//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ // //=============================================================================// #include "bitbuf.h" #include "coordsize.h" #include "vector.h" #include "mathlib/math_base.h" #include "vstdlib/strtools.h" // FIXME: Can't use this until we get multithreaded allocations in tier0 working for tools // This is used by VVIS and fails to link // NOTE: This must be the last file included!!! //#include "tier0/memdbgon.h" #ifdef _XBOX // mandatory ... wary of above comment and isolating, tier0 is built as MT though #include "tier0/memdbgon.h" #endif static BitBufErrorHandler g_BitBufErrorHandler = 0; void InternalBitBufErrorHandler( BitBufErrorType errorType, const char *pDebugName ) { if ( g_BitBufErrorHandler ) g_BitBufErrorHandler( errorType, pDebugName ); } void SetBitBufErrorHandler( BitBufErrorHandler fn ) { g_BitBufErrorHandler = fn; } // #define BB_PROFILING // Precalculated bit masks for WriteUBitLong. Using these tables instead of // doing the calculations gives a 33% speedup in WriteUBitLong. unsigned long g_BitWriteMasks[32][33]; // (1 << i) - 1 unsigned long g_ExtraMasks[32]; class CBitWriteMasksInit { public: CBitWriteMasksInit() { for( unsigned int startbit=0; startbit < 32; startbit++ ) { for( unsigned int nBitsLeft=0; nBitsLeft < 33; nBitsLeft++ ) { unsigned int endbit = startbit + nBitsLeft; g_BitWriteMasks[startbit][nBitsLeft] = (1 << startbit) - 1; if(endbit < 32) g_BitWriteMasks[startbit][nBitsLeft] |= ~((1 << endbit) - 1); } } for ( unsigned int maskBit=0; maskBit < 32; maskBit++ ) g_ExtraMasks[maskBit] = (1 << maskBit) - 1; } }; CBitWriteMasksInit g_BitWriteMasksInit; // ---------------------------------------------------------------------------------------- // // bf_write // ---------------------------------------------------------------------------------------- // bf_write::bf_write() { m_pData = NULL; m_nDataBytes = 0; m_nDataBits = -1; // set to -1 so we generate overflow on any operation m_iCurBit = 0; m_bOverflow = false; m_bAssertOnOverflow = true; m_pDebugName = NULL; } bf_write::bf_write( const char *pDebugName, void *pData, int nBytes, int nBits ) { m_bAssertOnOverflow = true; m_pDebugName = pDebugName; StartWriting( pData, nBytes, 0, nBits ); } bf_write::bf_write( void *pData, int nBytes, int nBits ) { m_bAssertOnOverflow = true; StartWriting( pData, nBytes, 0, nBits ); } void bf_write::StartWriting( void *pData, int nBytes, int iStartBit, int nBits ) { // Make sure it's dword aligned and padded. Assert( (nBytes % 4) == 0 ); Assert(((unsigned long)pData & 3) == 0); m_pData = (unsigned char*)pData; m_nDataBytes = nBytes; if ( nBits == -1 ) { m_nDataBits = nBytes << 3; } else { Assert( nBits <= nBytes*8 ); m_nDataBits = nBits; } m_iCurBit = iStartBit; m_bOverflow = false; } void bf_write::Reset() { m_iCurBit = 0; m_bOverflow = false; } void bf_write::SetAssertOnOverflow( bool bAssert ) { m_bAssertOnOverflow = bAssert; } const char* bf_write::GetDebugName() { return m_pDebugName; } void bf_write::SetDebugName( const char *pDebugName ) { m_pDebugName = pDebugName; } void bf_write::SeekToBit( int bitPos ) { m_iCurBit = bitPos; } // Sign bit comes first void bf_write::WriteSBitLong( int data, int numbits ) { // Do we have a valid # of bits to encode with? Assert( numbits >= 1 ); // Note: it does this wierdness here so it's bit-compatible with regular integer data in the buffer. // (Some old code writes direct integers right into the buffer). if(data < 0) { #ifdef _DEBUG if( numbits < 32 ) { // Make sure it doesn't overflow. if( data < 0 ) { Assert( data >= -(1 << (numbits-1)) ); } else { Assert( data < (1 << (numbits-1)) ); } } #endif WriteUBitLong( (unsigned int)(0x80000000 + data), numbits - 1, false ); WriteOneBit( 1 ); } else { WriteUBitLong((unsigned int)data, numbits - 1); WriteOneBit( 0 ); } } // writes an unsigned integer with variable bit length void bf_write::WriteUBitVar( unsigned int data ) { unsigned int bits = 0; unsigned int base = 0; while (data > (base<<1)) { bits++; base = (1< 0) WriteUBitLong( 0, bits ); // end marker WriteOneBit( 1 ); // write the value if ( bits > 0) WriteUBitLong( data - base , bits ); } void bf_write::WriteBitLong(unsigned int data, int numbits, bool bSigned) { if(bSigned) WriteSBitLong((int)data, numbits); else WriteUBitLong(data, numbits); } bool bf_write::WriteBits(const void *pInData, int nBits) { #if defined( BB_PROFILING ) VPROF( "bf_write::WriteBits" ); #endif unsigned char *pOut = (unsigned char*)pInData; int nBitsLeft = nBits; if((m_iCurBit+nBits) > m_nDataBits) { SetOverflowFlag(); CallErrorHandler( BITBUFERROR_BUFFER_OVERRUN, GetDebugName() ); return false; } // Get output dword-aligned. while(((unsigned long)pOut & 3) != 0 && nBitsLeft >= 8) { WriteUBitLong( *pOut, 8, false ); ++pOut; nBitsLeft -= 8; } // check if we can use fast memcpy if m_iCurBit is byte aligned if ( (nBitsLeft >= 32) && (m_iCurBit & 7) == 0 ) { int numbytes = (nBitsLeft >> 3); int numbits = numbytes << 3; // Bounds checking.. // TODO: May not need this check anymore if((m_iCurBit+numbits) > m_nDataBits) { m_iCurBit = m_nDataBits; SetOverflowFlag(); CallErrorHandler( BITBUFERROR_BUFFER_OVERRUN, GetDebugName() ); return false; } Q_memcpy( m_pData+(m_iCurBit>>3), pOut, numbytes ); pOut += numbytes; nBitsLeft -= numbits; m_iCurBit += numbits; } // Read dwords. while(nBitsLeft >= 32) { WriteUBitLong( *((unsigned long*)pOut), 32, false ); pOut += sizeof(unsigned long); nBitsLeft -= 32; } // Read the remaining bytes. while(nBitsLeft >= 8) { WriteUBitLong( *pOut, 8, false ); ++pOut; nBitsLeft -= 8; } // Read the remaining bits. if(nBitsLeft) { WriteUBitLong( *pOut, nBitsLeft, false ); } return !IsOverflowed(); } bool bf_write::WriteBitsFromBuffer( bf_read *pIn, int nBits ) { // This could be optimized a little by while ( nBits > 32 ) { WriteUBitLong( pIn->ReadUBitLong( 32 ), 32 ); nBits -= 32; } WriteUBitLong( pIn->ReadUBitLong( nBits ), nBits ); return !IsOverflowed() && !pIn->IsOverflowed(); } void bf_write::WriteBitAngle( float fAngle, int numbits ) { int d; unsigned int mask; unsigned int shift; shift = (1<(f)); int fractval = abs((int)(f*COORD_DENOMINATOR)) & (COORD_DENOMINATOR-1); // Send the bit flags that indicate whether we have an integer part and/or a fraction part. WriteOneBit( intval ); WriteOneBit( fractval ); if ( intval || fractval ) { // Send the sign bit WriteOneBit( signbit ); // Send the integer if we have one. if ( intval ) { // Adjust the integers from [1..MAX_COORD_VALUE] to [0..MAX_COORD_VALUE-1] intval--; WriteUBitLong( (unsigned int)intval, COORD_INTEGER_BITS ); } // Send the fraction if we have one if ( fractval ) { WriteUBitLong( (unsigned int)fractval, COORD_FRACTIONAL_BITS ); } } } void bf_write::WriteBitFloat(float val) { long intVal; Assert(sizeof(long) == sizeof(float)); Assert(sizeof(float) == 4); void *v = &val; intVal = *reinterpret_cast(v); WriteUBitLong( intVal, 32 ); } void bf_write::WriteBitVec3Coord( const Vector& fa ) { int xflag, yflag, zflag; xflag = (fa[0] >= COORD_RESOLUTION) || (fa[0] <= -COORD_RESOLUTION); yflag = (fa[1] >= COORD_RESOLUTION) || (fa[1] <= -COORD_RESOLUTION); zflag = (fa[2] >= COORD_RESOLUTION) || (fa[2] <= -COORD_RESOLUTION); WriteOneBit( xflag ); WriteOneBit( yflag ); WriteOneBit( zflag ); if ( xflag ) WriteBitCoord( fa[0] ); if ( yflag ) WriteBitCoord( fa[1] ); if ( zflag ) WriteBitCoord( fa[2] ); } void bf_write::WriteBitNormal( float f ) { int signbit = (f <= -NORMAL_RESOLUTION); // NOTE: Since +/-1 are valid values for a normal, I'm going to encode that as all ones unsigned int fractval = abs( (int)(f*NORMAL_DENOMINATOR) ); // clamp.. if (fractval > NORMAL_DENOMINATOR) fractval = NORMAL_DENOMINATOR; // Send the sign bit WriteOneBit( signbit ); // Send the fractional component WriteUBitLong( fractval, NORMAL_FRACTIONAL_BITS ); } void bf_write::WriteBitVec3Normal( const Vector& fa ) { int xflag, yflag; xflag = (fa[0] >= NORMAL_RESOLUTION) || (fa[0] <= -NORMAL_RESOLUTION); yflag = (fa[1] >= NORMAL_RESOLUTION) || (fa[1] <= -NORMAL_RESOLUTION); WriteOneBit( xflag ); WriteOneBit( yflag ); if ( xflag ) WriteBitNormal( fa[0] ); if ( yflag ) WriteBitNormal( fa[1] ); // Write z sign bit int signbit = (fa[2] <= -NORMAL_RESOLUTION); WriteOneBit( signbit ); } void bf_write::WriteBitAngles( const QAngle& fa ) { // FIXME: Vector tmp( fa.x, fa.y, fa.z ); WriteBitVec3Coord( tmp ); } void bf_write::WriteChar(int val) { WriteSBitLong(val, sizeof(char) << 3); } void bf_write::WriteByte(int val) { WriteUBitLong(val, sizeof(unsigned char) << 3); } void bf_write::WriteShort(int val) { WriteSBitLong(val, sizeof(short) << 3); } void bf_write::WriteWord(int val) { WriteUBitLong(val, sizeof(unsigned short) << 3); } void bf_write::WriteLong(long val) { WriteSBitLong(val, sizeof(long) << 3); } void bf_write::WriteFloat(float val) { WriteBits(&val, sizeof(val) << 3); } bool bf_write::WriteBytes( const void *pBuf, int nBytes ) { return WriteBits(pBuf, nBytes << 3); } bool bf_write::WriteString(const char *pStr) { if(pStr) { do { WriteChar( *pStr ); ++pStr; } while( *(pStr-1) != 0 ); } else { WriteChar( 0 ); } return !IsOverflowed(); } // ---------------------------------------------------------------------------------------- // // bf_read // ---------------------------------------------------------------------------------------- // bf_read::bf_read() { m_pData = NULL; m_nDataBytes = 0; m_nDataBits = -1; // set to -1 so we overflow on any operation m_iCurBit = 0; m_bOverflow = false; m_bAssertOnOverflow = true; m_pDebugName = NULL; } bf_read::bf_read( const void *pData, int nBytes, int nBits ) { m_bAssertOnOverflow = true; StartReading( pData, nBytes, 0, nBits ); } bf_read::bf_read( const char *pDebugName, const void *pData, int nBytes, int nBits ) { m_bAssertOnOverflow = true; m_pDebugName = pDebugName; StartReading( pData, nBytes, 0, nBits ); } void bf_read::StartReading( const void *pData, int nBytes, int iStartBit, int nBits ) { // Make sure we're dword aligned. Assert(((unsigned long)pData & 3) == 0); m_pData = (unsigned char*)pData; m_nDataBytes = nBytes; if ( nBits == -1 ) { m_nDataBits = m_nDataBytes << 3; } else { Assert( nBits <= nBytes*8 ); m_nDataBits = nBits; } m_iCurBit = iStartBit; m_bOverflow = false; } void bf_read::Reset() { m_iCurBit = 0; m_bOverflow = false; } void bf_read::SetAssertOnOverflow( bool bAssert ) { m_bAssertOnOverflow = bAssert; } const char* bf_read::GetDebugName() { return m_pDebugName; } void bf_read::SetDebugName( const char *pName ) { m_pDebugName = pName; } unsigned int bf_read::CheckReadUBitLong(int numbits) { // Ok, just read bits out. int i, nBitValue; unsigned int r = 0; for(i=0; i < numbits; i++) { nBitValue = ReadOneBitNoCheck(); r |= nBitValue << i; } m_iCurBit -= numbits; return r; } bool bf_read::ReadBits(void *pOutData, int nBits) { #if defined( BB_PROFILING ) VPROF( "bf_write::ReadBits" ); #endif unsigned char *pOut = (unsigned char*)pOutData; int nBitsLeft = nBits; // Get output dword-aligned. while(((unsigned long)pOut & 3) != 0 && nBitsLeft >= 8) { *pOut = (unsigned char)ReadUBitLong(8); ++pOut; nBitsLeft -= 8; } // Read dwords. while(nBitsLeft >= 32) { *((unsigned long*)pOut) = ReadUBitLong(32); pOut += sizeof(unsigned long); nBitsLeft -= 32; } // Read the remaining bytes. while(nBitsLeft >= 8) { *pOut = ReadUBitLong(8); ++pOut; nBitsLeft -= 8; } // Read the remaining bits. if(nBitsLeft) { *pOut = ReadUBitLong(nBitsLeft); } return !IsOverflowed(); } float bf_read::ReadBitAngle( int numbits ) { float fReturn; int i; float shift; shift = (float)( 1 << numbits ); i = ReadUBitLong( numbits ); fReturn = (float)i * (360.0 / shift); return fReturn; } unsigned int bf_read::PeekUBitLong( int numbits ) { unsigned int r; int i, nBitValue; #ifdef BIT_VERBOSE int nShifts = numbits; #endif bf_read savebf; savebf = *this; // Save current state info r = 0; for(i=0; i < numbits; i++) { nBitValue = ReadOneBit(); // Append to current stream if ( nBitValue ) { r |= 1 << i; } } *this = savebf; #ifdef BIT_VERBOSE Con_Printf( "PeekBitLong: %i %i\n", nShifts, (unsigned int)r ); #endif return r; } // Append numbits least significant bits from data to the current bit stream int bf_read::ReadSBitLong( int numbits ) { int r, sign; r = ReadUBitLong(numbits - 1); // Note: it does this wierdness here so it's bit-compatible with regular integer data in the buffer. // (Some old code writes direct integers right into the buffer). sign = ReadOneBit(); if(sign) r = -((1 << (numbits-1)) - r); return r; } unsigned int bf_read::ReadUBitVar() { int bits = 0; // how many bits are used to encode delta offset // how many bits do we use while ( ReadOneBit() == 0 ) bits++; unsigned int data = (1< 0) data += ReadUBitLong( bits ); return data; } unsigned int bf_read::ReadBitLong(int numbits, bool bSigned) { if(bSigned) return (unsigned int)ReadSBitLong(numbits); else return ReadUBitLong(numbits); } // Basic Coordinate Routines (these contain bit-field size AND fixed point scaling constants) float bf_read::ReadBitCoord (void) { #if defined( BB_PROFILING ) VPROF( "bf_write::ReadBitCoord" ); #endif int intval=0,fractval=0,signbit=0; float value = 0.0; // Read the required integer and fraction flags intval = ReadOneBit(); fractval = ReadOneBit(); // If we got either parse them, otherwise it's a zero. if ( intval || fractval ) { // Read the sign bit signbit = ReadOneBit(); // If there's an integer, read it in if ( intval ) { // Adjust the integers from [0..MAX_COORD_VALUE-1] to [1..MAX_COORD_VALUE] intval = ReadUBitLong( COORD_INTEGER_BITS ) + 1; } // If there's a fraction, read it in if ( fractval ) { fractval = ReadUBitLong( COORD_FRACTIONAL_BITS ); } // Calculate the correct floating point value value = intval + ((float)fractval * COORD_RESOLUTION); // Fixup the sign if negative. if ( signbit ) value = -value; } return value; } void bf_read::ReadBitVec3Coord( Vector& fa ) { int xflag, yflag, zflag; // This vector must be initialized! Otherwise, If any of the flags aren't set, // the corresponding component will not be read and will be stack garbage. fa.Init( 0, 0, 0 ); xflag = ReadOneBit(); yflag = ReadOneBit(); zflag = ReadOneBit(); if ( xflag ) fa[0] = ReadBitCoord(); if ( yflag ) fa[1] = ReadBitCoord(); if ( zflag ) fa[2] = ReadBitCoord(); } float bf_read::ReadBitNormal (void) { // Read the sign bit int signbit = ReadOneBit(); // Read the fractional part unsigned int fractval = ReadUBitLong( NORMAL_FRACTIONAL_BITS ); // Calculate the correct floating point value float value = (float)fractval * NORMAL_RESOLUTION; // Fixup the sign if negative. if ( signbit ) value = -value; return value; } void bf_read::ReadBitVec3Normal( Vector& fa ) { int xflag = ReadOneBit(); int yflag = ReadOneBit(); if (xflag) fa[0] = ReadBitNormal(); else fa[0] = 0.0f; if (yflag) fa[1] = ReadBitNormal(); else fa[1] = 0.0f; // The first two imply the third (but not its sign) int znegative = ReadOneBit(); float fafafbfb = fa[0] * fa[0] + fa[1] * fa[1]; if (fafafbfb < 1.0f) fa[2] = sqrt( 1.0f - fafafbfb ); else fa[2] = 0.0f; if (znegative) fa[2] = -fa[2]; } void bf_read::ReadBitAngles( QAngle& fa ) { Vector tmp; ReadBitVec3Coord( tmp ); fa.Init( tmp.x, tmp.y, tmp.z ); } int bf_read::ReadChar() { return ReadSBitLong(sizeof(char) << 3); } int bf_read::ReadByte() { return ReadUBitLong(sizeof(unsigned char) << 3); } int bf_read::ReadShort() { return ReadSBitLong(sizeof(short) << 3); } int bf_read::ReadWord() { return ReadUBitLong(sizeof(unsigned short) << 3); } long bf_read::ReadLong() { return ReadSBitLong(sizeof(long) << 3); } float bf_read::ReadFloat() { float ret; Assert( sizeof(ret) == 4 ); ReadBits(&ret, 32); return ret; } bool bf_read::ReadBytes(void *pOut, int nBytes) { return ReadBits(pOut, nBytes << 3); } bool bf_read::ReadString( char *pStr, int maxLen, bool bLine, int *pOutNumChars ) { Assert( maxLen != 0 ); bool bTooSmall = false; int iChar = 0; while(1) { char val = ReadChar(); if ( val == 0 ) break; else if ( bLine && val == '\n' ) break; if ( iChar < (maxLen-1) ) { pStr[iChar] = val; ++iChar; } else { bTooSmall = true; } } // Make sure it's null-terminated. Assert( iChar < maxLen ); pStr[iChar] = 0; if ( pOutNumChars ) *pOutNumChars = iChar; return !IsOverflowed() && !bTooSmall; } char* bf_read::ReadAndAllocateString( bool *pOverflow ) { char str[2048]; int nChars; bool bOverflow = !ReadString( str, sizeof( str ), false, &nChars ); if ( pOverflow ) *pOverflow = bOverflow; // Now copy into the output and return it; char *pRet = new char[ nChars + 1 ]; for ( int i=0; i <= nChars; i++ ) pRet[i] = str[i]; return pRet; } bool bf_read::Seek(int iBit) { if(iBit < 0) { SetOverflowFlag(); m_iCurBit = m_nDataBits; return false; } else if(iBit > m_nDataBits) { SetOverflowFlag(); m_iCurBit = m_nDataBits; return false; } else { m_iCurBit = iBit; return true; } } void bf_read::ExciseBits( int startbit, int bitstoremove ) { int endbit = startbit + bitstoremove; int remaining_to_end = m_nDataBits - endbit; bf_write temp; temp.StartWriting( (void *)m_pData, m_nDataBits << 3, startbit ); Seek( endbit ); for ( int i = 0; i < remaining_to_end; i++ ) { temp.WriteOneBit( ReadOneBit() ); } Seek( startbit ); m_nDataBits -= bitstoremove; m_nDataBytes = m_nDataBits >> 3; }