/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Memory allocation functions used throughout sqlite. ** ** ** $Id$ */ #include "sqliteInt.h" #include "os.h" #include #include /* ** MALLOC WRAPPER ARCHITECTURE ** ** The sqlite code accesses dynamic memory allocation/deallocation by invoking ** the following six APIs (which may be implemented as macros). ** ** sqlite3Malloc() ** sqlite3MallocRaw() ** sqlite3Realloc() ** sqlite3ReallocOrFree() ** sqlite3Free() ** sqlite3AllocSize() ** ** The function sqlite3FreeX performs the same task as sqlite3Free and is ** guaranteed to be a real function. The same holds for sqlite3MallocX ** ** The above APIs are implemented in terms of the functions provided in the ** operating-system interface. The OS interface is never accessed directly ** by code outside of this file. ** ** sqlite3OsMalloc() ** sqlite3OsRealloc() ** sqlite3OsFree() ** sqlite3OsAllocationSize() ** ** Functions sqlite3MallocRaw() and sqlite3Realloc() may invoke ** sqlite3_release_memory() if a call to sqlite3OsMalloc() or ** sqlite3OsRealloc() fails (or if the soft-heap-limit for the thread is ** exceeded). Function sqlite3Malloc() usually invokes ** sqlite3MallocRaw(). ** ** MALLOC TEST WRAPPER ARCHITECTURE ** ** The test wrapper provides extra test facilities to ensure the library ** does not leak memory and handles the failure of the underlying OS level ** allocation system correctly. It is only present if the library is ** compiled with the SQLITE_MEMDEBUG macro set. ** ** * Guardposts to detect overwrites. ** * Ability to cause a specific Malloc() or Realloc() to fail. ** * Audit outstanding memory allocations (i.e check for leaks). */ #define MAX(x,y) ((x)>(y)?(x):(y)) #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) && !defined(SQLITE_OMIT_DISKIO) /* ** Set the soft heap-size limit for the current thread. Passing a negative ** value indicates no limit. */ void sqlite3_soft_heap_limit(int n){ ThreadData *pTd = sqlite3ThreadData(); if( pTd ){ pTd->nSoftHeapLimit = n; } sqlite3ReleaseThreadData(); } /* ** Release memory held by SQLite instances created by the current thread. */ int sqlite3_release_memory(int n){ return sqlite3PagerReleaseMemory(n); } #else /* If SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined, then define a version ** of sqlite3_release_memory() to be used by other code in this file. ** This is done for no better reason than to reduce the number of ** pre-processor #ifndef statements. */ #define sqlite3_release_memory(x) 0 /* 0 == no memory freed */ #endif #ifdef SQLITE_MEMDEBUG /*-------------------------------------------------------------------------- ** Begin code for memory allocation system test layer. ** ** Memory debugging is turned on by defining the SQLITE_MEMDEBUG macro. ** ** SQLITE_MEMDEBUG==1 -> Fence-posting only (thread safe) ** SQLITE_MEMDEBUG==2 -> Fence-posting + linked list of allocations (not ts) ** SQLITE_MEMDEBUG==3 -> Above + backtraces (not thread safe, req. glibc) */ /* Figure out whether or not to store backtrace() information for each malloc. ** The backtrace() function is only used if SQLITE_MEMDEBUG is set to 2 or ** greater and glibc is in use. If we don't want to use backtrace(), then just ** define it as an empty macro and set the amount of space reserved to 0. */ #if defined(__GLIBC__) && SQLITE_MEMDEBUG>2 extern int backtrace(void **, int); #define TESTALLOC_STACKSIZE 128 #define TESTALLOC_STACKFRAMES ((TESTALLOC_STACKSIZE-8)/sizeof(void*)) #else #define backtrace(x, y) #define TESTALLOC_STACKSIZE 0 #define TESTALLOC_STACKFRAMES 0 #endif /* ** Number of 32-bit guard words. This should probably be a multiple of ** 2 since on 64-bit machines we want the value returned by sqliteMalloc() ** to be 8-byte aligned. */ #ifndef TESTALLOC_NGUARD # define TESTALLOC_NGUARD 2 #endif /* ** Size reserved for storing file-name along with each malloc()ed blob. */ #define TESTALLOC_FILESIZE 64 /* ** Size reserved for storing the user string. Each time a Malloc() or Realloc() ** call succeeds, up to TESTALLOC_USERSIZE bytes of the string pointed to by ** sqlite3_malloc_id are stored along with the other test system metadata. */ #define TESTALLOC_USERSIZE 64 const char *sqlite3_malloc_id = 0; /* ** Blocks used by the test layer have the following format: ** ** ** ** ** ** ** <32-bit line number> ** ** */ #define TESTALLOC_OFFSET_GUARD1(p) (sizeof(void *) * 2) #define TESTALLOC_OFFSET_DATA(p) ( \ TESTALLOC_OFFSET_GUARD1(p) + sizeof(u32) * TESTALLOC_NGUARD \ ) #define TESTALLOC_OFFSET_GUARD2(p) ( \ TESTALLOC_OFFSET_DATA(p) + sqlite3OsAllocationSize(p) - TESTALLOC_OVERHEAD \ ) #define TESTALLOC_OFFSET_LINENUMBER(p) ( \ TESTALLOC_OFFSET_GUARD2(p) + sizeof(u32) * TESTALLOC_NGUARD \ ) #define TESTALLOC_OFFSET_FILENAME(p) ( \ TESTALLOC_OFFSET_LINENUMBER(p) + sizeof(u32) \ ) #define TESTALLOC_OFFSET_USER(p) ( \ TESTALLOC_OFFSET_FILENAME(p) + TESTALLOC_FILESIZE \ ) #define TESTALLOC_OFFSET_STACK(p) ( \ TESTALLOC_OFFSET_USER(p) + TESTALLOC_USERSIZE + 8 - \ (TESTALLOC_OFFSET_USER(p) % 8) \ ) #define TESTALLOC_OVERHEAD ( \ sizeof(void *)*2 + /* pPrev and pNext pointers */ \ TESTALLOC_NGUARD*sizeof(u32)*2 + /* Guard words */ \ sizeof(u32) + TESTALLOC_FILESIZE + /* File and line number */ \ TESTALLOC_USERSIZE + /* User string */ \ TESTALLOC_STACKSIZE /* backtrace() stack */ \ ) /* ** For keeping track of the number of mallocs and frees. This ** is used to check for memory leaks. The iMallocFail and iMallocReset ** values are used to simulate malloc() failures during testing in ** order to verify that the library correctly handles an out-of-memory ** condition. */ int sqlite3_nMalloc; /* Number of sqliteMalloc() calls */ int sqlite3_nFree; /* Number of sqliteFree() calls */ int sqlite3_memUsed; /* TODO Total memory obtained from malloc */ int sqlite3_memMax; /* TODO Mem usage high-water mark */ int sqlite3_iMallocFail; /* Fail sqliteMalloc() after this many calls */ int sqlite3_iMallocReset = -1; /* When iMallocFail reaches 0, set to this */ void *sqlite3_pFirst = 0; /* Pointer to linked list of allocations */ int sqlite3_nMaxAlloc = 0; /* High water mark of ThreadData.nAlloc */ int sqlite3_mallocDisallowed = 0; /* assert() in sqlite3Malloc() if set */ int sqlite3_isFail = 0; /* True if all malloc calls should fail */ const char *sqlite3_zFile = 0; /* Filename to associate debug info with */ int sqlite3_iLine = 0; /* Line number for debug info */ int sqlite3_mallocfail_trace = 0; /* Print a msg on malloc fail if true */ /* ** Check for a simulated memory allocation failure. Return true if ** the failure should be simulated. Return false to proceed as normal. */ int sqlite3TestMallocFail(){ if( sqlite3_isFail ){ return 1; } if( sqlite3_iMallocFail>=0 ){ sqlite3_iMallocFail--; if( sqlite3_iMallocFail==0 ){ sqlite3_iMallocFail = sqlite3_iMallocReset; sqlite3_isFail = 1; if( sqlite3_mallocfail_trace ){ sqlite3DebugPrintf("###_malloc_fails_###\n"); } return 1; } } return 0; } /* ** The argument is a pointer returned by sqlite3OsMalloc() or xRealloc(). ** assert() that the first and last (TESTALLOC_NGUARD*4) bytes are set to the ** values set by the applyGuards() function. */ static void checkGuards(u32 *p) { int i; char *zAlloc = (char *)p; char *z; /* First set of guard words */ z = &zAlloc[TESTALLOC_OFFSET_GUARD1(p)]; for(i=0; i1 /* ** The argument points to an Os level allocation. Link it into the threads list ** of allocations. */ static void linkAlloc(void *p){ void **pp = (void **)p; pp[0] = 0; pp[1] = sqlite3_pFirst; if( sqlite3_pFirst ){ ((void **)sqlite3_pFirst)[0] = p; } sqlite3_pFirst = p; } /* ** The argument points to an Os level allocation. Unlinke it from the threads ** list of allocations. */ static void unlinkAlloc(void *p) { void **pp = (void **)p; if( p==sqlite3_pFirst ){ assert(!pp[0]); assert(!pp[1] || ((void **)(pp[1]))[0]==p); sqlite3_pFirst = pp[1]; if( sqlite3_pFirst ){ ((void **)sqlite3_pFirst)[0] = 0; } }else{ void **pprev = pp[0]; void **pnext = pp[1]; assert(pprev); assert(pprev[1]==p); pprev[1] = (void *)pnext; if( pnext ){ assert(pnext[0]==p); pnext[0] = (void *)pprev; } } } /* ** Pointer p is a pointer to an OS level allocation that has just been ** realloc()ed. Set the list pointers that point to this entry to it's new ** location. */ static void relinkAlloc(void *p) { void **pp = (void **)p; if( pp[0] ){ ((void **)(pp[0]))[1] = p; }else{ sqlite3_pFirst = p; } if( pp[1] ){ ((void **)(pp[1]))[0] = p; } } #else #define linkAlloc(x) #define relinkAlloc(x) #define unlinkAlloc(x) #endif /* ** This function sets the result of the Tcl interpreter passed as an argument ** to a list containing an entry for each currently outstanding call made to ** sqliteMalloc and friends by the current thread. Each list entry is itself a ** list, consisting of the following (in order): ** ** * The number of bytes allocated ** * The __FILE__ macro at the time of the sqliteMalloc() call. ** * The __LINE__ macro ... ** * The value of the sqlite3_malloc_id variable ... ** * The output of backtrace() (if available) ... ** ** Todo: We could have a version of this function that outputs to stdout, ** to debug memory leaks when Tcl is not available. */ #if defined(TCLSH) && defined(SQLITE_DEBUG) && SQLITE_MEMDEBUG>1 #include int sqlite3OutstandingMallocs(Tcl_Interp *interp){ void *p; Tcl_Obj *pRes = Tcl_NewObj(); Tcl_IncrRefCount(pRes); for(p=sqlite3_pFirst; p; p=((void **)p)[1]){ Tcl_Obj *pEntry = Tcl_NewObj(); Tcl_Obj *pStack = Tcl_NewObj(); char *z; u32 iLine; int nBytes = sqlite3OsAllocationSize(p) - TESTALLOC_OVERHEAD; char *zAlloc = (char *)p; int i; Tcl_ListObjAppendElement(0, pEntry, Tcl_NewIntObj(nBytes)); z = &zAlloc[TESTALLOC_OFFSET_FILENAME(p)]; Tcl_ListObjAppendElement(0, pEntry, Tcl_NewStringObj(z, -1)); z = &zAlloc[TESTALLOC_OFFSET_LINENUMBER(p)]; memcpy(&iLine, z, sizeof(u32)); Tcl_ListObjAppendElement(0, pEntry, Tcl_NewIntObj(iLine)); z = &zAlloc[TESTALLOC_OFFSET_USER(p)]; Tcl_ListObjAppendElement(0, pEntry, Tcl_NewStringObj(z, -1)); z = &zAlloc[TESTALLOC_OFFSET_STACK(p)]; for(i=0; inAlloc); #endif assert( !sqlite3_mallocDisallowed ); if( !sqlite3TestMallocFail() ){ u32 *p; p = (u32 *)sqlite3OsMalloc(n + TESTALLOC_OVERHEAD); assert(p); sqlite3_nMalloc++; applyGuards(p); linkAlloc(p); sqlite3OsLeaveMutex(); return (void *)(&p[TESTALLOC_NGUARD + 2*sizeof(void *)/sizeof(u32)]); } sqlite3OsLeaveMutex(); return 0; } static int OSSIZEOF(void *p){ if( p ){ u32 *pOs = (u32 *)getOsPointer(p); return sqlite3OsAllocationSize(pOs) - TESTALLOC_OVERHEAD; } return 0; } /* ** This is the test layer's wrapper around sqlite3OsFree(). The argument is a ** pointer to the space allocated for the application to use. */ static void OSFREE(void *pFree){ u32 *p; /* Pointer to the OS-layer allocation */ sqlite3OsEnterMutex(); p = (u32 *)getOsPointer(pFree); checkGuards(p); unlinkAlloc(p); memset(pFree, 0x55, OSSIZEOF(pFree)); sqlite3OsFree(p); sqlite3_nFree++; sqlite3OsLeaveMutex(); } /* ** This is the test layer's wrapper around sqlite3OsRealloc(). */ static void * OSREALLOC(void *pRealloc, int n){ #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT sqlite3_nMaxAlloc = MAX(sqlite3_nMaxAlloc, sqlite3ThreadDataReadOnly()->nAlloc); #endif assert( !sqlite3_mallocDisallowed ); if( !sqlite3TestMallocFail() ){ u32 *p = (u32 *)getOsPointer(pRealloc); checkGuards(p); p = sqlite3OsRealloc(p, n + TESTALLOC_OVERHEAD); applyGuards(p); relinkAlloc(p); return (void *)(&p[TESTALLOC_NGUARD + 2*sizeof(void *)/sizeof(u32)]); } return 0; } static void OSMALLOC_FAILED(){ sqlite3_isFail = 0; } #else /* Define macros to call the sqlite3OsXXX interface directly if ** the SQLITE_MEMDEBUG macro is not defined. */ #define OSMALLOC(x) sqlite3OsMalloc(x) #define OSREALLOC(x,y) sqlite3OsRealloc(x,y) #define OSFREE(x) sqlite3OsFree(x) #define OSSIZEOF(x) sqlite3OsAllocationSize(x) #define OSMALLOC_FAILED() #endif /* SQLITE_MEMDEBUG */ /* ** End code for memory allocation system test layer. **--------------------------------------------------------------------------*/ /* ** This routine is called when we are about to allocate n additional bytes ** of memory. If the new allocation will put is over the soft allocation ** limit, then invoke sqlite3_release_memory() to try to release some ** memory before continuing with the allocation. ** ** This routine also makes sure that the thread-specific-data (TSD) has ** be allocated. If it has not and can not be allocated, then return ** false. The updateMemoryUsedCount() routine below will deallocate ** the TSD if it ought to be. ** ** If SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined, this routine is ** a no-op */ #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT static int enforceSoftLimit(int n){ ThreadData *pTsd = sqlite3ThreadData(); if( pTsd==0 ){ return 0; } assert( pTsd->nAlloc>=0 ); if( n>0 && pTsd->nSoftHeapLimit>0 ){ while( pTsd->nAlloc+n>pTsd->nSoftHeapLimit && sqlite3_release_memory(n) ){} } return 1; } #else # define enforceSoftLimit(X) 1 #endif /* ** Update the count of total outstanding memory that is held in ** thread-specific-data (TSD). If after this update the TSD is ** no longer being used, then deallocate it. ** ** If SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined, this routine is ** a no-op */ #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT static void updateMemoryUsedCount(int n){ ThreadData *pTsd = sqlite3ThreadData(); if( pTsd ){ pTsd->nAlloc += n; assert( pTsd->nAlloc>=0 ); if( pTsd->nAlloc==0 && pTsd->nSoftHeapLimit==0 ){ sqlite3ReleaseThreadData(); } } } #else #define updateMemoryUsedCount(x) /* no-op */ #endif /* ** Allocate and return N bytes of uninitialised memory by calling ** sqlite3OsMalloc(). If the Malloc() call fails, attempt to free memory ** by calling sqlite3_release_memory(). */ void *sqlite3MallocRaw(int n, int doMemManage){ void *p = 0; if( n>0 && !sqlite3MallocFailed() && (!doMemManage || enforceSoftLimit(n)) ){ while( (p = OSMALLOC(n))==0 && sqlite3_release_memory(n) ){} if( !p ){ sqlite3FailedMalloc(); OSMALLOC_FAILED(); }else if( doMemManage ){ updateMemoryUsedCount(OSSIZEOF(p)); } } return p; } /* ** Resize the allocation at p to n bytes by calling sqlite3OsRealloc(). The ** pointer to the new allocation is returned. If the Realloc() call fails, ** attempt to free memory by calling sqlite3_release_memory(). */ void *sqlite3Realloc(void *p, int n){ if( sqlite3MallocFailed() ){ return 0; } if( !p ){ return sqlite3Malloc(n, 1); }else{ void *np = 0; #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT int origSize = OSSIZEOF(p); #endif if( enforceSoftLimit(n - origSize) ){ while( (np = OSREALLOC(p, n))==0 && sqlite3_release_memory(n) ){} if( !np ){ sqlite3FailedMalloc(); OSMALLOC_FAILED(); }else{ updateMemoryUsedCount(OSSIZEOF(np) - origSize); } } return np; } } /* ** Free the memory pointed to by p. p must be either a NULL pointer or a ** value returned by a previous call to sqlite3Malloc() or sqlite3Realloc(). */ void sqlite3FreeX(void *p){ if( p ){ updateMemoryUsedCount(0 - OSSIZEOF(p)); OSFREE(p); } } /* ** A version of sqliteMalloc() that is always a function, not a macro. ** Currently, this is used only to alloc to allocate the parser engine. */ void *sqlite3MallocX(int n){ return sqliteMalloc(n); } /* ** sqlite3Malloc ** sqlite3ReallocOrFree ** ** These two are implemented as wrappers around sqlite3MallocRaw(), ** sqlite3Realloc() and sqlite3Free(). */ void *sqlite3Malloc(int n, int doMemManage){ void *p = sqlite3MallocRaw(n, doMemManage); if( p ){ memset(p, 0, n); } return p; } void *sqlite3ReallocOrFree(void *p, int n){ void *pNew; pNew = sqlite3Realloc(p, n); if( !pNew ){ sqlite3FreeX(p); } return pNew; } /* ** sqlite3ThreadSafeMalloc() and sqlite3ThreadSafeFree() are used in those ** rare scenarios where sqlite may allocate memory in one thread and free ** it in another. They are exactly the same as sqlite3Malloc() and ** sqlite3Free() except that: ** ** * The allocated memory is not included in any calculations with ** respect to the soft-heap-limit, and ** ** * sqlite3ThreadSafeMalloc() must be matched with ThreadSafeFree(), ** not sqlite3Free(). Calling sqlite3Free() on memory obtained from ** ThreadSafeMalloc() will cause an error somewhere down the line. */ #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT void *sqlite3ThreadSafeMalloc(int n){ (void)ENTER_MALLOC; return sqlite3Malloc(n, 0); } void sqlite3ThreadSafeFree(void *p){ (void)ENTER_MALLOC; if( p ){ OSFREE(p); } } #endif /* ** Return the number of bytes allocated at location p. p must be either ** a NULL pointer (in which case 0 is returned) or a pointer returned by ** sqlite3Malloc(), sqlite3Realloc() or sqlite3ReallocOrFree(). ** ** The number of bytes allocated does not include any overhead inserted by ** any malloc() wrapper functions that may be called. So the value returned ** is the number of bytes that were available to SQLite using pointer p, ** regardless of how much memory was actually allocated. */ #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT int sqlite3AllocSize(void *p){ return OSSIZEOF(p); } #endif /* ** Make a copy of a string in memory obtained from sqliteMalloc(). These ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This ** is because when memory debugging is turned on, these two functions are ** called via macros that record the current file and line number in the ** ThreadData structure. */ char *sqlite3StrDup(const char *z){ char *zNew; int n; if( z==0 ) return 0; n = strlen(z)+1; zNew = sqlite3MallocRaw(n, 1); if( zNew ) memcpy(zNew, z, n); return zNew; } char *sqlite3StrNDup(const char *z, int n){ char *zNew; if( z==0 ) return 0; zNew = sqlite3MallocRaw(n+1, 1); if( zNew ){ memcpy(zNew, z, n); zNew[n] = 0; } return zNew; } /* ** Create a string from the 2nd and subsequent arguments (up to the ** first NULL argument), store the string in memory obtained from ** sqliteMalloc() and make the pointer indicated by the 1st argument ** point to that string. The 1st argument must either be NULL or ** point to memory obtained from sqliteMalloc(). */ void sqlite3SetString(char **pz, ...){ va_list ap; int nByte; const char *z; char *zResult; assert( pz!=0 ); nByte = 1; va_start(ap, pz); while( (z = va_arg(ap, const char*))!=0 ){ nByte += strlen(z); } va_end(ap); sqliteFree(*pz); *pz = zResult = sqliteMallocRaw( nByte ); if( zResult==0 ){ return; } *zResult = 0; va_start(ap, pz); while( (z = va_arg(ap, const char*))!=0 ){ int n = strlen(z); memcpy(zResult, z, n); zResult += n; } zResult[0] = 0; va_end(ap); } /* ** This function must be called before exiting any API function (i.e. ** returning control to the user) that has called sqlite3Malloc or ** sqlite3Realloc. ** ** The returned value is normally a copy of the second argument to this ** function. However, if a malloc() failure has occured since the previous ** invocation SQLITE_NOMEM is returned instead. ** ** If the first argument, db, is not NULL and a malloc() error has occured, ** then the connection error-code (the value returned by sqlite3_errcode()) ** is set to SQLITE_NOMEM. */ int sqlite3_mallocHasFailed = 0; int sqlite3ApiExit(sqlite3* db, int rc){ if( sqlite3MallocFailed() ){ sqlite3_mallocHasFailed = 0; sqlite3OsLeaveMutex(); sqlite3Error(db, SQLITE_NOMEM, 0); rc = SQLITE_NOMEM; } return rc & (db ? db->errMask : 0xff); } /* ** Set the "malloc has failed" condition to true for this thread. */ void sqlite3FailedMalloc(){ if( !sqlite3MallocFailed() ){ sqlite3OsEnterMutex(); assert( sqlite3_mallocHasFailed==0 ); sqlite3_mallocHasFailed = 1; } } #ifdef SQLITE_MEMDEBUG /* ** This function sets a flag in the thread-specific-data structure that will ** cause an assert to fail if sqliteMalloc() or sqliteRealloc() is called. */ void sqlite3MallocDisallow(){ assert( sqlite3_mallocDisallowed>=0 ); sqlite3_mallocDisallowed++; } /* ** This function clears the flag set in the thread-specific-data structure set ** by sqlite3MallocDisallow(). */ void sqlite3MallocAllow(){ assert( sqlite3_mallocDisallowed>0 ); sqlite3_mallocDisallowed--; } #endif