// MersenneTwister.h // Mersenne Twister random number generator -- a C++ class MTRand // Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus // Richard J. Wagner v1.0 15 May 2003 rjwagner@writeme.com // The Mersenne Twister is an algorithm for generating random numbers. It // was designed with consideration of the flaws in various other generators. // The period, 2^19937-1, and the order of equidistribution, 623 dimensions, // are far greater. The generator is also fast; it avoids multiplication and // division, and it benefits from caches and pipelines. For more information // see the inventors' web page at http://www.math.keio.ac.jp/~matumoto/emt.html // Reference // M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-Dimensionally // Equidistributed Uniform Pseudo-Random Number Generator", ACM Transactions on // Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30. // Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, // Copyright (C) 2000 - 2003, Richard J. Wagner // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // 3. The names of its contributors may not be used to endorse or promote // products derived from this software without specific prior written // permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The original code included the following notice: // // When you use this, send an email to: matumoto@math.keio.ac.jp // with an appropriate reference to your work. // // It would be nice to CC: rjwagner@writeme.com and Cokus@math.washington.edu // when you write. #ifndef MERSENNETWISTER_H #define MERSENNETWISTER_H // Not thread safe (unless auto-initialization is avoided and each thread has // its own MTRand object) #include #include #include #include class MTRand { // Data public: typedef unsigned long uint32; // unsigned integer type, at least 32 bits enum { N = 624 }; // length of state vector enum { SAVE = N + 1 }; // length of array for save() protected: enum { M = 397 }; // period parameter uint32 state[N]; // internal state uint32 *pNext; // next value to get from state int left; // number of values left before reload needed //Methods public: MTRand( const uint32& oneSeed ); // initialize with a simple uint32 MTRand( uint32 *const bigSeed, uint32 const seedLength = N ); // or an array MTRand(); // auto-initialize with /dev/urandom or time() and clock() // Do NOT use for CRYPTOGRAPHY without securely hashing several returned // values together, otherwise the generator state can be learned after // reading 624 consecutive values. // Access to 32-bit random numbers double rand(); // real number in [0,1] double rand( const double& n ); // real number in [0,n] double randExc(); // real number in [0,1) double randExc( const double& n ); // real number in [0,n) double randDblExc(); // real number in (0,1) double randDblExc( const double& n ); // real number in (0,n) uint32 randInt(); // integer in [0,2^32-1] uint32 randInt( const uint32& n ); // integer in [0,n] for n < 2^32 double operator()() { return rand(); } // same as rand() // Access to 53-bit random numbers (capacity of IEEE double precision) double rand53(); // real number in [0,1) // Access to nonuniform random number distributions double randNorm( const double& mean = 0.0, const double& variance = 0.0 ); // Re-seeding functions with same behavior as initializers void seed( const uint32 oneSeed ); void seed( uint32 *const bigSeed, const uint32 seedLength = N ); void seed(); // Saving and loading generator state void save( uint32* saveArray ) const; // to array of size SAVE void load( uint32 *const loadArray ); // from such array protected: void initialize( const uint32 oneSeed ); void reload(); uint32 hiBit( const uint32& u ) const { return u & 0x80000000UL; } uint32 loBit( const uint32& u ) const { return u & 0x00000001UL; } uint32 loBits( const uint32& u ) const { return u & 0x7fffffffUL; } uint32 mixBits( const uint32& u, const uint32& v ) const { return hiBit(u) | loBits(v); } uint32 twist( const uint32& m, const uint32& s0, const uint32& s1 ) const { return m ^ (mixBits(s0,s1)>>1) ^ (-loBit(s1) & 0x9908b0dfUL); } static uint32 hash( time_t t, clock_t c ); }; inline MTRand::MTRand( const uint32& oneSeed ) { seed(oneSeed); } inline MTRand::MTRand( uint32 *const bigSeed, const uint32 seedLength ) { seed(bigSeed,seedLength); } inline MTRand::MTRand() { seed(); } inline double MTRand::rand() { return double(randInt()) * (1.0/4294967295.0); } inline double MTRand::rand( const double& n ) { return rand() * n; } inline double MTRand::randExc() { return double(randInt()) * (1.0/4294967296.0); } inline double MTRand::randExc( const double& n ) { return randExc() * n; } inline double MTRand::randDblExc() { return ( double(randInt()) + 0.5 ) * (1.0/4294967296.0); } inline double MTRand::randDblExc( const double& n ) { return randDblExc() * n; } inline double MTRand::rand53() { uint32 a = randInt() >> 5, b = randInt() >> 6; return ( a * 67108864.0 + b ) * (1.0/9007199254740992.0); // by Isaku Wada } inline double MTRand::randNorm( const double& mean, const double& variance ) { // Return a real number from a normal (Gaussian) distribution with given // mean and variance by Box-Muller method double r = sqrt( -2.0 * log( 1.0-randDblExc()) ) * variance; double phi = 2.0 * 3.14159265358979323846264338328 * randExc(); return mean + r * cos(phi); } inline MTRand::uint32 MTRand::randInt() { // Pull a 32-bit integer from the generator state // Every other access function simply transforms the numbers extracted here if( left == 0 ) reload(); --left; register uint32 s1; s1 = *pNext++; s1 ^= (s1 >> 11); s1 ^= (s1 << 7) & 0x9d2c5680UL; s1 ^= (s1 << 15) & 0xefc60000UL; return ( s1 ^ (s1 >> 18) ); } inline MTRand::uint32 MTRand::randInt( const uint32& n ) { // Find which bits are used in n // Optimized by Magnus Jonsson (magnus@smartelectronix.com) uint32 used = n; used |= used >> 1; used |= used >> 2; used |= used >> 4; used |= used >> 8; used |= used >> 16; // Draw numbers until one is found in [0,n] uint32 i; do i = randInt() & used; // toss unused bits to shorten search while( i > n ); return i; } inline void MTRand::seed( const uint32 oneSeed ) { // Seed the generator with a simple uint32 initialize(oneSeed); reload(); } inline void MTRand::seed( uint32 *const bigSeed, const uint32 seedLength ) { // Seed the generator with an array of uint32's // There are 2^19937-1 possible initial states. This function allows // all of those to be accessed by providing at least 19937 bits (with a // default seed length of N = 624 uint32's). Any bits above the lower 32 // in each element are discarded. // Just call seed() if you want to get array from /dev/urandom initialize(19650218UL); register int i = 1; register uint32 j = 0; register int k = ( N > seedLength ? N : seedLength ); for( ; k; --k ) { state[i] = state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1664525UL ); state[i] += ( bigSeed[j] & 0xffffffffUL ) + j; state[i] &= 0xffffffffUL; ++i; ++j; if( i >= N ) { state[0] = state[N-1]; i = 1; } if( j >= seedLength ) j = 0; } for( k = N - 1; k; --k ) { state[i] = state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1566083941UL ); state[i] -= i; state[i] &= 0xffffffffUL; ++i; if( i >= N ) { state[0] = state[N-1]; i = 1; } } state[0] = 0x80000000UL; // MSB is 1, assuring non-zero initial array reload(); } inline void MTRand::seed() { // Seed the generator with an array from /dev/urandom if available // Otherwise use a hash of time() and clock() values // First try getting an array from /dev/urandom FILE* urandom = fopen( "/dev/urandom", "rb" ); if( urandom ) { uint32 bigSeed[N]; register uint32 *s = bigSeed; register int i = N; register bool success = true; while( success && i-- ) success = fread( s++, sizeof(uint32), 1, urandom ); fclose(urandom); if( success ) { seed( bigSeed, N ); return; } } // Was not successful, so use time() and clock() instead seed( hash( time(NULL), clock() ) ); } inline void MTRand::initialize( const uint32 seed ) { // Initialize generator state with seed // See Knuth TAOCP Vol 2, 3rd Ed, p.106 for multiplier. // In previous versions, most significant bits (MSBs) of the seed affect // only MSBs of the state array. Modified 9 Jan 2002 by Makoto Matsumoto. register uint32 *s = state; register uint32 *r = state; register int i = 1; *s++ = seed & 0xffffffffUL; for( ; i < N; ++i ) { *s++ = ( 1812433253UL * ( *r ^ (*r >> 30) ) + i ) & 0xffffffffUL; r++; } } inline void MTRand::reload() { // Generate N new values in state // Made clearer and faster by Matthew Bellew (matthew.bellew@home.com) register uint32 *p = state; register int i; for( i = N - M; i--; ++p ) *p = twist( p[M], p[0], p[1] ); for( i = M; --i; ++p ) *p = twist( p[M-N], p[0], p[1] ); *p = twist( p[M-N], p[0], state[0] ); left = N, pNext = state; } inline MTRand::uint32 MTRand::hash( time_t t, clock_t c ) { // Get a uint32 from t and c // Better than uint32(x) in case x is floating point in [0,1] // Based on code by Lawrence Kirby (fred@genesis.demon.co.uk) static uint32 differ = 0; // guarantee time-based seeds will change uint32 h1 = 0; unsigned char *p = (unsigned char *) &t; for( size_t i = 0; i < sizeof(t); ++i ) { h1 *= UCHAR_MAX + 2U; h1 += p[i]; } uint32 h2 = 0; p = (unsigned char *) &c; for( size_t j = 0; j < sizeof(c); ++j ) { h2 *= UCHAR_MAX + 2U; h2 += p[j]; } return ( h1 + differ++ ) ^ h2; } inline void MTRand::save( uint32* saveArray ) const { register uint32 *sa = saveArray; register const uint32 *s = state; register int i = N; for( ; i--; *sa++ = *s++ ) {} *sa = left; } inline void MTRand::load( uint32 *const loadArray ) { register uint32 *s = state; register uint32 *la = loadArray; register int i = N; for( ; i--; *s++ = *la++ ) {} left = *la; pNext = &state[N-left]; } #endif // MERSENNETWISTER_H // Change log: // // v0.1 - First release on 15 May 2000 // - Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus // - Translated from C to C++ // - Made completely ANSI compliant // - Designed convenient interface for initialization, seeding, and // obtaining numbers in default or user-defined ranges // - Added automatic seeding from /dev/urandom or time() and clock() // - Provided functions for saving and loading generator state // // v0.2 - Fixed bug which reloaded generator one step too late // // v0.3 - Switched to clearer, faster reload() code from Matthew Bellew // // v0.4 - Removed trailing newline in saved generator format to be consistent // with output format of built-in types // // v0.5 - Improved portability by replacing static const int's with enum's and // clarifying return values in seed(); suggested by Eric Heimburg // - Removed MAXINT constant; use 0xffffffffUL instead // // v0.6 - Eliminated seed overflow when uint32 is larger than 32 bits // - Changed integer [0,n] generator to give better uniformity // // v0.7 - Fixed operator precedence ambiguity in reload() // - Added access for real numbers in (0,1) and (0,n) // // v0.8 - Included time.h header to properly support time_t and clock_t // // v1.0 - Revised seeding to match 26 Jan 2002 update of Nishimura and Matsumoto // - Allowed for seeding with arrays of any length // - Added access for real numbers in [0,1) with 53-bit resolution // - Added access for real numbers from normal (Gaussian) distributions // - Increased overall speed by optimizing twist() // - Doubled speed of integer [0,n] generation // - Fixed out-of-range number generation on 64-bit machines // - Improved portability by substituting literal constants for long enum's // - Changed license from GNU LGPL to BSD