/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used for analyzing expressions and ** for generating VDBE code that evaluates expressions in SQLite. ** ** $Id$ */ #include "sqliteInt.h" #include /* ** Return the 'affinity' of the expression pExpr if any. ** ** If pExpr is a column, a reference to a column via an 'AS' alias, ** or a sub-select with a column as the return value, then the ** affinity of that column is returned. Otherwise, 0x00 is returned, ** indicating no affinity for the expression. ** ** i.e. the WHERE clause expresssions in the following statements all ** have an affinity: ** ** CREATE TABLE t1(a); ** SELECT * FROM t1 WHERE a; ** SELECT a AS b FROM t1 WHERE b; ** SELECT * FROM t1 WHERE (select a from t1); */ char sqlite3ExprAffinity(Expr *pExpr){ int op = pExpr->op; if( op==TK_SELECT ){ return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); } #ifndef SQLITE_OMIT_CAST if( op==TK_CAST ){ return sqlite3AffinityType(&pExpr->token); } #endif return pExpr->affinity; } /* ** Set the collating sequence for expression pExpr to be the collating ** sequence named by pToken. Return a pointer to the revised expression. ** The collating sequence is marked as "explicit" using the EP_ExpCollate ** flag. An explicit collating sequence will override implicit ** collating sequences. */ Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){ CollSeq *pColl; if( pExpr==0 ) return 0; pColl = sqlite3LocateCollSeq(pParse, (char*)pName->z, pName->n); if( pColl ){ pExpr->pColl = pColl; pExpr->flags |= EP_ExpCollate; } return pExpr; } /* ** Return the default collation sequence for the expression pExpr. If ** there is no default collation type, return 0. */ CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ CollSeq *pColl = 0; if( pExpr ){ int op; pColl = pExpr->pColl; op = pExpr->op; if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){ return sqlite3ExprCollSeq(pParse, pExpr->pLeft); } } if( sqlite3CheckCollSeq(pParse, pColl) ){ pColl = 0; } return pColl; } /* ** pExpr is an operand of a comparison operator. aff2 is the ** type affinity of the other operand. This routine returns the ** type affinity that should be used for the comparison operator. */ char sqlite3CompareAffinity(Expr *pExpr, char aff2){ char aff1 = sqlite3ExprAffinity(pExpr); if( aff1 && aff2 ){ /* Both sides of the comparison are columns. If one has numeric ** affinity, use that. Otherwise use no affinity. */ if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ return SQLITE_AFF_NUMERIC; }else{ return SQLITE_AFF_NONE; } }else if( !aff1 && !aff2 ){ /* Neither side of the comparison is a column. Compare the ** results directly. */ return SQLITE_AFF_NONE; }else{ /* One side is a column, the other is not. Use the columns affinity. */ assert( aff1==0 || aff2==0 ); return (aff1 + aff2); } } /* ** pExpr is a comparison operator. Return the type affinity that should ** be applied to both operands prior to doing the comparison. */ static char comparisonAffinity(Expr *pExpr){ char aff; assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || pExpr->op==TK_NE ); assert( pExpr->pLeft ); aff = sqlite3ExprAffinity(pExpr->pLeft); if( pExpr->pRight ){ aff = sqlite3CompareAffinity(pExpr->pRight, aff); } else if( pExpr->pSelect ){ aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); } else if( !aff ){ aff = SQLITE_AFF_NONE; } return aff; } /* ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. ** idx_affinity is the affinity of an indexed column. Return true ** if the index with affinity idx_affinity may be used to implement ** the comparison in pExpr. */ int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ char aff = comparisonAffinity(pExpr); switch( aff ){ case SQLITE_AFF_NONE: return 1; case SQLITE_AFF_TEXT: return idx_affinity==SQLITE_AFF_TEXT; default: return sqlite3IsNumericAffinity(idx_affinity); } } /* ** Return the P1 value that should be used for a binary comparison ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. ** If jumpIfNull is true, then set the low byte of the returned ** P1 value to tell the opcode to jump if either expression ** evaluates to NULL. */ static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ char aff = sqlite3ExprAffinity(pExpr2); return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0); } /* ** Return a pointer to the collation sequence that should be used by ** a binary comparison operator comparing pLeft and pRight. ** ** If the left hand expression has a collating sequence type, then it is ** used. Otherwise the collation sequence for the right hand expression ** is used, or the default (BINARY) if neither expression has a collating ** type. ** ** Argument pRight (but not pLeft) may be a null pointer. In this case, ** it is not considered. */ CollSeq *sqlite3BinaryCompareCollSeq( Parse *pParse, Expr *pLeft, Expr *pRight ){ CollSeq *pColl; assert( pLeft ); if( pLeft->flags & EP_ExpCollate ){ assert( pLeft->pColl ); pColl = pLeft->pColl; }else if( pRight && pRight->flags & EP_ExpCollate ){ assert( pRight->pColl ); pColl = pRight->pColl; }else{ pColl = sqlite3ExprCollSeq(pParse, pLeft); if( !pColl ){ pColl = sqlite3ExprCollSeq(pParse, pRight); } } return pColl; } /* ** Generate code for a comparison operator. */ static int codeCompare( Parse *pParse, /* The parsing (and code generating) context */ Expr *pLeft, /* The left operand */ Expr *pRight, /* The right operand */ int opcode, /* The comparison opcode */ int dest, /* Jump here if true. */ int jumpIfNull /* If true, jump if either operand is NULL */ ){ int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull); CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ); } /* ** Construct a new expression node and return a pointer to it. Memory ** for this node is obtained from sqlite3_malloc(). The calling function ** is responsible for making sure the node eventually gets freed. */ Expr *sqlite3Expr( sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ int op, /* Expression opcode */ Expr *pLeft, /* Left operand */ Expr *pRight, /* Right operand */ const Token *pToken /* Argument token */ ){ Expr *pNew; pNew = sqlite3DbMallocZero(db, sizeof(Expr)); if( pNew==0 ){ /* When malloc fails, delete pLeft and pRight. Expressions passed to ** this function must always be allocated with sqlite3Expr() for this ** reason. */ sqlite3ExprDelete(pLeft); sqlite3ExprDelete(pRight); return 0; } pNew->op = op; pNew->pLeft = pLeft; pNew->pRight = pRight; pNew->iAgg = -1; if( pToken ){ assert( pToken->dyn==0 ); pNew->span = pNew->token = *pToken; }else if( pLeft ){ if( pRight ){ sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); if( pRight->flags & EP_ExpCollate ){ pNew->flags |= EP_ExpCollate; pNew->pColl = pRight->pColl; } } if( pLeft->flags & EP_ExpCollate ){ pNew->flags |= EP_ExpCollate; pNew->pColl = pLeft->pColl; } } sqlite3ExprSetHeight(pNew); return pNew; } /* ** Works like sqlite3Expr() except that it takes an extra Parse* ** argument and notifies the associated connection object if malloc fails. */ Expr *sqlite3PExpr( Parse *pParse, /* Parsing context */ int op, /* Expression opcode */ Expr *pLeft, /* Left operand */ Expr *pRight, /* Right operand */ const Token *pToken /* Argument token */ ){ return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken); } /* ** When doing a nested parse, you can include terms in an expression ** that look like this: #0 #1 #2 ... These terms refer to elements ** on the stack. "#0" means the top of the stack. ** "#1" means the next down on the stack. And so forth. ** ** This routine is called by the parser to deal with on of those terms. ** It immediately generates code to store the value in a memory location. ** The returns an expression that will code to extract the value from ** that memory location as needed. */ Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ Vdbe *v = pParse->pVdbe; Expr *p; int depth; if( pParse->nested==0 ){ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); } if( v==0 ) return 0; p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken); if( p==0 ){ return 0; /* Malloc failed */ } depth = atoi((char*)&pToken->z[1]); p->iTable = pParse->nMem++; sqlite3VdbeAddOp(v, OP_Dup, depth, 0); sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1); return p; } /* ** Join two expressions using an AND operator. If either expression is ** NULL, then just return the other expression. */ Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ if( pLeft==0 ){ return pRight; }else if( pRight==0 ){ return pLeft; }else{ return sqlite3Expr(db, TK_AND, pLeft, pRight, 0); } } /* ** Set the Expr.span field of the given expression to span all ** text between the two given tokens. */ void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ assert( pRight!=0 ); assert( pLeft!=0 ); if( pExpr && pRight->z && pLeft->z ){ assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 ); if( pLeft->dyn==0 && pRight->dyn==0 ){ pExpr->span.z = pLeft->z; pExpr->span.n = pRight->n + (pRight->z - pLeft->z); }else{ pExpr->span.z = 0; } } } /* ** Construct a new expression node for a function with multiple ** arguments. */ Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ Expr *pNew; assert( pToken ); pNew = sqlite3DbMallocZero(pParse->db, sizeof(Expr) ); if( pNew==0 ){ sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */ return 0; } pNew->op = TK_FUNCTION; pNew->pList = pList; assert( pToken->dyn==0 ); pNew->token = *pToken; pNew->span = pNew->token; sqlite3ExprSetHeight(pNew); return pNew; } /* ** Assign a variable number to an expression that encodes a wildcard ** in the original SQL statement. ** ** Wildcards consisting of a single "?" are assigned the next sequential ** variable number. ** ** Wildcards of the form "?nnn" are assigned the number "nnn". We make ** sure "nnn" is not too be to avoid a denial of service attack when ** the SQL statement comes from an external source. ** ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number ** as the previous instance of the same wildcard. Or if this is the first ** instance of the wildcard, the next sequenial variable number is ** assigned. */ void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ Token *pToken; sqlite3 *db = pParse->db; if( pExpr==0 ) return; pToken = &pExpr->token; assert( pToken->n>=1 ); assert( pToken->z!=0 ); assert( pToken->z[0]!=0 ); if( pToken->n==1 ){ /* Wildcard of the form "?". Assign the next variable number */ pExpr->iTable = ++pParse->nVar; }else if( pToken->z[0]=='?' ){ /* Wildcard of the form "?nnn". Convert "nnn" to an integer and ** use it as the variable number */ int i; pExpr->iTable = i = atoi((char*)&pToken->z[1]); if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){ sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", SQLITE_MAX_VARIABLE_NUMBER); } if( i>pParse->nVar ){ pParse->nVar = i; } }else{ /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable ** number as the prior appearance of the same name, or if the name ** has never appeared before, reuse the same variable number */ int i, n; n = pToken->n; for(i=0; inVarExpr; i++){ Expr *pE; if( (pE = pParse->apVarExpr[i])!=0 && pE->token.n==n && memcmp(pE->token.z, pToken->z, n)==0 ){ pExpr->iTable = pE->iTable; break; } } if( i>=pParse->nVarExpr ){ pExpr->iTable = ++pParse->nVar; if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; pParse->apVarExpr = sqlite3DbReallocOrFree( db, pParse->apVarExpr, pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) ); } if( !db->mallocFailed ){ assert( pParse->apVarExpr!=0 ); pParse->apVarExpr[pParse->nVarExpr++] = pExpr; } } } if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){ sqlite3ErrorMsg(pParse, "too many SQL variables"); } } /* ** Recursively delete an expression tree. */ void sqlite3ExprDelete(Expr *p){ if( p==0 ) return; if( p->span.dyn ) sqlite3_free((char*)p->span.z); if( p->token.dyn ) sqlite3_free((char*)p->token.z); sqlite3ExprDelete(p->pLeft); sqlite3ExprDelete(p->pRight); sqlite3ExprListDelete(p->pList); sqlite3SelectDelete(p->pSelect); sqlite3_free(p); } /* ** The Expr.token field might be a string literal that is quoted. ** If so, remove the quotation marks. */ void sqlite3DequoteExpr(sqlite3 *db, Expr *p){ if( ExprHasAnyProperty(p, EP_Dequoted) ){ return; } ExprSetProperty(p, EP_Dequoted); if( p->token.dyn==0 ){ sqlite3TokenCopy(db, &p->token, &p->token); } sqlite3Dequote((char*)p->token.z); } /* ** The following group of routines make deep copies of expressions, ** expression lists, ID lists, and select statements. The copies can ** be deleted (by being passed to their respective ...Delete() routines) ** without effecting the originals. ** ** The expression list, ID, and source lists return by sqlite3ExprListDup(), ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded ** by subsequent calls to sqlite*ListAppend() routines. ** ** Any tables that the SrcList might point to are not duplicated. */ Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){ Expr *pNew; if( p==0 ) return 0; pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); if( pNew==0 ) return 0; memcpy(pNew, p, sizeof(*pNew)); if( p->token.z!=0 ){ pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n); pNew->token.dyn = 1; }else{ assert( pNew->token.z==0 ); } pNew->span.z = 0; pNew->pLeft = sqlite3ExprDup(db, p->pLeft); pNew->pRight = sqlite3ExprDup(db, p->pRight); pNew->pList = sqlite3ExprListDup(db, p->pList); pNew->pSelect = sqlite3SelectDup(db, p->pSelect); return pNew; } void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){ if( pTo->dyn ) sqlite3_free((char*)pTo->z); if( pFrom->z ){ pTo->n = pFrom->n; pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n); pTo->dyn = 1; }else{ pTo->z = 0; } } ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){ ExprList *pNew; struct ExprList_item *pItem, *pOldItem; int i; if( p==0 ) return 0; pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); if( pNew==0 ) return 0; pNew->iECursor = 0; pNew->nExpr = pNew->nAlloc = p->nExpr; pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); if( pItem==0 ){ sqlite3_free(pNew); return 0; } pOldItem = p->a; for(i=0; inExpr; i++, pItem++, pOldItem++){ Expr *pNewExpr, *pOldExpr; pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr); if( pOldExpr->span.z!=0 && pNewExpr ){ /* Always make a copy of the span for top-level expressions in the ** expression list. The logic in SELECT processing that determines ** the names of columns in the result set needs this information */ sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span); } assert( pNewExpr==0 || pNewExpr->span.z!=0 || pOldExpr->span.z==0 || db->mallocFailed ); pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pItem->sortOrder = pOldItem->sortOrder; pItem->isAgg = pOldItem->isAgg; pItem->done = 0; } return pNew; } /* ** If cursors, triggers, views and subqueries are all omitted from ** the build, then none of the following routines, except for ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes ** called with a NULL argument. */ #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ || !defined(SQLITE_OMIT_SUBQUERY) SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){ SrcList *pNew; int i; int nByte; if( p==0 ) return 0; nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); pNew = sqlite3DbMallocRaw(db, nByte ); if( pNew==0 ) return 0; pNew->nSrc = pNew->nAlloc = p->nSrc; for(i=0; inSrc; i++){ struct SrcList_item *pNewItem = &pNew->a[i]; struct SrcList_item *pOldItem = &p->a[i]; Table *pTab; pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); pNewItem->jointype = pOldItem->jointype; pNewItem->iCursor = pOldItem->iCursor; pNewItem->isPopulated = pOldItem->isPopulated; pTab = pNewItem->pTab = pOldItem->pTab; if( pTab ){ pTab->nRef++; } pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect); pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn); pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); pNewItem->colUsed = pOldItem->colUsed; } return pNew; } IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ IdList *pNew; int i; if( p==0 ) return 0; pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); if( pNew==0 ) return 0; pNew->nId = pNew->nAlloc = p->nId; pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); if( pNew->a==0 ){ sqlite3_free(pNew); return 0; } for(i=0; inId; i++){ struct IdList_item *pNewItem = &pNew->a[i]; struct IdList_item *pOldItem = &p->a[i]; pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pNewItem->idx = pOldItem->idx; } return pNew; } Select *sqlite3SelectDup(sqlite3 *db, Select *p){ Select *pNew; if( p==0 ) return 0; pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); if( pNew==0 ) return 0; pNew->isDistinct = p->isDistinct; pNew->pEList = sqlite3ExprListDup(db, p->pEList); pNew->pSrc = sqlite3SrcListDup(db, p->pSrc); pNew->pWhere = sqlite3ExprDup(db, p->pWhere); pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy); pNew->pHaving = sqlite3ExprDup(db, p->pHaving); pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy); pNew->op = p->op; pNew->pPrior = sqlite3SelectDup(db, p->pPrior); pNew->pLimit = sqlite3ExprDup(db, p->pLimit); pNew->pOffset = sqlite3ExprDup(db, p->pOffset); pNew->iLimit = -1; pNew->iOffset = -1; pNew->isResolved = p->isResolved; pNew->isAgg = p->isAgg; pNew->usesEphm = 0; pNew->disallowOrderBy = 0; pNew->pRightmost = 0; pNew->addrOpenEphm[0] = -1; pNew->addrOpenEphm[1] = -1; pNew->addrOpenEphm[2] = -1; return pNew; } #else Select *sqlite3SelectDup(sqlite3 *db, Select *p){ assert( p==0 ); return 0; } #endif /* ** Add a new element to the end of an expression list. If pList is ** initially NULL, then create a new expression list. */ ExprList *sqlite3ExprListAppend( Parse *pParse, /* Parsing context */ ExprList *pList, /* List to which to append. Might be NULL */ Expr *pExpr, /* Expression to be appended */ Token *pName /* AS keyword for the expression */ ){ sqlite3 *db = pParse->db; if( pList==0 ){ pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); if( pList==0 ){ goto no_mem; } assert( pList->nAlloc==0 ); } if( pList->nAlloc<=pList->nExpr ){ struct ExprList_item *a; int n = pList->nAlloc*2 + 4; a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); if( a==0 ){ goto no_mem; } pList->a = a; pList->nAlloc = n; } assert( pList->a!=0 ); if( pExpr || pName ){ struct ExprList_item *pItem = &pList->a[pList->nExpr++]; memset(pItem, 0, sizeof(*pItem)); pItem->zName = sqlite3NameFromToken(db, pName); pItem->pExpr = pExpr; } return pList; no_mem: /* Avoid leaking memory if malloc has failed. */ sqlite3ExprDelete(pExpr); sqlite3ExprListDelete(pList); return 0; } /* ** If the expression list pEList contains more than iLimit elements, ** leave an error message in pParse. */ void sqlite3ExprListCheckLength( Parse *pParse, ExprList *pEList, int iLimit, const char *zObject ){ if( pEList && pEList->nExpr>iLimit ){ sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); } } #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 /* The following three functions, heightOfExpr(), heightOfExprList() ** and heightOfSelect(), are used to determine the maximum height ** of any expression tree referenced by the structure passed as the ** first argument. ** ** If this maximum height is greater than the current value pointed ** to by pnHeight, the second parameter, then set *pnHeight to that ** value. */ static void heightOfExpr(Expr *p, int *pnHeight){ if( p ){ if( p->nHeight>*pnHeight ){ *pnHeight = p->nHeight; } } } static void heightOfExprList(ExprList *p, int *pnHeight){ if( p ){ int i; for(i=0; inExpr; i++){ heightOfExpr(p->a[i].pExpr, pnHeight); } } } static void heightOfSelect(Select *p, int *pnHeight){ if( p ){ heightOfExpr(p->pWhere, pnHeight); heightOfExpr(p->pHaving, pnHeight); heightOfExpr(p->pLimit, pnHeight); heightOfExpr(p->pOffset, pnHeight); heightOfExprList(p->pEList, pnHeight); heightOfExprList(p->pGroupBy, pnHeight); heightOfExprList(p->pOrderBy, pnHeight); heightOfSelect(p->pPrior, pnHeight); } } /* ** Set the Expr.nHeight variable in the structure passed as an ** argument. An expression with no children, Expr.pList or ** Expr.pSelect member has a height of 1. Any other expression ** has a height equal to the maximum height of any other ** referenced Expr plus one. */ void sqlite3ExprSetHeight(Expr *p){ int nHeight = 0; heightOfExpr(p->pLeft, &nHeight); heightOfExpr(p->pRight, &nHeight); heightOfExprList(p->pList, &nHeight); heightOfSelect(p->pSelect, &nHeight); p->nHeight = nHeight + 1; } /* ** Return the maximum height of any expression tree referenced ** by the select statement passed as an argument. */ int sqlite3SelectExprHeight(Select *p){ int nHeight = 0; heightOfSelect(p, &nHeight); return nHeight; } #endif /* ** Delete an entire expression list. */ void sqlite3ExprListDelete(ExprList *pList){ int i; struct ExprList_item *pItem; if( pList==0 ) return; assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); assert( pList->nExpr<=pList->nAlloc ); for(pItem=pList->a, i=0; inExpr; i++, pItem++){ sqlite3ExprDelete(pItem->pExpr); sqlite3_free(pItem->zName); } sqlite3_free(pList->a); sqlite3_free(pList); } /* ** Walk an expression tree. Call xFunc for each node visited. ** ** The return value from xFunc determines whether the tree walk continues. ** 0 means continue walking the tree. 1 means do not walk children ** of the current node but continue with siblings. 2 means abandon ** the tree walk completely. ** ** The return value from this routine is 1 to abandon the tree walk ** and 0 to continue. ** ** NOTICE: This routine does *not* descend into subqueries. */ static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ int rc; if( pExpr==0 ) return 0; rc = (*xFunc)(pArg, pExpr); if( rc==0 ){ if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; } return rc>1; } /* ** Call walkExprTree() for every expression in list p. */ static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ int i; struct ExprList_item *pItem; if( !p ) return 0; for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; } return 0; } /* ** Call walkExprTree() for every expression in Select p, not including ** expressions that are part of sub-selects in any FROM clause or the LIMIT ** or OFFSET expressions.. */ static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ walkExprList(p->pEList, xFunc, pArg); walkExprTree(p->pWhere, xFunc, pArg); walkExprList(p->pGroupBy, xFunc, pArg); walkExprTree(p->pHaving, xFunc, pArg); walkExprList(p->pOrderBy, xFunc, pArg); if( p->pPrior ){ walkSelectExpr(p->pPrior, xFunc, pArg); } return 0; } /* ** This routine is designed as an xFunc for walkExprTree(). ** ** pArg is really a pointer to an integer. If we can tell by looking ** at pExpr that the expression that contains pExpr is not a constant ** expression, then set *pArg to 0 and return 2 to abandon the tree walk. ** If pExpr does does not disqualify the expression from being a constant ** then do nothing. ** ** After walking the whole tree, if no nodes are found that disqualify ** the expression as constant, then we assume the whole expression ** is constant. See sqlite3ExprIsConstant() for additional information. */ static int exprNodeIsConstant(void *pArg, Expr *pExpr){ int *pN = (int*)pArg; /* If *pArg is 3 then any term of the expression that comes from ** the ON or USING clauses of a join disqualifies the expression ** from being considered constant. */ if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ *pN = 0; return 2; } switch( pExpr->op ){ /* Consider functions to be constant if all their arguments are constant ** and *pArg==2 */ case TK_FUNCTION: if( (*pN)==2 ) return 0; /* Fall through */ case TK_ID: case TK_COLUMN: case TK_DOT: case TK_AGG_FUNCTION: case TK_AGG_COLUMN: #ifndef SQLITE_OMIT_SUBQUERY case TK_SELECT: case TK_EXISTS: #endif *pN = 0; return 2; case TK_IN: if( pExpr->pSelect ){ *pN = 0; return 2; } default: return 0; } } /* ** Walk an expression tree. Return 1 if the expression is constant ** and 0 if it involves variables or function calls. ** ** For the purposes of this function, a double-quoted string (ex: "abc") ** is considered a variable but a single-quoted string (ex: 'abc') is ** a constant. */ int sqlite3ExprIsConstant(Expr *p){ int isConst = 1; walkExprTree(p, exprNodeIsConstant, &isConst); return isConst; } /* ** Walk an expression tree. Return 1 if the expression is constant ** that does no originate from the ON or USING clauses of a join. ** Return 0 if it involves variables or function calls or terms from ** an ON or USING clause. */ int sqlite3ExprIsConstantNotJoin(Expr *p){ int isConst = 3; walkExprTree(p, exprNodeIsConstant, &isConst); return isConst!=0; } /* ** Walk an expression tree. Return 1 if the expression is constant ** or a function call with constant arguments. Return and 0 if there ** are any variables. ** ** For the purposes of this function, a double-quoted string (ex: "abc") ** is considered a variable but a single-quoted string (ex: 'abc') is ** a constant. */ int sqlite3ExprIsConstantOrFunction(Expr *p){ int isConst = 2; walkExprTree(p, exprNodeIsConstant, &isConst); return isConst!=0; } /* ** If the expression p codes a constant integer that is small enough ** to fit in a 32-bit integer, return 1 and put the value of the integer ** in *pValue. If the expression is not an integer or if it is too big ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. */ int sqlite3ExprIsInteger(Expr *p, int *pValue){ switch( p->op ){ case TK_INTEGER: { if( sqlite3GetInt32((char*)p->token.z, pValue) ){ return 1; } break; } case TK_UPLUS: { return sqlite3ExprIsInteger(p->pLeft, pValue); } case TK_UMINUS: { int v; if( sqlite3ExprIsInteger(p->pLeft, &v) ){ *pValue = -v; return 1; } break; } default: break; } return 0; } /* ** Return TRUE if the given string is a row-id column name. */ int sqlite3IsRowid(const char *z){ if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; if( sqlite3StrICmp(z, "OID")==0 ) return 1; return 0; } /* ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up ** that name in the set of source tables in pSrcList and make the pExpr ** expression node refer back to that source column. The following changes ** are made to pExpr: ** ** pExpr->iDb Set the index in db->aDb[] of the database holding ** the table. ** pExpr->iTable Set to the cursor number for the table obtained ** from pSrcList. ** pExpr->iColumn Set to the column number within the table. ** pExpr->op Set to TK_COLUMN. ** pExpr->pLeft Any expression this points to is deleted ** pExpr->pRight Any expression this points to is deleted. ** ** The pDbToken is the name of the database (the "X"). This value may be ** NULL meaning that name is of the form Y.Z or Z. Any available database ** can be used. The pTableToken is the name of the table (the "Y"). This ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it ** means that the form of the name is Z and that columns from any table ** can be used. ** ** If the name cannot be resolved unambiguously, leave an error message ** in pParse and return non-zero. Return zero on success. */ static int lookupName( Parse *pParse, /* The parsing context */ Token *pDbToken, /* Name of the database containing table, or NULL */ Token *pTableToken, /* Name of table containing column, or NULL */ Token *pColumnToken, /* Name of the column. */ NameContext *pNC, /* The name context used to resolve the name */ Expr *pExpr /* Make this EXPR node point to the selected column */ ){ char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ char *zCol = 0; /* Name of the column. The "Z" */ int i, j; /* Loop counters */ int cnt = 0; /* Number of matching column names */ int cntTab = 0; /* Number of matching table names */ sqlite3 *db = pParse->db; /* The database */ struct SrcList_item *pItem; /* Use for looping over pSrcList items */ struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ NameContext *pTopNC = pNC; /* First namecontext in the list */ Schema *pSchema = 0; /* Schema of the expression */ assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ zDb = sqlite3NameFromToken(db, pDbToken); zTab = sqlite3NameFromToken(db, pTableToken); zCol = sqlite3NameFromToken(db, pColumnToken); if( db->mallocFailed ){ goto lookupname_end; } pExpr->iTable = -1; while( pNC && cnt==0 ){ ExprList *pEList; SrcList *pSrcList = pNC->pSrcList; if( pSrcList ){ for(i=0, pItem=pSrcList->a; inSrc; i++, pItem++){ Table *pTab; int iDb; Column *pCol; pTab = pItem->pTab; assert( pTab!=0 ); iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( pTab->nCol>0 ); if( zTab ){ if( pItem->zAlias ){ char *zTabName = pItem->zAlias; if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; }else{ char *zTabName = pTab->zName; if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){ continue; } } } if( 0==(cntTab++) ){ pExpr->iTable = pItem->iCursor; pSchema = pTab->pSchema; pMatch = pItem; } for(j=0, pCol=pTab->aCol; jnCol; j++, pCol++){ if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ const char *zColl = pTab->aCol[j].zColl; IdList *pUsing; cnt++; pExpr->iTable = pItem->iCursor; pMatch = pItem; pSchema = pTab->pSchema; /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ pExpr->iColumn = j==pTab->iPKey ? -1 : j; pExpr->affinity = pTab->aCol[j].affinity; if( (pExpr->flags & EP_ExpCollate)==0 ){ pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); } if( inSrc-1 ){ if( pItem[1].jointype & JT_NATURAL ){ /* If this match occurred in the left table of a natural join, ** then skip the right table to avoid a duplicate match */ pItem++; i++; }else if( (pUsing = pItem[1].pUsing)!=0 ){ /* If this match occurs on a column that is in the USING clause ** of a join, skip the search of the right table of the join ** to avoid a duplicate match there. */ int k; for(k=0; knId; k++){ if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ pItem++; i++; break; } } } } break; } } } } #ifndef SQLITE_OMIT_TRIGGER /* If we have not already resolved the name, then maybe ** it is a new.* or old.* trigger argument reference */ if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ TriggerStack *pTriggerStack = pParse->trigStack; Table *pTab = 0; if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ pExpr->iTable = pTriggerStack->newIdx; assert( pTriggerStack->pTab ); pTab = pTriggerStack->pTab; }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ pExpr->iTable = pTriggerStack->oldIdx; assert( pTriggerStack->pTab ); pTab = pTriggerStack->pTab; } if( pTab ){ int iCol; Column *pCol = pTab->aCol; pSchema = pTab->pSchema; cntTab++; for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) { if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ const char *zColl = pTab->aCol[iCol].zColl; cnt++; pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol; pExpr->affinity = pTab->aCol[iCol].affinity; if( (pExpr->flags & EP_ExpCollate)==0 ){ pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); } pExpr->pTab = pTab; break; } } } } #endif /* !defined(SQLITE_OMIT_TRIGGER) */ /* ** Perhaps the name is a reference to the ROWID */ if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ cnt = 1; pExpr->iColumn = -1; pExpr->affinity = SQLITE_AFF_INTEGER; } /* ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z ** might refer to an result-set alias. This happens, for example, when ** we are resolving names in the WHERE clause of the following command: ** ** SELECT a+b AS x FROM table WHERE x<10; ** ** In cases like this, replace pExpr with a copy of the expression that ** forms the result set entry ("a+b" in the example) and return immediately. ** Note that the expression in the result set should have already been ** resolved by the time the WHERE clause is resolved. */ if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ for(j=0; jnExpr; j++){ char *zAs = pEList->a[j].zName; if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ Expr *pDup, *pOrig; assert( pExpr->pLeft==0 && pExpr->pRight==0 ); assert( pExpr->pList==0 ); assert( pExpr->pSelect==0 ); pOrig = pEList->a[j].pExpr; if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){ sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); sqlite3_free(zCol); return 2; } pDup = sqlite3ExprDup(db, pOrig); if( pExpr->flags & EP_ExpCollate ){ pDup->pColl = pExpr->pColl; pDup->flags |= EP_ExpCollate; } if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z); if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z); memcpy(pExpr, pDup, sizeof(*pExpr)); sqlite3_free(pDup); cnt = 1; pMatch = 0; assert( zTab==0 && zDb==0 ); goto lookupname_end_2; } } } /* Advance to the next name context. The loop will exit when either ** we have a match (cnt>0) or when we run out of name contexts. */ if( cnt==0 ){ pNC = pNC->pNext; } } /* ** If X and Y are NULL (in other words if only the column name Z is ** supplied) and the value of Z is enclosed in double-quotes, then ** Z is a string literal if it doesn't match any column names. In that ** case, we need to return right away and not make any changes to ** pExpr. ** ** Because no reference was made to outer contexts, the pNC->nRef ** fields are not changed in any context. */ if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ sqlite3_free(zCol); return 0; } /* ** cnt==0 means there was not match. cnt>1 means there were two or ** more matches. Either way, we have an error. */ if( cnt!=1 ){ char *z = 0; char *zErr; zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s"; if( zDb ){ sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0); }else if( zTab ){ sqlite3SetString(&z, zTab, ".", zCol, (char*)0); }else{ z = sqlite3StrDup(zCol); } if( z ){ sqlite3ErrorMsg(pParse, zErr, z); sqlite3_free(z); pTopNC->nErr++; }else{ db->mallocFailed = 1; } } /* If a column from a table in pSrcList is referenced, then record ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the ** column number is greater than the number of bits in the bitmask ** then set the high-order bit of the bitmask. */ if( pExpr->iColumn>=0 && pMatch!=0 ){ int n = pExpr->iColumn; if( n>=sizeof(Bitmask)*8 ){ n = sizeof(Bitmask)*8-1; } assert( pMatch->iCursor==pExpr->iTable ); pMatch->colUsed |= ((Bitmask)1)<pLeft); pExpr->pLeft = 0; sqlite3ExprDelete(pExpr->pRight); pExpr->pRight = 0; pExpr->op = TK_COLUMN; lookupname_end_2: sqlite3_free(zCol); if( cnt==1 ){ assert( pNC!=0 ); sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList); if( pMatch && !pMatch->pSelect ){ pExpr->pTab = pMatch->pTab; } /* Increment the nRef value on all name contexts from TopNC up to ** the point where the name matched. */ for(;;){ assert( pTopNC!=0 ); pTopNC->nRef++; if( pTopNC==pNC ) break; pTopNC = pTopNC->pNext; } return 0; } else { return 1; } } /* ** This routine is designed as an xFunc for walkExprTree(). ** ** Resolve symbolic names into TK_COLUMN operators for the current ** node in the expression tree. Return 0 to continue the search down ** the tree or 2 to abort the tree walk. ** ** This routine also does error checking and name resolution for ** function names. The operator for aggregate functions is changed ** to TK_AGG_FUNCTION. */ static int nameResolverStep(void *pArg, Expr *pExpr){ NameContext *pNC = (NameContext*)pArg; Parse *pParse; if( pExpr==0 ) return 1; assert( pNC!=0 ); pParse = pNC->pParse; if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; ExprSetProperty(pExpr, EP_Resolved); #ifndef NDEBUG if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ SrcList *pSrcList = pNC->pSrcList; int i; for(i=0; ipSrcList->nSrc; i++){ assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursornTab); } } #endif switch( pExpr->op ){ /* Double-quoted strings (ex: "abc") are used as identifiers if ** possible. Otherwise they remain as strings. Single-quoted ** strings (ex: 'abc') are always string literals. */ case TK_STRING: { if( pExpr->token.z[0]=='\'' ) break; /* Fall thru into the TK_ID case if this is a double-quoted string */ } /* A lone identifier is the name of a column. */ case TK_ID: { lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); return 1; } /* A table name and column name: ID.ID ** Or a database, table and column: ID.ID.ID */ case TK_DOT: { Token *pColumn; Token *pTable; Token *pDb; Expr *pRight; /* if( pSrcList==0 ) break; */ pRight = pExpr->pRight; if( pRight->op==TK_ID ){ pDb = 0; pTable = &pExpr->pLeft->token; pColumn = &pRight->token; }else{ assert( pRight->op==TK_DOT ); pDb = &pExpr->pLeft->token; pTable = &pRight->pLeft->token; pColumn = &pRight->pRight->token; } lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); return 1; } /* Resolve function names */ case TK_CONST_FUNC: case TK_FUNCTION: { ExprList *pList = pExpr->pList; /* The argument list */ int n = pList ? pList->nExpr : 0; /* Number of arguments */ int no_such_func = 0; /* True if no such function exists */ int wrong_num_args = 0; /* True if wrong number of arguments */ int is_agg = 0; /* True if is an aggregate function */ int i; int auth; /* Authorization to use the function */ int nId; /* Number of characters in function name */ const char *zId; /* The function name. */ FuncDef *pDef; /* Information about the function */ int enc = ENC(pParse->db); /* The database encoding */ zId = (char*)pExpr->token.z; nId = pExpr->token.n; pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); if( pDef==0 ){ pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); if( pDef==0 ){ no_such_func = 1; }else{ wrong_num_args = 1; } }else{ is_agg = pDef->xFunc==0; } #ifndef SQLITE_OMIT_AUTHORIZATION if( pDef ){ auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); if( auth!=SQLITE_OK ){ if( auth==SQLITE_DENY ){ sqlite3ErrorMsg(pParse, "not authorized to use function: %s", pDef->zName); pNC->nErr++; } pExpr->op = TK_NULL; return 1; } } #endif if( is_agg && !pNC->allowAgg ){ sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); pNC->nErr++; is_agg = 0; }else if( no_such_func ){ sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); pNC->nErr++; }else if( wrong_num_args ){ sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", nId, zId); pNC->nErr++; } if( is_agg ){ pExpr->op = TK_AGG_FUNCTION; pNC->hasAgg = 1; } if( is_agg ) pNC->allowAgg = 0; for(i=0; pNC->nErr==0 && ia[i].pExpr, nameResolverStep, pNC); } if( is_agg ) pNC->allowAgg = 1; /* FIX ME: Compute pExpr->affinity based on the expected return ** type of the function */ return is_agg; } #ifndef SQLITE_OMIT_SUBQUERY case TK_SELECT: case TK_EXISTS: #endif case TK_IN: { if( pExpr->pSelect ){ int nRef = pNC->nRef; #ifndef SQLITE_OMIT_CHECK if( pNC->isCheck ){ sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); } #endif sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); assert( pNC->nRef>=nRef ); if( nRef!=pNC->nRef ){ ExprSetProperty(pExpr, EP_VarSelect); } } break; } #ifndef SQLITE_OMIT_CHECK case TK_VARIABLE: { if( pNC->isCheck ){ sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); } break; } #endif } return 0; } /* ** This routine walks an expression tree and resolves references to ** table columns. Nodes of the form ID.ID or ID resolve into an ** index to the table in the table list and a column offset. The ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable ** value is changed to the index of the referenced table in pTabList ** plus the "base" value. The base value will ultimately become the ** VDBE cursor number for a cursor that is pointing into the referenced ** table. The Expr.iColumn value is changed to the index of the column ** of the referenced table. The Expr.iColumn value for the special ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an ** alias for ROWID. ** ** Also resolve function names and check the functions for proper ** usage. Make sure all function names are recognized and all functions ** have the correct number of arguments. Leave an error message ** in pParse->zErrMsg if anything is amiss. Return the number of errors. ** ** If the expression contains aggregate functions then set the EP_Agg ** property on the expression. */ int sqlite3ExprResolveNames( NameContext *pNC, /* Namespace to resolve expressions in. */ Expr *pExpr /* The expression to be analyzed. */ ){ int savedHasAgg; if( pExpr==0 ) return 0; #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){ sqlite3ErrorMsg(pNC->pParse, "Expression tree is too large (maximum depth %d)", SQLITE_MAX_EXPR_DEPTH ); return 1; } pNC->pParse->nHeight += pExpr->nHeight; #endif savedHasAgg = pNC->hasAgg; pNC->hasAgg = 0; walkExprTree(pExpr, nameResolverStep, pNC); #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 pNC->pParse->nHeight -= pExpr->nHeight; #endif if( pNC->nErr>0 ){ ExprSetProperty(pExpr, EP_Error); } if( pNC->hasAgg ){ ExprSetProperty(pExpr, EP_Agg); }else if( savedHasAgg ){ pNC->hasAgg = 1; } return ExprHasProperty(pExpr, EP_Error); } /* ** A pointer instance of this structure is used to pass information ** through walkExprTree into codeSubqueryStep(). */ typedef struct QueryCoder QueryCoder; struct QueryCoder { Parse *pParse; /* The parsing context */ NameContext *pNC; /* Namespace of first enclosing query */ }; /* ** Generate code for scalar subqueries used as an expression ** and IN operators. Examples: ** ** (SELECT a FROM b) -- subquery ** EXISTS (SELECT a FROM b) -- EXISTS subquery ** x IN (4,5,11) -- IN operator with list on right-hand side ** x IN (SELECT a FROM b) -- IN operator with subquery on the right ** ** The pExpr parameter describes the expression that contains the IN ** operator or subquery. */ #ifndef SQLITE_OMIT_SUBQUERY void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ int testAddr = 0; /* One-time test address */ Vdbe *v = sqlite3GetVdbe(pParse); if( v==0 ) return; /* This code must be run in its entirety every time it is encountered ** if any of the following is true: ** ** * The right-hand side is a correlated subquery ** * The right-hand side is an expression list containing variables ** * We are inside a trigger ** ** If all of the above are false, then we can run this code just once ** save the results, and reuse the same result on subsequent invocations. */ if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ int mem = pParse->nMem++; sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0); testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0); assert( testAddr>0 || pParse->db->mallocFailed ); sqlite3VdbeAddOp(v, OP_MemInt, 1, mem); } switch( pExpr->op ){ case TK_IN: { char affinity; KeyInfo keyInfo; int addr; /* Address of OP_OpenEphemeral instruction */ affinity = sqlite3ExprAffinity(pExpr->pLeft); /* Whether this is an 'x IN(SELECT...)' or an 'x IN()' ** expression it is handled the same way. A virtual table is ** filled with single-field index keys representing the results ** from the SELECT or the . ** ** If the 'x' expression is a column value, or the SELECT... ** statement returns a column value, then the affinity of that ** column is used to build the index keys. If both 'x' and the ** SELECT... statement are columns, then numeric affinity is used ** if either column has NUMERIC or INTEGER affinity. If neither ** 'x' nor the SELECT... statement are columns, then numeric affinity ** is used. */ pExpr->iTable = pParse->nTab++; addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0); memset(&keyInfo, 0, sizeof(keyInfo)); keyInfo.nField = 1; sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1); if( pExpr->pSelect ){ /* Case 1: expr IN (SELECT ...) ** ** Generate code to write the results of the select into the temporary ** table allocated and opened above. */ int iParm = pExpr->iTable + (((int)affinity)<<16); ExprList *pEList; assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); if( sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0) ){ return; } pEList = pExpr->pSelect->pEList; if( pEList && pEList->nExpr>0 ){ keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pEList->a[0].pExpr); } }else if( pExpr->pList ){ /* Case 2: expr IN (exprlist) ** ** For each expression, build an index key from the evaluation and ** store it in the temporary table. If is a column, then use ** that columns affinity when building index keys. If is not ** a column, use numeric affinity. */ int i; ExprList *pList = pExpr->pList; struct ExprList_item *pItem; if( !affinity ){ affinity = SQLITE_AFF_NONE; } keyInfo.aColl[0] = pExpr->pLeft->pColl; /* Loop through each expression in . */ for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ Expr *pE2 = pItem->pExpr; /* If the expression is not constant then we will need to ** disable the test that was generated above that makes sure ** this code only executes once. Because for a non-constant ** expression we need to rerun this code each time. */ if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){ sqlite3VdbeChangeToNoop(v, testAddr-1, 3); testAddr = 0; } /* Evaluate the expression and insert it into the temp table */ sqlite3ExprCode(pParse, pE2); sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0); } } sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO); break; } case TK_EXISTS: case TK_SELECT: { /* This has to be a scalar SELECT. Generate code to put the ** value of this select in a memory cell and record the number ** of the memory cell in iColumn. */ static const Token one = { (u8*)"1", 0, 1 }; Select *pSel; int iMem; int sop; pExpr->iColumn = iMem = pParse->nMem++; pSel = pExpr->pSelect; if( pExpr->op==TK_SELECT ){ sop = SRT_Mem; sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0); VdbeComment((v, "# Init subquery result")); }else{ sop = SRT_Exists; sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem); VdbeComment((v, "# Init EXISTS result")); } sqlite3ExprDelete(pSel->pLimit); pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); if( sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0) ){ return; } break; } } if( testAddr ){ sqlite3VdbeJumpHere(v, testAddr); } return; } #endif /* SQLITE_OMIT_SUBQUERY */ /* ** Generate an instruction that will put the integer describe by ** text z[0..n-1] on the stack. */ static void codeInteger(Vdbe *v, const char *z, int n){ assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); if( z ){ int i; if( sqlite3GetInt32(z, &i) ){ sqlite3VdbeAddOp(v, OP_Integer, i, 0); }else if( sqlite3FitsIn64Bits(z) ){ sqlite3VdbeOp3(v, OP_Int64, 0, 0, z, n); }else{ sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n); } } } /* ** Generate code that will extract the iColumn-th column from ** table pTab and push that column value on the stack. There ** is an open cursor to pTab in iTable. If iColumn<0 then ** code is generated that extracts the rowid. */ void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){ if( iColumn<0 ){ int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid; sqlite3VdbeAddOp(v, op, iTable, 0); }else if( pTab==0 ){ sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn); }else{ int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; sqlite3VdbeAddOp(v, op, iTable, iColumn); sqlite3ColumnDefault(v, pTab, iColumn); #ifndef SQLITE_OMIT_FLOATING_POINT if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){ sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0); } #endif } } /* ** Generate code into the current Vdbe to evaluate the given ** expression and leave the result on the top of stack. ** ** This code depends on the fact that certain token values (ex: TK_EQ) ** are the same as opcode values (ex: OP_Eq) that implement the corresponding ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in ** the make process cause these values to align. Assert()s in the code ** below verify that the numbers are aligned correctly. */ void sqlite3ExprCode(Parse *pParse, Expr *pExpr){ Vdbe *v = pParse->pVdbe; int op; int stackChng = 1; /* Amount of change to stack depth */ if( v==0 ) return; if( pExpr==0 ){ sqlite3VdbeAddOp(v, OP_Null, 0, 0); return; } op = pExpr->op; switch( op ){ case TK_AGG_COLUMN: { AggInfo *pAggInfo = pExpr->pAggInfo; struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; if( !pAggInfo->directMode ){ sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0); break; }else if( pAggInfo->useSortingIdx ){ sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx, pCol->iSorterColumn); break; } /* Otherwise, fall thru into the TK_COLUMN case */ } case TK_COLUMN: { if( pExpr->iTable<0 ){ /* This only happens when coding check constraints */ assert( pParse->ckOffset>0 ); sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1); }else{ sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable); } break; } case TK_INTEGER: { codeInteger(v, (char*)pExpr->token.z, pExpr->token.n); break; } case TK_FLOAT: case TK_STRING: { assert( TK_FLOAT==OP_Real ); assert( TK_STRING==OP_String8 ); sqlite3DequoteExpr(pParse->db, pExpr); sqlite3VdbeOp3(v, op, 0, 0, (char*)pExpr->token.z, pExpr->token.n); break; } case TK_NULL: { sqlite3VdbeAddOp(v, OP_Null, 0, 0); break; } #ifndef SQLITE_OMIT_BLOB_LITERAL case TK_BLOB: { int n; const char *z; assert( TK_BLOB==OP_HexBlob ); n = pExpr->token.n - 3; z = (char*)pExpr->token.z + 2; assert( n>=0 ); if( n==0 ){ z = ""; } sqlite3VdbeOp3(v, op, 0, 0, z, n); break; } #endif case TK_VARIABLE: { sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0); if( pExpr->token.n>1 ){ sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n); } break; } case TK_REGISTER: { sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0); break; } #ifndef SQLITE_OMIT_CAST case TK_CAST: { /* Expressions of the form: CAST(pLeft AS token) */ int aff, to_op; sqlite3ExprCode(pParse, pExpr->pLeft); aff = sqlite3AffinityType(&pExpr->token); to_op = aff - SQLITE_AFF_TEXT + OP_ToText; assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); sqlite3VdbeAddOp(v, to_op, 0, 0); stackChng = 0; break; } #endif /* SQLITE_OMIT_CAST */ case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { assert( TK_LT==OP_Lt ); assert( TK_LE==OP_Le ); assert( TK_GT==OP_Gt ); assert( TK_GE==OP_Ge ); assert( TK_EQ==OP_Eq ); assert( TK_NE==OP_Ne ); sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3ExprCode(pParse, pExpr->pRight); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0); stackChng = -1; break; } case TK_AND: case TK_OR: case TK_PLUS: case TK_STAR: case TK_MINUS: case TK_REM: case TK_BITAND: case TK_BITOR: case TK_SLASH: case TK_LSHIFT: case TK_RSHIFT: case TK_CONCAT: { assert( TK_AND==OP_And ); assert( TK_OR==OP_Or ); assert( TK_PLUS==OP_Add ); assert( TK_MINUS==OP_Subtract ); assert( TK_REM==OP_Remainder ); assert( TK_BITAND==OP_BitAnd ); assert( TK_BITOR==OP_BitOr ); assert( TK_SLASH==OP_Divide ); assert( TK_LSHIFT==OP_ShiftLeft ); assert( TK_RSHIFT==OP_ShiftRight ); assert( TK_CONCAT==OP_Concat ); sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3ExprCode(pParse, pExpr->pRight); sqlite3VdbeAddOp(v, op, 0, 0); stackChng = -1; break; } case TK_UMINUS: { Expr *pLeft = pExpr->pLeft; assert( pLeft ); if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ Token *p = &pLeft->token; char *z = sqlite3MPrintf(pParse->db, "-%.*s", p->n, p->z); if( pLeft->op==TK_FLOAT ){ sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1); }else{ codeInteger(v, z, p->n+1); } sqlite3_free(z); break; } /* Fall through into TK_NOT */ } case TK_BITNOT: case TK_NOT: { assert( TK_BITNOT==OP_BitNot ); assert( TK_NOT==OP_Not ); sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3VdbeAddOp(v, op, 0, 0); stackChng = 0; break; } case TK_ISNULL: case TK_NOTNULL: { int dest; assert( TK_ISNULL==OP_IsNull ); assert( TK_NOTNULL==OP_NotNull ); sqlite3VdbeAddOp(v, OP_Integer, 1, 0); sqlite3ExprCode(pParse, pExpr->pLeft); dest = sqlite3VdbeCurrentAddr(v) + 2; sqlite3VdbeAddOp(v, op, 1, dest); sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); stackChng = 0; break; } case TK_AGG_FUNCTION: { AggInfo *pInfo = pExpr->pAggInfo; if( pInfo==0 ){ sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", &pExpr->span); }else{ sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0); } break; } case TK_CONST_FUNC: case TK_FUNCTION: { ExprList *pList = pExpr->pList; int nExpr = pList ? pList->nExpr : 0; FuncDef *pDef; int nId; const char *zId; int constMask = 0; int i; sqlite3 *db = pParse->db; u8 enc = ENC(db); CollSeq *pColl = 0; zId = (char*)pExpr->token.z; nId = pExpr->token.n; pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); assert( pDef!=0 ); nExpr = sqlite3ExprCodeExprList(pParse, pList); #ifndef SQLITE_OMIT_VIRTUALTABLE /* Possibly overload the function if the first argument is ** a virtual table column. ** ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the ** second argument, not the first, as the argument to test to ** see if it is a column in a virtual table. This is done because ** the left operand of infix functions (the operand we want to ** control overloading) ends up as the second argument to the ** function. The expression "A glob B" is equivalent to ** "glob(B,A). We want to use the A in "A glob B" to test ** for function overloading. But we use the B term in "glob(B,A)". */ if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){ pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr); }else if( nExpr>0 ){ pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr); } #endif for(i=0; ia[i].pExpr) ){ constMask |= (1<needCollSeq && !pColl ){ pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); } } if( pDef->needCollSeq ){ if( !pColl ) pColl = pParse->db->pDfltColl; sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); } sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF); stackChng = 1-nExpr; break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_EXISTS: case TK_SELECT: { if( pExpr->iColumn==0 ){ sqlite3CodeSubselect(pParse, pExpr); } sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); VdbeComment((v, "# load subquery result")); break; } case TK_IN: { int addr; char affinity; int ckOffset = pParse->ckOffset; sqlite3CodeSubselect(pParse, pExpr); /* Figure out the affinity to use to create a key from the results ** of the expression. affinityStr stores a static string suitable for ** P3 of OP_MakeRecord. */ affinity = comparisonAffinity(pExpr); sqlite3VdbeAddOp(v, OP_Integer, 1, 0); pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0); /* Code the from " IN (...)". The temporary table ** pExpr->iTable contains the values that make up the (...) set. */ sqlite3ExprCode(pParse, pExpr->pLeft); addr = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4); /* addr + 0 */ sqlite3VdbeAddOp(v, OP_Pop, 2, 0); sqlite3VdbeAddOp(v, OP_Null, 0, 0); sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7); sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); /* addr + 4 */ sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7); sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */ break; } #endif case TK_BETWEEN: { Expr *pLeft = pExpr->pLeft; struct ExprList_item *pLItem = pExpr->pList->a; Expr *pRight = pLItem->pExpr; sqlite3ExprCode(pParse, pLeft); sqlite3VdbeAddOp(v, OP_Dup, 0, 0); sqlite3ExprCode(pParse, pRight); codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0); sqlite3VdbeAddOp(v, OP_Pull, 1, 0); pLItem++; pRight = pLItem->pExpr; sqlite3ExprCode(pParse, pRight); codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0); sqlite3VdbeAddOp(v, OP_And, 0, 0); break; } case TK_UPLUS: { sqlite3ExprCode(pParse, pExpr->pLeft); stackChng = 0; break; } case TK_CASE: { int expr_end_label; int jumpInst; int nExpr; int i; ExprList *pEList; struct ExprList_item *aListelem; assert(pExpr->pList); assert((pExpr->pList->nExpr % 2) == 0); assert(pExpr->pList->nExpr > 0); pEList = pExpr->pList; aListelem = pEList->a; nExpr = pEList->nExpr; expr_end_label = sqlite3VdbeMakeLabel(v); if( pExpr->pLeft ){ sqlite3ExprCode(pParse, pExpr->pLeft); } for(i=0; ipLeft ){ sqlite3VdbeAddOp(v, OP_Dup, 1, 1); jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr, OP_Ne, 0, 1); sqlite3VdbeAddOp(v, OP_Pop, 1, 0); }else{ jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0); } sqlite3ExprCode(pParse, aListelem[i+1].pExpr); sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label); sqlite3VdbeJumpHere(v, jumpInst); } if( pExpr->pLeft ){ sqlite3VdbeAddOp(v, OP_Pop, 1, 0); } if( pExpr->pRight ){ sqlite3ExprCode(pParse, pExpr->pRight); }else{ sqlite3VdbeAddOp(v, OP_Null, 0, 0); } sqlite3VdbeResolveLabel(v, expr_end_label); break; } #ifndef SQLITE_OMIT_TRIGGER case TK_RAISE: { if( !pParse->trigStack ){ sqlite3ErrorMsg(pParse, "RAISE() may only be used within a trigger-program"); return; } if( pExpr->iColumn!=OE_Ignore ){ assert( pExpr->iColumn==OE_Rollback || pExpr->iColumn == OE_Abort || pExpr->iColumn == OE_Fail ); sqlite3DequoteExpr(pParse->db, pExpr); sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, (char*)pExpr->token.z, pExpr->token.n); } else { assert( pExpr->iColumn == OE_Ignore ); sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0); sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump); VdbeComment((v, "# raise(IGNORE)")); } stackChng = 0; break; } #endif } if( pParse->ckOffset ){ pParse->ckOffset += stackChng; assert( pParse->ckOffset ); } } #ifndef SQLITE_OMIT_TRIGGER /* ** Generate code that evalutes the given expression and leaves the result ** on the stack. See also sqlite3ExprCode(). ** ** This routine might also cache the result and modify the pExpr tree ** so that it will make use of the cached result on subsequent evaluations ** rather than evaluate the whole expression again. Trivial expressions are ** not cached. If the expression is cached, its result is stored in a ** memory location. */ void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){ Vdbe *v = pParse->pVdbe; int iMem; int addr1, addr2; if( v==0 ) return; addr1 = sqlite3VdbeCurrentAddr(v); sqlite3ExprCode(pParse, pExpr); addr2 = sqlite3VdbeCurrentAddr(v); if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){ iMem = pExpr->iTable = pParse->nMem++; sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); pExpr->op = TK_REGISTER; } } #endif /* ** Generate code that pushes the value of every element of the given ** expression list onto the stack. ** ** Return the number of elements pushed onto the stack. */ int sqlite3ExprCodeExprList( Parse *pParse, /* Parsing context */ ExprList *pList /* The expression list to be coded */ ){ struct ExprList_item *pItem; int i, n; if( pList==0 ) return 0; n = pList->nExpr; for(pItem=pList->a, i=n; i>0; i--, pItem++){ sqlite3ExprCode(pParse, pItem->pExpr); } return n; } /* ** Generate code for a boolean expression such that a jump is made ** to the label "dest" if the expression is true but execution ** continues straight thru if the expression is false. ** ** If the expression evaluates to NULL (neither true nor false), then ** take the jump if the jumpIfNull flag is true. ** ** This code depends on the fact that certain token values (ex: TK_EQ) ** are the same as opcode values (ex: OP_Eq) that implement the corresponding ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in ** the make process cause these values to align. Assert()s in the code ** below verify that the numbers are aligned correctly. */ void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ Vdbe *v = pParse->pVdbe; int op = 0; int ckOffset = pParse->ckOffset; if( v==0 || pExpr==0 ) return; op = pExpr->op; switch( op ){ case TK_AND: { int d2 = sqlite3VdbeMakeLabel(v); sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull); sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); sqlite3VdbeResolveLabel(v, d2); break; } case TK_OR: { sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); break; } case TK_NOT: { sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); break; } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { assert( TK_LT==OP_Lt ); assert( TK_LE==OP_Le ); assert( TK_GT==OP_Gt ); assert( TK_GE==OP_Ge ); assert( TK_EQ==OP_Eq ); assert( TK_NE==OP_Ne ); sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3ExprCode(pParse, pExpr->pRight); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); break; } case TK_ISNULL: case TK_NOTNULL: { assert( TK_ISNULL==OP_IsNull ); assert( TK_NOTNULL==OP_NotNull ); sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3VdbeAddOp(v, op, 1, dest); break; } case TK_BETWEEN: { /* The expression "x BETWEEN y AND z" is implemented as: ** ** 1 IF (x < y) GOTO 3 ** 2 IF (x <= z) GOTO ** 3 ... */ int addr; Expr *pLeft = pExpr->pLeft; Expr *pRight = pExpr->pList->a[0].pExpr; sqlite3ExprCode(pParse, pLeft); sqlite3VdbeAddOp(v, OP_Dup, 0, 0); sqlite3ExprCode(pParse, pRight); addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull); pRight = pExpr->pList->a[1].pExpr; sqlite3ExprCode(pParse, pRight); codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull); sqlite3VdbeAddOp(v, OP_Integer, 0, 0); sqlite3VdbeJumpHere(v, addr); sqlite3VdbeAddOp(v, OP_Pop, 1, 0); break; } default: { sqlite3ExprCode(pParse, pExpr); sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest); break; } } pParse->ckOffset = ckOffset; } /* ** Generate code for a boolean expression such that a jump is made ** to the label "dest" if the expression is false but execution ** continues straight thru if the expression is true. ** ** If the expression evaluates to NULL (neither true nor false) then ** jump if jumpIfNull is true or fall through if jumpIfNull is false. */ void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ Vdbe *v = pParse->pVdbe; int op = 0; int ckOffset = pParse->ckOffset; if( v==0 || pExpr==0 ) return; /* The value of pExpr->op and op are related as follows: ** ** pExpr->op op ** --------- ---------- ** TK_ISNULL OP_NotNull ** TK_NOTNULL OP_IsNull ** TK_NE OP_Eq ** TK_EQ OP_Ne ** TK_GT OP_Le ** TK_LE OP_Gt ** TK_GE OP_Lt ** TK_LT OP_Ge ** ** For other values of pExpr->op, op is undefined and unused. ** The value of TK_ and OP_ constants are arranged such that we ** can compute the mapping above using the following expression. ** Assert()s verify that the computation is correct. */ op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); /* Verify correct alignment of TK_ and OP_ constants */ assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); assert( pExpr->op!=TK_NE || op==OP_Eq ); assert( pExpr->op!=TK_EQ || op==OP_Ne ); assert( pExpr->op!=TK_LT || op==OP_Ge ); assert( pExpr->op!=TK_LE || op==OP_Gt ); assert( pExpr->op!=TK_GT || op==OP_Le ); assert( pExpr->op!=TK_GE || op==OP_Lt ); switch( pExpr->op ){ case TK_AND: { sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); break; } case TK_OR: { int d2 = sqlite3VdbeMakeLabel(v); sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull); sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); sqlite3VdbeResolveLabel(v, d2); break; } case TK_NOT: { sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); break; } case TK_LT: case TK_LE: case TK_GT: case TK_GE: case TK_NE: case TK_EQ: { sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3ExprCode(pParse, pExpr->pRight); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); break; } case TK_ISNULL: case TK_NOTNULL: { sqlite3ExprCode(pParse, pExpr->pLeft); sqlite3VdbeAddOp(v, op, 1, dest); break; } case TK_BETWEEN: { /* The expression is "x BETWEEN y AND z". It is implemented as: ** ** 1 IF (x >= y) GOTO 3 ** 2 GOTO ** 3 IF (x > z) GOTO */ int addr; Expr *pLeft = pExpr->pLeft; Expr *pRight = pExpr->pList->a[0].pExpr; sqlite3ExprCode(pParse, pLeft); sqlite3VdbeAddOp(v, OP_Dup, 0, 0); sqlite3ExprCode(pParse, pRight); addr = sqlite3VdbeCurrentAddr(v); codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull); sqlite3VdbeAddOp(v, OP_Pop, 1, 0); sqlite3VdbeAddOp(v, OP_Goto, 0, dest); pRight = pExpr->pList->a[1].pExpr; sqlite3ExprCode(pParse, pRight); codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull); break; } default: { sqlite3ExprCode(pParse, pExpr); sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest); break; } } pParse->ckOffset = ckOffset; } /* ** Do a deep comparison of two expression trees. Return TRUE (non-zero) ** if they are identical and return FALSE if they differ in any way. ** ** Sometimes this routine will return FALSE even if the two expressions ** really are equivalent. If we cannot prove that the expressions are ** identical, we return FALSE just to be safe. So if this routine ** returns false, then you do not really know for certain if the two ** expressions are the same. But if you get a TRUE return, then you ** can be sure the expressions are the same. In the places where ** this routine is used, it does not hurt to get an extra FALSE - that ** just might result in some slightly slower code. But returning ** an incorrect TRUE could lead to a malfunction. */ int sqlite3ExprCompare(Expr *pA, Expr *pB){ int i; if( pA==0||pB==0 ){ return pB==pA; } if( pA->op!=pB->op ) return 0; if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; if( pA->pList ){ if( pB->pList==0 ) return 0; if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; for(i=0; ipList->nExpr; i++){ if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ return 0; } } }else if( pB->pList ){ return 0; } if( pA->pSelect || pB->pSelect ) return 0; if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; if( pA->op!=TK_COLUMN && pA->token.z ){ if( pB->token.z==0 ) return 0; if( pB->token.n!=pA->token.n ) return 0; if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ return 0; } } return 1; } /* ** Add a new element to the pAggInfo->aCol[] array. Return the index of ** the new element. Return a negative number if malloc fails. */ static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ int i; pInfo->aCol = sqlite3ArrayAllocate( db, pInfo->aCol, sizeof(pInfo->aCol[0]), 3, &pInfo->nColumn, &pInfo->nColumnAlloc, &i ); return i; } /* ** Add a new element to the pAggInfo->aFunc[] array. Return the index of ** the new element. Return a negative number if malloc fails. */ static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ int i; pInfo->aFunc = sqlite3ArrayAllocate( db, pInfo->aFunc, sizeof(pInfo->aFunc[0]), 3, &pInfo->nFunc, &pInfo->nFuncAlloc, &i ); return i; } /* ** This is an xFunc for walkExprTree() used to implement ** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates ** for additional information. ** ** This routine analyzes the aggregate function at pExpr. */ static int analyzeAggregate(void *pArg, Expr *pExpr){ int i; NameContext *pNC = (NameContext *)pArg; Parse *pParse = pNC->pParse; SrcList *pSrcList = pNC->pSrcList; AggInfo *pAggInfo = pNC->pAggInfo; switch( pExpr->op ){ case TK_AGG_COLUMN: case TK_COLUMN: { /* Check to see if the column is in one of the tables in the FROM ** clause of the aggregate query */ if( pSrcList ){ struct SrcList_item *pItem = pSrcList->a; for(i=0; inSrc; i++, pItem++){ struct AggInfo_col *pCol; if( pExpr->iTable==pItem->iCursor ){ /* If we reach this point, it means that pExpr refers to a table ** that is in the FROM clause of the aggregate query. ** ** Make an entry for the column in pAggInfo->aCol[] if there ** is not an entry there already. */ int k; pCol = pAggInfo->aCol; for(k=0; knColumn; k++, pCol++){ if( pCol->iTable==pExpr->iTable && pCol->iColumn==pExpr->iColumn ){ break; } } if( (k>=pAggInfo->nColumn) && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 ){ pCol = &pAggInfo->aCol[k]; pCol->pTab = pExpr->pTab; pCol->iTable = pExpr->iTable; pCol->iColumn = pExpr->iColumn; pCol->iMem = pParse->nMem++; pCol->iSorterColumn = -1; pCol->pExpr = pExpr; if( pAggInfo->pGroupBy ){ int j, n; ExprList *pGB = pAggInfo->pGroupBy; struct ExprList_item *pTerm = pGB->a; n = pGB->nExpr; for(j=0; jpExpr; if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && pE->iColumn==pExpr->iColumn ){ pCol->iSorterColumn = j; break; } } } if( pCol->iSorterColumn<0 ){ pCol->iSorterColumn = pAggInfo->nSortingColumn++; } } /* There is now an entry for pExpr in pAggInfo->aCol[] (either ** because it was there before or because we just created it). ** Convert the pExpr to be a TK_AGG_COLUMN referring to that ** pAggInfo->aCol[] entry. */ pExpr->pAggInfo = pAggInfo; pExpr->op = TK_AGG_COLUMN; pExpr->iAgg = k; break; } /* endif pExpr->iTable==pItem->iCursor */ } /* end loop over pSrcList */ } return 1; } case TK_AGG_FUNCTION: { /* The pNC->nDepth==0 test causes aggregate functions in subqueries ** to be ignored */ if( pNC->nDepth==0 ){ /* Check to see if pExpr is a duplicate of another aggregate ** function that is already in the pAggInfo structure */ struct AggInfo_func *pItem = pAggInfo->aFunc; for(i=0; inFunc; i++, pItem++){ if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ break; } } if( i>=pAggInfo->nFunc ){ /* pExpr is original. Make a new entry in pAggInfo->aFunc[] */ u8 enc = ENC(pParse->db); i = addAggInfoFunc(pParse->db, pAggInfo); if( i>=0 ){ pItem = &pAggInfo->aFunc[i]; pItem->pExpr = pExpr; pItem->iMem = pParse->nMem++; pItem->pFunc = sqlite3FindFunction(pParse->db, (char*)pExpr->token.z, pExpr->token.n, pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); if( pExpr->flags & EP_Distinct ){ pItem->iDistinct = pParse->nTab++; }else{ pItem->iDistinct = -1; } } } /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry */ pExpr->iAgg = i; pExpr->pAggInfo = pAggInfo; return 1; } } } /* Recursively walk subqueries looking for TK_COLUMN nodes that need ** to be changed to TK_AGG_COLUMN. But increment nDepth so that ** TK_AGG_FUNCTION nodes in subqueries will be unchanged. */ if( pExpr->pSelect ){ pNC->nDepth++; walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); pNC->nDepth--; } return 0; } /* ** Analyze the given expression looking for aggregate functions and ** for variables that need to be added to the pParse->aAgg[] array. ** Make additional entries to the pParse->aAgg[] array as necessary. ** ** This routine should only be called after the expression has been ** analyzed by sqlite3ExprResolveNames(). ** ** If errors are seen, leave an error message in zErrMsg and return ** the number of errors. */ int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ int nErr = pNC->pParse->nErr; walkExprTree(pExpr, analyzeAggregate, pNC); return pNC->pParse->nErr - nErr; } /* ** Call sqlite3ExprAnalyzeAggregates() for every expression in an ** expression list. Return the number of errors. ** ** If an error is found, the analysis is cut short. */ int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ struct ExprList_item *pItem; int i; int nErr = 0; if( pList ){ for(pItem=pList->a, i=0; nErr==0 && inExpr; i++, pItem++){ nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); } } return nErr; }