/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This is the implementation of the page cache subsystem or "pager". ** ** The pager is used to access a database disk file. It implements ** atomic commit and rollback through the use of a journal file that ** is separate from the database file. The pager also implements file ** locking to prevent two processes from writing the same database ** file simultaneously, or one process from reading the database while ** another is writing. ** ** @(#) $Id$ */ #ifndef SQLITE_OMIT_DISKIO #include "sqliteInt.h" #include #include /* ** Macros for troubleshooting. Normally turned off */ #if 0 #define sqlite3DebugPrintf printf #define PAGERTRACE1(X) sqlite3DebugPrintf(X) #define PAGERTRACE2(X,Y) sqlite3DebugPrintf(X,Y) #define PAGERTRACE3(X,Y,Z) sqlite3DebugPrintf(X,Y,Z) #define PAGERTRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W) #define PAGERTRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V) #else #define PAGERTRACE1(X) #define PAGERTRACE2(X,Y) #define PAGERTRACE3(X,Y,Z) #define PAGERTRACE4(X,Y,Z,W) #define PAGERTRACE5(X,Y,Z,W,V) #endif /* ** The following two macros are used within the PAGERTRACEX() macros above ** to print out file-descriptors. ** ** PAGERID() takes a pointer to a Pager struct as it's argument. The ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file ** struct as it's argument. */ #define PAGERID(p) ((int)(p->fd)) #define FILEHANDLEID(fd) ((int)fd) /* ** The page cache as a whole is always in one of the following ** states: ** ** PAGER_UNLOCK The page cache is not currently reading or ** writing the database file. There is no ** data held in memory. This is the initial ** state. ** ** PAGER_SHARED The page cache is reading the database. ** Writing is not permitted. There can be ** multiple readers accessing the same database ** file at the same time. ** ** PAGER_RESERVED This process has reserved the database for writing ** but has not yet made any changes. Only one process ** at a time can reserve the database. The original ** database file has not been modified so other ** processes may still be reading the on-disk ** database file. ** ** PAGER_EXCLUSIVE The page cache is writing the database. ** Access is exclusive. No other processes or ** threads can be reading or writing while one ** process is writing. ** ** PAGER_SYNCED The pager moves to this state from PAGER_EXCLUSIVE ** after all dirty pages have been written to the ** database file and the file has been synced to ** disk. All that remains to do is to remove or ** truncate the journal file and the transaction ** will be committed. ** ** The page cache comes up in PAGER_UNLOCK. The first time a ** sqlite3PagerGet() occurs, the state transitions to PAGER_SHARED. ** After all pages have been released using sqlite_page_unref(), ** the state transitions back to PAGER_UNLOCK. The first time ** that sqlite3PagerWrite() is called, the state transitions to ** PAGER_RESERVED. (Note that sqlite3PagerWrite() can only be ** called on an outstanding page which means that the pager must ** be in PAGER_SHARED before it transitions to PAGER_RESERVED.) ** PAGER_RESERVED means that there is an open rollback journal. ** The transition to PAGER_EXCLUSIVE occurs before any changes ** are made to the database file, though writes to the rollback ** journal occurs with just PAGER_RESERVED. After an sqlite3PagerRollback() ** or sqlite3PagerCommitPhaseTwo(), the state can go back to PAGER_SHARED, ** or it can stay at PAGER_EXCLUSIVE if we are in exclusive access mode. */ #define PAGER_UNLOCK 0 #define PAGER_SHARED 1 /* same as SHARED_LOCK */ #define PAGER_RESERVED 2 /* same as RESERVED_LOCK */ #define PAGER_EXCLUSIVE 4 /* same as EXCLUSIVE_LOCK */ #define PAGER_SYNCED 5 /* ** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time, ** then failed attempts to get a reserved lock will invoke the busy callback. ** This is off by default. To see why, consider the following scenario: ** ** Suppose thread A already has a shared lock and wants a reserved lock. ** Thread B already has a reserved lock and wants an exclusive lock. If ** both threads are using their busy callbacks, it might be a long time ** be for one of the threads give up and allows the other to proceed. ** But if the thread trying to get the reserved lock gives up quickly ** (if it never invokes its busy callback) then the contention will be ** resolved quickly. */ #ifndef SQLITE_BUSY_RESERVED_LOCK # define SQLITE_BUSY_RESERVED_LOCK 0 #endif /* ** This macro rounds values up so that if the value is an address it ** is guaranteed to be an address that is aligned to an 8-byte boundary. */ #define FORCE_ALIGNMENT(X) (((X)+7)&~7) typedef struct PgHdr PgHdr; /* ** Each pager stores all currently unreferenced pages in a list sorted ** in least-recently-used (LRU) order (i.e. the first item on the list has ** not been referenced in a long time, the last item has been recently ** used). An instance of this structure is included as part of each ** pager structure for this purpose (variable Pager.lru). ** ** Additionally, if memory-management is enabled, all unreferenced pages ** are stored in a global LRU list (global variable sqlite3LruPageList). ** ** In both cases, the PagerLruList.pFirstSynced variable points to ** the first page in the corresponding list that does not require an ** fsync() operation before it's memory can be reclaimed. If no such ** page exists, PagerLruList.pFirstSynced is set to NULL. */ typedef struct PagerLruList PagerLruList; struct PagerLruList { PgHdr *pFirst; /* First page in LRU list */ PgHdr *pLast; /* Last page in LRU list (the most recently used) */ PgHdr *pFirstSynced; /* First page in list with PgHdr.needSync==0 */ }; /* ** The following structure contains the next and previous pointers used ** to link a PgHdr structure into a PagerLruList linked list. */ typedef struct PagerLruLink PagerLruLink; struct PagerLruLink { PgHdr *pNext; PgHdr *pPrev; }; /* ** Each in-memory image of a page begins with the following header. ** This header is only visible to this pager module. The client ** code that calls pager sees only the data that follows the header. ** ** Client code should call sqlite3PagerWrite() on a page prior to making ** any modifications to that page. The first time sqlite3PagerWrite() ** is called, the original page contents are written into the rollback ** journal and PgHdr.inJournal and PgHdr.needSync are set. Later, once ** the journal page has made it onto the disk surface, PgHdr.needSync ** is cleared. The modified page cannot be written back into the original ** database file until the journal pages has been synced to disk and the ** PgHdr.needSync has been cleared. ** ** The PgHdr.dirty flag is set when sqlite3PagerWrite() is called and ** is cleared again when the page content is written back to the original ** database file. ** ** Details of important structure elements: ** ** needSync ** ** If this is true, this means that it is not safe to write the page ** content to the database because the original content needed ** for rollback has not by synced to the main rollback journal. ** The original content may have been written to the rollback journal ** but it has not yet been synced. So we cannot write to the database ** file because power failure might cause the page in the journal file ** to never reach the disk. It is as if the write to the journal file ** does not occur until the journal file is synced. ** ** This flag is false if the page content exactly matches what ** currently exists in the database file. The needSync flag is also ** false if the original content has been written to the main rollback ** journal and synced. If the page represents a new page that has ** been added onto the end of the database during the current ** transaction, the needSync flag is true until the original database ** size in the journal header has been synced to disk. ** ** inJournal ** ** This is true if the original page has been written into the main ** rollback journal. This is always false for new pages added to ** the end of the database file during the current transaction. ** And this flag says nothing about whether or not the journal ** has been synced to disk. For pages that are in the original ** database file, the following expression should always be true: ** ** inJournal = (pPager->aInJournal[(pgno-1)/8] & (1<<((pgno-1)%8))!=0 ** ** The pPager->aInJournal[] array is only valid for the original ** pages of the database, not new pages that are added to the end ** of the database, so obviously the above expression cannot be ** valid for new pages. For new pages inJournal is always 0. ** ** dirty ** ** When true, this means that the content of the page has been ** modified and needs to be written back to the database file. ** If false, it means that either the content of the page is ** unchanged or else the content is unimportant and we do not ** care whether or not it is preserved. ** ** alwaysRollback ** ** This means that the sqlite3PagerDontRollback() API should be ** ignored for this page. The DontRollback() API attempts to say ** that the content of the page on disk is unimportant (it is an ** unused page on the freelist) so that it is unnecessary to ** rollback changes to this page because the content of the page ** can change without changing the meaning of the database. This ** flag overrides any DontRollback() attempt. This flag is set ** when a page that originally contained valid data is added to ** the freelist. Later in the same transaction, this page might ** be pulled from the freelist and reused for something different ** and at that point the DontRollback() API will be called because ** pages taken from the freelist do not need to be protected by ** the rollback journal. But this flag says that the page was ** not originally part of the freelist so that it still needs to ** be rolled back in spite of any subsequent DontRollback() calls. ** ** needRead ** ** This flag means (when true) that the content of the page has ** not yet been loaded from disk. The in-memory content is just ** garbage. (Actually, we zero the content, but you should not ** make any assumptions about the content nevertheless.) If the ** content is needed in the future, it should be read from the ** original database file. */ struct PgHdr { Pager *pPager; /* The pager to which this page belongs */ Pgno pgno; /* The page number for this page */ PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */ PagerLruLink free; /* Next and previous free pages */ PgHdr *pNextAll; /* A list of all pages */ u8 inJournal; /* TRUE if has been written to journal */ u8 dirty; /* TRUE if we need to write back changes */ u8 needSync; /* Sync journal before writing this page */ u8 alwaysRollback; /* Disable DontRollback() for this page */ u8 needRead; /* Read content if PagerWrite() is called */ short int nRef; /* Number of users of this page */ PgHdr *pDirty, *pPrevDirty; /* Dirty pages */ #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT PagerLruLink gfree; /* Global list of nRef==0 pages */ #endif #ifdef SQLITE_CHECK_PAGES u32 pageHash; #endif void *pData; /* Page data */ /* Pager.nExtra bytes of local data appended to this header */ }; /* ** For an in-memory only database, some extra information is recorded about ** each page so that changes can be rolled back. (Journal files are not ** used for in-memory databases.) The following information is added to ** the end of every EXTRA block for in-memory databases. ** ** This information could have been added directly to the PgHdr structure. ** But then it would take up an extra 8 bytes of storage on every PgHdr ** even for disk-based databases. Splitting it out saves 8 bytes. This ** is only a savings of 0.8% but those percentages add up. */ typedef struct PgHistory PgHistory; struct PgHistory { u8 *pOrig; /* Original page text. Restore to this on a full rollback */ u8 *pStmt; /* Text as it was at the beginning of the current statement */ PgHdr *pNextStmt, *pPrevStmt; /* List of pages in the statement journal */ u8 inStmt; /* TRUE if in the statement subjournal */ }; /* ** A macro used for invoking the codec if there is one */ #ifdef SQLITE_HAS_CODEC # define CODEC1(P,D,N,X) if( P->xCodec!=0 ){ P->xCodec(P->pCodecArg,D,N,X); } # define CODEC2(P,D,N,X) ((char*)(P->xCodec!=0?P->xCodec(P->pCodecArg,D,N,X):D)) #else # define CODEC1(P,D,N,X) /* NO-OP */ # define CODEC2(P,D,N,X) ((char*)D) #endif /* ** Convert a pointer to a PgHdr into a pointer to its data ** and back again. */ #define PGHDR_TO_DATA(P) ((P)->pData) #define PGHDR_TO_EXTRA(G,P) ((void*)&((G)[1])) #define PGHDR_TO_HIST(P,PGR) \ ((PgHistory*)&((char*)(&(P)[1]))[(PGR)->nExtra]) /* ** A open page cache is an instance of the following structure. ** ** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or ** or SQLITE_FULL. Once one of the first three errors occurs, it persists ** and is returned as the result of every major pager API call. The ** SQLITE_FULL return code is slightly different. It persists only until the ** next successful rollback is performed on the pager cache. Also, ** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup() ** APIs, they may still be used successfully. */ struct Pager { sqlite3_vfs *pVfs; /* OS functions to use for IO */ u8 journalOpen; /* True if journal file descriptors is valid */ u8 journalStarted; /* True if header of journal is synced */ u8 useJournal; /* Use a rollback journal on this file */ u8 noReadlock; /* Do not bother to obtain readlocks */ u8 stmtOpen; /* True if the statement subjournal is open */ u8 stmtInUse; /* True we are in a statement subtransaction */ u8 stmtAutoopen; /* Open stmt journal when main journal is opened*/ u8 noSync; /* Do not sync the journal if true */ u8 fullSync; /* Do extra syncs of the journal for robustness */ u8 sync_flags; /* One of SYNC_NORMAL or SYNC_FULL */ u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */ u8 tempFile; /* zFilename is a temporary file */ u8 readOnly; /* True for a read-only database */ u8 needSync; /* True if an fsync() is needed on the journal */ u8 dirtyCache; /* True if cached pages have changed */ u8 alwaysRollback; /* Disable DontRollback() for all pages */ u8 memDb; /* True to inhibit all file I/O */ u8 setMaster; /* True if a m-j name has been written to jrnl */ u8 doNotSync; /* Boolean. While true, do not spill the cache */ u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ u8 changeCountDone; /* Set after incrementing the change-counter */ u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */ int errCode; /* One of several kinds of errors */ int dbSize; /* Number of pages in the file */ int origDbSize; /* dbSize before the current change */ int stmtSize; /* Size of database (in pages) at stmt_begin() */ int nRec; /* Number of pages written to the journal */ u32 cksumInit; /* Quasi-random value added to every checksum */ int stmtNRec; /* Number of records in stmt subjournal */ int nExtra; /* Add this many bytes to each in-memory page */ int pageSize; /* Number of bytes in a page */ int nPage; /* Total number of in-memory pages */ int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */ int mxPage; /* Maximum number of pages to hold in cache */ Pgno mxPgno; /* Maximum allowed size of the database */ u8 *aInJournal; /* One bit for each page in the database file */ u8 *aInStmt; /* One bit for each page in the database */ char *zFilename; /* Name of the database file */ char *zJournal; /* Name of the journal file */ char *zDirectory; /* Directory hold database and journal files */ char *zStmtJrnl; /* Name of the statement journal file */ sqlite3_file *fd, *jfd; /* File descriptors for database and journal */ sqlite3_file *stfd; /* File descriptor for the statement subjournal*/ BusyHandler *pBusyHandler; /* Pointer to sqlite.busyHandler */ PagerLruList lru; /* LRU list of free pages */ PgHdr *pAll; /* List of all pages */ PgHdr *pStmt; /* List of pages in the statement subjournal */ PgHdr *pDirty; /* List of all dirty pages */ i64 journalOff; /* Current byte offset in the journal file */ i64 journalHdr; /* Byte offset to previous journal header */ i64 stmtHdrOff; /* First journal header written this statement */ i64 stmtCksum; /* cksumInit when statement was started */ i64 stmtJSize; /* Size of journal at stmt_begin() */ int sectorSize; /* Assumed sector size during rollback */ #ifdef SQLITE_TEST int nHit, nMiss; /* Cache hits and missing */ int nRead, nWrite; /* Database pages read/written */ #endif void (*xDestructor)(DbPage*,int); /* Call this routine when freeing pages */ void (*xReiniter)(DbPage*,int); /* Call this routine when reloading pages */ #ifdef SQLITE_HAS_CODEC void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */ void *pCodecArg; /* First argument to xCodec() */ #endif int nHash; /* Size of the pager hash table */ PgHdr **aHash; /* Hash table to map page number to PgHdr */ #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT Pager *pNext; /* Doubly linked list of pagers on which */ Pager *pPrev; /* sqlite3_release_memory() will work */ int iInUseMM; /* Non-zero if unavailable to MM */ int iInUseDB; /* Non-zero if in sqlite3_release_memory() */ #endif char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */ char dbFileVers[16]; /* Changes whenever database file changes */ }; /* ** The following global variables hold counters used for ** testing purposes only. These variables do not exist in ** a non-testing build. These variables are not thread-safe. */ #ifdef SQLITE_TEST int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */ int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */ int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */ int sqlite3_pager_pgfree_count = 0; /* Number of cache pages freed */ # define PAGER_INCR(v) v++ #else # define PAGER_INCR(v) #endif /* ** The following variable points to the head of a double-linked list ** of all pagers that are eligible for page stealing by the ** sqlite3_release_memory() interface. Access to this list is ** protected by the SQLITE_MUTEX_STATIC_MEM2 mutex. */ #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT static Pager *sqlite3PagerList = 0; static PagerLruList sqlite3LruPageList = {0, 0, 0}; #endif /* ** Journal files begin with the following magic string. The data ** was obtained from /dev/random. It is used only as a sanity check. ** ** Since version 2.8.0, the journal format contains additional sanity ** checking information. If the power fails while the journal is begin ** written, semi-random garbage data might appear in the journal ** file after power is restored. If an attempt is then made ** to roll the journal back, the database could be corrupted. The additional ** sanity checking data is an attempt to discover the garbage in the ** journal and ignore it. ** ** The sanity checking information for the new journal format consists ** of a 32-bit checksum on each page of data. The checksum covers both ** the page number and the pPager->pageSize bytes of data for the page. ** This cksum is initialized to a 32-bit random value that appears in the ** journal file right after the header. The random initializer is important, ** because garbage data that appears at the end of a journal is likely ** data that was once in other files that have now been deleted. If the ** garbage data came from an obsolete journal file, the checksums might ** be correct. But by initializing the checksum to random value which ** is different for every journal, we minimize that risk. */ static const unsigned char aJournalMagic[] = { 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, }; /* ** The size of the header and of each page in the journal is determined ** by the following macros. */ #define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) /* ** The journal header size for this pager. In the future, this could be ** set to some value read from the disk controller. The important ** characteristic is that it is the same size as a disk sector. */ #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) /* ** The macro MEMDB is true if we are dealing with an in-memory database. ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set, ** the value of MEMDB will be a constant and the compiler will optimize ** out code that would never execute. */ #ifdef SQLITE_OMIT_MEMORYDB # define MEMDB 0 #else # define MEMDB pPager->memDb #endif /* ** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is ** reserved for working around a windows/posix incompatibility). It is ** used in the journal to signify that the remainder of the journal file ** is devoted to storing a master journal name - there are no more pages to ** roll back. See comments for function writeMasterJournal() for details. */ /* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */ #define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1) /* ** The maximum legal page number is (2^31 - 1). */ #define PAGER_MAX_PGNO 2147483647 /* ** The pagerEnter() and pagerLeave() routines acquire and release ** a mutex on each pager. The mutex is recursive. ** ** This is a special-purpose mutex. It only provides mutual exclusion ** between the Btree and the Memory Management sqlite3_release_memory() ** function. It does not prevent, for example, two Btrees from accessing ** the same pager at the same time. Other general-purpose mutexes in ** the btree layer handle that chore. */ #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT static void pagerEnter(Pager *p){ p->iInUseDB++; if( p->iInUseMM && p->iInUseDB==1 ){ sqlite3_mutex *mutex; mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); p->iInUseDB = 0; sqlite3_mutex_enter(mutex); p->iInUseDB = 1; sqlite3_mutex_leave(mutex); } assert( p->iInUseMM==0 ); } static void pagerLeave(Pager *p){ p->iInUseDB--; assert( p->iInUseDB>=0 ); } #else # define pagerEnter(X) # define pagerLeave(X) #endif /* ** Enable reference count tracking (for debugging) here: */ #ifdef SQLITE_DEBUG int pager3_refinfo_enable = 0; static void pager_refinfo(PgHdr *p){ static int cnt = 0; if( !pager3_refinfo_enable ) return; sqlite3DebugPrintf( "REFCNT: %4d addr=%p nRef=%-3d total=%d\n", p->pgno, PGHDR_TO_DATA(p), p->nRef, p->pPager->nRef ); cnt++; /* Something to set a breakpoint on */ } # define REFINFO(X) pager_refinfo(X) #else # define REFINFO(X) #endif /* ** Add page pPg to the end of the linked list managed by structure ** pList (pPg becomes the last entry in the list - the most recently ** used). Argument pLink should point to either pPg->free or pPg->gfree, ** depending on whether pPg is being added to the pager-specific or ** global LRU list. */ static void listAdd(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){ pLink->pNext = 0; pLink->pPrev = pList->pLast; #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT assert(pLink==&pPg->free || pLink==&pPg->gfree); assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList); #endif if( pList->pLast ){ int iOff = (char *)pLink - (char *)pPg; PagerLruLink *pLastLink = (PagerLruLink *)(&((u8 *)pList->pLast)[iOff]); pLastLink->pNext = pPg; }else{ assert(!pList->pFirst); pList->pFirst = pPg; } pList->pLast = pPg; if( !pList->pFirstSynced && pPg->needSync==0 ){ pList->pFirstSynced = pPg; } } /* ** Remove pPg from the list managed by the structure pointed to by pList. ** ** Argument pLink should point to either pPg->free or pPg->gfree, depending ** on whether pPg is being added to the pager-specific or global LRU list. */ static void listRemove(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){ int iOff = (char *)pLink - (char *)pPg; #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT assert(pLink==&pPg->free || pLink==&pPg->gfree); assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList); #endif if( pPg==pList->pFirst ){ pList->pFirst = pLink->pNext; } if( pPg==pList->pLast ){ pList->pLast = pLink->pPrev; } if( pLink->pPrev ){ PagerLruLink *pPrevLink = (PagerLruLink *)(&((u8 *)pLink->pPrev)[iOff]); pPrevLink->pNext = pLink->pNext; } if( pLink->pNext ){ PagerLruLink *pNextLink = (PagerLruLink *)(&((u8 *)pLink->pNext)[iOff]); pNextLink->pPrev = pLink->pPrev; } if( pPg==pList->pFirstSynced ){ PgHdr *p = pLink->pNext; while( p && p->needSync ){ PagerLruLink *pL = (PagerLruLink *)(&((u8 *)p)[iOff]); p = pL->pNext; } pList->pFirstSynced = p; } pLink->pNext = pLink->pPrev = 0; } /* ** Add page pPg to the list of free pages for the pager. If ** memory-management is enabled, also add the page to the global ** list of free pages. */ static void lruListAdd(PgHdr *pPg){ listAdd(&pPg->pPager->lru, &pPg->free, pPg); #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT if( !pPg->pPager->memDb ){ sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); listAdd(&sqlite3LruPageList, &pPg->gfree, pPg); sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); } #endif } /* ** Remove page pPg from the list of free pages for the associated pager. ** If memory-management is enabled, also remove pPg from the global list ** of free pages. */ static void lruListRemove(PgHdr *pPg){ listRemove(&pPg->pPager->lru, &pPg->free, pPg); #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT if( !pPg->pPager->memDb ){ sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); listRemove(&sqlite3LruPageList, &pPg->gfree, pPg); sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); } #endif } /* ** This function is called just after the needSync flag has been cleared ** from all pages managed by pPager (usually because the journal file ** has just been synced). It updates the pPager->lru.pFirstSynced variable ** and, if memory-management is enabled, the sqlite3LruPageList.pFirstSynced ** variable also. */ static void lruListSetFirstSynced(Pager *pPager){ pPager->lru.pFirstSynced = pPager->lru.pFirst; #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT if( !pPager->memDb ){ PgHdr *p; sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); for(p=sqlite3LruPageList.pFirst; p && p->needSync; p=p->gfree.pNext); assert(p==pPager->lru.pFirstSynced || p==sqlite3LruPageList.pFirstSynced); sqlite3LruPageList.pFirstSynced = p; sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); } #endif } /* ** Return true if page *pPg has already been written to the statement ** journal (or statement snapshot has been created, if *pPg is part ** of an in-memory database). */ static int pageInStatement(PgHdr *pPg){ Pager *pPager = pPg->pPager; if( MEMDB ){ return PGHDR_TO_HIST(pPg, pPager)->inStmt; }else{ Pgno pgno = pPg->pgno; u8 *a = pPager->aInStmt; return (a && (int)pgno<=pPager->stmtSize && (a[pgno/8] & (1<<(pgno&7)))); } } /* ** Change the size of the pager hash table to N. N must be a power ** of two. */ static void pager_resize_hash_table(Pager *pPager, int N){ PgHdr **aHash, *pPg; assert( N>0 && (N&(N-1))==0 ); pagerLeave(pPager); sqlite3MallocBenignFailure((int)pPager->aHash); aHash = sqlite3MallocZero( sizeof(aHash[0])*N ); pagerEnter(pPager); if( aHash==0 ){ /* Failure to rehash is not an error. It is only a performance hit. */ return; } sqlite3_free(pPager->aHash); pPager->nHash = N; pPager->aHash = aHash; for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ int h; if( pPg->pgno==0 ){ assert( pPg->pNextHash==0 && pPg->pPrevHash==0 ); continue; } h = pPg->pgno & (N-1); pPg->pNextHash = aHash[h]; if( aHash[h] ){ aHash[h]->pPrevHash = pPg; } aHash[h] = pPg; pPg->pPrevHash = 0; } } /* ** Read a 32-bit integer from the given file descriptor. Store the integer ** that is read in *pRes. Return SQLITE_OK if everything worked, or an ** error code is something goes wrong. ** ** All values are stored on disk as big-endian. */ static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){ unsigned char ac[4]; int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset); if( rc==SQLITE_OK ){ *pRes = sqlite3Get4byte(ac); } return rc; } /* ** Write a 32-bit integer into a string buffer in big-endian byte order. */ #define put32bits(A,B) sqlite3Put4byte((u8*)A,B) /* ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK ** on success or an error code is something goes wrong. */ static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ char ac[4]; put32bits(ac, val); return sqlite3OsWrite(fd, ac, 4, offset); } /* ** If file pFd is open, call sqlite3OsUnlock() on it. */ static int osUnlock(sqlite3_file *pFd, int eLock){ if( !pFd->pMethods ){ return SQLITE_OK; } return sqlite3OsUnlock(pFd, eLock); } /* ** This function determines whether or not the atomic-write optimization ** can be used with this pager. The optimization can be used if: ** ** (a) the value returned by OsDeviceCharacteristics() indicates that ** a database page may be written atomically, and ** (b) the value returned by OsSectorSize() is less than or equal ** to the page size. ** ** If the optimization cannot be used, 0 is returned. If it can be used, ** then the value returned is the size of the journal file when it ** contains rollback data for exactly one page. */ #ifdef SQLITE_ENABLE_ATOMIC_WRITE static int jrnlBufferSize(Pager *pPager){ int dc; /* Device characteristics */ int nSector; /* Sector size */ int nPage; /* Page size */ sqlite3_file *fd = pPager->fd; if( fd->pMethods ){ dc = sqlite3OsDeviceCharacteristics(fd); nSector = sqlite3OsSectorSize(fd); nPage = pPager->pageSize; } assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); if( !fd->pMethods || (dc&(SQLITE_IOCAP_ATOMIC|(nPage>>8))&&nSector<=nPage) ){ return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager); } return 0; } #endif /* ** This function should be called when an error occurs within the pager ** code. The first argument is a pointer to the pager structure, the ** second the error-code about to be returned by a pager API function. ** The value returned is a copy of the second argument to this function. ** ** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL ** the error becomes persistent. Until the persisten error is cleared, ** subsequent API calls on this Pager will immediately return the same ** error code. ** ** A persistent error indicates that the contents of the pager-cache ** cannot be trusted. This state can be cleared by completely discarding ** the contents of the pager-cache. If a transaction was active when ** the persistent error occured, then the rollback journal may need ** to be replayed. */ static void pager_unlock(Pager *pPager); static int pager_error(Pager *pPager, int rc){ int rc2 = rc & 0xff; assert( pPager->errCode==SQLITE_FULL || pPager->errCode==SQLITE_OK || (pPager->errCode & 0xff)==SQLITE_IOERR ); if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR || rc2==SQLITE_CORRUPT ){ pPager->errCode = rc; if( pPager->state==PAGER_UNLOCK && pPager->nRef==0 ){ /* If the pager is already unlocked, call pager_unlock() now to ** clear the error state and ensure that the pager-cache is ** completely empty. */ pager_unlock(pPager); } } return rc; } /* ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking ** on the cache using a hash function. This is used for testing ** and debugging only. */ #ifdef SQLITE_CHECK_PAGES /* ** Return a 32-bit hash of the page data for pPage. */ static u32 pager_datahash(int nByte, unsigned char *pData){ u32 hash = 0; int i; for(i=0; ipPager->pageSize, (unsigned char *)PGHDR_TO_DATA(pPage)); } /* ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES ** is defined, and NDEBUG is not defined, an assert() statement checks ** that the page is either dirty or still matches the calculated page-hash. */ #define CHECK_PAGE(x) checkPage(x) static void checkPage(PgHdr *pPg){ Pager *pPager = pPg->pPager; assert( !pPg->pageHash || pPager->errCode || MEMDB || pPg->dirty || pPg->pageHash==pager_pagehash(pPg) ); } #else #define pager_datahash(X,Y) 0 #define pager_pagehash(X) 0 #define CHECK_PAGE(x) #endif /* ** When this is called the journal file for pager pPager must be open. ** The master journal file name is read from the end of the file and ** written into memory supplied by the caller. ** ** zMaster must point to a buffer of at least nMaster bytes allocated by ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is ** enough space to write the master journal name). If the master journal ** name in the journal is longer than nMaster bytes (including a ** nul-terminator), then this is handled as if no master journal name ** were present in the journal. ** ** If no master journal file name is present zMaster[0] is set to 0 and ** SQLITE_OK returned. */ static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, int nMaster){ int rc; u32 len; i64 szJ; u32 cksum; int i; unsigned char aMagic[8]; /* A buffer to hold the magic header */ zMaster[0] = '\0'; rc = sqlite3OsFileSize(pJrnl, &szJ); if( rc!=SQLITE_OK || szJ<16 ) return rc; rc = read32bits(pJrnl, szJ-16, &len); if( rc!=SQLITE_OK ) return rc; if( len>=nMaster ){ return SQLITE_OK; } rc = read32bits(pJrnl, szJ-12, &cksum); if( rc!=SQLITE_OK ) return rc; rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8); if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc; rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len); if( rc!=SQLITE_OK ){ return rc; } zMaster[len] = '\0'; /* See if the checksum matches the master journal name */ for(i=0; ijournalOff; if( c ){ offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); } assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); assert( offset>=c ); assert( (offset-c)journalOff = offset; } /* ** The journal file must be open when this routine is called. A journal ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the ** current location. ** ** The format for the journal header is as follows: ** - 8 bytes: Magic identifying journal format. ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. ** - 4 bytes: Random number used for page hash. ** - 4 bytes: Initial database page count. ** - 4 bytes: Sector size used by the process that wrote this journal. ** ** Followed by (JOURNAL_HDR_SZ - 24) bytes of unused space. */ static int writeJournalHdr(Pager *pPager){ char zHeader[sizeof(aJournalMagic)+16]; int rc; if( pPager->stmtHdrOff==0 ){ pPager->stmtHdrOff = pPager->journalOff; } seekJournalHdr(pPager); pPager->journalHdr = pPager->journalOff; memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); /* ** Write the nRec Field - the number of page records that follow this ** journal header. Normally, zero is written to this value at this time. ** After the records are added to the journal (and the journal synced, ** if in full-sync mode), the zero is overwritten with the true number ** of records (see syncJournal()). ** ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When ** reading the journal this value tells SQLite to assume that the ** rest of the journal file contains valid page records. This assumption ** is dangerous, as if a failure occured whilst writing to the journal ** file it may contain some garbage data. There are two scenarios ** where this risk can be ignored: ** ** * When the pager is in no-sync mode. Corruption can follow a ** power failure in this case anyway. ** ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees ** that garbage data is never appended to the journal file. */ assert(pPager->fd->pMethods||pPager->noSync); if( (pPager->noSync) || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) ){ put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); }else{ put32bits(&zHeader[sizeof(aJournalMagic)], 0); } /* The random check-hash initialiser */ sqlite3Randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); /* The initial database size */ put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbSize); /* The assumed sector size for this process */ put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize); IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, sizeof(zHeader))) rc = sqlite3OsWrite(pPager->jfd, zHeader, sizeof(zHeader),pPager->journalOff); pPager->journalOff += JOURNAL_HDR_SZ(pPager); /* The journal header has been written successfully. Seek the journal ** file descriptor to the end of the journal header sector. */ if( rc==SQLITE_OK ){ IOTRACE(("JTAIL %p %lld\n", pPager, pPager->journalOff-1)) rc = sqlite3OsWrite(pPager->jfd, "\000", 1, pPager->journalOff-1); } return rc; } /* ** The journal file must be open when this is called. A journal header file ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal ** file. See comments above function writeJournalHdr() for a description of ** the journal header format. ** ** If the header is read successfully, *nRec is set to the number of ** page records following this header and *dbSize is set to the size of the ** database before the transaction began, in pages. Also, pPager->cksumInit ** is set to the value read from the journal header. SQLITE_OK is returned ** in this case. ** ** If the journal header file appears to be corrupted, SQLITE_DONE is ** returned and *nRec and *dbSize are not set. If JOURNAL_HDR_SZ bytes ** cannot be read from the journal file an error code is returned. */ static int readJournalHdr( Pager *pPager, i64 journalSize, u32 *pNRec, u32 *pDbSize ){ int rc; unsigned char aMagic[8]; /* A buffer to hold the magic header */ i64 jrnlOff; seekJournalHdr(pPager); if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ return SQLITE_DONE; } jrnlOff = pPager->journalOff; rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), jrnlOff); if( rc ) return rc; jrnlOff += sizeof(aMagic); if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ return SQLITE_DONE; } rc = read32bits(pPager->jfd, jrnlOff, pNRec); if( rc ) return rc; rc = read32bits(pPager->jfd, jrnlOff+4, &pPager->cksumInit); if( rc ) return rc; rc = read32bits(pPager->jfd, jrnlOff+8, pDbSize); if( rc ) return rc; /* Update the assumed sector-size to match the value used by ** the process that created this journal. If this journal was ** created by a process other than this one, then this routine ** is being called from within pager_playback(). The local value ** of Pager.sectorSize is restored at the end of that routine. */ rc = read32bits(pPager->jfd, jrnlOff+12, (u32 *)&pPager->sectorSize); if( rc ) return rc; pPager->journalOff += JOURNAL_HDR_SZ(pPager); return SQLITE_OK; } /* ** Write the supplied master journal name into the journal file for pager ** pPager at the current location. The master journal name must be the last ** thing written to a journal file. If the pager is in full-sync mode, the ** journal file descriptor is advanced to the next sector boundary before ** anything is written. The format is: ** ** + 4 bytes: PAGER_MJ_PGNO. ** + N bytes: length of master journal name. ** + 4 bytes: N ** + 4 bytes: Master journal name checksum. ** + 8 bytes: aJournalMagic[]. ** ** The master journal page checksum is the sum of the bytes in the master ** journal name. ** ** If zMaster is a NULL pointer (occurs for a single database transaction), ** this call is a no-op. */ static int writeMasterJournal(Pager *pPager, const char *zMaster){ int rc; int len; int i; i64 jrnlOff; u32 cksum = 0; char zBuf[sizeof(aJournalMagic)+2*4]; if( !zMaster || pPager->setMaster) return SQLITE_OK; pPager->setMaster = 1; len = strlen(zMaster); for(i=0; ifullSync ){ seekJournalHdr(pPager); } jrnlOff = pPager->journalOff; pPager->journalOff += (len+20); rc = write32bits(pPager->jfd, jrnlOff, PAGER_MJ_PGNO(pPager)); if( rc!=SQLITE_OK ) return rc; jrnlOff += 4; rc = sqlite3OsWrite(pPager->jfd, zMaster, len, jrnlOff); if( rc!=SQLITE_OK ) return rc; jrnlOff += len; put32bits(zBuf, len); put32bits(&zBuf[4], cksum); memcpy(&zBuf[8], aJournalMagic, sizeof(aJournalMagic)); rc = sqlite3OsWrite(pPager->jfd, zBuf, 8+sizeof(aJournalMagic), jrnlOff); pPager->needSync = !pPager->noSync; return rc; } /* ** Add or remove a page from the list of all pages that are in the ** statement journal. ** ** The Pager keeps a separate list of pages that are currently in ** the statement journal. This helps the sqlite3PagerStmtCommit() ** routine run MUCH faster for the common case where there are many ** pages in memory but only a few are in the statement journal. */ static void page_add_to_stmt_list(PgHdr *pPg){ Pager *pPager = pPg->pPager; PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); assert( MEMDB ); if( !pHist->inStmt ){ assert( pHist->pPrevStmt==0 && pHist->pNextStmt==0 ); if( pPager->pStmt ){ PGHDR_TO_HIST(pPager->pStmt, pPager)->pPrevStmt = pPg; } pHist->pNextStmt = pPager->pStmt; pPager->pStmt = pPg; pHist->inStmt = 1; } } /* ** Find a page in the hash table given its page number. Return ** a pointer to the page or NULL if not found. */ static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){ PgHdr *p; if( pPager->aHash==0 ) return 0; p = pPager->aHash[pgno & (pPager->nHash-1)]; while( p && p->pgno!=pgno ){ p = p->pNextHash; } return p; } /* ** Clear the in-memory cache. This routine ** sets the state of the pager back to what it was when it was first ** opened. Any outstanding pages are invalidated and subsequent attempts ** to access those pages will likely result in a coredump. */ static void pager_reset(Pager *pPager){ PgHdr *pPg, *pNext; if( pPager->errCode ) return; for(pPg=pPager->pAll; pPg; pPg=pNext){ IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno)); PAGER_INCR(sqlite3_pager_pgfree_count); pNext = pPg->pNextAll; lruListRemove(pPg); sqlite3_free(pPg->pData); sqlite3_free(pPg); } assert(pPager->lru.pFirst==0); assert(pPager->lru.pFirstSynced==0); assert(pPager->lru.pLast==0); pPager->pStmt = 0; pPager->pAll = 0; pPager->pDirty = 0; pPager->nHash = 0; sqlite3_free(pPager->aHash); pPager->nPage = 0; pPager->aHash = 0; pPager->nRef = 0; } /* ** Unlock the database file. ** ** If the pager is currently in error state, discard the contents of ** the cache and reset the Pager structure internal state. If there is ** an open journal-file, then the next time a shared-lock is obtained ** on the pager file (by this or any other process), it will be ** treated as a hot-journal and rolled back. */ static void pager_unlock(Pager *pPager){ if( !pPager->exclusiveMode ){ if( !MEMDB ){ if( pPager->fd->pMethods ){ osUnlock(pPager->fd, NO_LOCK); } pPager->dbSize = -1; IOTRACE(("UNLOCK %p\n", pPager)) /* If Pager.errCode is set, the contents of the pager cache cannot be ** trusted. Now that the pager file is unlocked, the contents of the ** cache can be discarded and the error code safely cleared. */ if( pPager->errCode ){ pPager->errCode = SQLITE_OK; pager_reset(pPager); if( pPager->stmtOpen ){ sqlite3OsClose(pPager->stfd); sqlite3_free(pPager->aInStmt); pPager->aInStmt = 0; } if( pPager->journalOpen ){ sqlite3OsClose(pPager->jfd); pPager->journalOpen = 0; sqlite3_free(pPager->aInJournal); pPager->aInJournal = 0; } pPager->stmtOpen = 0; pPager->stmtInUse = 0; pPager->journalOff = 0; pPager->journalStarted = 0; pPager->stmtAutoopen = 0; pPager->origDbSize = 0; } } if( !MEMDB || pPager->errCode==SQLITE_OK ){ pPager->state = PAGER_UNLOCK; pPager->changeCountDone = 0; } } } /* ** Execute a rollback if a transaction is active and unlock the ** database file. If the pager has already entered the error state, ** do not attempt the rollback. */ static void pagerUnlockAndRollback(Pager *p){ assert( p->state>=PAGER_RESERVED || p->journalOpen==0 ); if( p->errCode==SQLITE_OK && p->state>=PAGER_RESERVED ){ sqlite3PagerRollback(p); } pager_unlock(p); assert( p->errCode || !p->journalOpen || (p->exclusiveMode&&!p->journalOff) ); assert( p->errCode || !p->stmtOpen || p->exclusiveMode ); } /* ** This routine ends a transaction. A transaction is ended by either ** a COMMIT or a ROLLBACK. ** ** When this routine is called, the pager has the journal file open and ** a RESERVED or EXCLUSIVE lock on the database. This routine will release ** the database lock and acquires a SHARED lock in its place if that is ** the appropriate thing to do. Release locks usually is appropriate, ** unless we are in exclusive access mode or unless this is a ** COMMIT AND BEGIN or ROLLBACK AND BEGIN operation. ** ** The journal file is either deleted or truncated. ** ** TODO: Consider keeping the journal file open for temporary databases. ** This might give a performance improvement on windows where opening ** a file is an expensive operation. */ static int pager_end_transaction(Pager *pPager){ PgHdr *pPg; int rc = SQLITE_OK; int rc2 = SQLITE_OK; assert( !MEMDB ); if( pPager->statestmtOpen && !pPager->exclusiveMode ){ sqlite3OsClose(pPager->stfd); pPager->stmtOpen = 0; } if( pPager->journalOpen ){ if( pPager->exclusiveMode && (rc = sqlite3OsTruncate(pPager->jfd, 0))==SQLITE_OK ){; pPager->journalOff = 0; pPager->journalStarted = 0; }else{ sqlite3OsClose(pPager->jfd); pPager->journalOpen = 0; if( rc==SQLITE_OK ){ rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); } } sqlite3_free( pPager->aInJournal ); pPager->aInJournal = 0; for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ pPg->inJournal = 0; pPg->dirty = 0; pPg->needSync = 0; pPg->alwaysRollback = 0; #ifdef SQLITE_CHECK_PAGES pPg->pageHash = pager_pagehash(pPg); #endif } pPager->pDirty = 0; pPager->dirtyCache = 0; pPager->nRec = 0; }else{ assert( pPager->aInJournal==0 ); assert( pPager->dirtyCache==0 || pPager->useJournal==0 ); } if( !pPager->exclusiveMode ){ rc2 = osUnlock(pPager->fd, SHARED_LOCK); pPager->state = PAGER_SHARED; }else if( pPager->state==PAGER_SYNCED ){ pPager->state = PAGER_EXCLUSIVE; } pPager->origDbSize = 0; pPager->setMaster = 0; pPager->needSync = 0; lruListSetFirstSynced(pPager); pPager->dbSize = -1; return (rc==SQLITE_OK?rc2:rc); } /* ** Compute and return a checksum for the page of data. ** ** This is not a real checksum. It is really just the sum of the ** random initial value and the page number. We experimented with ** a checksum of the entire data, but that was found to be too slow. ** ** Note that the page number is stored at the beginning of data and ** the checksum is stored at the end. This is important. If journal ** corruption occurs due to a power failure, the most likely scenario ** is that one end or the other of the record will be changed. It is ** much less likely that the two ends of the journal record will be ** correct and the middle be corrupt. Thus, this "checksum" scheme, ** though fast and simple, catches the mostly likely kind of corruption. ** ** FIX ME: Consider adding every 200th (or so) byte of the data to the ** checksum. That way if a single page spans 3 or more disk sectors and ** only the middle sector is corrupt, we will still have a reasonable ** chance of failing the checksum and thus detecting the problem. */ static u32 pager_cksum(Pager *pPager, const u8 *aData){ u32 cksum = pPager->cksumInit; int i = pPager->pageSize-200; while( i>0 ){ cksum += aData[i]; i -= 200; } return cksum; } /* Forward declaration */ static void makeClean(PgHdr*); /* ** Read a single page from the journal file opened on file descriptor ** jfd. Playback this one page. ** ** If useCksum==0 it means this journal does not use checksums. Checksums ** are not used in statement journals because statement journals do not ** need to survive power failures. */ static int pager_playback_one_page( Pager *pPager, sqlite3_file *jfd, i64 offset, int useCksum ){ int rc; PgHdr *pPg; /* An existing page in the cache */ Pgno pgno; /* The page number of a page in journal */ u32 cksum; /* Checksum used for sanity checking */ u8 *aData = (u8 *)pPager->pTmpSpace; /* Temp storage for a page */ /* useCksum should be true for the main journal and false for ** statement journals. Verify that this is always the case */ assert( jfd == (useCksum ? pPager->jfd : pPager->stfd) ); assert( aData ); rc = read32bits(jfd, offset, &pgno); if( rc!=SQLITE_OK ) return rc; rc = sqlite3OsRead(jfd, aData, pPager->pageSize, offset+4); if( rc!=SQLITE_OK ) return rc; pPager->journalOff += pPager->pageSize + 4; /* Sanity checking on the page. This is more important that I originally ** thought. If a power failure occurs while the journal is being written, ** it could cause invalid data to be written into the journal. We need to ** detect this invalid data (with high probability) and ignore it. */ if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ return SQLITE_DONE; } if( pgno>(unsigned)pPager->dbSize ){ return SQLITE_OK; } if( useCksum ){ rc = read32bits(jfd, offset+pPager->pageSize+4, &cksum); if( rc ) return rc; pPager->journalOff += 4; if( pager_cksum(pPager, aData)!=cksum ){ return SQLITE_DONE; } } assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE ); /* If the pager is in RESERVED state, then there must be a copy of this ** page in the pager cache. In this case just update the pager cache, ** not the database file. The page is left marked dirty in this case. ** ** An exception to the above rule: If the database is in no-sync mode ** and a page is moved during an incremental vacuum then the page may ** not be in the pager cache. Later: if a malloc() or IO error occurs ** during a Movepage() call, then the page may not be in the cache ** either. So the condition described in the above paragraph is not ** assert()able. ** ** If in EXCLUSIVE state, then we update the pager cache if it exists ** and the main file. The page is then marked not dirty. ** ** Ticket #1171: The statement journal might contain page content that is ** different from the page content at the start of the transaction. ** This occurs when a page is changed prior to the start of a statement ** then changed again within the statement. When rolling back such a ** statement we must not write to the original database unless we know ** for certain that original page contents are synced into the main rollback ** journal. Otherwise, a power loss might leave modified data in the ** database file without an entry in the rollback journal that can ** restore the database to its original form. Two conditions must be ** met before writing to the database files. (1) the database must be ** locked. (2) we know that the original page content is fully synced ** in the main journal either because the page is not in cache or else ** the page is marked as needSync==0. */ pPg = pager_lookup(pPager, pgno); PAGERTRACE4("PLAYBACK %d page %d hash(%08x)\n", PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, aData)); if( pPager->state>=PAGER_EXCLUSIVE && (pPg==0 || pPg->needSync==0) ){ i64 offset = (pgno-1)*(i64)pPager->pageSize; rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize, offset); if( pPg ){ makeClean(pPg); } } if( pPg ){ /* No page should ever be explicitly rolled back that is in use, except ** for page 1 which is held in use in order to keep the lock on the ** database active. However such a page may be rolled back as a result ** of an internal error resulting in an automatic call to ** sqlite3PagerRollback(). */ void *pData; /* assert( pPg->nRef==0 || pPg->pgno==1 ); */ pData = PGHDR_TO_DATA(pPg); memcpy(pData, aData, pPager->pageSize); if( pPager->xReiniter ){ pPager->xReiniter(pPg, pPager->pageSize); } #ifdef SQLITE_CHECK_PAGES pPg->pageHash = pager_pagehash(pPg); #endif /* If this was page 1, then restore the value of Pager.dbFileVers. ** Do this before any decoding. */ if( pgno==1 ){ memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers)); } /* Decode the page just read from disk */ CODEC1(pPager, pData, pPg->pgno, 3); } return rc; } /* ** Parameter zMaster is the name of a master journal file. A single journal ** file that referred to the master journal file has just been rolled back. ** This routine checks if it is possible to delete the master journal file, ** and does so if it is. ** ** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not ** available for use within this function. ** ** ** The master journal file contains the names of all child journals. ** To tell if a master journal can be deleted, check to each of the ** children. If all children are either missing or do not refer to ** a different master journal, then this master journal can be deleted. */ static int pager_delmaster(Pager *pPager, const char *zMaster){ sqlite3_vfs *pVfs = pPager->pVfs; int rc; int master_open = 0; sqlite3_file *pMaster; sqlite3_file *pJournal; char *zMasterJournal = 0; /* Contents of master journal file */ i64 nMasterJournal; /* Size of master journal file */ /* Open the master journal file exclusively in case some other process ** is running this routine also. Not that it makes too much difference. */ pMaster = (sqlite3_file *)sqlite3_malloc(pVfs->szOsFile * 2); pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile); if( !pMaster ){ rc = SQLITE_NOMEM; }else{ int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL); rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0); } if( rc!=SQLITE_OK ) goto delmaster_out; master_open = 1; rc = sqlite3OsFileSize(pMaster, &nMasterJournal); if( rc!=SQLITE_OK ) goto delmaster_out; if( nMasterJournal>0 ){ char *zJournal; char *zMasterPtr = 0; int nMasterPtr = pPager->pVfs->mxPathname+1; /* Load the entire master journal file into space obtained from ** sqlite3_malloc() and pointed to by zMasterJournal. */ zMasterJournal = (char *)sqlite3_malloc(nMasterJournal + nMasterPtr); if( !zMasterJournal ){ rc = SQLITE_NOMEM; goto delmaster_out; } zMasterPtr = &zMasterJournal[nMasterJournal]; rc = sqlite3OsRead(pMaster, zMasterJournal, nMasterJournal, 0); if( rc!=SQLITE_OK ) goto delmaster_out; zJournal = zMasterJournal; while( (zJournal-zMasterJournal)state>=PAGER_EXCLUSIVE && pPager->fd->pMethods ){ rc = sqlite3OsTruncate(pPager->fd, pPager->pageSize*(i64)nPage); } if( rc==SQLITE_OK ){ pPager->dbSize = nPage; pager_truncate_cache(pPager); } return rc; } /* ** Set the sectorSize for the given pager. ** ** The sector size is the larger of the sector size reported ** by sqlite3OsSectorSize() and the pageSize. */ static void setSectorSize(Pager *pPager){ assert(pPager->fd->pMethods||pPager->tempFile); if( !pPager->tempFile ){ /* Sector size doesn't matter for temporary files. Also, the file ** may not have been opened yet, in whcih case the OsSectorSize() ** call will segfault. */ pPager->sectorSize = sqlite3OsSectorSize(pPager->fd); } if( pPager->sectorSizepageSize ){ pPager->sectorSize = pPager->pageSize; } } /* ** Playback the journal and thus restore the database file to ** the state it was in before we started making changes. ** ** The journal file format is as follows: ** ** (1) 8 byte prefix. A copy of aJournalMagic[]. ** (2) 4 byte big-endian integer which is the number of valid page records ** in the journal. If this value is 0xffffffff, then compute the ** number of page records from the journal size. ** (3) 4 byte big-endian integer which is the initial value for the ** sanity checksum. ** (4) 4 byte integer which is the number of pages to truncate the ** database to during a rollback. ** (5) 4 byte integer which is the number of bytes in the master journal ** name. The value may be zero (indicate that there is no master ** journal.) ** (6) N bytes of the master journal name. The name will be nul-terminated ** and might be shorter than the value read from (5). If the first byte ** of the name is \000 then there is no master journal. The master ** journal name is stored in UTF-8. ** (7) Zero or more pages instances, each as follows: ** + 4 byte page number. ** + pPager->pageSize bytes of data. ** + 4 byte checksum ** ** When we speak of the journal header, we mean the first 6 items above. ** Each entry in the journal is an instance of the 7th item. ** ** Call the value from the second bullet "nRec". nRec is the number of ** valid page entries in the journal. In most cases, you can compute the ** value of nRec from the size of the journal file. But if a power ** failure occurred while the journal was being written, it could be the ** case that the size of the journal file had already been increased but ** the extra entries had not yet made it safely to disk. In such a case, ** the value of nRec computed from the file size would be too large. For ** that reason, we always use the nRec value in the header. ** ** If the nRec value is 0xffffffff it means that nRec should be computed ** from the file size. This value is used when the user selects the ** no-sync option for the journal. A power failure could lead to corruption ** in this case. But for things like temporary table (which will be ** deleted when the power is restored) we don't care. ** ** If the file opened as the journal file is not a well-formed ** journal file then all pages up to the first corrupted page are rolled ** back (or no pages if the journal header is corrupted). The journal file ** is then deleted and SQLITE_OK returned, just as if no corruption had ** been encountered. ** ** If an I/O or malloc() error occurs, the journal-file is not deleted ** and an error code is returned. */ static int pager_playback(Pager *pPager, int isHot){ sqlite3_vfs *pVfs = pPager->pVfs; i64 szJ; /* Size of the journal file in bytes */ u32 nRec; /* Number of Records in the journal */ int i; /* Loop counter */ Pgno mxPg = 0; /* Size of the original file in pages */ int rc; /* Result code of a subroutine */ char *zMaster = 0; /* Name of master journal file if any */ /* Figure out how many records are in the journal. Abort early if ** the journal is empty. */ assert( pPager->journalOpen ); rc = sqlite3OsFileSize(pPager->jfd, &szJ); if( rc!=SQLITE_OK || szJ==0 ){ goto end_playback; } /* Read the master journal name from the journal, if it is present. ** If a master journal file name is specified, but the file is not ** present on disk, then the journal is not hot and does not need to be ** played back. */ zMaster = pPager->pTmpSpace; rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); assert( rc!=SQLITE_DONE ); if( rc!=SQLITE_OK || (zMaster[0] && !sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS)) ){ zMaster = 0; if( rc==SQLITE_DONE ) rc = SQLITE_OK; goto end_playback; } pPager->journalOff = 0; zMaster = 0; /* This loop terminates either when the readJournalHdr() call returns ** SQLITE_DONE or an IO error occurs. */ while( 1 ){ /* Read the next journal header from the journal file. If there are ** not enough bytes left in the journal file for a complete header, or ** it is corrupted, then a process must of failed while writing it. ** This indicates nothing more needs to be rolled back. */ rc = readJournalHdr(pPager, szJ, &nRec, &mxPg); if( rc!=SQLITE_OK ){ if( rc==SQLITE_DONE ){ rc = SQLITE_OK; } goto end_playback; } /* If nRec is 0xffffffff, then this journal was created by a process ** working in no-sync mode. This means that the rest of the journal ** file consists of pages, there are no more journal headers. Compute ** the value of nRec based on this assumption. */ if( nRec==0xffffffff ){ assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager); } /* If nRec is 0 and this rollback is of a transaction created by this ** process and if this is the final header in the journal, then it means ** that this part of the journal was being filled but has not yet been ** synced to disk. Compute the number of pages based on the remaining ** size of the file. ** ** The third term of the test was added to fix ticket #2565. */ if( nRec==0 && !isHot && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ nRec = (szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager); } /* If this is the first header read from the journal, truncate the ** database file back to it's original size. */ if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ rc = pager_truncate(pPager, mxPg); if( rc!=SQLITE_OK ){ goto end_playback; } } /* Copy original pages out of the journal and back into the database file. */ for(i=0; ijfd, pPager->journalOff, 1); if( rc!=SQLITE_OK ){ if( rc==SQLITE_DONE ){ rc = SQLITE_OK; pPager->journalOff = szJ; break; }else{ goto end_playback; } } } } /*NOTREACHED*/ assert( 0 ); end_playback: if( rc==SQLITE_OK ){ zMaster = pPager->pTmpSpace; rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); } if( rc==SQLITE_OK ){ rc = pager_end_transaction(pPager); } if( rc==SQLITE_OK && zMaster[0] ){ /* If there was a master journal and this routine will return success, ** see if it is possible to delete the master journal. */ rc = pager_delmaster(pPager, zMaster); } /* The Pager.sectorSize variable may have been updated while rolling ** back a journal created by a process with a different sector size ** value. Reset it to the correct value for this process. */ setSectorSize(pPager); return rc; } /* ** Playback the statement journal. ** ** This is similar to playing back the transaction journal but with ** a few extra twists. ** ** (1) The number of pages in the database file at the start of ** the statement is stored in pPager->stmtSize, not in the ** journal file itself. ** ** (2) In addition to playing back the statement journal, also ** playback all pages of the transaction journal beginning ** at offset pPager->stmtJSize. */ static int pager_stmt_playback(Pager *pPager){ i64 szJ; /* Size of the full journal */ i64 hdrOff; int nRec; /* Number of Records */ int i; /* Loop counter */ int rc; szJ = pPager->journalOff; #ifndef NDEBUG { i64 os_szJ; rc = sqlite3OsFileSize(pPager->jfd, &os_szJ); if( rc!=SQLITE_OK ) return rc; assert( szJ==os_szJ ); } #endif /* Set hdrOff to be the offset just after the end of the last journal ** page written before the first journal-header for this statement ** transaction was written, or the end of the file if no journal ** header was written. */ hdrOff = pPager->stmtHdrOff; assert( pPager->fullSync || !hdrOff ); if( !hdrOff ){ hdrOff = szJ; } /* Truncate the database back to its original size. */ rc = pager_truncate(pPager, pPager->stmtSize); assert( pPager->state>=PAGER_SHARED ); /* Figure out how many records are in the statement journal. */ assert( pPager->stmtInUse && pPager->journalOpen ); nRec = pPager->stmtNRec; /* Copy original pages out of the statement journal and back into the ** database file. Note that the statement journal omits checksums from ** each record since power-failure recovery is not important to statement ** journals. */ for(i=0; ipageSize); rc = pager_playback_one_page(pPager, pPager->stfd, offset, 0); assert( rc!=SQLITE_DONE ); if( rc!=SQLITE_OK ) goto end_stmt_playback; } /* Now roll some pages back from the transaction journal. Pager.stmtJSize ** was the size of the journal file when this statement was started, so ** everything after that needs to be rolled back, either into the ** database, the memory cache, or both. ** ** If it is not zero, then Pager.stmtHdrOff is the offset to the start ** of the first journal header written during this statement transaction. */ pPager->journalOff = pPager->stmtJSize; pPager->cksumInit = pPager->stmtCksum; while( pPager->journalOff < hdrOff ){ rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1); assert( rc!=SQLITE_DONE ); if( rc!=SQLITE_OK ) goto end_stmt_playback; } while( pPager->journalOff < szJ ){ u32 nJRec; /* Number of Journal Records */ u32 dummy; rc = readJournalHdr(pPager, szJ, &nJRec, &dummy); if( rc!=SQLITE_OK ){ assert( rc!=SQLITE_DONE ); goto end_stmt_playback; } if( nJRec==0 ){ nJRec = (szJ - pPager->journalOff) / (pPager->pageSize+8); } for(i=nJRec-1; i>=0 && pPager->journalOff < szJ; i--){ rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1); assert( rc!=SQLITE_DONE ); if( rc!=SQLITE_OK ) goto end_stmt_playback; } } pPager->journalOff = szJ; end_stmt_playback: if( rc==SQLITE_OK) { pPager->journalOff = szJ; /* pager_reload_cache(pPager); */ } return rc; } /* ** Change the maximum number of in-memory pages that are allowed. */ void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){ if( mxPage>10 ){ pPager->mxPage = mxPage; }else{ pPager->mxPage = 10; } } /* ** Adjust the robustness of the database to damage due to OS crashes ** or power failures by changing the number of syncs()s when writing ** the rollback journal. There are three levels: ** ** OFF sqlite3OsSync() is never called. This is the default ** for temporary and transient files. ** ** NORMAL The journal is synced once before writes begin on the ** database. This is normally adequate protection, but ** it is theoretically possible, though very unlikely, ** that an inopertune power failure could leave the journal ** in a state which would cause damage to the database ** when it is rolled back. ** ** FULL The journal is synced twice before writes begin on the ** database (with some additional information - the nRec field ** of the journal header - being written in between the two ** syncs). If we assume that writing a ** single disk sector is atomic, then this mode provides ** assurance that the journal will not be corrupted to the ** point of causing damage to the database during rollback. ** ** Numeric values associated with these states are OFF==1, NORMAL=2, ** and FULL=3. */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int full_fsync){ pPager->noSync = level==1 || pPager->tempFile; pPager->fullSync = level==3 && !pPager->tempFile; pPager->sync_flags = (full_fsync?SQLITE_SYNC_FULL:SQLITE_SYNC_NORMAL); if( pPager->noSync ) pPager->needSync = 0; } #endif /* ** The following global variable is incremented whenever the library ** attempts to open a temporary file. This information is used for ** testing and analysis only. */ #ifdef SQLITE_TEST int sqlite3_opentemp_count = 0; #endif /* ** Open a temporary file. ** ** Write the file descriptor into *fd. Return SQLITE_OK on success or some ** other error code if we fail. The OS will automatically delete the temporary ** file when it is closed. */ static int sqlite3PagerOpentemp( sqlite3_vfs *pVfs, /* The virtual file system layer */ sqlite3_file *pFile, /* Write the file descriptor here */ char *zFilename, /* Name of the file. Might be NULL */ int vfsFlags /* Flags passed through to the VFS */ ){ int rc; assert( zFilename!=0 ); #ifdef SQLITE_TEST sqlite3_opentemp_count++; /* Used for testing and analysis only */ #endif vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; rc = sqlite3OsOpen(pVfs, zFilename, pFile, vfsFlags, 0); assert( rc!=SQLITE_OK || pFile->pMethods ); return rc; } /* ** Create a new page cache and put a pointer to the page cache in *ppPager. ** The file to be cached need not exist. The file is not locked until ** the first call to sqlite3PagerGet() and is only held open until the ** last page is released using sqlite3PagerUnref(). ** ** If zFilename is NULL then a randomly-named temporary file is created ** and used as the file to be cached. The file will be deleted ** automatically when it is closed. ** ** If zFilename is ":memory:" then all information is held in cache. ** It is never written to disk. This can be used to implement an ** in-memory database. */ int sqlite3PagerOpen( sqlite3_vfs *pVfs, /* The virtual file system to use */ Pager **ppPager, /* Return the Pager structure here */ const char *zFilename, /* Name of the database file to open */ int nExtra, /* Extra bytes append to each in-memory page */ int flags, /* flags controlling this file */ int vfsFlags /* flags passed through to sqlite3_vfs.xOpen() */ ){ u8 *pPtr; Pager *pPager = 0; int rc = SQLITE_OK; int i; int tempFile = 0; int memDb = 0; int readOnly = 0; int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; int noReadlock = (flags & PAGER_NO_READLOCK)!=0; int journalFileSize = sqlite3JournalSize(pVfs); int nDefaultPage = SQLITE_DEFAULT_PAGE_SIZE; char *zPathname; int nPathname; /* The default return is a NULL pointer */ *ppPager = 0; /* Compute the full pathname */ nPathname = pVfs->mxPathname+1; zPathname = sqlite3_malloc(nPathname); if( zPathname==0 ){ return SQLITE_NOMEM; } if( zFilename && zFilename[0] ){ #ifndef SQLITE_OMIT_MEMORYDB if( strcmp(zFilename,":memory:")==0 ){ memDb = 1; zPathname[0] = 0; }else #endif { rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); } }else{ rc = sqlite3OsGetTempname(pVfs, nPathname, zPathname); } if( rc!=SQLITE_OK ){ sqlite3_free(zPathname); return rc; } nPathname = strlen(zPathname); /* Allocate memory for the pager structure */ pPager = sqlite3MallocZero( sizeof(*pPager) + /* Pager structure */ journalFileSize + /* The journal file structure */ pVfs->szOsFile * 2 + /* The db and stmt journal files */ 4*nPathname + 40 /* zFilename, zDirectory, zJournal, zStmtJrnl */ ); if( !pPager ){ sqlite3_free(zPathname); return SQLITE_NOMEM; } pPtr = (u8 *)&pPager[1]; pPager->vfsFlags = vfsFlags; pPager->fd = (sqlite3_file*)&pPtr[pVfs->szOsFile*0]; pPager->stfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*1]; pPager->jfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*2]; pPager->zFilename = (char*)&pPtr[pVfs->szOsFile*2+journalFileSize]; pPager->zDirectory = &pPager->zFilename[nPathname+1]; pPager->zJournal = &pPager->zDirectory[nPathname+1]; pPager->zStmtJrnl = &pPager->zJournal[nPathname+10]; pPager->pVfs = pVfs; memcpy(pPager->zFilename, zPathname, nPathname+1); sqlite3_free(zPathname); /* Open the pager file. */ if( zFilename && zFilename[0] && !memDb ){ if( nPathname>(pVfs->mxPathname - sizeof("-journal")) ){ rc = SQLITE_CANTOPEN; }else{ int fout = 0; rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, pPager->vfsFlags, &fout); readOnly = (fout&SQLITE_OPEN_READONLY); /* If the file was successfully opened for read/write access, ** choose a default page size in case we have to create the ** database file. The default page size is the maximum of: ** ** + SQLITE_DEFAULT_PAGE_SIZE, ** + The value returned by sqlite3OsSectorSize() ** + The largest page size that can be written atomically. */ if( rc==SQLITE_OK && !readOnly ){ int iSectorSize = sqlite3OsSectorSize(pPager->fd); if( nDefaultPagefd); int ii; assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536); for(ii=nDefaultPage; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){ if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ) nDefaultPage = ii; } } #endif if( nDefaultPage>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ nDefaultPage = SQLITE_MAX_DEFAULT_PAGE_SIZE; } } } }else if( !memDb ){ /* If a temporary file is requested, it is not opened immediately. ** In this case we accept the default page size and delay actually ** opening the file until the first call to OsWrite(). */ tempFile = 1; pPager->state = PAGER_EXCLUSIVE; } if( pPager && rc==SQLITE_OK ){ pPager->pTmpSpace = (char *)sqlite3_malloc(nDefaultPage); } /* If an error occured in either of the blocks above. ** Free the Pager structure and close the file. ** Since the pager is not allocated there is no need to set ** any Pager.errMask variables. */ if( !pPager || !pPager->pTmpSpace ){ sqlite3OsClose(pPager->fd); sqlite3_free(pPager); return ((rc==SQLITE_OK)?SQLITE_NOMEM:rc); } PAGERTRACE3("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename); IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) /* Fill in Pager.zDirectory[] */ memcpy(pPager->zDirectory, pPager->zFilename, nPathname+1); for(i=strlen(pPager->zDirectory); i>0 && pPager->zDirectory[i-1]!='/'; i--){} if( i>0 ) pPager->zDirectory[i-1] = 0; /* Fill in Pager.zJournal[] and Pager.zStmtJrnl[] */ memcpy(pPager->zJournal, pPager->zFilename, nPathname); memcpy(&pPager->zJournal[nPathname], "-journal", 9); memcpy(pPager->zStmtJrnl, pPager->zFilename, nPathname); memcpy(&pPager->zStmtJrnl[nPathname], "-stmtjrnl", 10); /* pPager->journalOpen = 0; */ pPager->useJournal = useJournal && !memDb; pPager->noReadlock = noReadlock && readOnly; /* pPager->stmtOpen = 0; */ /* pPager->stmtInUse = 0; */ /* pPager->nRef = 0; */ pPager->dbSize = memDb-1; pPager->pageSize = nDefaultPage; /* pPager->stmtSize = 0; */ /* pPager->stmtJSize = 0; */ /* pPager->nPage = 0; */ pPager->mxPage = 100; pPager->mxPgno = SQLITE_MAX_PAGE_COUNT; /* pPager->state = PAGER_UNLOCK; */ assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) ); /* pPager->errMask = 0; */ pPager->tempFile = tempFile; assert( tempFile==PAGER_LOCKINGMODE_NORMAL || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE ); assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 ); pPager->exclusiveMode = tempFile; pPager->memDb = memDb; pPager->readOnly = readOnly; /* pPager->needSync = 0; */ pPager->noSync = pPager->tempFile || !useJournal; pPager->fullSync = (pPager->noSync?0:1); pPager->sync_flags = SQLITE_SYNC_NORMAL; /* pPager->pFirst = 0; */ /* pPager->pFirstSynced = 0; */ /* pPager->pLast = 0; */ pPager->nExtra = FORCE_ALIGNMENT(nExtra); assert(pPager->fd->pMethods||memDb||tempFile); if( !memDb ){ setSectorSize(pPager); } /* pPager->pBusyHandler = 0; */ /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */ *ppPager = pPager; #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT pPager->iInUseMM = 0; pPager->iInUseDB = 0; if( !memDb ){ sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); sqlite3_mutex_enter(mutex); pPager->pNext = sqlite3PagerList; if( sqlite3PagerList ){ assert( sqlite3PagerList->pPrev==0 ); sqlite3PagerList->pPrev = pPager; } pPager->pPrev = 0; sqlite3PagerList = pPager; sqlite3_mutex_leave(mutex); } #endif return SQLITE_OK; } /* ** Set the busy handler function. */ void sqlite3PagerSetBusyhandler(Pager *pPager, BusyHandler *pBusyHandler){ pPager->pBusyHandler = pBusyHandler; } /* ** Set the destructor for this pager. If not NULL, the destructor is called ** when the reference count on each page reaches zero. The destructor can ** be used to clean up information in the extra segment appended to each page. ** ** The destructor is not called as a result sqlite3PagerClose(). ** Destructors are only called by sqlite3PagerUnref(). */ void sqlite3PagerSetDestructor(Pager *pPager, void (*xDesc)(DbPage*,int)){ pPager->xDestructor = xDesc; } /* ** Set the reinitializer for this pager. If not NULL, the reinitializer ** is called when the content of a page in cache is restored to its original ** value as a result of a rollback. The callback gives higher-level code ** an opportunity to restore the EXTRA section to agree with the restored ** page data. */ void sqlite3PagerSetReiniter(Pager *pPager, void (*xReinit)(DbPage*,int)){ pPager->xReiniter = xReinit; } /* ** Set the page size to *pPageSize. If the suggest new page size is ** inappropriate, then an alternative page size is set to that ** value before returning. */ int sqlite3PagerSetPagesize(Pager *pPager, u16 *pPageSize){ int rc = SQLITE_OK; u16 pageSize = *pPageSize; assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) ); if( pageSize && pageSize!=pPager->pageSize && !pPager->memDb && pPager->nRef==0 ){ char *pNew = (char *)sqlite3_malloc(pageSize); if( !pNew ){ rc = SQLITE_NOMEM; }else{ pagerEnter(pPager); pager_reset(pPager); pPager->pageSize = pageSize; setSectorSize(pPager); sqlite3_free(pPager->pTmpSpace); pPager->pTmpSpace = pNew; pagerLeave(pPager); } } *pPageSize = pPager->pageSize; return rc; } /* ** Attempt to set the maximum database page count if mxPage is positive. ** Make no changes if mxPage is zero or negative. And never reduce the ** maximum page count below the current size of the database. ** ** Regardless of mxPage, return the current maximum page count. */ int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){ if( mxPage>0 ){ pPager->mxPgno = mxPage; } sqlite3PagerPagecount(pPager); return pPager->mxPgno; } /* ** The following set of routines are used to disable the simulated ** I/O error mechanism. These routines are used to avoid simulated ** errors in places where we do not care about errors. ** ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops ** and generate no code. */ #ifdef SQLITE_TEST extern int sqlite3_io_error_pending; extern int sqlite3_io_error_hit; static int saved_cnt; void disable_simulated_io_errors(void){ saved_cnt = sqlite3_io_error_pending; sqlite3_io_error_pending = -1; } void enable_simulated_io_errors(void){ sqlite3_io_error_pending = saved_cnt; } #else # define disable_simulated_io_errors() # define enable_simulated_io_errors() #endif /* ** Read the first N bytes from the beginning of the file into memory ** that pDest points to. ** ** No error checking is done. The rational for this is that this function ** may be called even if the file does not exist or contain a header. In ** these cases sqlite3OsRead() will return an error, to which the correct ** response is to zero the memory at pDest and continue. A real IO error ** will presumably recur and be picked up later (Todo: Think about this). */ int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){ int rc = SQLITE_OK; memset(pDest, 0, N); assert(MEMDB||pPager->fd->pMethods||pPager->tempFile); if( pPager->fd->pMethods ){ IOTRACE(("DBHDR %p 0 %d\n", pPager, N)) rc = sqlite3OsRead(pPager->fd, pDest, N, 0); if( rc==SQLITE_IOERR_SHORT_READ ){ rc = SQLITE_OK; } } return rc; } /* ** Return the total number of pages in the disk file associated with ** pPager. ** ** If the PENDING_BYTE lies on the page directly after the end of the ** file, then consider this page part of the file too. For example, if ** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the ** file is 4096 bytes, 5 is returned instead of 4. */ int sqlite3PagerPagecount(Pager *pPager){ i64 n = 0; int rc; assert( pPager!=0 ); if( pPager->errCode ){ return 0; } if( pPager->dbSize>=0 ){ n = pPager->dbSize; } else { assert(pPager->fd->pMethods||pPager->tempFile); if( (pPager->fd->pMethods) && (rc = sqlite3OsFileSize(pPager->fd, &n))!=SQLITE_OK ){ pPager->nRef++; pager_error(pPager, rc); pPager->nRef--; return 0; } if( n>0 && npageSize ){ n = 1; }else{ n /= pPager->pageSize; } if( pPager->state!=PAGER_UNLOCK ){ pPager->dbSize = n; } } if( n==(PENDING_BYTE/pPager->pageSize) ){ n++; } if( n>pPager->mxPgno ){ pPager->mxPgno = n; } return n; } #ifndef SQLITE_OMIT_MEMORYDB /* ** Clear a PgHistory block */ static void clearHistory(PgHistory *pHist){ sqlite3_free(pHist->pOrig); sqlite3_free(pHist->pStmt); pHist->pOrig = 0; pHist->pStmt = 0; } #else #define clearHistory(x) #endif /* ** Forward declaration */ static int syncJournal(Pager*); /* ** Unlink pPg from it's hash chain. Also set the page number to 0 to indicate ** that the page is not part of any hash chain. This is required because the ** sqlite3PagerMovepage() routine can leave a page in the ** pNextFree/pPrevFree list that is not a part of any hash-chain. */ static void unlinkHashChain(Pager *pPager, PgHdr *pPg){ if( pPg->pgno==0 ){ assert( pPg->pNextHash==0 && pPg->pPrevHash==0 ); return; } if( pPg->pNextHash ){ pPg->pNextHash->pPrevHash = pPg->pPrevHash; } if( pPg->pPrevHash ){ assert( pPager->aHash[pPg->pgno & (pPager->nHash-1)]!=pPg ); pPg->pPrevHash->pNextHash = pPg->pNextHash; }else{ int h = pPg->pgno & (pPager->nHash-1); pPager->aHash[h] = pPg->pNextHash; } if( MEMDB ){ clearHistory(PGHDR_TO_HIST(pPg, pPager)); } pPg->pgno = 0; pPg->pNextHash = pPg->pPrevHash = 0; } /* ** Unlink a page from the free list (the list of all pages where nRef==0) ** and from its hash collision chain. */ static void unlinkPage(PgHdr *pPg){ Pager *pPager = pPg->pPager; /* Unlink from free page list */ lruListRemove(pPg); /* Unlink from the pgno hash table */ unlinkHashChain(pPager, pPg); } /* ** This routine is used to truncate the cache when a database ** is truncated. Drop from the cache all pages whose pgno is ** larger than pPager->dbSize and is unreferenced. ** ** Referenced pages larger than pPager->dbSize are zeroed. ** ** Actually, at the point this routine is called, it would be ** an error to have a referenced page. But rather than delete ** that page and guarantee a subsequent segfault, it seems better ** to zero it and hope that we error out sanely. */ static void pager_truncate_cache(Pager *pPager){ PgHdr *pPg; PgHdr **ppPg; int dbSize = pPager->dbSize; ppPg = &pPager->pAll; while( (pPg = *ppPg)!=0 ){ if( pPg->pgno<=dbSize ){ ppPg = &pPg->pNextAll; }else if( pPg->nRef>0 ){ memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize); ppPg = &pPg->pNextAll; }else{ *ppPg = pPg->pNextAll; IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno)); PAGER_INCR(sqlite3_pager_pgfree_count); unlinkPage(pPg); makeClean(pPg); sqlite3_free(pPg->pData); sqlite3_free(pPg); pPager->nPage--; } } } /* ** Try to obtain a lock on a file. Invoke the busy callback if the lock ** is currently not available. Repeat until the busy callback returns ** false or until the lock succeeds. ** ** Return SQLITE_OK on success and an error code if we cannot obtain ** the lock. */ static int pager_wait_on_lock(Pager *pPager, int locktype){ int rc; /* The OS lock values must be the same as the Pager lock values */ assert( PAGER_SHARED==SHARED_LOCK ); assert( PAGER_RESERVED==RESERVED_LOCK ); assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK ); /* If the file is currently unlocked then the size must be unknown */ assert( pPager->state>=PAGER_SHARED || pPager->dbSize<0 || MEMDB ); if( pPager->state>=locktype ){ rc = SQLITE_OK; }else{ do { rc = sqlite3OsLock(pPager->fd, locktype); }while( rc==SQLITE_BUSY && sqlite3InvokeBusyHandler(pPager->pBusyHandler) ); if( rc==SQLITE_OK ){ pPager->state = locktype; IOTRACE(("LOCK %p %d\n", pPager, locktype)) } } return rc; } /* ** Truncate the file to the number of pages specified. */ int sqlite3PagerTruncate(Pager *pPager, Pgno nPage){ int rc; assert( pPager->state>=PAGER_SHARED || MEMDB ); sqlite3PagerPagecount(pPager); if( pPager->errCode ){ rc = pPager->errCode; return rc; } if( nPage>=(unsigned)pPager->dbSize ){ return SQLITE_OK; } if( MEMDB ){ pPager->dbSize = nPage; pager_truncate_cache(pPager); return SQLITE_OK; } pagerEnter(pPager); rc = syncJournal(pPager); pagerLeave(pPager); if( rc!=SQLITE_OK ){ return rc; } /* Get an exclusive lock on the database before truncating. */ pagerEnter(pPager); rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); pagerLeave(pPager); if( rc!=SQLITE_OK ){ return rc; } rc = pager_truncate(pPager, nPage); return rc; } /* ** Shutdown the page cache. Free all memory and close all files. ** ** If a transaction was in progress when this routine is called, that ** transaction is rolled back. All outstanding pages are invalidated ** and their memory is freed. Any attempt to use a page associated ** with this page cache after this function returns will likely ** result in a coredump. ** ** This function always succeeds. If a transaction is active an attempt ** is made to roll it back. If an error occurs during the rollback ** a hot journal may be left in the filesystem but no error is returned ** to the caller. */ int sqlite3PagerClose(Pager *pPager){ #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT if( !MEMDB ){ sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); sqlite3_mutex_enter(mutex); if( pPager->pPrev ){ pPager->pPrev->pNext = pPager->pNext; }else{ sqlite3PagerList = pPager->pNext; } if( pPager->pNext ){ pPager->pNext->pPrev = pPager->pPrev; } sqlite3_mutex_leave(mutex); } #endif disable_simulated_io_errors(); pPager->errCode = 0; pPager->exclusiveMode = 0; pager_reset(pPager); pagerUnlockAndRollback(pPager); enable_simulated_io_errors(); PAGERTRACE2("CLOSE %d\n", PAGERID(pPager)); IOTRACE(("CLOSE %p\n", pPager)) assert( pPager->errCode || (pPager->journalOpen==0 && pPager->stmtOpen==0) ); if( pPager->journalOpen ){ sqlite3OsClose(pPager->jfd); } sqlite3_free(pPager->aInJournal); if( pPager->stmtOpen ){ sqlite3OsClose(pPager->stfd); } sqlite3OsClose(pPager->fd); /* Temp files are automatically deleted by the OS ** if( pPager->tempFile ){ ** sqlite3OsDelete(pPager->zFilename); ** } */ sqlite3_free(pPager->aHash); sqlite3_free(pPager->pTmpSpace); sqlite3_free(pPager); return SQLITE_OK; } #if !defined(NDEBUG) || defined(SQLITE_TEST) /* ** Return the page number for the given page data. */ Pgno sqlite3PagerPagenumber(DbPage *p){ return p->pgno; } #endif /* ** The page_ref() function increments the reference count for a page. ** If the page is currently on the freelist (the reference count is zero) then ** remove it from the freelist. ** ** For non-test systems, page_ref() is a macro that calls _page_ref() ** online of the reference count is zero. For test systems, page_ref() ** is a real function so that we can set breakpoints and trace it. */ static void _page_ref(PgHdr *pPg){ if( pPg->nRef==0 ){ /* The page is currently on the freelist. Remove it. */ lruListRemove(pPg); pPg->pPager->nRef++; } pPg->nRef++; REFINFO(pPg); } #ifdef SQLITE_DEBUG static void page_ref(PgHdr *pPg){ if( pPg->nRef==0 ){ _page_ref(pPg); }else{ pPg->nRef++; REFINFO(pPg); } } #else # define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++) #endif /* ** Increment the reference count for a page. The input pointer is ** a reference to the page data. */ int sqlite3PagerRef(DbPage *pPg){ pagerEnter(pPg->pPager); page_ref(pPg); pagerLeave(pPg->pPager); return SQLITE_OK; } /* ** Sync the journal. In other words, make sure all the pages that have ** been written to the journal have actually reached the surface of the ** disk. It is not safe to modify the original database file until after ** the journal has been synced. If the original database is modified before ** the journal is synced and a power failure occurs, the unsynced journal ** data would be lost and we would be unable to completely rollback the ** database changes. Database corruption would occur. ** ** This routine also updates the nRec field in the header of the journal. ** (See comments on the pager_playback() routine for additional information.) ** If the sync mode is FULL, two syncs will occur. First the whole journal ** is synced, then the nRec field is updated, then a second sync occurs. ** ** For temporary databases, we do not care if we are able to rollback ** after a power failure, so no sync occurs. ** ** If the IOCAP_SEQUENTIAL flag is set for the persistent media on which ** the database is stored, then OsSync() is never called on the journal ** file. In this case all that is required is to update the nRec field in ** the journal header. ** ** This routine clears the needSync field of every page current held in ** memory. */ static int syncJournal(Pager *pPager){ PgHdr *pPg; int rc = SQLITE_OK; /* Sync the journal before modifying the main database ** (assuming there is a journal and it needs to be synced.) */ if( pPager->needSync ){ if( !pPager->tempFile ){ int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); assert( pPager->journalOpen ); /* assert( !pPager->noSync ); // noSync might be set if synchronous ** was turned off after the transaction was started. Ticket #615 */ #ifndef NDEBUG { /* Make sure the pPager->nRec counter we are keeping agrees ** with the nRec computed from the size of the journal file. */ i64 jSz; rc = sqlite3OsFileSize(pPager->jfd, &jSz); if( rc!=0 ) return rc; assert( pPager->journalOff==jSz ); } #endif if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ /* Write the nRec value into the journal file header. If in ** full-synchronous mode, sync the journal first. This ensures that ** all data has really hit the disk before nRec is updated to mark ** it as a candidate for rollback. ** ** This is not required if the persistent media supports the ** SAFE_APPEND property. Because in this case it is not possible ** for garbage data to be appended to the file, the nRec field ** is populated with 0xFFFFFFFF when the journal header is written ** and never needs to be updated. */ i64 jrnlOff; if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager)); IOTRACE(("JSYNC %p\n", pPager)) rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags); if( rc!=0 ) return rc; } jrnlOff = pPager->journalHdr + sizeof(aJournalMagic); IOTRACE(("JHDR %p %lld %d\n", pPager, jrnlOff, 4)); rc = write32bits(pPager->jfd, jrnlOff, pPager->nRec); if( rc ) return rc; } if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager)); IOTRACE(("JSYNC %p\n", pPager)) rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags| (pPager->sync_flags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) ); if( rc!=0 ) return rc; } pPager->journalStarted = 1; } pPager->needSync = 0; /* Erase the needSync flag from every page. */ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ pPg->needSync = 0; } lruListSetFirstSynced(pPager); } #ifndef NDEBUG /* If the Pager.needSync flag is clear then the PgHdr.needSync ** flag must also be clear for all pages. Verify that this ** invariant is true. */ else{ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ assert( pPg->needSync==0 ); } assert( pPager->lru.pFirstSynced==pPager->lru.pFirst ); } #endif return rc; } /* ** Merge two lists of pages connected by pDirty and in pgno order. ** Do not both fixing the pPrevDirty pointers. */ static PgHdr *merge_pagelist(PgHdr *pA, PgHdr *pB){ PgHdr result, *pTail; pTail = &result; while( pA && pB ){ if( pA->pgnopgno ){ pTail->pDirty = pA; pTail = pA; pA = pA->pDirty; }else{ pTail->pDirty = pB; pTail = pB; pB = pB->pDirty; } } if( pA ){ pTail->pDirty = pA; }else if( pB ){ pTail->pDirty = pB; }else{ pTail->pDirty = 0; } return result.pDirty; } /* ** Sort the list of pages in accending order by pgno. Pages are ** connected by pDirty pointers. The pPrevDirty pointers are ** corrupted by this sort. */ #define N_SORT_BUCKET_ALLOC 25 #define N_SORT_BUCKET 25 #ifdef SQLITE_TEST int sqlite3_pager_n_sort_bucket = 0; #undef N_SORT_BUCKET #define N_SORT_BUCKET \ (sqlite3_pager_n_sort_bucket?sqlite3_pager_n_sort_bucket:N_SORT_BUCKET_ALLOC) #endif static PgHdr *sort_pagelist(PgHdr *pIn){ PgHdr *a[N_SORT_BUCKET_ALLOC], *p; int i; memset(a, 0, sizeof(a)); while( pIn ){ p = pIn; pIn = p->pDirty; p->pDirty = 0; for(i=0; ipPager; /* At this point there may be either a RESERVED or EXCLUSIVE lock on the ** database file. If there is already an EXCLUSIVE lock, the following ** calls to sqlite3OsLock() are no-ops. ** ** Moving the lock from RESERVED to EXCLUSIVE actually involves going ** through an intermediate state PENDING. A PENDING lock prevents new ** readers from attaching to the database but is unsufficient for us to ** write. The idea of a PENDING lock is to prevent new readers from ** coming in while we wait for existing readers to clear. ** ** While the pager is in the RESERVED state, the original database file ** is unchanged and we can rollback without having to playback the ** journal into the original database file. Once we transition to ** EXCLUSIVE, it means the database file has been changed and any rollback ** will require a journal playback. */ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); if( rc!=SQLITE_OK ){ return rc; } pList = sort_pagelist(pList); for(p=pList; p; p=p->pDirty){ assert( p->dirty ); p->dirty = 0; } while( pList ){ /* If the file has not yet been opened, open it now. */ if( !pPager->fd->pMethods ){ assert(pPager->tempFile); rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->fd, pPager->zFilename, pPager->vfsFlags); if( rc ) return rc; } /* If there are dirty pages in the page cache with page numbers greater ** than Pager.dbSize, this means sqlite3PagerTruncate() was called to ** make the file smaller (presumably by auto-vacuum code). Do not write ** any such pages to the file. */ if( pList->pgno<=pPager->dbSize ){ i64 offset = (pList->pgno-1)*(i64)pPager->pageSize; char *pData = CODEC2(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6); PAGERTRACE4("STORE %d page %d hash(%08x)\n", PAGERID(pPager), pList->pgno, pager_pagehash(pList)); IOTRACE(("PGOUT %p %d\n", pPager, pList->pgno)); rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset); PAGER_INCR(sqlite3_pager_writedb_count); PAGER_INCR(pPager->nWrite); if( pList->pgno==1 ){ memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers)); } } #ifndef NDEBUG else{ PAGERTRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno); } #endif if( rc ) return rc; #ifdef SQLITE_CHECK_PAGES pList->pageHash = pager_pagehash(pList); #endif pList = pList->pDirty; } return SQLITE_OK; } /* ** Collect every dirty page into a dirty list and ** return a pointer to the head of that list. All pages are ** collected even if they are still in use. */ static PgHdr *pager_get_all_dirty_pages(Pager *pPager){ return pPager->pDirty; } /* ** Return TRUE if there is a hot journal on the given pager. ** A hot journal is one that needs to be played back. ** ** If the current size of the database file is 0 but a journal file ** exists, that is probably an old journal left over from a prior ** database with the same name. Just delete the journal. */ static int hasHotJournal(Pager *pPager){ sqlite3_vfs *pVfs = pPager->pVfs; if( !pPager->useJournal ) return 0; if( !sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS) ){ return 0; } if( sqlite3OsCheckReservedLock(pPager->fd) ){ return 0; } if( sqlite3PagerPagecount(pPager)==0 ){ sqlite3OsDelete(pVfs, pPager->zJournal, 0); return 0; }else{ return 1; } } /* ** Try to find a page in the cache that can be recycled. ** ** This routine may return SQLITE_IOERR, SQLITE_FULL or SQLITE_OK. It ** does not set the pPager->errCode variable. */ static int pager_recycle(Pager *pPager, PgHdr **ppPg){ PgHdr *pPg; *ppPg = 0; /* It is illegal to call this function unless the pager object ** pointed to by pPager has at least one free page (page with nRef==0). */ assert(!MEMDB); assert(pPager->lru.pFirst); /* Find a page to recycle. Try to locate a page that does not ** require us to do an fsync() on the journal. */ pPg = pPager->lru.pFirstSynced; /* If we could not find a page that does not require an fsync() ** on the journal file then fsync the journal file. This is a ** very slow operation, so we work hard to avoid it. But sometimes ** it can't be helped. */ if( pPg==0 && pPager->lru.pFirst){ int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); int rc = syncJournal(pPager); if( rc!=0 ){ return rc; } if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ /* If in full-sync mode, write a new journal header into the ** journal file. This is done to avoid ever modifying a journal ** header that is involved in the rollback of pages that have ** already been written to the database (in case the header is ** trashed when the nRec field is updated). */ pPager->nRec = 0; assert( pPager->journalOff > 0 ); assert( pPager->doNotSync==0 ); rc = writeJournalHdr(pPager); if( rc!=0 ){ return rc; } } pPg = pPager->lru.pFirst; } assert( pPg->nRef==0 ); /* Write the page to the database file if it is dirty. */ if( pPg->dirty ){ int rc; assert( pPg->needSync==0 ); makeClean(pPg); pPg->dirty = 1; pPg->pDirty = 0; rc = pager_write_pagelist( pPg ); pPg->dirty = 0; if( rc!=SQLITE_OK ){ return rc; } } assert( pPg->dirty==0 ); /* If the page we are recycling is marked as alwaysRollback, then ** set the global alwaysRollback flag, thus disabling the ** sqlite3PagerDontRollback() optimization for the rest of this transaction. ** It is necessary to do this because the page marked alwaysRollback ** might be reloaded at a later time but at that point we won't remember ** that is was marked alwaysRollback. This means that all pages must ** be marked as alwaysRollback from here on out. */ if( pPg->alwaysRollback ){ IOTRACE(("ALWAYS_ROLLBACK %p\n", pPager)) pPager->alwaysRollback = 1; } /* Unlink the old page from the free list and the hash table */ unlinkPage(pPg); assert( pPg->pgno==0 ); *ppPg = pPg; return SQLITE_OK; } #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT /* ** This function is called to free superfluous dynamically allocated memory ** held by the pager system. Memory in use by any SQLite pager allocated ** by the current thread may be sqlite3_free()ed. ** ** nReq is the number of bytes of memory required. Once this much has ** been released, the function returns. The return value is the total number ** of bytes of memory released. */ int sqlite3PagerReleaseMemory(int nReq){ int nReleased = 0; /* Bytes of memory released so far */ sqlite3_mutex *mutex; /* The MEM2 mutex */ Pager *pPager; /* For looping over pagers */ int rc = SQLITE_OK; /* Acquire the memory-management mutex */ mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); sqlite3_mutex_enter(mutex); /* Signal all database connections that memory management wants ** to have access to the pagers. */ for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){ pPager->iInUseMM = 1; } while( rc==SQLITE_OK && (nReq<0 || nReleasedneedSync || pPg->pPager->iInUseDB) ){ pPg = pPg->gfree.pNext; } if( !pPg ){ pPg = sqlite3LruPageList.pFirst; while( pPg && pPg->pPager->iInUseDB ){ pPg = pPg->gfree.pNext; } } sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); /* If pPg==0, then the block above has failed to find a page to ** recycle. In this case return early - no further memory will ** be released. */ if( !pPg ) break; pPager = pPg->pPager; assert(!pPg->needSync || pPg==pPager->lru.pFirst); assert(pPg->needSync || pPg==pPager->lru.pFirstSynced); rc = pager_recycle(pPager, &pRecycled); assert(pRecycled==pPg || rc!=SQLITE_OK); if( rc==SQLITE_OK ){ /* We've found a page to free. At this point the page has been ** removed from the page hash-table, free-list and synced-list ** (pFirstSynced). It is still in the all pages (pAll) list. ** Remove it from this list before freeing. ** ** Todo: Check the Pager.pStmt list to make sure this is Ok. It ** probably is though. */ PgHdr *pTmp; assert( pPg ); if( pPg==pPager->pAll ){ pPager->pAll = pPg->pNextAll; }else{ for( pTmp=pPager->pAll; pTmp->pNextAll!=pPg; pTmp=pTmp->pNextAll ){} pTmp->pNextAll = pPg->pNextAll; } nReleased += ( sizeof(*pPg) + pPager->pageSize + sizeof(u32) + pPager->nExtra + MEMDB*sizeof(PgHistory) ); IOTRACE(("PGFREE %p %d *\n", pPager, pPg->pgno)); PAGER_INCR(sqlite3_pager_pgfree_count); sqlite3_free(pPg->pData); sqlite3_free(pPg); pPager->nPage--; }else{ /* An error occured whilst writing to the database file or ** journal in pager_recycle(). The error is not returned to the ** caller of this function. Instead, set the Pager.errCode variable. ** The error will be returned to the user (or users, in the case ** of a shared pager cache) of the pager for which the error occured. */ assert( (rc&0xff)==SQLITE_IOERR || rc==SQLITE_FULL || rc==SQLITE_BUSY ); assert( pPager->state>=PAGER_RESERVED ); pager_error(pPager, rc); } } /* Clear the memory management flags and release the mutex */ for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){ pPager->iInUseMM = 0; } sqlite3_mutex_leave(mutex); /* Return the number of bytes released */ return nReleased; } #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ /* ** Read the content of page pPg out of the database file. */ static int readDbPage(Pager *pPager, PgHdr *pPg, Pgno pgno){ int rc; i64 offset; assert( MEMDB==0 ); assert(pPager->fd->pMethods||pPager->tempFile); if( !pPager->fd->pMethods ){ return SQLITE_IOERR_SHORT_READ; } offset = (pgno-1)*(i64)pPager->pageSize; rc = sqlite3OsRead(pPager->fd, PGHDR_TO_DATA(pPg), pPager->pageSize, offset); PAGER_INCR(sqlite3_pager_readdb_count); PAGER_INCR(pPager->nRead); IOTRACE(("PGIN %p %d\n", pPager, pgno)); if( pgno==1 ){ memcpy(&pPager->dbFileVers, &((u8*)PGHDR_TO_DATA(pPg))[24], sizeof(pPager->dbFileVers)); } CODEC1(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3); PAGERTRACE4("FETCH %d page %d hash(%08x)\n", PAGERID(pPager), pPg->pgno, pager_pagehash(pPg)); return rc; } /* ** This function is called to obtain the shared lock required before ** data may be read from the pager cache. If the shared lock has already ** been obtained, this function is a no-op. ** ** Immediately after obtaining the shared lock (if required), this function ** checks for a hot-journal file. If one is found, an emergency rollback ** is performed immediately. */ static int pagerSharedLock(Pager *pPager){ int rc = SQLITE_OK; int isHot = 0; /* If this database is opened for exclusive access, has no outstanding ** page references and is in an error-state, now is the chance to clear ** the error. Discard the contents of the pager-cache and treat any ** open journal file as a hot-journal. */ if( !MEMDB && pPager->exclusiveMode && pPager->nRef==0 && pPager->errCode ){ if( pPager->journalOpen ){ isHot = 1; } pager_reset(pPager); pPager->errCode = SQLITE_OK; } /* If the pager is still in an error state, do not proceed. The error ** state will be cleared at some point in the future when all page ** references are dropped and the cache can be discarded. */ if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ return pPager->errCode; } if( pPager->state==PAGER_UNLOCK || isHot ){ sqlite3_vfs *pVfs = pPager->pVfs; if( !MEMDB ){ assert( pPager->nRef==0 ); if( !pPager->noReadlock ){ rc = pager_wait_on_lock(pPager, SHARED_LOCK); if( rc!=SQLITE_OK ){ return pager_error(pPager, rc); } assert( pPager->state>=SHARED_LOCK ); } /* If a journal file exists, and there is no RESERVED lock on the ** database file, then it either needs to be played back or deleted. */ if( hasHotJournal(pPager) || isHot ){ /* Get an EXCLUSIVE lock on the database file. At this point it is ** important that a RESERVED lock is not obtained on the way to the ** EXCLUSIVE lock. If it were, another process might open the ** database file, detect the RESERVED lock, and conclude that the ** database is safe to read while this process is still rolling it ** back. ** ** Because the intermediate RESERVED lock is not requested, the ** second process will get to this point in the code and fail to ** obtain it's own EXCLUSIVE lock on the database file. */ if( pPager->statefd, EXCLUSIVE_LOCK); if( rc!=SQLITE_OK ){ pager_unlock(pPager); return pager_error(pPager, rc); } pPager->state = PAGER_EXCLUSIVE; } /* Open the journal for reading only. Return SQLITE_BUSY if ** we are unable to open the journal file. ** ** The journal file does not need to be locked itself. The ** journal file is never open unless the main database file holds ** a write lock, so there is never any chance of two or more ** processes opening the journal at the same time. ** ** Open the journal for read/write access. This is because in ** exclusive-access mode the file descriptor will be kept open and ** possibly used for a transaction later on. On some systems, the ** OsTruncate() call used in exclusive-access mode also requires ** a read/write file handle. */ if( !isHot ){ rc = SQLITE_BUSY; if( sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS) ){ int fout = 0; int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL; assert( !pPager->tempFile ); rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout); assert( rc!=SQLITE_OK || pPager->jfd->pMethods ); if( fout&SQLITE_OPEN_READONLY ){ rc = SQLITE_BUSY; sqlite3OsClose(pPager->jfd); } } } if( rc!=SQLITE_OK ){ pager_unlock(pPager); return ((rc==SQLITE_NOMEM||rc==SQLITE_IOERR_NOMEM)?rc:SQLITE_BUSY); } pPager->journalOpen = 1; pPager->journalStarted = 0; pPager->journalOff = 0; pPager->setMaster = 0; pPager->journalHdr = 0; /* Playback and delete the journal. Drop the database write ** lock and reacquire the read lock. */ rc = pager_playback(pPager, 1); if( rc!=SQLITE_OK ){ return pager_error(pPager, rc); } assert(pPager->state==PAGER_SHARED || (pPager->exclusiveMode && pPager->state>PAGER_SHARED) ); } if( pPager->pAll ){ /* The shared-lock has just been acquired on the database file ** and there are already pages in the cache (from a previous ** read or write transaction). Check to see if the database ** has been modified. If the database has changed, flush the ** cache. ** ** Database changes is detected by looking at 15 bytes beginning ** at offset 24 into the file. The first 4 of these 16 bytes are ** a 32-bit counter that is incremented with each change. The ** other bytes change randomly with each file change when ** a codec is in use. ** ** There is a vanishingly small chance that a change will not be ** detected. The chance of an undetected change is so small that ** it can be neglected. */ char dbFileVers[sizeof(pPager->dbFileVers)]; sqlite3PagerPagecount(pPager); if( pPager->errCode ){ return pPager->errCode; } if( pPager->dbSize>0 ){ IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers))); rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24); if( rc!=SQLITE_OK ){ return rc; } }else{ memset(dbFileVers, 0, sizeof(dbFileVers)); } if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){ pager_reset(pPager); } } } assert( pPager->exclusiveMode || pPager->state<=PAGER_SHARED ); if( pPager->state==PAGER_UNLOCK ){ pPager->state = PAGER_SHARED; } } return rc; } /* ** Allocate a PgHdr object. Either create a new one or reuse ** an existing one that is not otherwise in use. ** ** A new PgHdr structure is created if any of the following are ** true: ** ** (1) We have not exceeded our maximum allocated cache size ** as set by the "PRAGMA cache_size" command. ** ** (2) There are no unused PgHdr objects available at this time. ** ** (3) This is an in-memory database. ** ** (4) There are no PgHdr objects that do not require a journal ** file sync and a sync of the journal file is currently ** prohibited. ** ** Otherwise, reuse an existing PgHdr. In other words, reuse an ** existing PgHdr if all of the following are true: ** ** (1) We have reached or exceeded the maximum cache size ** allowed by "PRAGMA cache_size". ** ** (2) There is a PgHdr available with PgHdr->nRef==0 ** ** (3) We are not in an in-memory database ** ** (4) Either there is an available PgHdr that does not need ** to be synced to disk or else disk syncing is currently ** allowed. */ static int pagerAllocatePage(Pager *pPager, PgHdr **ppPg){ int rc = SQLITE_OK; PgHdr *pPg; void *pData; /* Create a new PgHdr if any of the four conditions defined ** above are met: */ if( pPager->nPagemxPage || pPager->lru.pFirst==0 || MEMDB || (pPager->lru.pFirstSynced==0 && pPager->doNotSync) ){ if( pPager->nPage>=pPager->nHash ){ pager_resize_hash_table(pPager, pPager->nHash<256 ? 256 : pPager->nHash*2); if( pPager->nHash==0 ){ rc = SQLITE_NOMEM; goto pager_allocate_out; } } pagerLeave(pPager); pPg = sqlite3_malloc( sizeof(*pPg) + sizeof(u32) + pPager->nExtra + MEMDB*sizeof(PgHistory) ); if( pPg ){ pData = sqlite3_malloc( pPager->pageSize ); if( pData==0 ){ sqlite3_free(pPg); pPg = 0; } } pagerEnter(pPager); if( pPg==0 ){ rc = SQLITE_NOMEM; goto pager_allocate_out; } memset(pPg, 0, sizeof(*pPg)); if( MEMDB ){ memset(PGHDR_TO_HIST(pPg, pPager), 0, sizeof(PgHistory)); } pPg->pData = pData; pPg->pPager = pPager; pPg->pNextAll = pPager->pAll; pPager->pAll = pPg; pPager->nPage++; }else{ /* Recycle an existing page with a zero ref-count. */ rc = pager_recycle(pPager, &pPg); if( rc==SQLITE_BUSY ){ rc = SQLITE_IOERR_BLOCKED; } if( rc!=SQLITE_OK ){ goto pager_allocate_out; } assert( pPager->state>=SHARED_LOCK ); assert(pPg); } *ppPg = pPg; pager_allocate_out: return rc; } /* ** Make sure we have the content for a page. If the page was ** previously acquired with noContent==1, then the content was ** just initialized to zeros instead of being read from disk. ** But now we need the real data off of disk. So make sure we ** have it. Read it in if we do not have it already. */ static int pager_get_content(PgHdr *pPg){ if( pPg->needRead ){ int rc = readDbPage(pPg->pPager, pPg, pPg->pgno); if( rc==SQLITE_OK ){ pPg->needRead = 0; }else{ return rc; } } return SQLITE_OK; } /* ** Acquire a page. ** ** A read lock on the disk file is obtained when the first page is acquired. ** This read lock is dropped when the last page is released. ** ** This routine works for any page number greater than 0. If the database ** file is smaller than the requested page, then no actual disk ** read occurs and the memory image of the page is initialized to ** all zeros. The extra data appended to a page is always initialized ** to zeros the first time a page is loaded into memory. ** ** The acquisition might fail for several reasons. In all cases, ** an appropriate error code is returned and *ppPage is set to NULL. ** ** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt ** to find a page in the in-memory cache first. If the page is not already ** in memory, this routine goes to disk to read it in whereas Lookup() ** just returns 0. This routine acquires a read-lock the first time it ** has to go to disk, and could also playback an old journal if necessary. ** Since Lookup() never goes to disk, it never has to deal with locks ** or journal files. ** ** If noContent is false, the page contents are actually read from disk. ** If noContent is true, it means that we do not care about the contents ** of the page at this time, so do not do a disk read. Just fill in the ** page content with zeros. But mark the fact that we have not read the ** content by setting the PgHdr.needRead flag. Later on, if ** sqlite3PagerWrite() is called on this page or if this routine is ** called again with noContent==0, that means that the content is needed ** and the disk read should occur at that point. */ static int pagerAcquire( Pager *pPager, /* The pager open on the database file */ Pgno pgno, /* Page number to fetch */ DbPage **ppPage, /* Write a pointer to the page here */ int noContent /* Do not bother reading content from disk if true */ ){ PgHdr *pPg; int rc; assert( pPager->state==PAGER_UNLOCK || pPager->nRef>0 || pgno==1 ); /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page ** number greater than this, or zero, is requested. */ if( pgno>PAGER_MAX_PGNO || pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ return SQLITE_CORRUPT_BKPT; } /* Make sure we have not hit any critical errors. */ assert( pPager!=0 ); *ppPage = 0; /* If this is the first page accessed, then get a SHARED lock ** on the database file. pagerSharedLock() is a no-op if ** a database lock is already held. */ rc = pagerSharedLock(pPager); if( rc!=SQLITE_OK ){ return rc; } assert( pPager->state!=PAGER_UNLOCK ); pPg = pager_lookup(pPager, pgno); if( pPg==0 ){ /* The requested page is not in the page cache. */ int nMax; int h; PAGER_INCR(pPager->nMiss); rc = pagerAllocatePage(pPager, &pPg); if( rc!=SQLITE_OK ){ return rc; } pPg->pgno = pgno; assert( !MEMDB || pgno>pPager->stmtSize ); if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){ #if 0 sqlite3CheckMemory(pPager->aInJournal, pgno/8); #endif assert( pPager->journalOpen ); pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0; pPg->needSync = 0; }else{ pPg->inJournal = 0; pPg->needSync = 0; } makeClean(pPg); pPg->nRef = 1; REFINFO(pPg); pPager->nRef++; if( pPager->nExtra>0 ){ memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra); } nMax = sqlite3PagerPagecount(pPager); if( pPager->errCode ){ rc = pPager->errCode; sqlite3PagerUnref(pPg); return rc; } /* Populate the page with data, either by reading from the database ** file, or by setting the entire page to zero. */ if( nMax<(int)pgno || MEMDB || (noContent && !pPager->alwaysRollback) ){ if( pgno>pPager->mxPgno ){ sqlite3PagerUnref(pPg); return SQLITE_FULL; } memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize); pPg->needRead = noContent && !pPager->alwaysRollback; IOTRACE(("ZERO %p %d\n", pPager, pgno)); }else{ rc = readDbPage(pPager, pPg, pgno); if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ pPg->pgno = 0; sqlite3PagerUnref(pPg); return rc; } pPg->needRead = 0; } /* Link the page into the page hash table */ h = pgno & (pPager->nHash-1); assert( pgno!=0 ); pPg->pNextHash = pPager->aHash[h]; pPager->aHash[h] = pPg; if( pPg->pNextHash ){ assert( pPg->pNextHash->pPrevHash==0 ); pPg->pNextHash->pPrevHash = pPg; } #ifdef SQLITE_CHECK_PAGES pPg->pageHash = pager_pagehash(pPg); #endif }else{ /* The requested page is in the page cache. */ assert(pPager->nRef>0 || pgno==1); PAGER_INCR(pPager->nHit); if( !noContent ){ rc = pager_get_content(pPg); if( rc ){ return rc; } } page_ref(pPg); } *ppPage = pPg; return SQLITE_OK; } int sqlite3PagerAcquire( Pager *pPager, /* The pager open on the database file */ Pgno pgno, /* Page number to fetch */ DbPage **ppPage, /* Write a pointer to the page here */ int noContent /* Do not bother reading content from disk if true */ ){ int rc; pagerEnter(pPager); rc = pagerAcquire(pPager, pgno, ppPage, noContent); pagerLeave(pPager); return rc; } /* ** Acquire a page if it is already in the in-memory cache. Do ** not read the page from disk. Return a pointer to the page, ** or 0 if the page is not in cache. ** ** See also sqlite3PagerGet(). The difference between this routine ** and sqlite3PagerGet() is that _get() will go to the disk and read ** in the page if the page is not already in cache. This routine ** returns NULL if the page is not in cache or if a disk I/O error ** has ever happened. */ DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ PgHdr *pPg = 0; assert( pPager!=0 ); assert( pgno!=0 ); pagerEnter(pPager); if( pPager->state==PAGER_UNLOCK ){ assert( !pPager->pAll || pPager->exclusiveMode ); }else if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ /* Do nothing */ }else if( (pPg = pager_lookup(pPager, pgno))!=0 ){ page_ref(pPg); } pagerLeave(pPager); return pPg; } /* ** Release a page. ** ** If the number of references to the page drop to zero, then the ** page is added to the LRU list. When all references to all pages ** are released, a rollback occurs and the lock on the database is ** removed. */ int sqlite3PagerUnref(DbPage *pPg){ Pager *pPager = pPg->pPager; /* Decrement the reference count for this page */ assert( pPg->nRef>0 ); pagerEnter(pPg->pPager); pPg->nRef--; REFINFO(pPg); CHECK_PAGE(pPg); /* When the number of references to a page reach 0, call the ** destructor and add the page to the freelist. */ if( pPg->nRef==0 ){ lruListAdd(pPg); if( pPager->xDestructor ){ pPager->xDestructor(pPg, pPager->pageSize); } /* When all pages reach the freelist, drop the read lock from ** the database file. */ pPager->nRef--; assert( pPager->nRef>=0 ); if( pPager->nRef==0 && (!pPager->exclusiveMode || pPager->journalOff>0) ){ pagerUnlockAndRollback(pPager); } } pagerLeave(pPager); return SQLITE_OK; } /* ** Create a journal file for pPager. There should already be a RESERVED ** or EXCLUSIVE lock on the database file when this routine is called. ** ** Return SQLITE_OK if everything. Return an error code and release the ** write lock if anything goes wrong. */ static int pager_open_journal(Pager *pPager){ sqlite3_vfs *pVfs = pPager->pVfs; int flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_CREATE); int rc; assert( !MEMDB ); assert( pPager->state>=PAGER_RESERVED ); assert( pPager->journalOpen==0 ); assert( pPager->useJournal ); assert( pPager->aInJournal==0 ); sqlite3PagerPagecount(pPager); pagerLeave(pPager); pPager->aInJournal = sqlite3MallocZero( pPager->dbSize/8 + 1 ); pagerEnter(pPager); if( pPager->aInJournal==0 ){ rc = SQLITE_NOMEM; goto failed_to_open_journal; } if( pPager->tempFile ){ flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL); }else{ flags |= (SQLITE_OPEN_MAIN_JOURNAL); } #ifdef SQLITE_ENABLE_ATOMIC_WRITE rc = sqlite3JournalOpen( pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager) ); #else rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0); #endif assert( rc!=SQLITE_OK || pPager->jfd->pMethods ); pPager->journalOff = 0; pPager->setMaster = 0; pPager->journalHdr = 0; if( rc!=SQLITE_OK ){ if( rc==SQLITE_NOMEM ){ sqlite3OsDelete(pVfs, pPager->zJournal, 0); } goto failed_to_open_journal; } pPager->journalOpen = 1; pPager->journalStarted = 0; pPager->needSync = 0; pPager->alwaysRollback = 0; pPager->nRec = 0; if( pPager->errCode ){ rc = pPager->errCode; goto failed_to_open_journal; } pPager->origDbSize = pPager->dbSize; rc = writeJournalHdr(pPager); if( pPager->stmtAutoopen && rc==SQLITE_OK ){ rc = sqlite3PagerStmtBegin(pPager); } if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_NOMEM ){ rc = pager_end_transaction(pPager); if( rc==SQLITE_OK ){ rc = SQLITE_FULL; } } return rc; failed_to_open_journal: sqlite3_free(pPager->aInJournal); pPager->aInJournal = 0; return rc; } /* ** Acquire a write-lock on the database. The lock is removed when ** the any of the following happen: ** ** * sqlite3PagerCommitPhaseTwo() is called. ** * sqlite3PagerRollback() is called. ** * sqlite3PagerClose() is called. ** * sqlite3PagerUnref() is called to on every outstanding page. ** ** The first parameter to this routine is a pointer to any open page of the ** database file. Nothing changes about the page - it is used merely to ** acquire a pointer to the Pager structure and as proof that there is ** already a read-lock on the database. ** ** The second parameter indicates how much space in bytes to reserve for a ** master journal file-name at the start of the journal when it is created. ** ** A journal file is opened if this is not a temporary file. For temporary ** files, the opening of the journal file is deferred until there is an ** actual need to write to the journal. ** ** If the database is already reserved for writing, this routine is a no-op. ** ** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file ** immediately instead of waiting until we try to flush the cache. The ** exFlag is ignored if a transaction is already active. */ int sqlite3PagerBegin(DbPage *pPg, int exFlag){ Pager *pPager = pPg->pPager; int rc = SQLITE_OK; pagerEnter(pPager); assert( pPg->nRef>0 ); assert( pPager->state!=PAGER_UNLOCK ); if( pPager->state==PAGER_SHARED ){ assert( pPager->aInJournal==0 ); if( MEMDB ){ pPager->state = PAGER_EXCLUSIVE; pPager->origDbSize = pPager->dbSize; }else{ rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK); if( rc==SQLITE_OK ){ pPager->state = PAGER_RESERVED; if( exFlag ){ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); } } if( rc!=SQLITE_OK ){ pagerLeave(pPager); return rc; } pPager->dirtyCache = 0; PAGERTRACE2("TRANSACTION %d\n", PAGERID(pPager)); if( pPager->useJournal && !pPager->tempFile ){ rc = pager_open_journal(pPager); } } }else if( pPager->journalOpen && pPager->journalOff==0 ){ /* This happens when the pager was in exclusive-access mode last ** time a (read or write) transaction was successfully concluded ** by this connection. Instead of deleting the journal file it was ** kept open and truncated to 0 bytes. */ assert( pPager->nRec==0 ); assert( pPager->origDbSize==0 ); assert( pPager->aInJournal==0 ); sqlite3PagerPagecount(pPager); pagerLeave(pPager); pPager->aInJournal = sqlite3MallocZero( pPager->dbSize/8 + 1 ); pagerEnter(pPager); if( !pPager->aInJournal ){ rc = SQLITE_NOMEM; }else{ pPager->origDbSize = pPager->dbSize; rc = writeJournalHdr(pPager); } } assert( !pPager->journalOpen || pPager->journalOff>0 || rc!=SQLITE_OK ); pagerLeave(pPager); return rc; } /* ** Make a page dirty. Set its dirty flag and add it to the dirty ** page list. */ static void makeDirty(PgHdr *pPg){ if( pPg->dirty==0 ){ Pager *pPager = pPg->pPager; pPg->dirty = 1; pPg->pDirty = pPager->pDirty; if( pPager->pDirty ){ pPager->pDirty->pPrevDirty = pPg; } pPg->pPrevDirty = 0; pPager->pDirty = pPg; } } /* ** Make a page clean. Clear its dirty bit and remove it from the ** dirty page list. */ static void makeClean(PgHdr *pPg){ if( pPg->dirty ){ pPg->dirty = 0; if( pPg->pDirty ){ assert( pPg->pDirty->pPrevDirty==pPg ); pPg->pDirty->pPrevDirty = pPg->pPrevDirty; } if( pPg->pPrevDirty ){ assert( pPg->pPrevDirty->pDirty==pPg ); pPg->pPrevDirty->pDirty = pPg->pDirty; }else{ assert( pPg->pPager->pDirty==pPg ); pPg->pPager->pDirty = pPg->pDirty; } } } /* ** Mark a data page as writeable. The page is written into the journal ** if it is not there already. This routine must be called before making ** changes to a page. ** ** The first time this routine is called, the pager creates a new ** journal and acquires a RESERVED lock on the database. If the RESERVED ** lock could not be acquired, this routine returns SQLITE_BUSY. The ** calling routine must check for that return value and be careful not to ** change any page data until this routine returns SQLITE_OK. ** ** If the journal file could not be written because the disk is full, ** then this routine returns SQLITE_FULL and does an immediate rollback. ** All subsequent write attempts also return SQLITE_FULL until there ** is a call to sqlite3PagerCommit() or sqlite3PagerRollback() to ** reset. */ static int pager_write(PgHdr *pPg){ void *pData = PGHDR_TO_DATA(pPg); Pager *pPager = pPg->pPager; int rc = SQLITE_OK; /* Check for errors */ if( pPager->errCode ){ return pPager->errCode; } if( pPager->readOnly ){ return SQLITE_PERM; } assert( !pPager->setMaster ); CHECK_PAGE(pPg); /* If this page was previously acquired with noContent==1, that means ** we didn't really read in the content of the page. This can happen ** (for example) when the page is being moved to the freelist. But ** now we are (perhaps) moving the page off of the freelist for ** reuse and we need to know its original content so that content ** can be stored in the rollback journal. So do the read at this ** time. */ rc = pager_get_content(pPg); if( rc ){ return rc; } /* Mark the page as dirty. If the page has already been written ** to the journal then we can return right away. */ makeDirty(pPg); if( pPg->inJournal && (pageInStatement(pPg) || pPager->stmtInUse==0) ){ pPager->dirtyCache = 1; }else{ /* If we get this far, it means that the page needs to be ** written to the transaction journal or the ckeckpoint journal ** or both. ** ** First check to see that the transaction journal exists and ** create it if it does not. */ assert( pPager->state!=PAGER_UNLOCK ); rc = sqlite3PagerBegin(pPg, 0); if( rc!=SQLITE_OK ){ return rc; } assert( pPager->state>=PAGER_RESERVED ); if( !pPager->journalOpen && pPager->useJournal ){ rc = pager_open_journal(pPager); if( rc!=SQLITE_OK ) return rc; } assert( pPager->journalOpen || !pPager->useJournal ); pPager->dirtyCache = 1; /* The transaction journal now exists and we have a RESERVED or an ** EXCLUSIVE lock on the main database file. Write the current page to ** the transaction journal if it is not there already. */ if( !pPg->inJournal && (pPager->useJournal || MEMDB) ){ if( (int)pPg->pgno <= pPager->origDbSize ){ if( MEMDB ){ PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); PAGERTRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); assert( pHist->pOrig==0 ); pHist->pOrig = sqlite3_malloc( pPager->pageSize ); if( pHist->pOrig ){ memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize); } }else{ u32 cksum; char *pData2; /* We should never write to the journal file the page that ** contains the database locks. The following assert verifies ** that we do not. */ assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); pData2 = CODEC2(pPager, pData, pPg->pgno, 7); cksum = pager_cksum(pPager, (u8*)pData2); rc = write32bits(pPager->jfd, pPager->journalOff, pPg->pgno); if( rc==SQLITE_OK ){ rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, pPager->journalOff + 4); pPager->journalOff += pPager->pageSize+4; } if( rc==SQLITE_OK ){ rc = write32bits(pPager->jfd, pPager->journalOff, cksum); pPager->journalOff += 4; } IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, pPager->journalOff, pPager->pageSize)); PAGER_INCR(sqlite3_pager_writej_count); PAGERTRACE5("JOURNAL %d page %d needSync=%d hash(%08x)\n", PAGERID(pPager), pPg->pgno, pPg->needSync, pager_pagehash(pPg)); /* An error has occured writing to the journal file. The ** transaction will be rolled back by the layer above. */ if( rc!=SQLITE_OK ){ return rc; } pPager->nRec++; assert( pPager->aInJournal!=0 ); pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7); pPg->needSync = !pPager->noSync; if( pPager->stmtInUse ){ pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); } } }else{ pPg->needSync = !pPager->journalStarted && !pPager->noSync; PAGERTRACE4("APPEND %d page %d needSync=%d\n", PAGERID(pPager), pPg->pgno, pPg->needSync); } if( pPg->needSync ){ pPager->needSync = 1; } pPg->inJournal = 1; } /* If the statement journal is open and the page is not in it, ** then write the current page to the statement journal. Note that ** the statement journal format differs from the standard journal format ** in that it omits the checksums and the header. */ if( pPager->stmtInUse && !pageInStatement(pPg) && (int)pPg->pgno<=pPager->stmtSize ){ assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize ); if( MEMDB ){ PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); assert( pHist->pStmt==0 ); pHist->pStmt = sqlite3_malloc( pPager->pageSize ); if( pHist->pStmt ){ memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize); } PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); page_add_to_stmt_list(pPg); }else{ i64 offset = pPager->stmtNRec*(4+pPager->pageSize); char *pData2 = CODEC2(pPager, pData, pPg->pgno, 7); rc = write32bits(pPager->stfd, offset, pPg->pgno); if( rc==SQLITE_OK ){ rc = sqlite3OsWrite(pPager->stfd, pData2, pPager->pageSize, offset+4); } PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); if( rc!=SQLITE_OK ){ return rc; } pPager->stmtNRec++; assert( pPager->aInStmt!=0 ); pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); } } } /* Update the database size and return. */ assert( pPager->state>=PAGER_SHARED ); if( pPager->dbSize<(int)pPg->pgno ){ pPager->dbSize = pPg->pgno; if( !MEMDB && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){ pPager->dbSize++; } } return rc; } /* ** This function is used to mark a data-page as writable. It uses ** pager_write() to open a journal file (if it is not already open) ** and write the page *pData to the journal. ** ** The difference between this function and pager_write() is that this ** function also deals with the special case where 2 or more pages ** fit on a single disk sector. In this case all co-resident pages ** must have been written to the journal file before returning. */ int sqlite3PagerWrite(DbPage *pDbPage){ int rc = SQLITE_OK; PgHdr *pPg = pDbPage; Pager *pPager = pPg->pPager; Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); pagerEnter(pPager); if( !MEMDB && nPagePerSector>1 ){ Pgno nPageCount; /* Total number of pages in database file */ Pgno pg1; /* First page of the sector pPg is located on. */ int nPage; /* Number of pages starting at pg1 to journal */ int ii; int needSync = 0; /* Set the doNotSync flag to 1. This is because we cannot allow a journal ** header to be written between the pages journaled by this function. */ assert( pPager->doNotSync==0 ); pPager->doNotSync = 1; /* This trick assumes that both the page-size and sector-size are ** an integer power of 2. It sets variable pg1 to the identifier ** of the first page of the sector pPg is located on. */ pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; nPageCount = sqlite3PagerPagecount(pPager); if( pPg->pgno>nPageCount ){ nPage = (pPg->pgno - pg1)+1; }else if( (pg1+nPagePerSector-1)>nPageCount ){ nPage = nPageCount+1-pg1; }else{ nPage = nPagePerSector; } assert(nPage>0); assert(pg1<=pPg->pgno); assert((pg1+nPage)>pPg->pgno); for(ii=0; iiaInJournal || pg==pPg->pgno || pg>pPager->origDbSize || !(pPager->aInJournal[pg/8]&(1<<(pg&7))) ) { if( pg!=PAGER_MJ_PGNO(pPager) ){ rc = sqlite3PagerGet(pPager, pg, &pPage); if( rc==SQLITE_OK ){ rc = pager_write(pPage); if( pPage->needSync ){ needSync = 1; } sqlite3PagerUnref(pPage); } } }else if( (pPage = pager_lookup(pPager, pg)) ){ if( pPage->needSync ){ needSync = 1; } } } /* If the PgHdr.needSync flag is set for any of the nPage pages ** starting at pg1, then it needs to be set for all of them. Because ** writing to any of these nPage pages may damage the others, the ** journal file must contain sync()ed copies of all of them ** before any of them can be written out to the database file. */ if( needSync ){ for(ii=0; iineedSync = 1; } assert(pPager->needSync); } assert( pPager->doNotSync==1 ); pPager->doNotSync = 0; }else{ rc = pager_write(pDbPage); } pagerLeave(pPager); return rc; } /* ** Return TRUE if the page given in the argument was previously passed ** to sqlite3PagerWrite(). In other words, return TRUE if it is ok ** to change the content of the page. */ #ifndef NDEBUG int sqlite3PagerIswriteable(DbPage *pPg){ return pPg->dirty; } #endif #ifndef SQLITE_OMIT_VACUUM /* ** Replace the content of a single page with the information in the third ** argument. */ int sqlite3PagerOverwrite(Pager *pPager, Pgno pgno, void *pData){ PgHdr *pPg; int rc; pagerEnter(pPager); rc = sqlite3PagerGet(pPager, pgno, &pPg); if( rc==SQLITE_OK ){ rc = sqlite3PagerWrite(pPg); if( rc==SQLITE_OK ){ memcpy(sqlite3PagerGetData(pPg), pData, pPager->pageSize); } sqlite3PagerUnref(pPg); } pagerLeave(pPager); return rc; } #endif /* ** A call to this routine tells the pager that it is not necessary to ** write the information on page pPg back to the disk, even though ** that page might be marked as dirty. ** ** The overlying software layer calls this routine when all of the data ** on the given page is unused. The pager marks the page as clean so ** that it does not get written to disk. ** ** Tests show that this optimization, together with the ** sqlite3PagerDontRollback() below, more than double the speed ** of large INSERT operations and quadruple the speed of large DELETEs. ** ** When this routine is called, set the alwaysRollback flag to true. ** Subsequent calls to sqlite3PagerDontRollback() for the same page ** will thereafter be ignored. This is necessary to avoid a problem ** where a page with data is added to the freelist during one part of ** a transaction then removed from the freelist during a later part ** of the same transaction and reused for some other purpose. When it ** is first added to the freelist, this routine is called. When reused, ** the sqlite3PagerDontRollback() routine is called. But because the ** page contains critical data, we still need to be sure it gets ** rolled back in spite of the sqlite3PagerDontRollback() call. */ void sqlite3PagerDontWrite(DbPage *pDbPage){ PgHdr *pPg = pDbPage; Pager *pPager = pPg->pPager; if( MEMDB ) return; pagerEnter(pPager); pPg->alwaysRollback = 1; if( pPg->dirty && !pPager->stmtInUse ){ assert( pPager->state>=PAGER_SHARED ); if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSizedbSize ){ /* If this pages is the last page in the file and the file has grown ** during the current transaction, then do NOT mark the page as clean. ** When the database file grows, we must make sure that the last page ** gets written at least once so that the disk file will be the correct ** size. If you do not write this page and the size of the file ** on the disk ends up being too small, that can lead to database ** corruption during the next transaction. */ }else{ PAGERTRACE3("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager)); IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) makeClean(pPg); #ifdef SQLITE_CHECK_PAGES pPg->pageHash = pager_pagehash(pPg); #endif } } pagerLeave(pPager); } /* ** A call to this routine tells the pager that if a rollback occurs, ** it is not necessary to restore the data on the given page. This ** means that the pager does not have to record the given page in the ** rollback journal. ** ** If we have not yet actually read the content of this page (if ** the PgHdr.needRead flag is set) then this routine acts as a promise ** that we will never need to read the page content in the future. ** so the needRead flag can be cleared at this point. */ void sqlite3PagerDontRollback(DbPage *pPg){ Pager *pPager = pPg->pPager; pagerEnter(pPager); assert( pPager->state>=PAGER_RESERVED ); if( pPager->journalOpen==0 ) return; if( pPg->alwaysRollback || pPager->alwaysRollback || MEMDB ) return; if( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ){ assert( pPager->aInJournal!=0 ); pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7); pPg->inJournal = 1; pPg->needRead = 0; if( pPager->stmtInUse ){ pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); } PAGERTRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager)); IOTRACE(("GARBAGE %p %d\n", pPager, pPg->pgno)) } if( pPager->stmtInUse && !pageInStatement(pPg) && (int)pPg->pgno<=pPager->stmtSize ){ assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize ); assert( pPager->aInStmt!=0 ); pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); } pagerLeave(pPager); } /* ** This routine is called to increment the database file change-counter, ** stored at byte 24 of the pager file. */ static int pager_incr_changecounter(Pager *pPager, int isDirect){ PgHdr *pPgHdr; u32 change_counter; int rc = SQLITE_OK; if( !pPager->changeCountDone ){ /* Open page 1 of the file for writing. */ rc = sqlite3PagerGet(pPager, 1, &pPgHdr); if( rc!=SQLITE_OK ) return rc; if( !isDirect ){ rc = sqlite3PagerWrite(pPgHdr); if( rc!=SQLITE_OK ){ sqlite3PagerUnref(pPgHdr); return rc; } } /* Increment the value just read and write it back to byte 24. */ change_counter = sqlite3Get4byte((u8*)pPager->dbFileVers); change_counter++; put32bits(((char*)PGHDR_TO_DATA(pPgHdr))+24, change_counter); if( isDirect && pPager->fd->pMethods ){ const void *zBuf = PGHDR_TO_DATA(pPgHdr); rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0); } /* Release the page reference. */ sqlite3PagerUnref(pPgHdr); pPager->changeCountDone = 1; } return rc; } /* ** Sync the database file for the pager pPager. zMaster points to the name ** of a master journal file that should be written into the individual ** journal file. zMaster may be NULL, which is interpreted as no master ** journal (a single database transaction). ** ** This routine ensures that the journal is synced, all dirty pages written ** to the database file and the database file synced. The only thing that ** remains to commit the transaction is to delete the journal file (or ** master journal file if specified). ** ** Note that if zMaster==NULL, this does not overwrite a previous value ** passed to an sqlite3PagerCommitPhaseOne() call. ** ** If parameter nTrunc is non-zero, then the pager file is truncated to ** nTrunc pages (this is used by auto-vacuum databases). */ int sqlite3PagerCommitPhaseOne(Pager *pPager, const char *zMaster, Pgno nTrunc){ int rc = SQLITE_OK; PAGERTRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n", pPager->zFilename, zMaster, nTrunc); pagerEnter(pPager); /* If this is an in-memory db, or no pages have been written to, or this ** function has already been called, it is a no-op. */ if( pPager->state!=PAGER_SYNCED && !MEMDB && pPager->dirtyCache ){ PgHdr *pPg; #ifdef SQLITE_ENABLE_ATOMIC_WRITE /* The atomic-write optimization can be used if all of the ** following are true: ** ** + The file-system supports the atomic-write property for ** blocks of size page-size, and ** + This commit is not part of a multi-file transaction, and ** + Exactly one page has been modified and store in the journal file. ** ** If the optimization can be used, then the journal file will never ** be created for this transaction. */ int useAtomicWrite = ( !zMaster && pPager->journalOff==jrnlBufferSize(pPager) && nTrunc==0 && (0==pPager->pDirty || 0==pPager->pDirty->pDirty) ); if( useAtomicWrite ){ /* Update the nRec field in the journal file. */ int offset = pPager->journalHdr + sizeof(aJournalMagic); assert(pPager->nRec==1); rc = write32bits(pPager->jfd, offset, pPager->nRec); /* Update the db file change counter. The following call will modify ** the in-memory representation of page 1 to include the updated ** change counter and then write page 1 directly to the database ** file. Because of the atomic-write property of the host file-system, ** this is safe. */ if( rc==SQLITE_OK ){ rc = pager_incr_changecounter(pPager, 1); } }else{ rc = sqlite3JournalCreate(pPager->jfd); } if( !useAtomicWrite && rc==SQLITE_OK ) #endif /* If a master journal file name has already been written to the ** journal file, then no sync is required. This happens when it is ** written, then the process fails to upgrade from a RESERVED to an ** EXCLUSIVE lock. The next time the process tries to commit the ** transaction the m-j name will have already been written. */ if( !pPager->setMaster ){ assert( pPager->journalOpen ); rc = pager_incr_changecounter(pPager, 0); if( rc!=SQLITE_OK ) goto sync_exit; #ifndef SQLITE_OMIT_AUTOVACUUM if( nTrunc!=0 ){ /* If this transaction has made the database smaller, then all pages ** being discarded by the truncation must be written to the journal ** file. */ Pgno i; int iSkip = PAGER_MJ_PGNO(pPager); for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){ if( !(pPager->aInJournal[i/8] & (1<<(i&7))) && i!=iSkip ){ rc = sqlite3PagerGet(pPager, i, &pPg); if( rc!=SQLITE_OK ) goto sync_exit; rc = sqlite3PagerWrite(pPg); sqlite3PagerUnref(pPg); if( rc!=SQLITE_OK ) goto sync_exit; } } } #endif rc = writeMasterJournal(pPager, zMaster); if( rc!=SQLITE_OK ) goto sync_exit; rc = syncJournal(pPager); } if( rc!=SQLITE_OK ) goto sync_exit; #ifndef SQLITE_OMIT_AUTOVACUUM if( nTrunc!=0 ){ rc = sqlite3PagerTruncate(pPager, nTrunc); if( rc!=SQLITE_OK ) goto sync_exit; } #endif /* Write all dirty pages to the database file */ pPg = pager_get_all_dirty_pages(pPager); rc = pager_write_pagelist(pPg); if( rc!=SQLITE_OK ){ while( pPg && !pPg->dirty ){ pPg = pPg->pDirty; } pPager->pDirty = pPg; goto sync_exit; } pPager->pDirty = 0; /* Sync the database file. */ if( !pPager->noSync ){ rc = sqlite3OsSync(pPager->fd, pPager->sync_flags); } IOTRACE(("DBSYNC %p\n", pPager)) pPager->state = PAGER_SYNCED; }else if( MEMDB && nTrunc!=0 ){ rc = sqlite3PagerTruncate(pPager, nTrunc); } sync_exit: if( rc==SQLITE_IOERR_BLOCKED ){ /* pager_incr_changecounter() may attempt to obtain an exclusive * lock to spill the cache and return IOERR_BLOCKED. But since * there is no chance the cache is inconsistent, it's * better to return SQLITE_BUSY. */ rc = SQLITE_BUSY; } pagerLeave(pPager); return rc; } /* ** Commit all changes to the database and release the write lock. ** ** If the commit fails for any reason, a rollback attempt is made ** and an error code is returned. If the commit worked, SQLITE_OK ** is returned. */ int sqlite3PagerCommitPhaseTwo(Pager *pPager){ int rc; PgHdr *pPg; if( pPager->errCode ){ return pPager->errCode; } if( pPager->statedirty = 0; pPg->inJournal = 0; pHist->inStmt = 0; pPg->needSync = 0; pHist->pPrevStmt = pHist->pNextStmt = 0; pPg = pPg->pDirty; } pPager->pDirty = 0; #ifndef NDEBUG for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); assert( !pPg->alwaysRollback ); assert( !pHist->pOrig ); assert( !pHist->pStmt ); } #endif pPager->pStmt = 0; pPager->state = PAGER_SHARED; return SQLITE_OK; } assert( pPager->journalOpen || !pPager->dirtyCache ); assert( pPager->state==PAGER_SYNCED || !pPager->dirtyCache ); rc = pager_end_transaction(pPager); rc = pager_error(pPager, rc); pagerLeave(pPager); return rc; } /* ** Rollback all changes. The database falls back to PAGER_SHARED mode. ** All in-memory cache pages revert to their original data contents. ** The journal is deleted. ** ** This routine cannot fail unless some other process is not following ** the correct locking protocol or unless some other ** process is writing trash into the journal file (SQLITE_CORRUPT) or ** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error ** codes are returned for all these occasions. Otherwise, ** SQLITE_OK is returned. */ int sqlite3PagerRollback(Pager *pPager){ int rc; PAGERTRACE2("ROLLBACK %d\n", PAGERID(pPager)); if( MEMDB ){ PgHdr *p; for(p=pPager->pAll; p; p=p->pNextAll){ PgHistory *pHist; assert( !p->alwaysRollback ); if( !p->dirty ){ assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pOrig ); assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pStmt ); continue; } pHist = PGHDR_TO_HIST(p, pPager); if( pHist->pOrig ){ memcpy(PGHDR_TO_DATA(p), pHist->pOrig, pPager->pageSize); PAGERTRACE3("ROLLBACK-PAGE %d of %d\n", p->pgno, PAGERID(pPager)); }else{ PAGERTRACE3("PAGE %d is clean on %d\n", p->pgno, PAGERID(pPager)); } clearHistory(pHist); p->dirty = 0; p->inJournal = 0; pHist->inStmt = 0; pHist->pPrevStmt = pHist->pNextStmt = 0; if( pPager->xReiniter ){ pPager->xReiniter(p, pPager->pageSize); } } pPager->pDirty = 0; pPager->pStmt = 0; pPager->dbSize = pPager->origDbSize; pager_truncate_cache(pPager); pPager->stmtInUse = 0; pPager->state = PAGER_SHARED; return SQLITE_OK; } pagerEnter(pPager); if( !pPager->dirtyCache || !pPager->journalOpen ){ rc = pager_end_transaction(pPager); pagerLeave(pPager); return rc; } if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ if( pPager->state>=PAGER_EXCLUSIVE ){ pager_playback(pPager, 0); } pagerLeave(pPager); return pPager->errCode; } if( pPager->state==PAGER_RESERVED ){ int rc2; rc = pager_playback(pPager, 0); rc2 = pager_end_transaction(pPager); if( rc==SQLITE_OK ){ rc = rc2; } }else{ rc = pager_playback(pPager, 0); } /* pager_reset(pPager); */ pPager->dbSize = -1; /* If an error occurs during a ROLLBACK, we can no longer trust the pager ** cache. So call pager_error() on the way out to make any error ** persistent. */ rc = pager_error(pPager, rc); pagerLeave(pPager); return rc; } /* ** Return TRUE if the database file is opened read-only. Return FALSE ** if the database is (in theory) writable. */ int sqlite3PagerIsreadonly(Pager *pPager){ return pPager->readOnly; } /* ** Return the number of references to the pager. */ int sqlite3PagerRefcount(Pager *pPager){ return pPager->nRef; } #ifdef SQLITE_TEST /* ** This routine is used for testing and analysis only. */ int *sqlite3PagerStats(Pager *pPager){ static int a[11]; a[0] = pPager->nRef; a[1] = pPager->nPage; a[2] = pPager->mxPage; a[3] = pPager->dbSize; a[4] = pPager->state; a[5] = pPager->errCode; a[6] = pPager->nHit; a[7] = pPager->nMiss; a[8] = 0; /* Used to be pPager->nOvfl */ a[9] = pPager->nRead; a[10] = pPager->nWrite; return a; } #endif /* ** Set the statement rollback point. ** ** This routine should be called with the transaction journal already ** open. A new statement journal is created that can be used to rollback ** changes of a single SQL command within a larger transaction. */ static int pagerStmtBegin(Pager *pPager){ int rc; assert( !pPager->stmtInUse ); assert( pPager->state>=PAGER_SHARED ); assert( pPager->dbSize>=0 ); PAGERTRACE2("STMT-BEGIN %d\n", PAGERID(pPager)); if( MEMDB ){ pPager->stmtInUse = 1; pPager->stmtSize = pPager->dbSize; return SQLITE_OK; } if( !pPager->journalOpen ){ pPager->stmtAutoopen = 1; return SQLITE_OK; } assert( pPager->journalOpen ); pagerLeave(pPager); assert( pPager->aInStmt==0 ); pPager->aInStmt = sqlite3MallocZero( pPager->dbSize/8 + 1 ); pagerEnter(pPager); if( pPager->aInStmt==0 ){ /* sqlite3OsLock(pPager->fd, SHARED_LOCK); */ return SQLITE_NOMEM; } #ifndef NDEBUG rc = sqlite3OsFileSize(pPager->jfd, &pPager->stmtJSize); if( rc ) goto stmt_begin_failed; assert( pPager->stmtJSize == pPager->journalOff ); #endif pPager->stmtJSize = pPager->journalOff; pPager->stmtSize = pPager->dbSize; pPager->stmtHdrOff = 0; pPager->stmtCksum = pPager->cksumInit; if( !pPager->stmtOpen ){ rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->stfd, pPager->zStmtJrnl, SQLITE_OPEN_SUBJOURNAL); if( rc ){ goto stmt_begin_failed; } pPager->stmtOpen = 1; pPager->stmtNRec = 0; } pPager->stmtInUse = 1; return SQLITE_OK; stmt_begin_failed: if( pPager->aInStmt ){ sqlite3_free(pPager->aInStmt); pPager->aInStmt = 0; } return rc; } int sqlite3PagerStmtBegin(Pager *pPager){ int rc; pagerEnter(pPager); rc = pagerStmtBegin(pPager); pagerLeave(pPager); return rc; } /* ** Commit a statement. */ int sqlite3PagerStmtCommit(Pager *pPager){ pagerEnter(pPager); if( pPager->stmtInUse ){ PgHdr *pPg, *pNext; PAGERTRACE2("STMT-COMMIT %d\n", PAGERID(pPager)); if( !MEMDB ){ /* sqlite3OsTruncate(pPager->stfd, 0); */ sqlite3_free( pPager->aInStmt ); pPager->aInStmt = 0; }else{ for(pPg=pPager->pStmt; pPg; pPg=pNext){ PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); pNext = pHist->pNextStmt; assert( pHist->inStmt ); pHist->inStmt = 0; pHist->pPrevStmt = pHist->pNextStmt = 0; sqlite3_free(pHist->pStmt); pHist->pStmt = 0; } } pPager->stmtNRec = 0; pPager->stmtInUse = 0; pPager->pStmt = 0; } pPager->stmtAutoopen = 0; pagerLeave(pPager); return SQLITE_OK; } /* ** Rollback a statement. */ int sqlite3PagerStmtRollback(Pager *pPager){ int rc; pagerEnter(pPager); if( pPager->stmtInUse ){ PAGERTRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager)); if( MEMDB ){ PgHdr *pPg; PgHistory *pHist; for(pPg=pPager->pStmt; pPg; pPg=pHist->pNextStmt){ pHist = PGHDR_TO_HIST(pPg, pPager); if( pHist->pStmt ){ memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize); sqlite3_free(pHist->pStmt); pHist->pStmt = 0; } } pPager->dbSize = pPager->stmtSize; pager_truncate_cache(pPager); rc = SQLITE_OK; }else{ rc = pager_stmt_playback(pPager); } sqlite3PagerStmtCommit(pPager); }else{ rc = SQLITE_OK; } pPager->stmtAutoopen = 0; pagerLeave(pPager); return rc; } /* ** Return the full pathname of the database file. */ const char *sqlite3PagerFilename(Pager *pPager){ return pPager->zFilename; } /* ** Return the VFS structure for the pager. */ const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){ return pPager->pVfs; } /* ** Return the file handle for the database file associated ** with the pager. This might return NULL if the file has ** not yet been opened. */ sqlite3_file *sqlite3PagerFile(Pager *pPager){ return pPager->fd; } /* ** Return the directory of the database file. */ const char *sqlite3PagerDirname(Pager *pPager){ return pPager->zDirectory; } /* ** Return the full pathname of the journal file. */ const char *sqlite3PagerJournalname(Pager *pPager){ return pPager->zJournal; } /* ** Return true if fsync() calls are disabled for this pager. Return FALSE ** if fsync()s are executed normally. */ int sqlite3PagerNosync(Pager *pPager){ return pPager->noSync; } #ifdef SQLITE_HAS_CODEC /* ** Set the codec for this pager */ void sqlite3PagerSetCodec( Pager *pPager, void *(*xCodec)(void*,void*,Pgno,int), void *pCodecArg ){ pPager->xCodec = xCodec; pPager->pCodecArg = pCodecArg; } #endif #ifndef SQLITE_OMIT_AUTOVACUUM /* ** Move the page pPg to location pgno in the file. ** ** There must be no references to the page previously located at ** pgno (which we call pPgOld) though that page is allowed to be ** in cache. If the page previous located at pgno is not already ** in the rollback journal, it is not put there by by this routine. ** ** References to the page pPg remain valid. Updating any ** meta-data associated with pPg (i.e. data stored in the nExtra bytes ** allocated along with the page) is the responsibility of the caller. ** ** A transaction must be active when this routine is called. It used to be ** required that a statement transaction was not active, but this restriction ** has been removed (CREATE INDEX needs to move a page when a statement ** transaction is active). */ int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno){ PgHdr *pPgOld; /* The page being overwritten. */ int h; Pgno needSyncPgno = 0; pagerEnter(pPager); assert( pPg->nRef>0 ); PAGERTRACE5("MOVE %d page %d (needSync=%d) moves to %d\n", PAGERID(pPager), pPg->pgno, pPg->needSync, pgno); IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) pager_get_content(pPg); if( pPg->needSync ){ needSyncPgno = pPg->pgno; assert( pPg->inJournal || (int)pgno>pPager->origDbSize ); assert( pPg->dirty ); assert( pPager->needSync ); } /* Unlink pPg from it's hash-chain */ unlinkHashChain(pPager, pPg); /* If the cache contains a page with page-number pgno, remove it ** from it's hash chain. Also, if the PgHdr.needSync was set for ** page pgno before the 'move' operation, it needs to be retained ** for the page moved there. */ pPg->needSync = 0; pPgOld = pager_lookup(pPager, pgno); if( pPgOld ){ assert( pPgOld->nRef==0 ); unlinkHashChain(pPager, pPgOld); makeClean(pPgOld); pPg->needSync = pPgOld->needSync; }else{ pPg->needSync = 0; } if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){ pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0; }else{ pPg->inJournal = 0; assert( pPg->needSync==0 || (int)pgno>pPager->origDbSize ); } /* Change the page number for pPg and insert it into the new hash-chain. */ assert( pgno!=0 ); pPg->pgno = pgno; h = pgno & (pPager->nHash-1); if( pPager->aHash[h] ){ assert( pPager->aHash[h]->pPrevHash==0 ); pPager->aHash[h]->pPrevHash = pPg; } pPg->pNextHash = pPager->aHash[h]; pPager->aHash[h] = pPg; pPg->pPrevHash = 0; makeDirty(pPg); pPager->dirtyCache = 1; if( needSyncPgno ){ /* If needSyncPgno is non-zero, then the journal file needs to be ** sync()ed before any data is written to database file page needSyncPgno. ** Currently, no such page exists in the page-cache and the ** Pager.aInJournal bit has been set. This needs to be remedied by loading ** the page into the pager-cache and setting the PgHdr.needSync flag. ** ** The sqlite3PagerGet() call may cause the journal to sync. So make ** sure the Pager.needSync flag is set too. */ int rc; PgHdr *pPgHdr; assert( pPager->needSync ); rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr); if( rc!=SQLITE_OK ) return rc; pPager->needSync = 1; pPgHdr->needSync = 1; pPgHdr->inJournal = 1; makeDirty(pPgHdr); sqlite3PagerUnref(pPgHdr); } pagerLeave(pPager); return SQLITE_OK; } #endif /* ** Return a pointer to the data for the specified page. */ void *sqlite3PagerGetData(DbPage *pPg){ return PGHDR_TO_DATA(pPg); } /* ** Return a pointer to the Pager.nExtra bytes of "extra" space ** allocated along with the specified page. */ void *sqlite3PagerGetExtra(DbPage *pPg){ Pager *pPager = pPg->pPager; return (pPager?PGHDR_TO_EXTRA(pPg, pPager):0); } /* ** Get/set the locking-mode for this pager. Parameter eMode must be one ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then ** the locking-mode is set to the value specified. ** ** The returned value is either PAGER_LOCKINGMODE_NORMAL or ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated) ** locking-mode. */ int sqlite3PagerLockingMode(Pager *pPager, int eMode){ assert( eMode==PAGER_LOCKINGMODE_QUERY || eMode==PAGER_LOCKINGMODE_NORMAL || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); assert( PAGER_LOCKINGMODE_QUERY<0 ); assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 ); if( eMode>=0 && !pPager->tempFile ){ pPager->exclusiveMode = eMode; } return (int)pPager->exclusiveMode; } #ifdef SQLITE_DEBUG /* ** Print a listing of all referenced pages and their ref count. */ void sqlite3PagerRefdump(Pager *pPager){ PgHdr *pPg; for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ if( pPg->nRef<=0 ) continue; sqlite3DebugPrintf("PAGE %3d addr=%p nRef=%d\n", pPg->pgno, PGHDR_TO_DATA(pPg), pPg->nRef); } } #endif #endif /* SQLITE_OMIT_DISKIO */