pTab->azModuleArg[0]; /* If the module has been registered and includes a Create method, ** invoke it now. If the module has not been registered, return an ** error. Otherwise, do nothing. */ if( !pMod ){ *pzErr = sqlite3MPrintf("no such module: %s", zModule); rc = SQLITE_ERROR; }else{ rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); } if( rc==SQLITE_OK && pTab->pVtab ){ rc = addToVTrans(db, pTab->pVtab); } return rc; } /* ** This function is used to set the schema of a virtual table. It is only ** valid to call this function from within the xCreate() or xConnect() of a ** virtual table module. */ int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ Parse sParse; int rc = SQLITE_OK; Table *pTab = db->pVTab; char *zErr = 0; if( !pTab ){ sqlite3Error(db, SQLITE_MISUSE, 0); return SQLITE_MISUSE; } assert(pTab->isVirtual && pTab->nCol==0 && pTab->aCol==0); memset(&sParse, 0, sizeof(Parse)); sParse.declareVtab = 1; sParse.db = db; if( SQLITE_OK == sqlite3RunParser(&sParse, zCreateTable, &zErr) && sParse.pNewTable && !sParse.pNewTable->pSelect && !sParse.pNewTable->isVirtual ){ pTab->aCol = sParse.pNewTable->aCol; pTab->nCol = sParse.pNewTable->nCol; sParse.pNewTable->nCol = 0; sParse.pNewTable->aCol = 0; db->pVTab = 0; } else { sqlite3Error(db, SQLITE_ERROR, zErr); sqliteFree(zErr); rc = SQLITE_ERROR; } sParse.declareVtab = 0; sqlite3_finalize((sqlite3_stmt*)sParse.pVdbe); sqlite3DeleteTable(sParse.pNewTable); sParse.pNewTable = 0; assert( (rc&0xff)==rc ); return sqlite3ApiExit(db, rc); } /* ** This function is invoked by the vdbe to call the xDestroy method ** of the virtual table named zTab in database iDb. This occurs ** when a DROP TABLE is mentioned. ** ** This call is a no-op if zTab is not a virtual table. */ int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab) { int rc = SQLITE_OK; Table *pTab; pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); assert(pTab); if( pTab->pVtab ){ int (*xDestroy)(sqlite3_vtab *pVTab) = pTab->pMod->pModule->xDestroy; rc = sqlite3SafetyOff(db); assert( rc==SQLITE_OK ); if( xDestroy ){ rc = xDestroy(pTab->pVtab); } sqlite3SafetyOn(db); if( rc==SQLITE_OK ){ pTab->pVtab = 0; } } return rc; } /* ** This function invokes either the xRollback or xCommit method ** of each of the virtual tables in the sqlite3.aVTrans array. The method ** called is identified by the second argument, "offset", which is ** the offset of the method to call in the sqlite3_module structure. ** ** The array is cleared after invoking the callbacks. */ static void callFinaliser(sqlite3 *db, int offset){ int i; if( db->aVTrans ){ for(i=0; inVTrans && db->aVTrans[i]; i++){ sqlite3_vtab *pVtab = db->aVTrans[i]; int (*x)(sqlite3_vtab *); x = *(int (**)(sqlite3_vtab *))((char *)pVtab->pModule + offset); if( x ) x(pVtab); sqlite3VtabUnlock(db, pVtab); } sqliteFree(db->aVTrans); db->nVTrans = 0; db->aVTrans = 0; } } /* ** If argument rc2 is not SQLITE_OK, then return it and do nothing. ** Otherwise, invoke the xSync method of all virtual tables in the ** sqlite3.aVTrans array. Return the error code for the first error ** that occurs, or SQLITE_OK if all xSync operations are successful. */ int sqlite3VtabSync(sqlite3 *db, int rc2){ int i; int rc = SQLITE_OK; int rcsafety; sqlite3_vtab **aVTrans = db->aVTrans; if( rc2!=SQLITE_OK ) return rc2; rc = sqlite3SafetyOff(db); db->aVTrans = 0; for(i=0; rc==SQLITE_OK && inVTrans && aVTrans[i]; i++){ sqlite3_vtab *pVtab = aVTrans[i]; int (*x)(sqlite3_vtab *); x = pVtab->pModule->xSync; if( x ){ rc = x(pVtab); } } db->aVTrans = aVTrans; rcsafety = sqlite3SafetyOn(db); if( rc==SQLITE_OK ){ rc = rcsafety; } return rc; } /* ** Invoke the xRollback method of all virtual tables in the ** sqlite3.aVTrans array. Then clear the array itself. */ int sqlite3VtabRollback(sqlite3 *db){ callFinaliser(db, (int)(&((sqlite3_module *)0)->xRollback)); return SQLITE_OK; } /* ** Invoke the xCommit method of all virtual tables in the ** sqlite3.aVTrans array. Then clear the array itself. */ int sqlite3VtabCommit(sqlite3 *db){ callFinaliser(db, (int)(&((sqlite3_module *)0)->xCommit)); return SQLITE_OK; } /* ** If the virtual table pVtab supports the transaction interface ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is ** not currently open, invoke the xBegin method now. ** ** If the xBegin call is successful, place the sqlite3_vtab pointer ** in the sqlite3.aVTrans array. */ int sqlite3VtabBegin(sqlite3 *db, sqlite3_vtab *pVtab){ int rc = SQLITE_OK; const sqlite3_module *pModule; /* Special case: If db->aVTrans is NULL and db->nVTrans is greater ** than zero, then this function is being called from within a ** virtual module xSync() callback. It is illegal to write to ** virtual module tables in this case, so return SQLITE_LOCKED. */ if( 0==db->aVTrans && db->nVTrans>0 ){ return SQLITE_LOCKED; } if( !pVtab ){ return SQLITE_OK; } pModule = pVtab->pModule; if( pModule->xBegin ){ int i; /* If pVtab is already in the aVTrans array, return early */ for(i=0; (inVTrans) && 0!=db->aVTrans[i]; i++){ if( db->aVTrans[i]==pVtab ){ return SQLITE_OK; } } /* Invoke the xBegin method */ rc = pModule->xBegin(pVtab); if( rc!=SQLITE_OK ){ return rc; } rc = addToVTrans(db, pVtab); } return rc; } /* ** The first parameter (pDef) is a function implementation. The ** second parameter (pExpr) is the first argument to this function. ** If pExpr is a column in a virtual table, then let the virtual ** table implementation have an opportunity to overload the function. ** ** This routine is used to allow virtual table implementations to ** overload MATCH, LIKE, GLOB, and REGEXP operators. ** ** Return either the pDef argument (indicating no change) or a ** new FuncDef structure that is marked as ephemeral using the ** SQLITE_FUNC_EPHEM flag. */ FuncDef *sqlite3VtabOverloadFunction( FuncDef *pDef, /* Function to possibly overload */ int nArg, /* Number of arguments to the function */ Expr *pExpr /* First argument to the function */ ){ Table *pTab; sqlite3_vtab *pVtab; sqlite3_module *pMod; void (*xFunc)(sqlite3_context*,int,sqlite3_value**); void *pArg; FuncDef *pNew; int rc; char *zLowerName; unsigned char *z; /* Check to see the left operand is a column in a virtual table */ if( pExpr==0 ) return pDef; if( pExpr->op!=TK_COLUMN ) return pDef; pTab = pExpr->pTab; if( pTab==0 ) return pDef; if( !pTab->isVirtual ) return pDef; pVtab = pTab->pVtab; assert( pVtab!=0 ); assert( pVtab->pModule!=0 ); pMod = (sqlite3_module *)pVtab->pModule; if( pMod->xFindFunction==0 ) return pDef; /* Call the xFuncFunction method on the virtual table implementation ** to see if the implementation wants to overload this function */ zLowerName = sqlite3StrDup(pDef->zName); for(z=(unsigned char*)zLowerName; *z; z++){ *z = sqlite3UpperToLower[*z]; } rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg); sqliteFree(zLowerName); if( rc==0 ){ return pDef; } /* Create a new ephemeral function definition for the overloaded ** function */ pNew = sqliteMalloc( sizeof(*pNew) + strlen(pDef->zName) ); if( pNew==0 ){ return pDef; } *pNew = *pDef; memcpy(pNew->zName, pDef->zName, strlen(pDef->zName)+1); pNew->xFunc = xFunc; pNew->pUserData = pArg; pNew->flags |= SQLITE_FUNC_EPHEM; return pNew; } #endif /* SQLITE_OMIT_VIRTUALTABLE */