/* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the VACUUM command. ** ** Most of the code in this file may be omitted by defining the ** SQLITE_OMIT_VACUUM macro. ** ** $Id$ */ #include "sqliteInt.h" #include "vdbeInt.h" #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) /* ** Execute zSql on database db. Return an error code. */ static int execSql(sqlite3 *db, const char *zSql){ sqlite3_stmt *pStmt; if( !zSql ){ return SQLITE_NOMEM; } if( SQLITE_OK!=sqlite3_prepare(db, zSql, -1, &pStmt, 0) ){ return sqlite3_errcode(db); } while( SQLITE_ROW==sqlite3_step(pStmt) ){} return sqlite3_finalize(pStmt); } /* ** Execute zSql on database db. The statement returns exactly ** one column. Execute this as SQL on the same database. */ static int execExecSql(sqlite3 *db, const char *zSql){ sqlite3_stmt *pStmt; int rc; rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); if( rc!=SQLITE_OK ) return rc; while( SQLITE_ROW==sqlite3_step(pStmt) ){ rc = execSql(db, (char*)sqlite3_column_text(pStmt, 0)); if( rc!=SQLITE_OK ){ sqlite3_finalize(pStmt); return rc; } } return sqlite3_finalize(pStmt); } /* ** The non-standard VACUUM command is used to clean up the database, ** collapse free space, etc. It is modelled after the VACUUM command ** in PostgreSQL. ** ** In version 1.0.x of SQLite, the VACUUM command would call ** gdbm_reorganize() on all the database tables. But beginning ** with 2.0.0, SQLite no longer uses GDBM so this command has ** become a no-op. */ void sqlite3Vacuum(Parse *pParse){ Vdbe *v = sqlite3GetVdbe(pParse); if( v ){ sqlite3VdbeAddOp(v, OP_Vacuum, 0, 0); } return; } /* ** This routine implements the OP_Vacuum opcode of the VDBE. */ int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){ int rc = SQLITE_OK; /* Return code from service routines */ Btree *pMain; /* The database being vacuumed */ Btree *pTemp; /* The temporary database we vacuum into */ char *zSql = 0; /* SQL statements */ int saved_flags; /* Saved value of the db->flags */ Db *pDb = 0; /* Database to detach at end of vacuum */ /* Save the current value of the write-schema flag before setting it. */ saved_flags = db->flags; db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks; if( !db->autoCommit ){ sqlite3SetString(pzErrMsg, "cannot VACUUM from within a transaction", (char*)0); rc = SQLITE_ERROR; goto end_of_vacuum; } pMain = db->aDb[0].pBt; /* Attach the temporary database as 'vacuum_db'. The synchronous pragma ** can be set to 'off' for this file, as it is not recovered if a crash ** occurs anyway. The integrity of the database is maintained by a ** (possibly synchronous) transaction opened on the main database before ** sqlite3BtreeCopyFile() is called. ** ** An optimisation would be to use a non-journaled pager. */ zSql = "ATTACH '' AS vacuum_db;"; rc = execSql(db, zSql); if( rc!=SQLITE_OK ) goto end_of_vacuum; pDb = &db->aDb[db->nDb-1]; assert( strcmp(db->aDb[db->nDb-1].zName,"vacuum_db")==0 ); pTemp = db->aDb[db->nDb-1].pBt; sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), sqlite3BtreeGetReserve(pMain)); if( db->mallocFailed ){ rc = SQLITE_NOMEM; goto end_of_vacuum; } assert( sqlite3BtreeGetPageSize(pTemp)==sqlite3BtreeGetPageSize(pMain) ); rc = execSql(db, "PRAGMA vacuum_db.synchronous=OFF"); if( rc!=SQLITE_OK ){ goto end_of_vacuum; } #ifndef SQLITE_OMIT_AUTOVACUUM sqlite3BtreeSetAutoVacuum(pTemp, sqlite3BtreeGetAutoVacuum(pMain)); #endif /* Begin a transaction */ rc = execSql(db, "BEGIN EXCLUSIVE;"); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Query the schema of the main database. Create a mirror schema ** in the temporary database. */ rc = execExecSql(db, "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14,100000000) " " FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'" " AND rootpage>0" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = execExecSql(db, "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14,100000000)" " FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' "); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = execExecSql(db, "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21,100000000) " " FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'"); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Loop through the tables in the main database. For each, do ** an "INSERT INTO vacuum_db.xxx SELECT * FROM xxx;" to copy ** the contents to the temporary database. */ rc = execExecSql(db, "SELECT 'INSERT INTO vacuum_db.' || quote(name) " "|| ' SELECT * FROM ' || quote(name) || ';'" "FROM sqlite_master " "WHERE type = 'table' AND name!='sqlite_sequence' " " AND rootpage>0" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Copy over the sequence table */ rc = execExecSql(db, "SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' " "FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' " ); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = execExecSql(db, "SELECT 'INSERT INTO vacuum_db.' || quote(name) " "|| ' SELECT * FROM ' || quote(name) || ';' " "FROM vacuum_db.sqlite_master WHERE name=='sqlite_sequence';" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Copy the triggers, views, and virtual tables from the main database ** over to the temporary database. None of these objects has any ** associated storage, so all we have to do is copy their entries ** from the SQLITE_MASTER table. */ rc = execSql(db, "INSERT INTO vacuum_db.sqlite_master " " SELECT type, name, tbl_name, rootpage, sql" " FROM sqlite_master" " WHERE type='view' OR type='trigger'" " OR (type='table' AND rootpage=0)" ); if( rc ) goto end_of_vacuum; /* At this point, unless the main db was completely empty, there is now a ** transaction open on the vacuum database, but not on the main database. ** Open a btree level transaction on the main database. This allows a ** call to sqlite3BtreeCopyFile(). The main database btree level ** transaction is then committed, so the SQL level never knows it was ** opened for writing. This way, the SQL transaction used to create the ** temporary database never needs to be committed. */ if( rc==SQLITE_OK ){ u32 meta; int i; /* This array determines which meta meta values are preserved in the ** vacuum. Even entries are the meta value number and odd entries ** are an increment to apply to the meta value after the vacuum. ** The increment is used to increase the schema cookie so that other ** connections to the same database will know to reread the schema. */ static const unsigned char aCopy[] = { 1, 1, /* Add one to the old schema cookie */ 3, 0, /* Preserve the default page cache size */ 5, 0, /* Preserve the default text encoding */ 6, 0, /* Preserve the user version */ }; assert( 1==sqlite3BtreeIsInTrans(pTemp) ); assert( 1==sqlite3BtreeIsInTrans(pMain) ); /* Copy Btree meta values */ for(i=0; iflags */ db->flags = saved_flags; /* Currently there is an SQL level transaction open on the vacuum ** database. No locks are held on any other files (since the main file ** was committed at the btree level). So it safe to end the transaction ** by manually setting the autoCommit flag to true and detaching the ** vacuum database. The vacuum_db journal file is deleted when the pager ** is closed by the DETACH. */ db->autoCommit = 1; if( pDb ){ sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; pDb->pSchema = 0; } sqlite3ResetInternalSchema(db, 0); return rc; } #endif /* SQLITE_OMIT_VACUUM && SQLITE_OMIT_ATTACH */