/** * vim: set ts=4 sw=4 tw=99 noet : * ============================================================================= * SourceMod * Copyright (C) 2004-2008 AlliedModders LLC. All rights reserved. * ============================================================================= * * This program is free software; you can redistribute it and/or modify it under * the terms of the GNU General Public License, version 3.0, as published by the * Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . * * As a special exception, AlliedModders LLC gives you permission to link the * code of this program (as well as its derivative works) to "Half-Life 2," the * "Source Engine," the "SourcePawn JIT," and any Game MODs that run on software * by the Valve Corporation. You must obey the GNU General Public License in * all respects for all other code used. Additionally, AlliedModders LLC grants * this exception to all derivative works. AlliedModders LLC defines further * exceptions, found in LICENSE.txt (as of this writing, version JULY-31-2007), * or . * * Version: $Id$ */ #ifndef _INCLUDE_SOURCEMOD_TEMPLATED_TRIE_H_ #define _INCLUDE_SOURCEMOD_TEMPLATED_TRIE_H_ #include #include #include #include enum NodeType { Node_Unused = 0, /* Node is not being used (sparse) */ Node_Arc, /* Node is part of an arc and does not terminate */ Node_Term, /* Node is a terminator */ }; /** * @brief DEPRECATED. This class scales extremely poorly; insertion scales * quadratic (O(n^2)) with respect to the number of elements in the table. * Only use this class if you have less than 200 elements or so. Otherwise, * use StringHashMap in sm_hashtable.h which scales linearly and has comparable * retrievable performance. * * See bug 5878 for more detail. * * @file sm_trie_tpl.h */ template class KTrie { class KTrieNode; public: /** * @brief Clears all set objects in the trie. */ void clear() { run_destructors(); internal_clear(); } /** * @brief Removes a key from the trie. * * @param key Key to remove. * @return True on success, false if key was never set. */ bool remove(const char *key) { KTrieNode *node = internal_retrieve(key); if (!node || !node->valset) { return false; } node->value.~K(); node->valset = false; m_numElements--; return true; } /** * @brief Retrieves a pointer to the object stored at a given key. * * @param key Key to retrieve. * @return Pointer to object, or NULL if key was not found or not set. */ K * retrieve(const char *key) { KTrieNode *node = internal_retrieve(key); if (!node || !node->valset) { return NULL; } return &node->value; } /** * @brief Inserts or updates the object stored at a key. * * @param key Key to update or insert. * @param obj Object to store at the key. * @return True on success, false on failure. */ bool replace(const char *key, const K & obj) { KTrieNode *prev_node = internal_retrieve(key); if (!prev_node) { return insert(key, obj); } if (prev_node->valset) { prev_node->value.~K(); } new (&prev_node->value) K(obj); return true; } /** * @brief Inserts an object at a key. * * @param key Key to insert at. * @param obj Object to store at the key. * @return True on success, false if the key is already set or * insertion otherwise failed. */ bool insert(const char *key, const K & obj) { unsigned int lastidx = 1; /* the last node index */ unsigned int curidx; /* current node index */ const char *keyptr = key; /* input stream at current token */ KTrieNode *node = NULL; /* current node being processed */ KTrieNode *basenode = NULL; /* current base node being processed */ unsigned int q; /* temporary var for x_check results */ unsigned int curoffs; /* current offset */ /** * Empty strings are a special case, since there are no productions. We could * probably rework it to use BASE[0] but this hack is easier. */ if (*key == '\0') { if (m_empty != NULL && m_empty->valset) { return false; } if (m_empty == NULL) { m_empty = (KTrieNode *)malloc(sizeof(KTrieNode)); } m_empty->valset = true; new (&m_empty->value) K(obj); m_numElements++; return true; } /* Start traversing at the root node (1) */ do { /* Find where the next character is, then advance */ curidx = m_base[lastidx].idx; basenode = &m_base[curidx]; curoffs = charval(*keyptr); curidx += curoffs; node = &m_base[curidx]; keyptr++; /* Check if this slot is supposed to be empty. If so, we need to handle CASES 1/2: * Insertion without collisions */ if ( (curidx > m_baseSize) || (node->mode == Node_Unused) ) { if (curidx > m_baseSize) { if (!grow()) { return false; } node = &m_base[curidx]; } node->parent = lastidx; if (*keyptr == '\0') { node->mode = Node_Arc; } else { node->idx = x_addstring(keyptr); node->mode = Node_Term; } node->valset = true; new (&node->value) K(obj); m_numElements++; return true; } else if (node->parent != lastidx) { /* Collision! We have to split up the tree here. CASE 4: * Insertion when a new word is inserted with a collision. * NOTE: This is the hardest case to handle. All below examples are based on: * BACHELOR, BADGE, inserting BABY. * The problematic production here is A -> B, where B is already being used. * * This process has to rotate one half of the 'A' arc. We generate two lists: * Outgoing Arcs - Anything leaving this 'A' * Incoming Arcs - Anything going to this 'A' * Whichever list is smaller will be moved. Note that this works because the intersection * affects both arc chains, and moving one will make the slot available to either. */ KTrieNode *cur; /* Find every node arcing from the last node. * I.e. for BACHELOR, BADGE, BABY, * The arcs leaving A will be C and D, but our current node is B -> *. * Thus, we use the last index (A) to find the base for arcs leaving A. */ unsigned int outgoing_base = m_base[lastidx].idx; unsigned int outgoing_list[256]; unsigned int outgoing_count = 0; /* count the current index here */ cur = &m_base[outgoing_base] + 1; unsigned int outgoing_limit = 255; if (outgoing_base + outgoing_limit > m_baseSize) { outgoing_limit = m_baseSize - outgoing_base; } for (unsigned int i=1; i<=outgoing_limit; i++,cur++) { if (cur->mode == Node_Unused || cur->parent != lastidx) { continue; } outgoing_list[outgoing_count++] = i; } outgoing_list[outgoing_count++] = curidx - outgoing_base; /* Now we need to find all the arcs leaving our parent... * Note: the inconsistency is the base of our parent. */ assert(m_base[node->parent].mode == Node_Arc); unsigned int incoming_list[256]; unsigned int incoming_base = m_base[node->parent].idx; unsigned int incoming_count = 0; unsigned int incoming_limit = 255; cur = &m_base[incoming_base] + 1; if (incoming_base + incoming_limit > m_baseSize) { incoming_limit = m_baseSize - incoming_base; } assert(incoming_limit > 0 && incoming_limit <= 255); for (unsigned int i=1; i<=incoming_limit; i++,cur++) { if (cur->mode == Node_Arc || cur->mode == Node_Term) { if (cur->parent == node->parent) { incoming_list[incoming_count++] = i; } } } if (incoming_count < outgoing_count + 1) { unsigned int q = x_check_multi(incoming_list, incoming_count); node = &m_base[curidx]; /* If we're incoming, we need to modify our parent */ m_base[node->parent].idx = q; /* For each node in the "to move" list, * Relocate the node's info to the new position. */ unsigned int idx, newidx, oldidx; for (unsigned int i=0; i 255) { outgoing_limit = 255; } for (unsigned int j=1; j<=outgoing_limit; j++, check_base++) { if (check_base->parent == oldidx) { check_base->parent = newidx; } } } } } else { unsigned int q = x_check_multi(outgoing_list, outgoing_count); node = &m_base[curidx]; /* If we're outgoing, we need to modify our own base */ m_base[lastidx].idx = q; /* Take the last index (curidx) out of the list. Technically we are not moving this, * since it's already being used by something else. */ outgoing_count--; /* For each node in the "to move" list, * Relocate the node's info to the new position. */ unsigned int idx, newidx, oldidx; for (unsigned int i=0; i 255) { outgoing_limit = 255; } for (unsigned int j=1; j<=outgoing_limit; j++, check_base++) { if (check_base->parent == oldidx) { check_base->parent = newidx; } } } } /* Take the invisible node and use it as our new node */ node = &m_base[q + outgoing_list[outgoing_count]]; } /* We're finally done! */ node->parent = lastidx; if (*keyptr == '\0') { node->mode = Node_Arc; } else { node->idx = x_addstring(keyptr); node->mode = Node_Term; } node->valset = true; new (&node->value) K(obj); m_numElements++; return true; } else { /* See what's in the next node - special case if terminator! */ if (node->mode == Node_Term) { /* If we're a terminator, we need to handle CASE 3: * Insertion when a terminating collision occurs */ char *term = &m_stringtab[node->idx]; /* Do an initial browsing to make sure they're not the same string */ if (strcmp(keyptr, term) == 0) { if (!node->valset) { node->valset = true; new (&node->value) K(obj); m_numElements++; return true; } /* Same string. We can't insert. */ return false; } /* For each matching character pair, we need to disband the terminator. * This splits the similar prefix into a single arc path. * First, save the old values so we can move them to a new node. * Next, for each loop: * Take the current (invalid) node, and point it to the next arc base. * Set the current node to the node at the next arc. */ K oldvalue; bool oldvalset = node->valset; if (oldvalset) { oldvalue = node->value; } if (*term == *keyptr) { while (*term == *keyptr) { /* Find the next free slot in the check array. * This is the "vector base" essentially */ q = x_check(*term); node = &m_base[curidx]; /* Point the node to the next new base */ node->idx = q; node->mode = Node_Arc; if (node->valset == true) { node->value.~K(); node->valset = false; } /* Advance the input stream and local variables */ lastidx = curidx; curidx = q + charval(*term); node = &m_base[curidx]; /* Make sure the new current node has its parent set. */ node->parent = lastidx; node->mode = Node_Arc; /* Just in case we run x_check again */ *term = '\0'; /* Unmark the string table here */ term++; keyptr++; } } else if (node->valset) { node->valset = false; node->value.~K(); } /* We're done inserting new pairs. If one of them is exhausted, * we take special shortcuts. */ if (*term == '\0') //EX: BADGERHOUSE added over B -> ADGER. { /* First backpatch the current node - it ends the newly split terminator. * In the example, this would mean the node is the production from R -> ? * This node ends the old BADGER, so we set it here. */ node->valset = oldvalset; if (node->valset) { new (&node->value) K(oldvalue); } /* The terminator was split up, but pieces of keyptr remain. * We need to generate a new production, in this example, R -> H, * with H being a terminator to OUSE. Thus we get: * B,A,D,G,E,R*,H*->OUSE (* = value set). * NOTE: parent was last set at the end of the while loop. */ /* Get the new base and apply re-basing */ q = x_check(*keyptr); node = &m_base[curidx]; node->idx = q; node->mode = Node_Arc; lastidx = curidx; /* Finish the final node */ curidx = q + charval(*keyptr); node = &m_base[curidx]; keyptr++; /* Optimize - don't add to string table if there's nothing more to eat */ if (*keyptr == '\0') { node->mode = Node_Arc; } else { node->idx = x_addstring(keyptr); node->mode = Node_Term; } node->parent = lastidx; node->valset = true; new (&node->value) K(obj); } else if (*keyptr == '\0') { //EX: BADGER added over B -> ADGERHOUSE /* First backpatch the current node - it ends newly split input string. * This is the exact opposite of the above procedure. */ node->valset = true; new (&node->value) K(obj); /* Get the new base and apply re-basing */ q = x_check(*term); node = &m_base[curidx]; node->idx = q; node->mode = Node_Arc; lastidx = curidx; /* Finish the final node */ curidx = q + charval(*term); node = &m_base[curidx]; term++; /* Optimize - don't add to string table if there's nothing more to eat */ if (*term == '\0') { node->mode = Node_Arc; } else { node->idx = (term - m_stringtab); /* Already in the string table! */ node->mode = Node_Term; } node->parent = lastidx; node->valset = oldvalset; if (node->valset) { new (&node->value) K(oldvalue); } } else { /* Finally, we have to create two new nodes instead of just one. */ node->mode = Node_Arc; /* Get the new base and apply re-basing */ q = x_check2(*keyptr, *term); node = &m_base[curidx]; node->idx = q; lastidx = curidx; /* Re-create the old terminated node */ curidx = q + charval(*term); node = &m_base[curidx]; term++; node->valset = oldvalset; if (node->valset) { new (&node->value) K(oldvalue); } node->parent = lastidx; if (*term == '\0') { node->mode = Node_Arc; } else { node->mode = Node_Term; node->idx = (term - m_stringtab); /* Already in the string table! */ } /* Create the new keyed input node */ curidx = q + charval(*keyptr); node = &m_base[curidx]; keyptr++; node->valset = true; new (&node->value) K(obj); node->parent = lastidx; if (*keyptr == '\0') { node->mode = Node_Arc; } else { node->mode = Node_Term; node->idx = x_addstring(keyptr); } } m_numElements++; /* Phew! */ return true; } else { assert(node->mode == Node_Arc); } } lastidx = curidx; } while (*keyptr != '\0'); assert(node); /* If we've exhausted the string and we have a valid reached node, * the production rule already existed. Make sure it's valid to set first. */ /* We have to be an Arc. If the last result was anything else, we would have returned a new * production earlier. */ assert(node->mode == Node_Arc); if (!node->valset) { node->valset = true; new (&node->value) K(obj); m_numElements++; return true; } return false; } /** * @brief Iterates over the trie returning all known values. * * Note: This function is for debugging. Do not use it as a * production iterator since it's inefficient. Iteration is * guaranteed to be sorted ascendingly. * * The callback function takes: * (KTrie) - Pointer to this Trie * (const char *) - String containing key name. * (K &) - By-reference object at the key. * (data) - User pointer. * * @param buffer Buffer to use as a key name cache. * @param maxlength Maximum length of the key name buffer. * @param data User pointer for passing to the iterator. * @param func Iterator callback function. */ void bad_iterator(char *buffer, size_t maxlength, void *data, void (*func)(KTrie *, const char *, K & obj, void *data)) { bad_iterator_r(buffer, maxlength, 0, data, func, 1); } private: void bad_iterator_r(char *buffer, size_t maxlength, size_t buf_pos, void *data, void (*func)(KTrie *, const char *, K & obj, void *data), unsigned int root) { char *term; unsigned int idx, limit, start; limit = 255; start = m_base[root].idx; /* Bound our limits */ if (start + limit > m_baseSize) { limit = m_baseSize - start; } /* Search for strings */ for (unsigned int i = 1; i <= limit; i++) { idx = start + i; if (m_base[idx].mode == Node_Unused || m_base[idx].parent != root) { continue; } if (m_base[idx].mode == Node_Arc) { if (buf_pos < maxlength - 1) { buffer[buf_pos++] = (char)i; } if (m_base[idx].valset) { buffer[buf_pos] = '\0'; func(this, buffer, m_base[idx].value, data); } bad_iterator_r(buffer, maxlength, buf_pos, data, func, idx); buf_pos--; } else if (m_base[idx].mode == Node_Term && m_base[idx].valset == true) { size_t save_buf_pos; save_buf_pos = buf_pos; if (buf_pos < maxlength - 1) { buffer[buf_pos++] = (char)i; } if (buf_pos < maxlength - 1) { size_t destlen, j; term = &m_stringtab[m_base[idx].idx]; destlen = strlen(term); for (j = 0; j < destlen && j + buf_pos < maxlength - 1; j++) { buffer[buf_pos + j] = term[j]; } buf_pos += j; } buffer[buf_pos] = '\0'; func(this, buffer, m_base[idx].value, data); buf_pos = save_buf_pos; } } } public: KTrie() { m_base = (KTrieNode *)malloc(sizeof(KTrieNode) * (256 + 1)); m_stringtab = (char *)malloc(sizeof(char) * 256); m_baseSize = 256; m_stSize = 256; m_empty = NULL; m_numElements = 0; internal_clear(); } ~KTrie() { if (m_empty != NULL && m_empty->valset) { m_empty->value.~K(); m_empty->valset = false; } free(m_empty); run_destructors(); free(m_base); free(m_stringtab); } void run_destructor(void (*dtor)(K * ptr)) { for (size_t i = 0; i <= m_baseSize; i++) { if (m_base[i].valset) { dtor(&m_base[i].value); m_base[i].valset = false; } } } private: class KTrieNode { friend class KTrie; private: /** * For Node_Arc, this index stores the 'base' offset to the next arc chain. * I.e. to jump from this arc to character C, it will be at base[idx+C]. * For Node_Term, this is an index into the string table. */ unsigned int idx; /** * This contains the prior arc that we must have come from. * For example, if arc 63 has a base jump of index 12, and we want to see if * there is a valid character C, the parent of 12+C must be 63. */ unsigned int parent; K value; /* Value associated with this node */ NodeType mode; /* Current usage type of the node */ bool valset; /* Whether or not a value is set */ }; private: KTrieNode *internal_retrieve(const char *key) { unsigned int lastidx = 1; /* the last node index */ unsigned int curidx; /* current node index */ const char *keyptr = key; /* input stream at current token */ KTrieNode *node = NULL; /* current node being processed */ if (!*key) { return m_empty; } /* Start traversing at the root node */ do { /* Find where the next character is, then advance */ curidx = m_base[lastidx].idx; node = &m_base[curidx]; curidx += charval(*keyptr); node = &m_base[curidx]; keyptr++; /* Check if this slot is supposed to be empty or is a collision */ if ((curidx > m_baseSize) || node->mode == Node_Unused || node->parent != lastidx) { return NULL; } else if (node->mode == Node_Term) { char *term = &m_stringtab[node->idx]; if (strcmp(keyptr, term) == 0) { break; } else { return NULL; } } lastidx = curidx; } while (*keyptr != '\0'); return node; } bool grow() { /* The current # of nodes in the tree is trie->baseSize + 1 */ unsigned int cur_size = m_baseSize; unsigned int new_size = cur_size * 2; KTrieNode *new_base = (KTrieNode *)malloc((new_size + 1) * sizeof(KTrieNode)); if (!new_base) { return false; } memcpy(new_base, m_base, sizeof(KTrieNode) * (m_baseSize + 1)); memset(&new_base[cur_size + 1], 0, (new_size - cur_size) * sizeof(KTrieNode)); for (size_t i = 0; i <= m_baseSize; i++) { if (m_base[i].valset) { /* Placement construct+copy the object, then placement destroy the old. */ new (&new_base[i].value) K(m_base[i].value); m_base[i].value.~K(); } } free(m_base); m_base = new_base; m_baseSize = new_size; return true; } inline unsigned char charval(char c) { return (unsigned char)c; } void internal_clear() { m_tail = 0; m_numElements = 0; memset(m_base, 0, sizeof(KTrieNode) * (m_baseSize + 1)); memset(m_stringtab, 0, sizeof(char) * m_stSize); /* Sentinel root node */ m_base[1].idx = 1; m_base[1].mode = Node_Arc; m_base[1].parent = 1; } void run_destructors() { for (size_t i = 0; i <= m_baseSize; i++) { if (m_base[i].valset) { m_base[i].value.~K(); } } } unsigned int x_addstring(const char *ptr) { size_t len = strlen(ptr) + 1; if (m_tail + len >= m_stSize) { while (m_tail + len >= m_stSize) { m_stSize *= 2; } m_stringtab = (char *)realloc(m_stringtab,m_stSize); } unsigned int tail = m_tail; strcpy(&m_stringtab[tail], ptr); m_tail += len; return tail; } unsigned int x_check(char c, unsigned int start=1) { unsigned char _c = charval(c); unsigned int to_check = m_baseSize - _c; for (unsigned int i=start; i<=to_check; i++) { if (m_base[i+_c].mode == Node_Unused) { return i; } } grow(); return x_check(c, to_check+1); } unsigned int x_check2(char c1, char c2, unsigned int start=1) { unsigned char _c1 = charval(c1); unsigned char _c2 = charval(c2); unsigned int to_check = m_baseSize - (_c1 > _c2 ? _c1 : _c2); for (unsigned int i=start; i<=to_check; i++) { if (m_base[i+_c1].mode == Node_Unused && m_base[i+_c2].mode == Node_Unused) { return i; } } grow(); return x_check2(c1, c2, to_check+1); } unsigned int x_check_multi( unsigned int offsets[], unsigned int count, unsigned int start=1) { KTrieNode *cur; unsigned int to_check = m_baseSize; unsigned int highest = 0; for (unsigned int i=0; i highest) { highest = offsets[i]; } } to_check -= highest; for (unsigned int i=start; i<=to_check; i++) { bool okay = true; for (unsigned int j=0; jmode != Node_Unused) { okay = false; break; } } if (okay) { return i; } } grow(); return x_check_multi(offsets, count, to_check+1); } public: size_t mem_usage() { return (sizeof(KTrieNode) * (m_baseSize)) + m_stSize + sizeof(KTrieNode); } size_t size() { return m_numElements; } private: KTrieNode *m_base; /* Base array for the sparse tables */ KTrieNode *m_empty; /* Special case for empty strings */ char *m_stringtab; /* String table pointer */ unsigned int m_baseSize; /* Size of the base array, in members */ unsigned int m_stSize; /* Size of the string table, in bytes */ unsigned int m_tail; /* Current unused offset into the string table */ size_t m_numElements; /* Number of elements in use */ }; /** * Double Array Trie algorithm, based on: * An Efficient Implementation of Trie Structures, by * Jun-ichi Aoe and Katsushi Maromoto, and Takashi Sato * from Software - Practice and Experience, Vol. 22(9), 695-721 (September 1992) * * A Trie is a simple data structure which stores strings as DFAs, with each * transition state being a string entry. For example, observe the following strings: * * BAILOPAN, BAT, BACON, BACK * These transition as the follow production rules: * B -> ... B * A -> ... BA * I -> ... BAI * LOPAN BAILOPAN * T -> ... BAT * C -> BAC * O -> ... BACO * N BACON * K BACK * * The standard implementation for this - using lists - gives a slow linear lookup, somewhere between * O(N+M) or O(log n). A faster implementation is proposed in the paper above, which is based on compacting * the transition states into two arrays. In the paper's implementation, two arrays are used, and thus it is * called the "Double Array" algorithm. However, the CHECK array's size is maintained the same as BASE, * so they can be combined into one structure. The array seems complex at first, but is very simple: it is a * tree structure flattened out into a single vector. I am calling this implementation the Flat Array Trie. * * BASE[] is an array where each member is a node in the Trie. The node can either be UNUSED (empty), an ARC * (containing an offset to the next set of ARCs), or a TERMINATOR (contains the rest of a string). * Each node has an index which must be interpreted based on the node type. If the node is a TERMINATOR, then the * index is an index into a string table, to find the rest of the string. * If the node is an ARC, the index is another index into BASE. For each possible token that can follow the * current token, the value of those tokens can be added to the index given in the ARC. Thus, given a current * position and the next desired token, the current arc will jump to another arc which can contain either: * 1) An invalid production (collision, no entry exists) * 2) An empty production (no entry exists) * 3) Another arc label (the string ends here or continues into more productions) * 4) A TERMINATOR (the string ends here and contains an unused set of productions) * * So, given current offset N (starting at N=1), jumping to token C means the next offset will be: * offs = BASE[n] + C * Thus, the next node will be at: * BASE[BASE[n] + C] * * This allows each ARC to specify the base offset for any of its ARC children, like a tree. Each node specifies * its parent ARC -- so if an invalid offset is specified, the parent will not match, and thus no such derived * string exists. * * This means that arrays can be laid out "sparsely," maximizing their usage. Note that N need not be related to * the range of tokens (1-256). I.e., a base index does not have to be at 1, 256, 512, et cetera. This is because * insertion comes with a small deal of complexity. To insert a new set of tokens T, the algorithm finds a new * BASE index N such that BASE[N+T[i]] is unused for each T[i]. Thus, indirection is not necessarily linear; * traversing a chain of ARC nodes can _and will_ jump around BASE. * * Of course, given this level of flexibility in the array organization, there are collisions. This is largely * where insertions become slow, as the old chain must be relocated before the new one is used. Relocation means * finding one or more new base indexes, and this means traversing BASE until an acceptable index is found, such * that each offset is unused (see description in previous paragraph). * * However, it is not insertion time we are concerned about. The "trie" name comes from reTRIEval. We are only * concerned with lookup and deletion. Both lookup and deletion are O(k), where k is relative to the length of the * input string. Note that it is best case O(1) and worst case O(k). Deleting the entire trie is always O(1). */ #endif //_INCLUDE_SOURCEMOD_TEMPLATED_TRIE_H_