/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the SQLite parser ** when syntax rules are reduced. The routines in this file handle the ** following kinds of SQL syntax: ** ** CREATE TABLE ** DROP TABLE ** CREATE INDEX ** DROP INDEX ** creating ID lists ** BEGIN TRANSACTION ** COMMIT ** ROLLBACK ** ** $Id$ */ #include "sqliteInt.h" #include /* ** This routine is called when a new SQL statement is beginning to ** be parsed. Initialize the pParse structure as needed. */ void sqlite3BeginParse(Parse *pParse, int explainFlag){ pParse->explain = explainFlag; pParse->nVar = 0; } #ifndef SQLITE_OMIT_SHARED_CACHE /* ** The TableLock structure is only used by the sqlite3TableLock() and ** codeTableLocks() functions. */ struct TableLock { int iDb; /* The database containing the table to be locked */ int iTab; /* The root page of the table to be locked */ u8 isWriteLock; /* True for write lock. False for a read lock */ const char *zName; /* Name of the table */ }; /* ** Record the fact that we want to lock a table at run-time. ** ** The table to be locked has root page iTab and is found in database iDb. ** A read or a write lock can be taken depending on isWritelock. ** ** This routine just records the fact that the lock is desired. The ** code to make the lock occur is generated by a later call to ** codeTableLocks() which occurs during sqlite3FinishCoding(). */ void sqlite3TableLock( Parse *pParse, /* Parsing context */ int iDb, /* Index of the database containing the table to lock */ int iTab, /* Root page number of the table to be locked */ u8 isWriteLock, /* True for a write lock */ const char *zName /* Name of the table to be locked */ ){ int i; int nBytes; TableLock *p; if( iDb<0 ){ return; } for(i=0; inTableLock; i++){ p = &pParse->aTableLock[i]; if( p->iDb==iDb && p->iTab==iTab ){ p->isWriteLock = (p->isWriteLock || isWriteLock); return; } } nBytes = sizeof(TableLock) * (pParse->nTableLock+1); pParse->aTableLock = sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes); if( pParse->aTableLock ){ p = &pParse->aTableLock[pParse->nTableLock++]; p->iDb = iDb; p->iTab = iTab; p->isWriteLock = isWriteLock; p->zName = zName; }else{ pParse->nTableLock = 0; pParse->db->mallocFailed = 1; } } /* ** Code an OP_TableLock instruction for each table locked by the ** statement (configured by calls to sqlite3TableLock()). */ static void codeTableLocks(Parse *pParse){ int i; Vdbe *pVdbe; if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){ return; } for(i=0; inTableLock; i++){ TableLock *p = &pParse->aTableLock[i]; int p1 = p->iDb; if( p->isWriteLock ){ p1 = -1*(p1+1); } sqlite3VdbeOp3(pVdbe, OP_TableLock, p1, p->iTab, p->zName, P3_STATIC); } } #else #define codeTableLocks(x) #endif /* ** This routine is called after a single SQL statement has been ** parsed and a VDBE program to execute that statement has been ** prepared. This routine puts the finishing touches on the ** VDBE program and resets the pParse structure for the next ** parse. ** ** Note that if an error occurred, it might be the case that ** no VDBE code was generated. */ void sqlite3FinishCoding(Parse *pParse){ sqlite3 *db; Vdbe *v; db = pParse->db; if( db->mallocFailed ) return; if( pParse->nested ) return; if( !pParse->pVdbe ){ if( pParse->rc==SQLITE_OK && pParse->nErr ){ pParse->rc = SQLITE_ERROR; return; } } /* Begin by generating some termination code at the end of the ** vdbe program */ v = sqlite3GetVdbe(pParse); if( v ){ sqlite3VdbeAddOp(v, OP_Halt, 0, 0); /* The cookie mask contains one bit for each database file open. ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are ** set for each database that is used. Generate code to start a ** transaction on each used database and to verify the schema cookie ** on each used database. */ if( pParse->cookieGoto>0 ){ u32 mask; int iDb; sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); for(iDb=0, mask=1; iDbnDb; mask<<=1, iDb++){ if( (mask & pParse->cookieMask)==0 ) continue; sqlite3VdbeUsesBtree(v, iDb); sqlite3VdbeAddOp(v, OP_Transaction, iDb, (mask & pParse->writeMask)!=0); sqlite3VdbeAddOp(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb]); } #ifndef SQLITE_OMIT_VIRTUALTABLE if( pParse->pVirtualLock ){ char *vtab = (char *)pParse->pVirtualLock->pVtab; sqlite3VdbeOp3(v, OP_VBegin, 0, 0, vtab, P3_VTAB); } #endif /* Once all the cookies have been verified and transactions opened, ** obtain the required table-locks. This is a no-op unless the ** shared-cache feature is enabled. */ codeTableLocks(pParse); sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->cookieGoto); } #ifndef SQLITE_OMIT_TRACE /* Add a No-op that contains the complete text of the compiled SQL ** statement as its P3 argument. This does not change the functionality ** of the program. ** ** This is used to implement sqlite3_trace(). */ sqlite3VdbeOp3(v, OP_Noop, 0, 0, pParse->zSql, pParse->zTail-pParse->zSql); #endif /* SQLITE_OMIT_TRACE */ } /* Get the VDBE program ready for execution */ if( v && pParse->nErr==0 && !db->mallocFailed ){ #ifdef SQLITE_DEBUG FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; sqlite3VdbeTrace(v, trace); #endif sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3, pParse->nTab+3, pParse->explain); pParse->rc = SQLITE_DONE; pParse->colNamesSet = 0; }else if( pParse->rc==SQLITE_OK ){ pParse->rc = SQLITE_ERROR; } pParse->nTab = 0; pParse->nMem = 0; pParse->nSet = 0; pParse->nVar = 0; pParse->cookieMask = 0; pParse->cookieGoto = 0; } /* ** Run the parser and code generator recursively in order to generate ** code for the SQL statement given onto the end of the pParse context ** currently under construction. When the parser is run recursively ** this way, the final OP_Halt is not appended and other initialization ** and finalization steps are omitted because those are handling by the ** outermost parser. ** ** Not everything is nestable. This facility is designed to permit ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use ** care if you decide to try to use this routine for some other purposes. */ void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ va_list ap; char *zSql; # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) char saveBuf[SAVE_SZ]; if( pParse->nErr ) return; assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ va_start(ap, zFormat); zSql = sqlite3VMPrintf(pParse->db, zFormat, ap); va_end(ap); if( zSql==0 ){ pParse->db->mallocFailed = 1; return; /* A malloc must have failed */ } pParse->nested++; memcpy(saveBuf, &pParse->nVar, SAVE_SZ); memset(&pParse->nVar, 0, SAVE_SZ); sqlite3RunParser(pParse, zSql, 0); sqlite3_free(zSql); memcpy(&pParse->nVar, saveBuf, SAVE_SZ); pParse->nested--; } /* ** Locate the in-memory structure that describes a particular database ** table given the name of that table and (optionally) the name of the ** database containing the table. Return NULL if not found. ** ** If zDatabase is 0, all databases are searched for the table and the ** first matching table is returned. (No checking for duplicate table ** names is done.) The search order is TEMP first, then MAIN, then any ** auxiliary databases added using the ATTACH command. ** ** See also sqlite3LocateTable(). */ Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ Table *p = 0; int i; assert( zName!=0 ); for(i=OMIT_TEMPDB; inDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName)+1); if( p ) break; } return p; } /* ** Locate the in-memory structure that describes a particular database ** table given the name of that table and (optionally) the name of the ** database containing the table. Return NULL if not found. Also leave an ** error message in pParse->zErrMsg. ** ** The difference between this routine and sqlite3FindTable() is that this ** routine leaves an error message in pParse->zErrMsg where ** sqlite3FindTable() does not. */ Table *sqlite3LocateTable(Parse *pParse, const char *zName, const char *zDbase){ Table *p; /* Read the database schema. If an error occurs, leave an error message ** and code in pParse and return NULL. */ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ return 0; } p = sqlite3FindTable(pParse->db, zName, zDbase); if( p==0 ){ if( zDbase ){ sqlite3ErrorMsg(pParse, "no such table: %s.%s", zDbase, zName); }else{ sqlite3ErrorMsg(pParse, "no such table: %s", zName); } pParse->checkSchema = 1; } return p; } /* ** Locate the in-memory structure that describes ** a particular index given the name of that index ** and the name of the database that contains the index. ** Return NULL if not found. ** ** If zDatabase is 0, all databases are searched for the ** table and the first matching index is returned. (No checking ** for duplicate index names is done.) The search order is ** TEMP first, then MAIN, then any auxiliary databases added ** using the ATTACH command. */ Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ Index *p = 0; int i; for(i=OMIT_TEMPDB; inDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ Schema *pSchema = db->aDb[j].pSchema; if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; assert( pSchema || (j==1 && !db->aDb[1].pBt) ); if( pSchema ){ p = sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName)+1); } if( p ) break; } return p; } /* ** Reclaim the memory used by an index */ static void freeIndex(Index *p){ sqlite3_free(p->zColAff); sqlite3_free(p); } /* ** Remove the given index from the index hash table, and free ** its memory structures. ** ** The index is removed from the database hash tables but ** it is not unlinked from the Table that it indexes. ** Unlinking from the Table must be done by the calling function. */ static void sqliteDeleteIndex(Index *p){ Index *pOld; const char *zName = p->zName; pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen( zName)+1, 0); assert( pOld==0 || pOld==p ); freeIndex(p); } /* ** For the index called zIdxName which is found in the database iDb, ** unlike that index from its Table then remove the index from ** the index hash table and free all memory structures associated ** with the index. */ void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ Index *pIndex; int len; Hash *pHash = &db->aDb[iDb].pSchema->idxHash; len = strlen(zIdxName); pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0); if( pIndex ){ if( pIndex->pTable->pIndex==pIndex ){ pIndex->pTable->pIndex = pIndex->pNext; }else{ Index *p; for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){} if( p && p->pNext==pIndex ){ p->pNext = pIndex->pNext; } } freeIndex(pIndex); } db->flags |= SQLITE_InternChanges; } /* ** Erase all schema information from the in-memory hash tables of ** a single database. This routine is called to reclaim memory ** before the database closes. It is also called during a rollback ** if there were schema changes during the transaction or if a ** schema-cookie mismatch occurs. ** ** If iDb<=0 then reset the internal schema tables for all database ** files. If iDb>=2 then reset the internal schema for only the ** single file indicated. */ void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ int i, j; assert( iDb>=0 && iDbnDb ); for(i=iDb; inDb; i++){ Db *pDb = &db->aDb[i]; if( pDb->pSchema ){ sqlite3SchemaFree(pDb->pSchema); } if( iDb>0 ) return; } assert( iDb==0 ); db->flags &= ~SQLITE_InternChanges; /* If one or more of the auxiliary database files has been closed, ** then remove them from the auxiliary database list. We take the ** opportunity to do this here since we have just deleted all of the ** schema hash tables and therefore do not have to make any changes ** to any of those tables. */ for(i=0; inDb; i++){ struct Db *pDb = &db->aDb[i]; if( pDb->pBt==0 ){ if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux); pDb->pAux = 0; } } for(i=j=2; inDb; i++){ struct Db *pDb = &db->aDb[i]; if( pDb->pBt==0 ){ sqlite3_free(pDb->zName); pDb->zName = 0; continue; } if( jaDb[j] = db->aDb[i]; } j++; } memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); db->nDb = j; if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); sqlite3_free(db->aDb); db->aDb = db->aDbStatic; } } /* ** This routine is called when a commit occurs. */ void sqlite3CommitInternalChanges(sqlite3 *db){ db->flags &= ~SQLITE_InternChanges; } /* ** Clear the column names from a table or view. */ static void sqliteResetColumnNames(Table *pTable){ int i; Column *pCol; assert( pTable!=0 ); if( (pCol = pTable->aCol)!=0 ){ for(i=0; inCol; i++, pCol++){ sqlite3_free(pCol->zName); sqlite3ExprDelete(pCol->pDflt); sqlite3_free(pCol->zType); sqlite3_free(pCol->zColl); } sqlite3_free(pTable->aCol); } pTable->aCol = 0; pTable->nCol = 0; } /* ** Remove the memory data structures associated with the given ** Table. No changes are made to disk by this routine. ** ** This routine just deletes the data structure. It does not unlink ** the table data structure from the hash table. Nor does it remove ** foreign keys from the sqlite.aFKey hash table. But it does destroy ** memory structures of the indices and foreign keys associated with ** the table. */ void sqlite3DeleteTable(Table *pTable){ Index *pIndex, *pNext; FKey *pFKey, *pNextFKey; if( pTable==0 ) return; /* Do not delete the table until the reference count reaches zero. */ pTable->nRef--; if( pTable->nRef>0 ){ return; } assert( pTable->nRef==0 ); /* Delete all indices associated with this table */ for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ pNext = pIndex->pNext; assert( pIndex->pSchema==pTable->pSchema ); sqliteDeleteIndex(pIndex); } #ifndef SQLITE_OMIT_FOREIGN_KEY /* Delete all foreign keys associated with this table. The keys ** should have already been unlinked from the pSchema->aFKey hash table */ for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){ pNextFKey = pFKey->pNextFrom; assert( sqlite3HashFind(&pTable->pSchema->aFKey, pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey ); sqlite3_free(pFKey); } #endif /* Delete the Table structure itself. */ sqliteResetColumnNames(pTable); sqlite3_free(pTable->zName); sqlite3_free(pTable->zColAff); sqlite3SelectDelete(pTable->pSelect); #ifndef SQLITE_OMIT_CHECK sqlite3ExprDelete(pTable->pCheck); #endif sqlite3VtabClear(pTable); sqlite3_free(pTable); } /* ** Unlink the given table from the hash tables and the delete the ** table structure with all its indices and foreign keys. */ void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ Table *p; FKey *pF1, *pF2; Db *pDb; assert( db!=0 ); assert( iDb>=0 && iDbnDb ); assert( zTabName && zTabName[0] ); pDb = &db->aDb[iDb]; p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0); if( p ){ #ifndef SQLITE_OMIT_FOREIGN_KEY for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){ int nTo = strlen(pF1->zTo) + 1; pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo); if( pF2==pF1 ){ sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo); }else{ while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; } if( pF2 ){ pF2->pNextTo = pF1->pNextTo; } } } #endif sqlite3DeleteTable(p); } db->flags |= SQLITE_InternChanges; } /* ** Given a token, return a string that consists of the text of that ** token with any quotations removed. Space to hold the returned string ** is obtained from sqliteMalloc() and must be freed by the calling ** function. ** ** Tokens are often just pointers into the original SQL text and so ** are not \000 terminated and are not persistent. The returned string ** is \000 terminated and is persistent. */ char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ char *zName; if( pName ){ zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); sqlite3Dequote(zName); }else{ zName = 0; } return zName; } /* ** Open the sqlite_master table stored in database number iDb for ** writing. The table is opened using cursor 0. */ void sqlite3OpenMasterTable(Parse *p, int iDb){ Vdbe *v = sqlite3GetVdbe(p); sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); sqlite3VdbeAddOp(v, OP_OpenWrite, 0, MASTER_ROOT); sqlite3VdbeAddOp(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */ } /* ** The token *pName contains the name of a database (either "main" or ** "temp" or the name of an attached db). This routine returns the ** index of the named database in db->aDb[], or -1 if the named db ** does not exist. */ int sqlite3FindDb(sqlite3 *db, Token *pName){ int i = -1; /* Database number */ int n; /* Number of characters in the name */ Db *pDb; /* A database whose name space is being searched */ char *zName; /* Name we are searching for */ zName = sqlite3NameFromToken(db, pName); if( zName ){ n = strlen(zName); for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) && 0==sqlite3StrICmp(pDb->zName, zName) ){ break; } } sqlite3_free(zName); } return i; } /* The table or view or trigger name is passed to this routine via tokens ** pName1 and pName2. If the table name was fully qualified, for example: ** ** CREATE TABLE xxx.yyy (...); ** ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if ** the table name is not fully qualified, i.e.: ** ** CREATE TABLE yyy(...); ** ** Then pName1 is set to "yyy" and pName2 is "". ** ** This routine sets the *ppUnqual pointer to point at the token (pName1 or ** pName2) that stores the unqualified table name. The index of the ** database "xxx" is returned. */ int sqlite3TwoPartName( Parse *pParse, /* Parsing and code generating context */ Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ Token *pName2, /* The "yyy" in the name "xxx.yyy" */ Token **pUnqual /* Write the unqualified object name here */ ){ int iDb; /* Database holding the object */ sqlite3 *db = pParse->db; if( pName2 && pName2->n>0 ){ assert( !db->init.busy ); *pUnqual = pName2; iDb = sqlite3FindDb(db, pName1); if( iDb<0 ){ sqlite3ErrorMsg(pParse, "unknown database %T", pName1); pParse->nErr++; return -1; } }else{ assert( db->init.iDb==0 || db->init.busy ); iDb = db->init.iDb; *pUnqual = pName1; } return iDb; } /* ** This routine is used to check if the UTF-8 string zName is a legal ** unqualified name for a new schema object (table, index, view or ** trigger). All names are legal except those that begin with the string ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace ** is reserved for internal use. */ int sqlite3CheckObjectName(Parse *pParse, const char *zName){ if( !pParse->db->init.busy && pParse->nested==0 && (pParse->db->flags & SQLITE_WriteSchema)==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); return SQLITE_ERROR; } return SQLITE_OK; } /* ** Begin constructing a new table representation in memory. This is ** the first of several action routines that get called in response ** to a CREATE TABLE statement. In particular, this routine is called ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp ** flag is true if the table should be stored in the auxiliary database ** file instead of in the main database file. This is normally the case ** when the "TEMP" or "TEMPORARY" keyword occurs in between ** CREATE and TABLE. ** ** The new table record is initialized and put in pParse->pNewTable. ** As more of the CREATE TABLE statement is parsed, additional action ** routines will be called to add more information to this record. ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine ** is called to complete the construction of the new table record. */ void sqlite3StartTable( Parse *pParse, /* Parser context */ Token *pName1, /* First part of the name of the table or view */ Token *pName2, /* Second part of the name of the table or view */ int isTemp, /* True if this is a TEMP table */ int isView, /* True if this is a VIEW */ int isVirtual, /* True if this is a VIRTUAL table */ int noErr /* Do nothing if table already exists */ ){ Table *pTable; char *zName = 0; /* The name of the new table */ sqlite3 *db = pParse->db; Vdbe *v; int iDb; /* Database number to create the table in */ Token *pName; /* Unqualified name of the table to create */ /* The table or view name to create is passed to this routine via tokens ** pName1 and pName2. If the table name was fully qualified, for example: ** ** CREATE TABLE xxx.yyy (...); ** ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if ** the table name is not fully qualified, i.e.: ** ** CREATE TABLE yyy(...); ** ** Then pName1 is set to "yyy" and pName2 is "". ** ** The call below sets the pName pointer to point at the token (pName1 or ** pName2) that stores the unqualified table name. The variable iDb is ** set to the index of the database that the table or view is to be ** created in. */ iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); if( iDb<0 ) return; if( !OMIT_TEMPDB && isTemp && iDb>1 ){ /* If creating a temp table, the name may not be qualified */ sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); return; } if( !OMIT_TEMPDB && isTemp ) iDb = 1; pParse->sNameToken = *pName; zName = sqlite3NameFromToken(db, pName); if( zName==0 ) return; if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ goto begin_table_error; } if( db->init.iDb==1 ) isTemp = 1; #ifndef SQLITE_OMIT_AUTHORIZATION assert( (isTemp & 1)==isTemp ); { int code; char *zDb = db->aDb[iDb].zName; if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ goto begin_table_error; } if( isView ){ if( !OMIT_TEMPDB && isTemp ){ code = SQLITE_CREATE_TEMP_VIEW; }else{ code = SQLITE_CREATE_VIEW; } }else{ if( !OMIT_TEMPDB && isTemp ){ code = SQLITE_CREATE_TEMP_TABLE; }else{ code = SQLITE_CREATE_TABLE; } } if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ goto begin_table_error; } } #endif /* Make sure the new table name does not collide with an existing ** index or table name in the same database. Issue an error message if ** it does. The exception is if the statement being parsed was passed ** to an sqlite3_declare_vtab() call. In that case only the column names ** and types will be used, so there is no need to test for namespace ** collisions. */ if( !IN_DECLARE_VTAB ){ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto begin_table_error; } pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName); if( pTable ){ if( !noErr ){ sqlite3ErrorMsg(pParse, "table %T already exists", pName); } goto begin_table_error; } if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){ sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); goto begin_table_error; } } pTable = sqlite3DbMallocZero(db, sizeof(Table)); if( pTable==0 ){ db->mallocFailed = 1; pParse->rc = SQLITE_NOMEM; pParse->nErr++; goto begin_table_error; } pTable->zName = zName; pTable->iPKey = -1; pTable->pSchema = db->aDb[iDb].pSchema; pTable->nRef = 1; if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable); pParse->pNewTable = pTable; /* If this is the magic sqlite_sequence table used by autoincrement, ** then record a pointer to this table in the main database structure ** so that INSERT can find the table easily. */ #ifndef SQLITE_OMIT_AUTOINCREMENT if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ pTable->pSchema->pSeqTab = pTable; } #endif /* Begin generating the code that will insert the table record into ** the SQLITE_MASTER table. Note in particular that we must go ahead ** and allocate the record number for the table entry now. Before any ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause ** indices to be created and the table record must come before the ** indices. Hence, the record number for the table must be allocated ** now. */ if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ int lbl; int fileFormat; sqlite3BeginWriteOperation(pParse, 0, iDb); #ifndef SQLITE_OMIT_VIRTUALTABLE if( isVirtual ){ sqlite3VdbeAddOp(v, OP_VBegin, 0, 0); } #endif /* If the file format and encoding in the database have not been set, ** set them now. */ sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1); /* file_format */ sqlite3VdbeUsesBtree(v, iDb); lbl = sqlite3VdbeMakeLabel(v); sqlite3VdbeAddOp(v, OP_If, 0, lbl); fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 1 : SQLITE_MAX_FILE_FORMAT; sqlite3VdbeAddOp(v, OP_Integer, fileFormat, 0); sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1); sqlite3VdbeAddOp(v, OP_Integer, ENC(db), 0); sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 4); sqlite3VdbeResolveLabel(v, lbl); /* This just creates a place-holder record in the sqlite_master table. ** The record created does not contain anything yet. It will be replaced ** by the real entry in code generated at sqlite3EndTable(). ** ** The rowid for the new entry is left on the top of the stack. ** The rowid value is needed by the code that sqlite3EndTable will ** generate. */ #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) if( isView || isVirtual ){ sqlite3VdbeAddOp(v, OP_Integer, 0, 0); }else #endif { sqlite3VdbeAddOp(v, OP_CreateTable, iDb, 0); } sqlite3OpenMasterTable(pParse, iDb); sqlite3VdbeAddOp(v, OP_NewRowid, 0, 0); sqlite3VdbeAddOp(v, OP_Dup, 0, 0); sqlite3VdbeAddOp(v, OP_Null, 0, 0); sqlite3VdbeAddOp(v, OP_Insert, 0, OPFLAG_APPEND); sqlite3VdbeAddOp(v, OP_Close, 0, 0); sqlite3VdbeAddOp(v, OP_Pull, 1, 0); } /* Normal (non-error) return. */ return; /* If an error occurs, we jump here */ begin_table_error: sqlite3_free(zName); return; } /* ** This macro is used to compare two strings in a case-insensitive manner. ** It is slightly faster than calling sqlite3StrICmp() directly, but ** produces larger code. ** ** WARNING: This macro is not compatible with the strcmp() family. It ** returns true if the two strings are equal, otherwise false. */ #define STRICMP(x, y) (\ sqlite3UpperToLower[*(unsigned char *)(x)]== \ sqlite3UpperToLower[*(unsigned char *)(y)] \ && sqlite3StrICmp((x)+1,(y)+1)==0 ) /* ** Add a new column to the table currently being constructed. ** ** The parser calls this routine once for each column declaration ** in a CREATE TABLE statement. sqlite3StartTable() gets called ** first to get things going. Then this routine is called for each ** column. */ void sqlite3AddColumn(Parse *pParse, Token *pName){ Table *p; int i; char *z; Column *pCol; if( (p = pParse->pNewTable)==0 ) return; if( p->nCol+1>SQLITE_MAX_COLUMN ){ sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); return; } z = sqlite3NameFromToken(pParse->db, pName); if( z==0 ) return; for(i=0; inCol; i++){ if( STRICMP(z, p->aCol[i].zName) ){ sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); sqlite3_free(z); return; } } if( (p->nCol & 0x7)==0 ){ Column *aNew; aNew = sqlite3DbRealloc(pParse->db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); if( aNew==0 ){ sqlite3_free(z); return; } p->aCol = aNew; } pCol = &p->aCol[p->nCol]; memset(pCol, 0, sizeof(p->aCol[0])); pCol->zName = z; /* If there is no type specified, columns have the default affinity ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will ** be called next to set pCol->affinity correctly. */ pCol->affinity = SQLITE_AFF_NONE; p->nCol++; } /* ** This routine is called by the parser while in the middle of ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has ** been seen on a column. This routine sets the notNull flag on ** the column currently under construction. */ void sqlite3AddNotNull(Parse *pParse, int onError){ Table *p; int i; if( (p = pParse->pNewTable)==0 ) return; i = p->nCol-1; if( i>=0 ) p->aCol[i].notNull = onError; } /* ** Scan the column type name zType (length nType) and return the ** associated affinity type. ** ** This routine does a case-independent search of zType for the ** substrings in the following table. If one of the substrings is ** found, the corresponding affinity is returned. If zType contains ** more than one of the substrings, entries toward the top of ** the table take priority. For example, if zType is 'BLOBINT', ** SQLITE_AFF_INTEGER is returned. ** ** Substring | Affinity ** -------------------------------- ** 'INT' | SQLITE_AFF_INTEGER ** 'CHAR' | SQLITE_AFF_TEXT ** 'CLOB' | SQLITE_AFF_TEXT ** 'TEXT' | SQLITE_AFF_TEXT ** 'BLOB' | SQLITE_AFF_NONE ** 'REAL' | SQLITE_AFF_REAL ** 'FLOA' | SQLITE_AFF_REAL ** 'DOUB' | SQLITE_AFF_REAL ** ** If none of the substrings in the above table are found, ** SQLITE_AFF_NUMERIC is returned. */ char sqlite3AffinityType(const Token *pType){ u32 h = 0; char aff = SQLITE_AFF_NUMERIC; const unsigned char *zIn = pType->z; const unsigned char *zEnd = &pType->z[pType->n]; while( zIn!=zEnd ){ h = (h<<8) + sqlite3UpperToLower[*zIn]; zIn++; if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ aff = SQLITE_AFF_TEXT; }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ aff = SQLITE_AFF_TEXT; }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ aff = SQLITE_AFF_TEXT; }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ aff = SQLITE_AFF_NONE; #ifndef SQLITE_OMIT_FLOATING_POINT }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ && aff==SQLITE_AFF_NUMERIC ){ aff = SQLITE_AFF_REAL; }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ && aff==SQLITE_AFF_NUMERIC ){ aff = SQLITE_AFF_REAL; }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ && aff==SQLITE_AFF_NUMERIC ){ aff = SQLITE_AFF_REAL; #endif }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ aff = SQLITE_AFF_INTEGER; break; } } return aff; } /* ** This routine is called by the parser while in the middle of ** parsing a CREATE TABLE statement. The pFirst token is the first ** token in the sequence of tokens that describe the type of the ** column currently under construction. pLast is the last token ** in the sequence. Use this information to construct a string ** that contains the typename of the column and store that string ** in zType. */ void sqlite3AddColumnType(Parse *pParse, Token *pType){ Table *p; int i; Column *pCol; if( (p = pParse->pNewTable)==0 ) return; i = p->nCol-1; if( i<0 ) return; pCol = &p->aCol[i]; sqlite3_free(pCol->zType); pCol->zType = sqlite3NameFromToken(pParse->db, pType); pCol->affinity = sqlite3AffinityType(pType); } /* ** The expression is the default value for the most recently added column ** of the table currently under construction. ** ** Default value expressions must be constant. Raise an exception if this ** is not the case. ** ** This routine is called by the parser while in the middle of ** parsing a CREATE TABLE statement. */ void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){ Table *p; Column *pCol; if( (p = pParse->pNewTable)!=0 ){ pCol = &(p->aCol[p->nCol-1]); if( !sqlite3ExprIsConstantOrFunction(pExpr) ){ sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", pCol->zName); }else{ Expr *pCopy; sqlite3 *db = pParse->db; sqlite3ExprDelete(pCol->pDflt); pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr); if( pCopy ){ sqlite3TokenCopy(db, &pCopy->span, &pExpr->span); } } } sqlite3ExprDelete(pExpr); } /* ** Designate the PRIMARY KEY for the table. pList is a list of names ** of columns that form the primary key. If pList is NULL, then the ** most recently added column of the table is the primary key. ** ** A table can have at most one primary key. If the table already has ** a primary key (and this is the second primary key) then create an ** error. ** ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, ** then we will try to use that column as the rowid. Set the Table.iPKey ** field of the table under construction to be the index of the ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is ** no INTEGER PRIMARY KEY. ** ** If the key is not an INTEGER PRIMARY KEY, then create a unique ** index for the key. No index is created for INTEGER PRIMARY KEYs. */ void sqlite3AddPrimaryKey( Parse *pParse, /* Parsing context */ ExprList *pList, /* List of field names to be indexed */ int onError, /* What to do with a uniqueness conflict */ int autoInc, /* True if the AUTOINCREMENT keyword is present */ int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ ){ Table *pTab = pParse->pNewTable; char *zType = 0; int iCol = -1, i; if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; if( pTab->hasPrimKey ){ sqlite3ErrorMsg(pParse, "table \"%s\" has more than one primary key", pTab->zName); goto primary_key_exit; } pTab->hasPrimKey = 1; if( pList==0 ){ iCol = pTab->nCol - 1; pTab->aCol[iCol].isPrimKey = 1; }else{ for(i=0; inExpr; i++){ for(iCol=0; iColnCol; iCol++){ if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ break; } } if( iColnCol ){ pTab->aCol[iCol].isPrimKey = 1; } } if( pList->nExpr>1 ) iCol = -1; } if( iCol>=0 && iColnCol ){ zType = pTab->aCol[iCol].zType; } if( zType && sqlite3StrICmp(zType, "INTEGER")==0 && sortOrder==SQLITE_SO_ASC ){ pTab->iPKey = iCol; pTab->keyConf = onError; pTab->autoInc = autoInc; }else if( autoInc ){ #ifndef SQLITE_OMIT_AUTOINCREMENT sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " "INTEGER PRIMARY KEY"); #endif }else{ sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); pList = 0; } primary_key_exit: sqlite3ExprListDelete(pList); return; } /* ** Add a new CHECK constraint to the table currently under construction. */ void sqlite3AddCheckConstraint( Parse *pParse, /* Parsing context */ Expr *pCheckExpr /* The check expression */ ){ #ifndef SQLITE_OMIT_CHECK Table *pTab = pParse->pNewTable; sqlite3 *db = pParse->db; if( pTab && !IN_DECLARE_VTAB ){ /* The CHECK expression must be duplicated so that tokens refer ** to malloced space and not the (ephemeral) text of the CREATE TABLE ** statement */ pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, sqlite3ExprDup(db, pCheckExpr)); } #endif sqlite3ExprDelete(pCheckExpr); } /* ** Set the collation function of the most recently parsed table column ** to the CollSeq given. */ void sqlite3AddCollateType(Parse *pParse, const char *zType, int nType){ Table *p; int i; if( (p = pParse->pNewTable)==0 ) return; i = p->nCol-1; if( sqlite3LocateCollSeq(pParse, zType, nType) ){ Index *pIdx; p->aCol[i].zColl = sqlite3DbStrNDup(pParse->db, zType, nType); /* If the column is declared as " PRIMARY KEY COLLATE ", ** then an index may have been created on this column before the ** collation type was added. Correct this if it is the case. */ for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ assert( pIdx->nColumn==1 ); if( pIdx->aiColumn[0]==i ){ pIdx->azColl[0] = p->aCol[i].zColl; } } } } /* ** This function returns the collation sequence for database native text ** encoding identified by the string zName, length nName. ** ** If the requested collation sequence is not available, or not available ** in the database native encoding, the collation factory is invoked to ** request it. If the collation factory does not supply such a sequence, ** and the sequence is available in another text encoding, then that is ** returned instead. ** ** If no versions of the requested collations sequence are available, or ** another error occurs, NULL is returned and an error message written into ** pParse. ** ** This routine is a wrapper around sqlite3FindCollSeq(). This routine ** invokes the collation factory if the named collation cannot be found ** and generates an error message. */ CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){ sqlite3 *db = pParse->db; u8 enc = ENC(db); u8 initbusy = db->init.busy; CollSeq *pColl; pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy); if( !initbusy && (!pColl || !pColl->xCmp) ){ pColl = sqlite3GetCollSeq(db, pColl, zName, nName); if( !pColl ){ if( nName<0 ){ nName = strlen(zName); } sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName); pColl = 0; } } return pColl; } /* ** Generate code that will increment the schema cookie. ** ** The schema cookie is used to determine when the schema for the ** database changes. After each schema change, the cookie value ** changes. When a process first reads the schema it records the ** cookie. Thereafter, whenever it goes to access the database, ** it checks the cookie to make sure the schema has not changed ** since it was last read. ** ** This plan is not completely bullet-proof. It is possible for ** the schema to change multiple times and for the cookie to be ** set back to prior value. But schema changes are infrequent ** and the probability of hitting the same cookie value is only ** 1 chance in 2^32. So we're safe enough. */ void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){ sqlite3VdbeAddOp(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, 0); sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 0); } /* ** Measure the number of characters needed to output the given ** identifier. The number returned includes any quotes used ** but does not include the null terminator. ** ** The estimate is conservative. It might be larger that what is ** really needed. */ static int identLength(const char *z){ int n; for(n=0; *z; n++, z++){ if( *z=='"' ){ n++; } } return n + 2; } /* ** Write an identifier onto the end of the given string. Add ** quote characters as needed. */ static void identPut(char *z, int *pIdx, char *zSignedIdent){ unsigned char *zIdent = (unsigned char*)zSignedIdent; int i, j, needQuote; i = *pIdx; for(j=0; zIdent[j]; j++){ if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break; } needQuote = zIdent[j]!=0 || isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID; if( needQuote ) z[i++] = '"'; for(j=0; zIdent[j]; j++){ z[i++] = zIdent[j]; if( zIdent[j]=='"' ) z[i++] = '"'; } if( needQuote ) z[i++] = '"'; z[i] = 0; *pIdx = i; } /* ** Generate a CREATE TABLE statement appropriate for the given ** table. Memory to hold the text of the statement is obtained ** from sqliteMalloc() and must be freed by the calling function. */ static char *createTableStmt(Table *p, int isTemp){ int i, k, n; char *zStmt; char *zSep, *zSep2, *zEnd, *z; Column *pCol; n = 0; for(pCol = p->aCol, i=0; inCol; i++, pCol++){ n += identLength(pCol->zName); z = pCol->zType; if( z ){ n += (strlen(z) + 1); } } n += identLength(p->zName); if( n<50 ){ zSep = ""; zSep2 = ","; zEnd = ")"; }else{ zSep = "\n "; zSep2 = ",\n "; zEnd = "\n)"; } n += 35 + 6*p->nCol; zStmt = sqlite3_malloc( n ); if( zStmt==0 ) return 0; sqlite3_snprintf(n, zStmt, !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE "); k = strlen(zStmt); identPut(zStmt, &k, p->zName); zStmt[k++] = '('; for(pCol=p->aCol, i=0; inCol; i++, pCol++){ sqlite3_snprintf(n-k, &zStmt[k], zSep); k += strlen(&zStmt[k]); zSep = zSep2; identPut(zStmt, &k, pCol->zName); if( (z = pCol->zType)!=0 ){ zStmt[k++] = ' '; assert( strlen(z)+k+1<=n ); sqlite3_snprintf(n-k, &zStmt[k], "%s", z); k += strlen(z); } } sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); return zStmt; } /* ** This routine is called to report the final ")" that terminates ** a CREATE TABLE statement. ** ** The table structure that other action routines have been building ** is added to the internal hash tables, assuming no errors have ** occurred. ** ** An entry for the table is made in the master table on disk, unless ** this is a temporary table or db->init.busy==1. When db->init.busy==1 ** it means we are reading the sqlite_master table because we just ** connected to the database or because the sqlite_master table has ** recently changed, so the entry for this table already exists in ** the sqlite_master table. We do not want to create it again. ** ** If the pSelect argument is not NULL, it means that this routine ** was called to create a table generated from a ** "CREATE TABLE ... AS SELECT ..." statement. The column names of ** the new table will match the result set of the SELECT. */ void sqlite3EndTable( Parse *pParse, /* Parse context */ Token *pCons, /* The ',' token after the last column defn. */ Token *pEnd, /* The final ')' token in the CREATE TABLE */ Select *pSelect /* Select from a "CREATE ... AS SELECT" */ ){ Table *p; sqlite3 *db = pParse->db; int iDb; if( (pEnd==0 && pSelect==0) || pParse->nErr || db->mallocFailed ) { return; } p = pParse->pNewTable; if( p==0 ) return; assert( !db->init.busy || !pSelect ); iDb = sqlite3SchemaToIndex(db, p->pSchema); #ifndef SQLITE_OMIT_CHECK /* Resolve names in all CHECK constraint expressions. */ if( p->pCheck ){ SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ NameContext sNC; /* Name context for pParse->pNewTable */ memset(&sNC, 0, sizeof(sNC)); memset(&sSrc, 0, sizeof(sSrc)); sSrc.nSrc = 1; sSrc.a[0].zName = p->zName; sSrc.a[0].pTab = p; sSrc.a[0].iCursor = -1; sNC.pParse = pParse; sNC.pSrcList = &sSrc; sNC.isCheck = 1; if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){ return; } } #endif /* !defined(SQLITE_OMIT_CHECK) */ /* If the db->init.busy is 1 it means we are reading the SQL off the ** "sqlite_master" or "sqlite_temp_master" table on the disk. ** So do not write to the disk again. Extract the root page number ** for the table from the db->init.newTnum field. (The page number ** should have been put there by the sqliteOpenCb routine.) */ if( db->init.busy ){ p->tnum = db->init.newTnum; } /* If not initializing, then create a record for the new table ** in the SQLITE_MASTER table of the database. The record number ** for the new table entry should already be on the stack. ** ** If this is a TEMPORARY table, write the entry into the auxiliary ** file instead of into the main database file. */ if( !db->init.busy ){ int n; Vdbe *v; char *zType; /* "view" or "table" */ char *zType2; /* "VIEW" or "TABLE" */ char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ v = sqlite3GetVdbe(pParse); if( v==0 ) return; sqlite3VdbeAddOp(v, OP_Close, 0, 0); /* Create the rootpage for the new table and push it onto the stack. ** A view has no rootpage, so just push a zero onto the stack for ** views. Initialize zType at the same time. */ if( p->pSelect==0 ){ /* A regular table */ zType = "table"; zType2 = "TABLE"; #ifndef SQLITE_OMIT_VIEW }else{ /* A view */ zType = "view"; zType2 = "VIEW"; #endif } /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT ** statement to populate the new table. The root-page number for the ** new table is on the top of the vdbe stack. ** ** Once the SELECT has been coded by sqlite3Select(), it is in a ** suitable state to query for the column names and types to be used ** by the new table. ** ** A shared-cache write-lock is not required to write to the new table, ** as a schema-lock must have already been obtained to create it. Since ** a schema-lock excludes all other database users, the write-lock would ** be redundant. */ if( pSelect ){ Table *pSelTab; sqlite3VdbeAddOp(v, OP_Dup, 0, 0); sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); sqlite3VdbeAddOp(v, OP_OpenWrite, 1, 0); pParse->nTab = 2; sqlite3Select(pParse, pSelect, SRT_Table, 1, 0, 0, 0, 0); sqlite3VdbeAddOp(v, OP_Close, 1, 0); if( pParse->nErr==0 ){ pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect); if( pSelTab==0 ) return; assert( p->aCol==0 ); p->nCol = pSelTab->nCol; p->aCol = pSelTab->aCol; pSelTab->nCol = 0; pSelTab->aCol = 0; sqlite3DeleteTable(pSelTab); } } /* Compute the complete text of the CREATE statement */ if( pSelect ){ zStmt = createTableStmt(p, p->pSchema==db->aDb[1].pSchema); }else{ n = pEnd->z - pParse->sNameToken.z + 1; zStmt = sqlite3MPrintf(db, "CREATE %s %.*s", zType2, n, pParse->sNameToken.z ); } /* A slot for the record has already been allocated in the ** SQLITE_MASTER table. We just need to update that slot with all ** the information we've collected. The rowid for the preallocated ** slot is the 2nd item on the stack. The top of the stack is the ** root page for the new table (or a 0 if this is a view). */ sqlite3NestedParse(pParse, "UPDATE %Q.%s " "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#0, sql=%Q " "WHERE rowid=#1", db->aDb[iDb].zName, SCHEMA_TABLE(iDb), zType, p->zName, p->zName, zStmt ); sqlite3_free(zStmt); sqlite3ChangeCookie(db, v, iDb); #ifndef SQLITE_OMIT_AUTOINCREMENT /* Check to see if we need to create an sqlite_sequence table for ** keeping track of autoincrement keys. */ if( p->autoInc ){ Db *pDb = &db->aDb[iDb]; if( pDb->pSchema->pSeqTab==0 ){ sqlite3NestedParse(pParse, "CREATE TABLE %Q.sqlite_sequence(name,seq)", pDb->zName ); } } #endif /* Reparse everything to update our internal data structures */ sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0, sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P3_DYNAMIC); } /* Add the table to the in-memory representation of the database. */ if( db->init.busy && pParse->nErr==0 ){ Table *pOld; FKey *pFKey; Schema *pSchema = p->pSchema; pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p); if( pOld ){ assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ db->mallocFailed = 1; return; } #ifndef SQLITE_OMIT_FOREIGN_KEY for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){ void *data; int nTo = strlen(pFKey->zTo) + 1; pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo); data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey); if( data==(void *)pFKey ){ db->mallocFailed = 1; } } #endif pParse->pNewTable = 0; db->nTable++; db->flags |= SQLITE_InternChanges; #ifndef SQLITE_OMIT_ALTERTABLE if( !p->pSelect ){ const char *zName = (const char *)pParse->sNameToken.z; int nName; assert( !pSelect && pCons && pEnd ); if( pCons->z==0 ){ pCons = pEnd; } nName = (const char *)pCons->z - zName; p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); } #endif } } #ifndef SQLITE_OMIT_VIEW /* ** The parser calls this routine in order to create a new VIEW */ void sqlite3CreateView( Parse *pParse, /* The parsing context */ Token *pBegin, /* The CREATE token that begins the statement */ Token *pName1, /* The token that holds the name of the view */ Token *pName2, /* The token that holds the name of the view */ Select *pSelect, /* A SELECT statement that will become the new view */ int isTemp, /* TRUE for a TEMPORARY view */ int noErr /* Suppress error messages if VIEW already exists */ ){ Table *p; int n; const unsigned char *z; Token sEnd; DbFixer sFix; Token *pName; int iDb; sqlite3 *db = pParse->db; if( pParse->nVar>0 ){ sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); sqlite3SelectDelete(pSelect); return; } sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); p = pParse->pNewTable; if( p==0 || pParse->nErr ){ sqlite3SelectDelete(pSelect); return; } sqlite3TwoPartName(pParse, pName1, pName2, &pName); iDb = sqlite3SchemaToIndex(db, p->pSchema); if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) && sqlite3FixSelect(&sFix, pSelect) ){ sqlite3SelectDelete(pSelect); return; } /* Make a copy of the entire SELECT statement that defines the view. ** This will force all the Expr.token.z values to be dynamically ** allocated rather than point to the input string - which means that ** they will persist after the current sqlite3_exec() call returns. */ p->pSelect = sqlite3SelectDup(db, pSelect); sqlite3SelectDelete(pSelect); if( db->mallocFailed ){ return; } if( !db->init.busy ){ sqlite3ViewGetColumnNames(pParse, p); } /* Locate the end of the CREATE VIEW statement. Make sEnd point to ** the end. */ sEnd = pParse->sLastToken; if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){ sEnd.z += sEnd.n; } sEnd.n = 0; n = sEnd.z - pBegin->z; z = (const unsigned char*)pBegin->z; while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; } sEnd.z = &z[n-1]; sEnd.n = 1; /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ sqlite3EndTable(pParse, 0, &sEnd, 0); return; } #endif /* SQLITE_OMIT_VIEW */ #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) /* ** The Table structure pTable is really a VIEW. Fill in the names of ** the columns of the view in the pTable structure. Return the number ** of errors. If an error is seen leave an error message in pParse->zErrMsg. */ int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ Table *pSelTab; /* A fake table from which we get the result set */ Select *pSel; /* Copy of the SELECT that implements the view */ int nErr = 0; /* Number of errors encountered */ int n; /* Temporarily holds the number of cursors assigned */ sqlite3 *db = pParse->db; /* Database connection for malloc errors */ assert( pTable ); #ifndef SQLITE_OMIT_VIRTUALTABLE if( sqlite3VtabCallConnect(pParse, pTable) ){ return SQLITE_ERROR; } if( IsVirtual(pTable) ) return 0; #endif #ifndef SQLITE_OMIT_VIEW /* A positive nCol means the columns names for this view are ** already known. */ if( pTable->nCol>0 ) return 0; /* A negative nCol is a special marker meaning that we are currently ** trying to compute the column names. If we enter this routine with ** a negative nCol, it means two or more views form a loop, like this: ** ** CREATE VIEW one AS SELECT * FROM two; ** CREATE VIEW two AS SELECT * FROM one; ** ** Actually, this error is caught previously and so the following test ** should always fail. But we will leave it in place just to be safe. */ if( pTable->nCol<0 ){ sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); return 1; } assert( pTable->nCol>=0 ); /* If we get this far, it means we need to compute the table names. ** Note that the call to sqlite3ResultSetOfSelect() will expand any ** "*" elements in the results set of the view and will assign cursors ** to the elements of the FROM clause. But we do not want these changes ** to be permanent. So the computation is done on a copy of the SELECT ** statement that defines the view. */ assert( pTable->pSelect ); pSel = sqlite3SelectDup(db, pTable->pSelect); if( pSel ){ n = pParse->nTab; sqlite3SrcListAssignCursors(pParse, pSel->pSrc); pTable->nCol = -1; pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel); pParse->nTab = n; if( pSelTab ){ assert( pTable->aCol==0 ); pTable->nCol = pSelTab->nCol; pTable->aCol = pSelTab->aCol; pSelTab->nCol = 0; pSelTab->aCol = 0; sqlite3DeleteTable(pSelTab); pTable->pSchema->flags |= DB_UnresetViews; }else{ pTable->nCol = 0; nErr++; } sqlite3SelectDelete(pSel); } else { nErr++; } #endif /* SQLITE_OMIT_VIEW */ return nErr; } #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ #ifndef SQLITE_OMIT_VIEW /* ** Clear the column names from every VIEW in database idx. */ static void sqliteViewResetAll(sqlite3 *db, int idx){ HashElem *i; if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ Table *pTab = sqliteHashData(i); if( pTab->pSelect ){ sqliteResetColumnNames(pTab); } } DbClearProperty(db, idx, DB_UnresetViews); } #else # define sqliteViewResetAll(A,B) #endif /* SQLITE_OMIT_VIEW */ /* ** This function is called by the VDBE to adjust the internal schema ** used by SQLite when the btree layer moves a table root page. The ** root-page of a table or index in database iDb has changed from iFrom ** to iTo. ** ** Ticket #1728: The symbol table might still contain information ** on tables and/or indices that are the process of being deleted. ** If you are unlucky, one of those deleted indices or tables might ** have the same rootpage number as the real table or index that is ** being moved. So we cannot stop searching after the first match ** because the first match might be for one of the deleted indices ** or tables and not the table/index that is actually being moved. ** We must continue looping until all tables and indices with ** rootpage==iFrom have been converted to have a rootpage of iTo ** in order to be certain that we got the right one. */ #ifndef SQLITE_OMIT_AUTOVACUUM void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){ HashElem *pElem; Hash *pHash; pHash = &pDb->pSchema->tblHash; for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ Table *pTab = sqliteHashData(pElem); if( pTab->tnum==iFrom ){ pTab->tnum = iTo; } } pHash = &pDb->pSchema->idxHash; for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ Index *pIdx = sqliteHashData(pElem); if( pIdx->tnum==iFrom ){ pIdx->tnum = iTo; } } } #endif /* ** Write code to erase the table with root-page iTable from database iDb. ** Also write code to modify the sqlite_master table and internal schema ** if a root-page of another table is moved by the btree-layer whilst ** erasing iTable (this can happen with an auto-vacuum database). */ static void destroyRootPage(Parse *pParse, int iTable, int iDb){ Vdbe *v = sqlite3GetVdbe(pParse); sqlite3VdbeAddOp(v, OP_Destroy, iTable, iDb); #ifndef SQLITE_OMIT_AUTOVACUUM /* OP_Destroy pushes an integer onto the stack. If this integer ** is non-zero, then it is the root page number of a table moved to ** location iTable. The following code modifies the sqlite_master table to ** reflect this. ** ** The "#0" in the SQL is a special constant that means whatever value ** is on the top of the stack. See sqlite3RegisterExpr(). */ sqlite3NestedParse(pParse, "UPDATE %Q.%s SET rootpage=%d WHERE #0 AND rootpage=#0", pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable); #endif } /* ** Write VDBE code to erase table pTab and all associated indices on disk. ** Code to update the sqlite_master tables and internal schema definitions ** in case a root-page belonging to another table is moved by the btree layer ** is also added (this can happen with an auto-vacuum database). */ static void destroyTable(Parse *pParse, Table *pTab){ #ifdef SQLITE_OMIT_AUTOVACUUM Index *pIdx; int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); destroyRootPage(pParse, pTab->tnum, iDb); for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ destroyRootPage(pParse, pIdx->tnum, iDb); } #else /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM ** is not defined), then it is important to call OP_Destroy on the ** table and index root-pages in order, starting with the numerically ** largest root-page number. This guarantees that none of the root-pages ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the ** following were coded: ** ** OP_Destroy 4 0 ** ... ** OP_Destroy 5 0 ** ** and root page 5 happened to be the largest root-page number in the ** database, then root page 5 would be moved to page 4 by the ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit ** a free-list page. */ int iTab = pTab->tnum; int iDestroyed = 0; while( 1 ){ Index *pIdx; int iLargest = 0; if( iDestroyed==0 || iTabpIndex; pIdx; pIdx=pIdx->pNext){ int iIdx = pIdx->tnum; assert( pIdx->pSchema==pTab->pSchema ); if( (iDestroyed==0 || (iIdxiLargest ){ iLargest = iIdx; } } if( iLargest==0 ){ return; }else{ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); destroyRootPage(pParse, iLargest, iDb); iDestroyed = iLargest; } } #endif } /* ** This routine is called to do the work of a DROP TABLE statement. ** pName is the name of the table to be dropped. */ void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ Table *pTab; Vdbe *v; sqlite3 *db = pParse->db; int iDb; if( pParse->nErr || db->mallocFailed ){ goto exit_drop_table; } assert( pName->nSrc==1 ); pTab = sqlite3LocateTable(pParse, pName->a[0].zName, pName->a[0].zDatabase); if( pTab==0 ){ if( noErr ){ sqlite3ErrorClear(pParse); } goto exit_drop_table; } iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDb>=0 && iDbnDb ); #ifndef SQLITE_OMIT_AUTHORIZATION { int code; const char *zTab = SCHEMA_TABLE(iDb); const char *zDb = db->aDb[iDb].zName; const char *zArg2 = 0; if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ goto exit_drop_table; } if( isView ){ if( !OMIT_TEMPDB && iDb==1 ){ code = SQLITE_DROP_TEMP_VIEW; }else{ code = SQLITE_DROP_VIEW; } #ifndef SQLITE_OMIT_VIRTUALTABLE }else if( IsVirtual(pTab) ){ if( sqlite3ViewGetColumnNames(pParse, pTab) ){ goto exit_drop_table; } code = SQLITE_DROP_VTABLE; zArg2 = pTab->pMod->zName; #endif }else{ if( !OMIT_TEMPDB && iDb==1 ){ code = SQLITE_DROP_TEMP_TABLE; }else{ code = SQLITE_DROP_TABLE; } } if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ goto exit_drop_table; } if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ goto exit_drop_table; } } #endif if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){ sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); goto exit_drop_table; } #ifndef SQLITE_OMIT_VIEW /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used ** on a table. */ if( isView && pTab->pSelect==0 ){ sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); goto exit_drop_table; } if( !isView && pTab->pSelect ){ sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); goto exit_drop_table; } #endif /* Generate code to remove the table from the master table ** on disk. */ v = sqlite3GetVdbe(pParse); if( v ){ Trigger *pTrigger; Db *pDb = &db->aDb[iDb]; sqlite3BeginWriteOperation(pParse, 0, iDb); #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ Vdbe *v = sqlite3GetVdbe(pParse); if( v ){ sqlite3VdbeAddOp(v, OP_VBegin, 0, 0); } } #endif /* Drop all triggers associated with the table being dropped. Code ** is generated to remove entries from sqlite_master and/or ** sqlite_temp_master if required. */ pTrigger = pTab->pTrigger; while( pTrigger ){ assert( pTrigger->pSchema==pTab->pSchema || pTrigger->pSchema==db->aDb[1].pSchema ); sqlite3DropTriggerPtr(pParse, pTrigger); pTrigger = pTrigger->pNext; } #ifndef SQLITE_OMIT_AUTOINCREMENT /* Remove any entries of the sqlite_sequence table associated with ** the table being dropped. This is done before the table is dropped ** at the btree level, in case the sqlite_sequence table needs to ** move as a result of the drop (can happen in auto-vacuum mode). */ if( pTab->autoInc ){ sqlite3NestedParse(pParse, "DELETE FROM %s.sqlite_sequence WHERE name=%Q", pDb->zName, pTab->zName ); } #endif /* Drop all SQLITE_MASTER table and index entries that refer to the ** table. The program name loops through the master table and deletes ** every row that refers to a table of the same name as the one being ** dropped. Triggers are handled seperately because a trigger can be ** created in the temp database that refers to a table in another ** database. */ sqlite3NestedParse(pParse, "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); if( !isView && !IsVirtual(pTab) ){ destroyTable(pParse, pTab); } /* Remove the table entry from SQLite's internal schema and modify ** the schema cookie. */ if( IsVirtual(pTab) ){ sqlite3VdbeOp3(v, OP_VDestroy, iDb, 0, pTab->zName, 0); } sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0); sqlite3ChangeCookie(db, v, iDb); } sqliteViewResetAll(db, iDb); exit_drop_table: sqlite3SrcListDelete(pName); } /* ** This routine is called to create a new foreign key on the table ** currently under construction. pFromCol determines which columns ** in the current table point to the foreign key. If pFromCol==0 then ** connect the key to the last column inserted. pTo is the name of ** the table referred to. pToCol is a list of tables in the other ** pTo table that the foreign key points to. flags contains all ** information about the conflict resolution algorithms specified ** in the ON DELETE, ON UPDATE and ON INSERT clauses. ** ** An FKey structure is created and added to the table currently ** under construction in the pParse->pNewTable field. The new FKey ** is not linked into db->aFKey at this point - that does not happen ** until sqlite3EndTable(). ** ** The foreign key is set for IMMEDIATE processing. A subsequent call ** to sqlite3DeferForeignKey() might change this to DEFERRED. */ void sqlite3CreateForeignKey( Parse *pParse, /* Parsing context */ ExprList *pFromCol, /* Columns in this table that point to other table */ Token *pTo, /* Name of the other table */ ExprList *pToCol, /* Columns in the other table */ int flags /* Conflict resolution algorithms. */ ){ #ifndef SQLITE_OMIT_FOREIGN_KEY FKey *pFKey = 0; Table *p = pParse->pNewTable; int nByte; int i; int nCol; char *z; assert( pTo!=0 ); if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end; if( pFromCol==0 ){ int iCol = p->nCol-1; if( iCol<0 ) goto fk_end; if( pToCol && pToCol->nExpr!=1 ){ sqlite3ErrorMsg(pParse, "foreign key on %s" " should reference only one column of table %T", p->aCol[iCol].zName, pTo); goto fk_end; } nCol = 1; }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ sqlite3ErrorMsg(pParse, "number of columns in foreign key does not match the number of " "columns in the referenced table"); goto fk_end; }else{ nCol = pFromCol->nExpr; } nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1; if( pToCol ){ for(i=0; inExpr; i++){ nByte += strlen(pToCol->a[i].zName) + 1; } } pFKey = sqlite3DbMallocZero(pParse->db, nByte ); if( pFKey==0 ){ goto fk_end; } pFKey->pFrom = p; pFKey->pNextFrom = p->pFKey; z = (char*)&pFKey[1]; pFKey->aCol = (struct sColMap*)z; z += sizeof(struct sColMap)*nCol; pFKey->zTo = z; memcpy(z, pTo->z, pTo->n); z[pTo->n] = 0; z += pTo->n+1; pFKey->pNextTo = 0; pFKey->nCol = nCol; if( pFromCol==0 ){ pFKey->aCol[0].iFrom = p->nCol-1; }else{ for(i=0; inCol; j++){ if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ pFKey->aCol[i].iFrom = j; break; } } if( j>=p->nCol ){ sqlite3ErrorMsg(pParse, "unknown column \"%s\" in foreign key definition", pFromCol->a[i].zName); goto fk_end; } } } if( pToCol ){ for(i=0; ia[i].zName); pFKey->aCol[i].zCol = z; memcpy(z, pToCol->a[i].zName, n); z[n] = 0; z += n+1; } } pFKey->isDeferred = 0; pFKey->deleteConf = flags & 0xff; pFKey->updateConf = (flags >> 8 ) & 0xff; pFKey->insertConf = (flags >> 16 ) & 0xff; /* Link the foreign key to the table as the last step. */ p->pFKey = pFKey; pFKey = 0; fk_end: sqlite3_free(pFKey); #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ sqlite3ExprListDelete(pFromCol); sqlite3ExprListDelete(pToCol); } /* ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED ** clause is seen as part of a foreign key definition. The isDeferred ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. ** The behavior of the most recently created foreign key is adjusted ** accordingly. */ void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ #ifndef SQLITE_OMIT_FOREIGN_KEY Table *pTab; FKey *pFKey; if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; pFKey->isDeferred = isDeferred; #endif } /* ** Generate code that will erase and refill index *pIdx. This is ** used to initialize a newly created index or to recompute the ** content of an index in response to a REINDEX command. ** ** if memRootPage is not negative, it means that the index is newly ** created. The memory cell specified by memRootPage contains the ** root page number of the index. If memRootPage is negative, then ** the index already exists and must be cleared before being refilled and ** the root page number of the index is taken from pIndex->tnum. */ static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ Table *pTab = pIndex->pTable; /* The table that is indexed */ int iTab = pParse->nTab; /* Btree cursor used for pTab */ int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */ int addr1; /* Address of top of loop */ int tnum; /* Root page of index */ Vdbe *v; /* Generate code into this virtual machine */ KeyInfo *pKey; /* KeyInfo for index */ sqlite3 *db = pParse->db; /* The database connection */ int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); #ifndef SQLITE_OMIT_AUTHORIZATION if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, db->aDb[iDb].zName ) ){ return; } #endif /* Require a write-lock on the table to perform this operation */ sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); v = sqlite3GetVdbe(pParse); if( v==0 ) return; if( memRootPage>=0 ){ sqlite3VdbeAddOp(v, OP_MemLoad, memRootPage, 0); tnum = 0; }else{ tnum = pIndex->tnum; sqlite3VdbeAddOp(v, OP_Clear, tnum, iDb); } sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); pKey = sqlite3IndexKeyinfo(pParse, pIndex); sqlite3VdbeOp3(v, OP_OpenWrite, iIdx, tnum, (char *)pKey, P3_KEYINFO_HANDOFF); sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0); sqlite3GenerateIndexKey(v, pIndex, iTab); if( pIndex->onError!=OE_None ){ int curaddr = sqlite3VdbeCurrentAddr(v); int addr2 = curaddr+4; sqlite3VdbeChangeP2(v, curaddr-1, addr2); sqlite3VdbeAddOp(v, OP_Rowid, iTab, 0); sqlite3VdbeAddOp(v, OP_AddImm, 1, 0); sqlite3VdbeAddOp(v, OP_IsUnique, iIdx, addr2); sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, "indexed columns are not unique", P3_STATIC); assert( db->mallocFailed || addr2==sqlite3VdbeCurrentAddr(v) ); } sqlite3VdbeAddOp(v, OP_IdxInsert, iIdx, 0); sqlite3VdbeAddOp(v, OP_Next, iTab, addr1+1); sqlite3VdbeJumpHere(v, addr1); sqlite3VdbeAddOp(v, OP_Close, iTab, 0); sqlite3VdbeAddOp(v, OP_Close, iIdx, 0); } /* ** Create a new index for an SQL table. pName1.pName2 is the name of the index ** and pTblList is the name of the table that is to be indexed. Both will ** be NULL for a primary key or an index that is created to satisfy a ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable ** as the table to be indexed. pParse->pNewTable is a table that is ** currently being constructed by a CREATE TABLE statement. ** ** pList is a list of columns to be indexed. pList will be NULL if this ** is a primary key or unique-constraint on the most recent column added ** to the table currently under construction. */ void sqlite3CreateIndex( Parse *pParse, /* All information about this parse */ Token *pName1, /* First part of index name. May be NULL */ Token *pName2, /* Second part of index name. May be NULL */ SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ ExprList *pList, /* A list of columns to be indexed */ int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ Token *pStart, /* The CREATE token that begins this statement */ Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ int sortOrder, /* Sort order of primary key when pList==NULL */ int ifNotExist /* Omit error if index already exists */ ){ Table *pTab = 0; /* Table to be indexed */ Index *pIndex = 0; /* The index to be created */ char *zName = 0; /* Name of the index */ int nName; /* Number of characters in zName */ int i, j; Token nullId; /* Fake token for an empty ID list */ DbFixer sFix; /* For assigning database names to pTable */ int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ sqlite3 *db = pParse->db; Db *pDb; /* The specific table containing the indexed database */ int iDb; /* Index of the database that is being written */ Token *pName = 0; /* Unqualified name of the index to create */ struct ExprList_item *pListItem; /* For looping over pList */ int nCol; int nExtra = 0; char *zExtra; if( pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB ){ goto exit_create_index; } /* ** Find the table that is to be indexed. Return early if not found. */ if( pTblName!=0 ){ /* Use the two-part index name to determine the database ** to search for the table. 'Fix' the table name to this db ** before looking up the table. */ assert( pName1 && pName2 ); iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); if( iDb<0 ) goto exit_create_index; #ifndef SQLITE_OMIT_TEMPDB /* If the index name was unqualified, check if the the table ** is a temp table. If so, set the database to 1. */ pTab = sqlite3SrcListLookup(pParse, pTblName); if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ iDb = 1; } #endif if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && sqlite3FixSrcList(&sFix, pTblName) ){ /* Because the parser constructs pTblName from a single identifier, ** sqlite3FixSrcList can never fail. */ assert(0); } pTab = sqlite3LocateTable(pParse, pTblName->a[0].zName, pTblName->a[0].zDatabase); if( !pTab ) goto exit_create_index; assert( db->aDb[iDb].pSchema==pTab->pSchema ); }else{ assert( pName==0 ); pTab = pParse->pNewTable; if( !pTab ) goto exit_create_index; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); } pDb = &db->aDb[iDb]; if( pTab==0 || pParse->nErr ) goto exit_create_index; if( pTab->readOnly ){ sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); goto exit_create_index; } #ifndef SQLITE_OMIT_VIEW if( pTab->pSelect ){ sqlite3ErrorMsg(pParse, "views may not be indexed"); goto exit_create_index; } #endif #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); goto exit_create_index; } #endif /* ** Find the name of the index. Make sure there is not already another ** index or table with the same name. ** ** Exception: If we are reading the names of permanent indices from the ** sqlite_master table (because some other process changed the schema) and ** one of the index names collides with the name of a temporary table or ** index, then we will continue to process this index. ** ** If pName==0 it means that we are ** dealing with a primary key or UNIQUE constraint. We have to invent our ** own name. */ if( pName ){ zName = sqlite3NameFromToken(db, pName); if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; if( zName==0 ) goto exit_create_index; if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ goto exit_create_index; } if( !db->init.busy ){ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; if( sqlite3FindTable(db, zName, 0)!=0 ){ sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); goto exit_create_index; } } if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ if( !ifNotExist ){ sqlite3ErrorMsg(pParse, "index %s already exists", zName); } goto exit_create_index; } }else{ char zBuf[30]; int n; Index *pLoop; for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} sqlite3_snprintf(sizeof(zBuf),zBuf,"_%d",n); zName = 0; sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0); if( zName==0 ){ db->mallocFailed = 1; goto exit_create_index; } } /* Check for authorization to create an index. */ #ifndef SQLITE_OMIT_AUTHORIZATION { const char *zDb = pDb->zName; if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ goto exit_create_index; } i = SQLITE_CREATE_INDEX; if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ goto exit_create_index; } } #endif /* If pList==0, it means this routine was called to make a primary ** key out of the last column added to the table under construction. ** So create a fake list to simulate this. */ if( pList==0 ){ nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName; nullId.n = strlen((char*)nullId.z); pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId); if( pList==0 ) goto exit_create_index; pList->a[0].sortOrder = sortOrder; } /* Figure out how many bytes of space are required to store explicitly ** specified collation sequence names. */ for(i=0; inExpr; i++){ Expr *pExpr = pList->a[i].pExpr; if( pExpr ){ nExtra += (1 + strlen(pExpr->pColl->zName)); } } /* ** Allocate the index structure. */ nName = strlen(zName); nCol = pList->nExpr; pIndex = sqlite3DbMallocZero(db, sizeof(Index) + /* Index structure */ sizeof(int)*nCol + /* Index.aiColumn */ sizeof(int)*(nCol+1) + /* Index.aiRowEst */ sizeof(char *)*nCol + /* Index.azColl */ sizeof(u8)*nCol + /* Index.aSortOrder */ nName + 1 + /* Index.zName */ nExtra /* Collation sequence names */ ); if( db->mallocFailed ){ goto exit_create_index; } pIndex->azColl = (char**)(&pIndex[1]); pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]); pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]); pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]); pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); zExtra = (char *)(&pIndex->zName[nName+1]); memcpy(pIndex->zName, zName, nName+1); pIndex->pTable = pTab; pIndex->nColumn = pList->nExpr; pIndex->onError = onError; pIndex->autoIndex = pName==0; pIndex->pSchema = db->aDb[iDb].pSchema; /* Check to see if we should honor DESC requests on index columns */ if( pDb->pSchema->file_format>=4 ){ sortOrderMask = -1; /* Honor DESC */ }else{ sortOrderMask = 0; /* Ignore DESC */ } /* Scan the names of the columns of the table to be indexed and ** load the column indices into the Index structure. Report an error ** if any column is not found. */ for(i=0, pListItem=pList->a; inExpr; i++, pListItem++){ const char *zColName = pListItem->zName; Column *pTabCol; int requestedSortOrder; char *zColl; /* Collation sequence name */ for(j=0, pTabCol=pTab->aCol; jnCol; j++, pTabCol++){ if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; } if( j>=pTab->nCol ){ sqlite3ErrorMsg(pParse, "table %s has no column named %s", pTab->zName, zColName); goto exit_create_index; } /* TODO: Add a test to make sure that the same column is not named ** more than once within the same index. Only the first instance of ** the column will ever be used by the optimizer. Note that using the ** same column more than once cannot be an error because that would ** break backwards compatibility - it needs to be a warning. */ pIndex->aiColumn[i] = j; if( pListItem->pExpr ){ assert( pListItem->pExpr->pColl ); zColl = zExtra; sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName); zExtra += (strlen(zColl) + 1); }else{ zColl = pTab->aCol[j].zColl; if( !zColl ){ zColl = db->pDfltColl->zName; } } if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){ goto exit_create_index; } pIndex->azColl[i] = zColl; requestedSortOrder = pListItem->sortOrder & sortOrderMask; pIndex->aSortOrder[i] = requestedSortOrder; } sqlite3DefaultRowEst(pIndex); if( pTab==pParse->pNewTable ){ /* This routine has been called to create an automatic index as a ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or ** a PRIMARY KEY or UNIQUE clause following the column definitions. ** i.e. one of: ** ** CREATE TABLE t(x PRIMARY KEY, y); ** CREATE TABLE t(x, y, UNIQUE(x, y)); ** ** Either way, check to see if the table already has such an index. If ** so, don't bother creating this one. This only applies to ** automatically created indices. Users can do as they wish with ** explicit indices. */ Index *pIdx; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int k; assert( pIdx->onError!=OE_None ); assert( pIdx->autoIndex ); assert( pIndex->onError!=OE_None ); if( pIdx->nColumn!=pIndex->nColumn ) continue; for(k=0; knColumn; k++){ const char *z1 = pIdx->azColl[k]; const char *z2 = pIndex->azColl[k]; if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break; if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; } if( k==pIdx->nColumn ){ if( pIdx->onError!=pIndex->onError ){ /* This constraint creates the same index as a previous ** constraint specified somewhere in the CREATE TABLE statement. ** However the ON CONFLICT clauses are different. If both this ** constraint and the previous equivalent constraint have explicit ** ON CONFLICT clauses this is an error. Otherwise, use the ** explicitly specified behaviour for the index. */ if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ sqlite3ErrorMsg(pParse, "conflicting ON CONFLICT clauses specified", 0); } if( pIdx->onError==OE_Default ){ pIdx->onError = pIndex->onError; } } goto exit_create_index; } } } /* Link the new Index structure to its table and to the other ** in-memory database structures. */ if( db->init.busy ){ Index *p; p = sqlite3HashInsert(&pIndex->pSchema->idxHash, pIndex->zName, strlen(pIndex->zName)+1, pIndex); if( p ){ assert( p==pIndex ); /* Malloc must have failed */ db->mallocFailed = 1; goto exit_create_index; } db->flags |= SQLITE_InternChanges; if( pTblName!=0 ){ pIndex->tnum = db->init.newTnum; } } /* If the db->init.busy is 0 then create the index on disk. This ** involves writing the index into the master table and filling in the ** index with the current table contents. ** ** The db->init.busy is 0 when the user first enters a CREATE INDEX ** command. db->init.busy is 1 when a database is opened and ** CREATE INDEX statements are read out of the master table. In ** the latter case the index already exists on disk, which is why ** we don't want to recreate it. ** ** If pTblName==0 it means this index is generated as a primary key ** or UNIQUE constraint of a CREATE TABLE statement. Since the table ** has just been created, it contains no data and the index initialization ** step can be skipped. */ else if( db->init.busy==0 ){ Vdbe *v; char *zStmt; int iMem = pParse->nMem++; v = sqlite3GetVdbe(pParse); if( v==0 ) goto exit_create_index; /* Create the rootpage for the index */ sqlite3BeginWriteOperation(pParse, 1, iDb); sqlite3VdbeAddOp(v, OP_CreateIndex, iDb, 0); sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); /* Gather the complete text of the CREATE INDEX statement into ** the zStmt variable */ if( pStart && pEnd ){ /* A named index with an explicit CREATE INDEX statement */ zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", onError==OE_None ? "" : " UNIQUE", pEnd->z - pName->z + 1, pName->z); }else{ /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ /* zStmt = sqlite3MPrintf(""); */ zStmt = 0; } /* Add an entry in sqlite_master for this index */ sqlite3NestedParse(pParse, "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#0,%Q);", db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName, pTab->zName, zStmt ); sqlite3VdbeAddOp(v, OP_Pop, 1, 0); sqlite3_free(zStmt); /* Fill the index with data and reparse the schema. Code an OP_Expire ** to invalidate all pre-compiled statements. */ if( pTblName ){ sqlite3RefillIndex(pParse, pIndex, iMem); sqlite3ChangeCookie(db, v, iDb); sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0, sqlite3MPrintf(db, "name='%q'", pIndex->zName), P3_DYNAMIC); sqlite3VdbeAddOp(v, OP_Expire, 0, 0); } } /* When adding an index to the list of indices for a table, make ** sure all indices labeled OE_Replace come after all those labeled ** OE_Ignore. This is necessary for the correct operation of UPDATE ** and INSERT. */ if( db->init.busy || pTblName==0 ){ if( onError!=OE_Replace || pTab->pIndex==0 || pTab->pIndex->onError==OE_Replace){ pIndex->pNext = pTab->pIndex; pTab->pIndex = pIndex; }else{ Index *pOther = pTab->pIndex; while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ pOther = pOther->pNext; } pIndex->pNext = pOther->pNext; pOther->pNext = pIndex; } pIndex = 0; } /* Clean up before exiting */ exit_create_index: if( pIndex ){ freeIndex(pIndex); } sqlite3ExprListDelete(pList); sqlite3SrcListDelete(pTblName); sqlite3_free(zName); return; } /* ** Generate code to make sure the file format number is at least minFormat. ** The generated code will increase the file format number if necessary. */ void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){ Vdbe *v; v = sqlite3GetVdbe(pParse); if( v ){ sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1); sqlite3VdbeUsesBtree(v, iDb); sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0); sqlite3VdbeAddOp(v, OP_Ge, 0, sqlite3VdbeCurrentAddr(v)+3); sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0); sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1); } } /* ** Fill the Index.aiRowEst[] array with default information - information ** to be used when we have not run the ANALYZE command. ** ** aiRowEst[0] is suppose to contain the number of elements in the index. ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the ** number of rows in the table that match any particular value of the ** first column of the index. aiRowEst[2] is an estimate of the number ** of rows that match any particular combiniation of the first 2 columns ** of the index. And so forth. It must always be the case that * ** aiRowEst[N]<=aiRowEst[N-1] ** aiRowEst[N]>=1 ** ** Apart from that, we have little to go on besides intuition as to ** how aiRowEst[] should be initialized. The numbers generated here ** are based on typical values found in actual indices. */ void sqlite3DefaultRowEst(Index *pIdx){ unsigned *a = pIdx->aiRowEst; int i; assert( a!=0 ); a[0] = 1000000; for(i=pIdx->nColumn; i>=5; i--){ a[i] = 5; } while( i>=1 ){ a[i] = 11 - i; i--; } if( pIdx->onError!=OE_None ){ a[pIdx->nColumn] = 1; } } /* ** This routine will drop an existing named index. This routine ** implements the DROP INDEX statement. */ void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ Index *pIndex; Vdbe *v; sqlite3 *db = pParse->db; int iDb; if( pParse->nErr || db->mallocFailed ){ goto exit_drop_index; } assert( pName->nSrc==1 ); if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto exit_drop_index; } pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); if( pIndex==0 ){ if( !ifExists ){ sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); } pParse->checkSchema = 1; goto exit_drop_index; } if( pIndex->autoIndex ){ sqlite3ErrorMsg(pParse, "index associated with UNIQUE " "or PRIMARY KEY constraint cannot be dropped", 0); goto exit_drop_index; } iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); #ifndef SQLITE_OMIT_AUTHORIZATION { int code = SQLITE_DROP_INDEX; Table *pTab = pIndex->pTable; const char *zDb = db->aDb[iDb].zName; const char *zTab = SCHEMA_TABLE(iDb); if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ goto exit_drop_index; } if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ goto exit_drop_index; } } #endif /* Generate code to remove the index and from the master table */ v = sqlite3GetVdbe(pParse); if( v ){ sqlite3NestedParse(pParse, "DELETE FROM %Q.%s WHERE name=%Q", db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName ); sqlite3ChangeCookie(db, v, iDb); destroyRootPage(pParse, pIndex->tnum, iDb); sqlite3VdbeOp3(v, OP_DropIndex, iDb, 0, pIndex->zName, 0); } exit_drop_index: sqlite3SrcListDelete(pName); } /* ** pArray is a pointer to an array of objects. Each object in the ** array is szEntry bytes in size. This routine allocates a new ** object on the end of the array. ** ** *pnEntry is the number of entries already in use. *pnAlloc is ** the previously allocated size of the array. initSize is the ** suggested initial array size allocation. ** ** The index of the new entry is returned in *pIdx. ** ** This routine returns a pointer to the array of objects. This ** might be the same as the pArray parameter or it might be a different ** pointer if the array was resized. */ void *sqlite3ArrayAllocate( sqlite3 *db, /* Connection to notify of malloc failures */ void *pArray, /* Array of objects. Might be reallocated */ int szEntry, /* Size of each object in the array */ int initSize, /* Suggested initial allocation, in elements */ int *pnEntry, /* Number of objects currently in use */ int *pnAlloc, /* Current size of the allocation, in elements */ int *pIdx /* Write the index of a new slot here */ ){ char *z; if( *pnEntry >= *pnAlloc ){ void *pNew; int newSize; newSize = (*pnAlloc)*2 + initSize; pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry); if( pNew==0 ){ *pIdx = -1; return pArray; } *pnAlloc = newSize; pArray = pNew; } z = (char*)pArray; memset(&z[*pnEntry * szEntry], 0, szEntry); *pIdx = *pnEntry; ++*pnEntry; return pArray; } /* ** Append a new element to the given IdList. Create a new IdList if ** need be. ** ** A new IdList is returned, or NULL if malloc() fails. */ IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ int i; if( pList==0 ){ pList = sqlite3DbMallocZero(db, sizeof(IdList) ); if( pList==0 ) return 0; pList->nAlloc = 0; } pList->a = sqlite3ArrayAllocate( db, pList->a, sizeof(pList->a[0]), 5, &pList->nId, &pList->nAlloc, &i ); if( i<0 ){ sqlite3IdListDelete(pList); return 0; } pList->a[i].zName = sqlite3NameFromToken(db, pToken); return pList; } /* ** Delete an IdList. */ void sqlite3IdListDelete(IdList *pList){ int i; if( pList==0 ) return; for(i=0; inId; i++){ sqlite3_free(pList->a[i].zName); } sqlite3_free(pList->a); sqlite3_free(pList); } /* ** Return the index in pList of the identifier named zId. Return -1 ** if not found. */ int sqlite3IdListIndex(IdList *pList, const char *zName){ int i; if( pList==0 ) return -1; for(i=0; inId; i++){ if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; } return -1; } /* ** Append a new table name to the given SrcList. Create a new SrcList if ** need be. A new entry is created in the SrcList even if pToken is NULL. ** ** A new SrcList is returned, or NULL if malloc() fails. ** ** If pDatabase is not null, it means that the table has an optional ** database name prefix. Like this: "database.table". The pDatabase ** points to the table name and the pTable points to the database name. ** The SrcList.a[].zName field is filled with the table name which might ** come from pTable (if pDatabase is NULL) or from pDatabase. ** SrcList.a[].zDatabase is filled with the database name from pTable, ** or with NULL if no database is specified. ** ** In other words, if call like this: ** ** sqlite3SrcListAppend(D,A,B,0); ** ** Then B is a table name and the database name is unspecified. If called ** like this: ** ** sqlite3SrcListAppend(D,A,B,C); ** ** Then C is the table name and B is the database name. */ SrcList *sqlite3SrcListAppend( sqlite3 *db, /* Connection to notify of malloc failures */ SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ Token *pTable, /* Table to append */ Token *pDatabase /* Database of the table */ ){ struct SrcList_item *pItem; if( pList==0 ){ pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); if( pList==0 ) return 0; pList->nAlloc = 1; } if( pList->nSrc>=pList->nAlloc ){ SrcList *pNew; pList->nAlloc *= 2; pNew = sqlite3DbRealloc(db, pList, sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) ); if( pNew==0 ){ sqlite3SrcListDelete(pList); return 0; } pList = pNew; } pItem = &pList->a[pList->nSrc]; memset(pItem, 0, sizeof(pList->a[0])); if( pDatabase && pDatabase->z==0 ){ pDatabase = 0; } if( pDatabase && pTable ){ Token *pTemp = pDatabase; pDatabase = pTable; pTable = pTemp; } pItem->zName = sqlite3NameFromToken(db, pTable); pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); pItem->iCursor = -1; pItem->isPopulated = 0; pList->nSrc++; return pList; } /* ** Assign cursors to all tables in a SrcList */ void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ int i; struct SrcList_item *pItem; assert(pList || pParse->db->mallocFailed ); if( pList ){ for(i=0, pItem=pList->a; inSrc; i++, pItem++){ if( pItem->iCursor>=0 ) break; pItem->iCursor = pParse->nTab++; if( pItem->pSelect ){ sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); } } } } /* ** Delete an entire SrcList including all its substructure. */ void sqlite3SrcListDelete(SrcList *pList){ int i; struct SrcList_item *pItem; if( pList==0 ) return; for(pItem=pList->a, i=0; inSrc; i++, pItem++){ sqlite3_free(pItem->zDatabase); sqlite3_free(pItem->zName); sqlite3_free(pItem->zAlias); sqlite3DeleteTable(pItem->pTab); sqlite3SelectDelete(pItem->pSelect); sqlite3ExprDelete(pItem->pOn); sqlite3IdListDelete(pItem->pUsing); } sqlite3_free(pList); } /* ** This routine is called by the parser to add a new term to the ** end of a growing FROM clause. The "p" parameter is the part of ** the FROM clause that has already been constructed. "p" is NULL ** if this is the first term of the FROM clause. pTable and pDatabase ** are the name of the table and database named in the FROM clause term. ** pDatabase is NULL if the database name qualifier is missing - the ** usual case. If the term has a alias, then pAlias points to the ** alias token. If the term is a subquery, then pSubquery is the ** SELECT statement that the subquery encodes. The pTable and ** pDatabase parameters are NULL for subqueries. The pOn and pUsing ** parameters are the content of the ON and USING clauses. ** ** Return a new SrcList which encodes is the FROM with the new ** term added. */ SrcList *sqlite3SrcListAppendFromTerm( Parse *pParse, /* Parsing context */ SrcList *p, /* The left part of the FROM clause already seen */ Token *pTable, /* Name of the table to add to the FROM clause */ Token *pDatabase, /* Name of the database containing pTable */ Token *pAlias, /* The right-hand side of the AS subexpression */ Select *pSubquery, /* A subquery used in place of a table name */ Expr *pOn, /* The ON clause of a join */ IdList *pUsing /* The USING clause of a join */ ){ struct SrcList_item *pItem; sqlite3 *db = pParse->db; p = sqlite3SrcListAppend(db, p, pTable, pDatabase); if( p==0 || p->nSrc==0 ){ sqlite3ExprDelete(pOn); sqlite3IdListDelete(pUsing); sqlite3SelectDelete(pSubquery); return p; } pItem = &p->a[p->nSrc-1]; if( pAlias && pAlias->n ){ pItem->zAlias = sqlite3NameFromToken(db, pAlias); } pItem->pSelect = pSubquery; pItem->pOn = pOn; pItem->pUsing = pUsing; return p; } /* ** When building up a FROM clause in the parser, the join operator ** is initially attached to the left operand. But the code generator ** expects the join operator to be on the right operand. This routine ** Shifts all join operators from left to right for an entire FROM ** clause. ** ** Example: Suppose the join is like this: ** ** A natural cross join B ** ** The operator is "natural cross join". The A and B operands are stored ** in p->a[0] and p->a[1], respectively. The parser initially stores the ** operator with A. This routine shifts that operator over to B. */ void sqlite3SrcListShiftJoinType(SrcList *p){ if( p && p->a ){ int i; for(i=p->nSrc-1; i>0; i--){ p->a[i].jointype = p->a[i-1].jointype; } p->a[0].jointype = 0; } } /* ** Begin a transaction */ void sqlite3BeginTransaction(Parse *pParse, int type){ sqlite3 *db; Vdbe *v; int i; if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; if( pParse->nErr || db->mallocFailed ) return; if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return; v = sqlite3GetVdbe(pParse); if( !v ) return; if( type!=TK_DEFERRED ){ for(i=0; inDb; i++){ sqlite3VdbeAddOp(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); sqlite3VdbeUsesBtree(v, i); } } sqlite3VdbeAddOp(v, OP_AutoCommit, 0, 0); } /* ** Commit a transaction */ void sqlite3CommitTransaction(Parse *pParse){ sqlite3 *db; Vdbe *v; if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; if( pParse->nErr || db->mallocFailed ) return; if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return; v = sqlite3GetVdbe(pParse); if( v ){ sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 0); } } /* ** Rollback a transaction */ void sqlite3RollbackTransaction(Parse *pParse){ sqlite3 *db; Vdbe *v; if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; if( pParse->nErr || db->mallocFailed ) return; if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return; v = sqlite3GetVdbe(pParse); if( v ){ sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 1); } } /* ** Make sure the TEMP database is open and available for use. Return ** the number of errors. Leave any error messages in the pParse structure. */ int sqlite3OpenTempDatabase(Parse *pParse){ sqlite3 *db = pParse->db; if( db->aDb[1].pBt==0 && !pParse->explain ){ int rc; static const int flags = SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE | SQLITE_OPEN_TEMP_DB; rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags, &db->aDb[1].pBt); if( rc!=SQLITE_OK ){ sqlite3ErrorMsg(pParse, "unable to open a temporary database " "file for storing temporary tables"); pParse->rc = rc; return 1; } if( db->flags & !db->autoCommit ){ rc = sqlite3BtreeBeginTrans(db->aDb[1].pBt, 1); if( rc!=SQLITE_OK ){ sqlite3ErrorMsg(pParse, "unable to get a write lock on " "the temporary database file"); pParse->rc = rc; return 1; } } assert( db->aDb[1].pSchema ); } return 0; } /* ** Generate VDBE code that will verify the schema cookie and start ** a read-transaction for all named database files. ** ** It is important that all schema cookies be verified and all ** read transactions be started before anything else happens in ** the VDBE program. But this routine can be called after much other ** code has been generated. So here is what we do: ** ** The first time this routine is called, we code an OP_Goto that ** will jump to a subroutine at the end of the program. Then we ** record every database that needs its schema verified in the ** pParse->cookieMask field. Later, after all other code has been ** generated, the subroutine that does the cookie verifications and ** starts the transactions will be coded and the OP_Goto P2 value ** will be made to point to that subroutine. The generation of the ** cookie verification subroutine code happens in sqlite3FinishCoding(). ** ** If iDb<0 then code the OP_Goto only - don't set flag to verify the ** schema on any databases. This can be used to position the OP_Goto ** early in the code, before we know if any database tables will be used. */ void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ sqlite3 *db; Vdbe *v; int mask; v = sqlite3GetVdbe(pParse); if( v==0 ) return; /* This only happens if there was a prior error */ db = pParse->db; if( pParse->cookieGoto==0 ){ pParse->cookieGoto = sqlite3VdbeAddOp(v, OP_Goto, 0, 0)+1; } if( iDb>=0 ){ assert( iDbnDb ); assert( db->aDb[iDb].pBt!=0 || iDb==1 ); assert( iDbcookieMask & mask)==0 ){ pParse->cookieMask |= mask; pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; if( !OMIT_TEMPDB && iDb==1 ){ sqlite3OpenTempDatabase(pParse); } } } } /* ** Generate VDBE code that prepares for doing an operation that ** might change the database. ** ** This routine starts a new transaction if we are not already within ** a transaction. If we are already within a transaction, then a checkpoint ** is set if the setStatement parameter is true. A checkpoint should ** be set for operations that might fail (due to a constraint) part of ** the way through and which will need to undo some writes without having to ** rollback the whole transaction. For operations where all constraints ** can be checked before any changes are made to the database, it is never ** necessary to undo a write and the checkpoint should not be set. ** ** Only database iDb and the temp database are made writable by this call. ** If iDb==0, then the main and temp databases are made writable. If ** iDb==1 then only the temp database is made writable. If iDb>1 then the ** specified auxiliary database and the temp database are made writable. */ void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ Vdbe *v = sqlite3GetVdbe(pParse); if( v==0 ) return; sqlite3CodeVerifySchema(pParse, iDb); pParse->writeMask |= 1<nested==0 ){ sqlite3VdbeAddOp(v, OP_Statement, iDb, 0); } if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){ sqlite3BeginWriteOperation(pParse, setStatement, 1); } } /* ** Check to see if pIndex uses the collating sequence pColl. Return ** true if it does and false if it does not. */ #ifndef SQLITE_OMIT_REINDEX static int collationMatch(const char *zColl, Index *pIndex){ int i; for(i=0; inColumn; i++){ const char *z = pIndex->azColl[i]; if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){ return 1; } } return 0; } #endif /* ** Recompute all indices of pTab that use the collating sequence pColl. ** If pColl==0 then recompute all indices of pTab. */ #ifndef SQLITE_OMIT_REINDEX static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ Index *pIndex; /* An index associated with pTab */ for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ if( zColl==0 || collationMatch(zColl, pIndex) ){ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3RefillIndex(pParse, pIndex, -1); } } } #endif /* ** Recompute all indices of all tables in all databases where the ** indices use the collating sequence pColl. If pColl==0 then recompute ** all indices everywhere. */ #ifndef SQLITE_OMIT_REINDEX static void reindexDatabases(Parse *pParse, char const *zColl){ Db *pDb; /* A single database */ int iDb; /* The database index number */ sqlite3 *db = pParse->db; /* The database connection */ HashElem *k; /* For looping over tables in pDb */ Table *pTab; /* A table in the database */ for(iDb=0, pDb=db->aDb; iDbnDb; iDb++, pDb++){ assert( pDb!=0 ); for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ pTab = (Table*)sqliteHashData(k); reindexTable(pParse, pTab, zColl); } } } #endif /* ** Generate code for the REINDEX command. ** ** REINDEX -- 1 ** REINDEX -- 2 ** REINDEX ?.? -- 3 ** REINDEX ?.? -- 4 ** ** Form 1 causes all indices in all attached databases to be rebuilt. ** Form 2 rebuilds all indices in all databases that use the named ** collating function. Forms 3 and 4 rebuild the named index or all ** indices associated with the named table. */ #ifndef SQLITE_OMIT_REINDEX void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ char *z; /* Name of a table or index */ const char *zDb; /* Name of the database */ Table *pTab; /* A table in the database */ Index *pIndex; /* An index associated with pTab */ int iDb; /* The database index number */ sqlite3 *db = pParse->db; /* The database connection */ Token *pObjName; /* Name of the table or index to be reindexed */ /* Read the database schema. If an error occurs, leave an error message ** and code in pParse and return NULL. */ if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ return; } if( pName1==0 || pName1->z==0 ){ reindexDatabases(pParse, 0); return; }else if( pName2==0 || pName2->z==0 ){ assert( pName1->z ); pColl = sqlite3FindCollSeq(db, ENC(db), (char*)pName1->z, pName1->n, 0); if( pColl ){ char *zColl = sqlite3DbStrNDup(db, (const char *)pName1->z, pName1->n); if( zColl ){ reindexDatabases(pParse, zColl); sqlite3_free(zColl); } return; } } iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); if( iDb<0 ) return; z = sqlite3NameFromToken(db, pObjName); if( z==0 ) return; zDb = db->aDb[iDb].zName; pTab = sqlite3FindTable(db, z, zDb); if( pTab ){ reindexTable(pParse, pTab, 0); sqlite3_free(z); return; } pIndex = sqlite3FindIndex(db, z, zDb); sqlite3_free(z); if( pIndex ){ sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3RefillIndex(pParse, pIndex, -1); return; } sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); } #endif /* ** Return a dynamicly allocated KeyInfo structure that can be used ** with OP_OpenRead or OP_OpenWrite to access database index pIdx. ** ** If successful, a pointer to the new structure is returned. In this case ** the caller is responsible for calling sqlite3_free() on the returned ** pointer. If an error occurs (out of memory or missing collation ** sequence), NULL is returned and the state of pParse updated to reflect ** the error. */ KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ int i; int nCol = pIdx->nColumn; int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(pParse->db, nBytes); if( pKey ){ pKey->db = pParse->db; pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); for(i=0; iazColl[i]; assert( zColl ); pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1); pKey->aSortOrder[i] = pIdx->aSortOrder[i]; } pKey->nField = nCol; } if( pParse->nErr ){ sqlite3_free(pKey); pKey = 0; } return pKey; }