diff --git a/extensions/sqlite/AMBuilder b/extensions/sqlite/AMBuilder
index cb75742f..9bb7b978 100644
--- a/extensions/sqlite/AMBuilder
+++ b/extensions/sqlite/AMBuilder
@@ -13,27 +13,8 @@ binary = Cpp.LibraryBuilder('dbi.sqlite.ext', AMBuild, extension, compiler)
files = [
'sdk/smsdk_ext.cpp', 'sdk/sm_memtable.cpp', 'extension.cpp',
'driver/SqDatabase.cpp', 'driver/SqDriver.cpp', 'driver/SqQuery.cpp',
- 'driver/SqResults.cpp', 'sqlite-source/alter.c', 'sqlite-source/analyze.c',
- 'sqlite-source/attach.c', 'sqlite-source/auth.c', 'sqlite-source/btree.c',
- 'sqlite-source/build.c', 'sqlite-source/callback.c', 'sqlite-source/complete.c',
- 'sqlite-source/date.c', 'sqlite-source/delete.c', 'sqlite-source/expr.c',
- 'sqlite-source/func.c', 'sqlite-source/hash.c', 'sqlite-source/insert.c',
- 'sqlite-source/legacy.c', 'sqlite-source/main.c', 'sqlite-source/malloc.c',
- 'sqlite-source/opcodes.c', 'sqlite-source/os.c',
- 'sqlite-source/pager.c', 'sqlite-source/parse.c', 'sqlite-source/pragma.c',
- 'sqlite-source/prepare.c', 'sqlite-source/printf.c', 'sqlite-source/random.c',
- 'sqlite-source/select.c', 'sqlite-source/table.c', 'sqlite-source/tokenize.c',
- 'sqlite-source/trigger.c', 'sqlite-source/update.c', 'sqlite-source/utf.c',
- 'sqlite-source/util.c', 'sqlite-source/vacuum.c', 'sqlite-source/vdbe.c',
- 'sqlite-source/vdbeapi.c', 'sqlite-source/vdbeaux.c', 'sqlite-source/vdbeblob.c',
- 'sqlite-source/vdbefifo.c', 'sqlite-source/vdbemem.c', 'sqlite-source/vtab.c',
- 'sqlite-source/where.c', 'sqlite-source/btmutex.c', 'sqlite-source/journal.c',
- 'sqlite-source/mem1.c', 'sqlite-source/mem2.c', 'sqlite-source/mutex.c'
+ 'driver/SqResults.cpp', 'sqlite-source/sqlite3.c'
]
-if AMBuild.target['platform'] == 'windows':
- files.extend(['sqlite-source/mutex_w32.c', 'sqlite-source/os_win.c'])
-elif AMBuild.target['platform'] == 'linux' or AMBuild.target['platform'] == 'darwin':
- files.extend(['sqlite-source/mutex_unix.c', 'sqlite-source/os_unix.c'])
binary.AddSourceFiles('extensions/sqlite', files)
SM.AutoVersion('extensions/sqlite', binary)
binary.SendToJob()
diff --git a/extensions/sqlite/Makefile b/extensions/sqlite/Makefile
index adf0d4e9..9c0dbc17 100644
--- a/extensions/sqlite/Makefile
+++ b/extensions/sqlite/Makefile
@@ -22,23 +22,7 @@ OBJECTS = sdk/smsdk_ext.cpp sdk/sm_memtable.cpp extension.cpp \
driver/SqDatabase.cpp driver/SqDriver.cpp driver/SqQuery.cpp \
driver/SqResults.cpp
-OBJECTS += sqlite-source/alter.c sqlite-source/analyze.c \
- sqlite-source/attach.c sqlite-source/auth.c sqlite-source/btree.c \
- sqlite-source/build.c sqlite-source/callback.c sqlite-source/complete.c \
- sqlite-source/date.c sqlite-source/delete.c sqlite-source/expr.c \
- sqlite-source/func.c sqlite-source/hash.c sqlite-source/insert.c \
- sqlite-source/legacy.c sqlite-source/main.c sqlite-source/malloc.c \
- sqlite-source/opcodes.c sqlite-source/os.c sqlite-source/os_unix.c \
- sqlite-source/pager.c sqlite-source/parse.c sqlite-source/pragma.c \
- sqlite-source/prepare.c sqlite-source/printf.c sqlite-source/random.c \
- sqlite-source/select.c sqlite-source/table.c sqlite-source/tokenize.c \
- sqlite-source/trigger.c sqlite-source/update.c sqlite-source/utf.c \
- sqlite-source/util.c sqlite-source/vacuum.c sqlite-source/vdbe.c \
- sqlite-source/vdbeapi.c sqlite-source/vdbeaux.c sqlite-source/vdbeblob.c \
- sqlite-source/vdbefifo.c sqlite-source/vdbemem.c sqlite-source/vtab.c \
- sqlite-source/where.c sqlite-source/btmutex.c sqlite-source/journal.c \
- sqlite-source/mem1.c sqlite-source/mem2.c sqlite-source/mutex.c \
- sqlite-source/mutex_unix.c
+OBJECTS += sqlite-source/sqlite3.c
##############################################
### CONFIGURE ANY OTHER FLAGS/OPTIONS HERE ###
diff --git a/extensions/sqlite/msvc9/sm_sqlite.vcproj b/extensions/sqlite/msvc9/sm_sqlite.vcproj
index 8f4fe5be..d9594626 100644
--- a/extensions/sqlite/msvc9/sm_sqlite.vcproj
+++ b/extensions/sqlite/msvc9/sm_sqlite.vcproj
@@ -59,6 +59,7 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-/*
-** The code in this file only exists if we are not omitting the
-** ALTER TABLE logic from the build.
-*/
-#ifndef SQLITE_OMIT_ALTERTABLE
-
-
-/*
-** This function is used by SQL generated to implement the
-** ALTER TABLE command. The first argument is the text of a CREATE TABLE or
-** CREATE INDEX command. The second is a table name. The table name in
-** the CREATE TABLE or CREATE INDEX statement is replaced with the third
-** argument and the result returned. Examples:
-**
-** sqlite_rename_table('CREATE TABLE abc(a, b, c)', 'def')
-** -> 'CREATE TABLE def(a, b, c)'
-**
-** sqlite_rename_table('CREATE INDEX i ON abc(a)', 'def')
-** -> 'CREATE INDEX i ON def(a, b, c)'
-*/
-static void renameTableFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- unsigned char const *zSql = sqlite3_value_text(argv[0]);
- unsigned char const *zTableName = sqlite3_value_text(argv[1]);
-
- int token;
- Token tname;
- unsigned char const *zCsr = zSql;
- int len = 0;
- char *zRet;
-
- sqlite3 *db = sqlite3_user_data(context);
-
- /* The principle used to locate the table name in the CREATE TABLE
- ** statement is that the table name is the first token that is immediatedly
- ** followed by a left parenthesis - TK_LP - or "USING" TK_USING.
- */
- if( zSql ){
- do {
- if( !*zCsr ){
- /* Ran out of input before finding an opening bracket. Return NULL. */
- return;
- }
-
- /* Store the token that zCsr points to in tname. */
- tname.z = zCsr;
- tname.n = len;
-
- /* Advance zCsr to the next token. Store that token type in 'token',
- ** and it's length in 'len' (to be used next iteration of this loop).
- */
- do {
- zCsr += len;
- len = sqlite3GetToken(zCsr, &token);
- } while( token==TK_SPACE );
- assert( len>0 );
- } while( token!=TK_LP && token!=TK_USING );
-
- zRet = sqlite3MPrintf(db, "%.*s%Q%s", tname.z - zSql, zSql,
- zTableName, tname.z+tname.n);
- sqlite3_result_text(context, zRet, -1, sqlite3_free);
- }
-}
-
-#ifndef SQLITE_OMIT_TRIGGER
-/* This function is used by SQL generated to implement the
-** ALTER TABLE command. The first argument is the text of a CREATE TRIGGER
-** statement. The second is a table name. The table name in the CREATE
-** TRIGGER statement is replaced with the third argument and the result
-** returned. This is analagous to renameTableFunc() above, except for CREATE
-** TRIGGER, not CREATE INDEX and CREATE TABLE.
-*/
-static void renameTriggerFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- unsigned char const *zSql = sqlite3_value_text(argv[0]);
- unsigned char const *zTableName = sqlite3_value_text(argv[1]);
-
- int token;
- Token tname;
- int dist = 3;
- unsigned char const *zCsr = zSql;
- int len = 0;
- char *zRet;
-
- sqlite3 *db = sqlite3_user_data(context);
-
- /* The principle used to locate the table name in the CREATE TRIGGER
- ** statement is that the table name is the first token that is immediatedly
- ** preceded by either TK_ON or TK_DOT and immediatedly followed by one
- ** of TK_WHEN, TK_BEGIN or TK_FOR.
- */
- if( zSql ){
- do {
-
- if( !*zCsr ){
- /* Ran out of input before finding the table name. Return NULL. */
- return;
- }
-
- /* Store the token that zCsr points to in tname. */
- tname.z = zCsr;
- tname.n = len;
-
- /* Advance zCsr to the next token. Store that token type in 'token',
- ** and it's length in 'len' (to be used next iteration of this loop).
- */
- do {
- zCsr += len;
- len = sqlite3GetToken(zCsr, &token);
- }while( token==TK_SPACE );
- assert( len>0 );
-
- /* Variable 'dist' stores the number of tokens read since the most
- ** recent TK_DOT or TK_ON. This means that when a WHEN, FOR or BEGIN
- ** token is read and 'dist' equals 2, the condition stated above
- ** to be met.
- **
- ** Note that ON cannot be a database, table or column name, so
- ** there is no need to worry about syntax like
- ** "CREATE TRIGGER ... ON ON.ON BEGIN ..." etc.
- */
- dist++;
- if( token==TK_DOT || token==TK_ON ){
- dist = 0;
- }
- } while( dist!=2 || (token!=TK_WHEN && token!=TK_FOR && token!=TK_BEGIN) );
-
- /* Variable tname now contains the token that is the old table-name
- ** in the CREATE TRIGGER statement.
- */
- zRet = sqlite3MPrintf(db, "%.*s%Q%s", tname.z - zSql, zSql,
- zTableName, tname.z+tname.n);
- sqlite3_result_text(context, zRet, -1, sqlite3_free);
- }
-}
-#endif /* !SQLITE_OMIT_TRIGGER */
-
-/*
-** Register built-in functions used to help implement ALTER TABLE
-*/
-void sqlite3AlterFunctions(sqlite3 *db){
- static const struct {
- char *zName;
- signed char nArg;
- void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
- } aFuncs[] = {
- { "sqlite_rename_table", 2, renameTableFunc},
-#ifndef SQLITE_OMIT_TRIGGER
- { "sqlite_rename_trigger", 2, renameTriggerFunc},
-#endif
- };
- int i;
-
- for(i=0; idb->aDb[1].pSchema; /* Temp db schema */
-
- /* If the table is not located in the temp-db (in which case NULL is
- ** returned, loop through the tables list of triggers. For each trigger
- ** that is not part of the temp-db schema, add a clause to the WHERE
- ** expression being built up in zWhere.
- */
- if( pTab->pSchema!=pTempSchema ){
- sqlite3 *db = pParse->db;
- for( pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext ){
- if( pTrig->pSchema==pTempSchema ){
- if( !zWhere ){
- zWhere = sqlite3MPrintf(db, "name=%Q", pTrig->name);
- }else{
- tmp = zWhere;
- zWhere = sqlite3MPrintf(db, "%s OR name=%Q", zWhere, pTrig->name);
- sqlite3_free(tmp);
- }
- }
- }
- }
- return zWhere;
-}
-
-/*
-** Generate code to drop and reload the internal representation of table
-** pTab from the database, including triggers and temporary triggers.
-** Argument zName is the name of the table in the database schema at
-** the time the generated code is executed. This can be different from
-** pTab->zName if this function is being called to code part of an
-** "ALTER TABLE RENAME TO" statement.
-*/
-static void reloadTableSchema(Parse *pParse, Table *pTab, const char *zName){
- Vdbe *v;
- char *zWhere;
- int iDb; /* Index of database containing pTab */
-#ifndef SQLITE_OMIT_TRIGGER
- Trigger *pTrig;
-#endif
-
- v = sqlite3GetVdbe(pParse);
- if( !v ) return;
- assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
- iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
- assert( iDb>=0 );
-
-#ifndef SQLITE_OMIT_TRIGGER
- /* Drop any table triggers from the internal schema. */
- for(pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext){
- int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
- assert( iTrigDb==iDb || iTrigDb==1 );
- sqlite3VdbeOp3(v, OP_DropTrigger, iTrigDb, 0, pTrig->name, 0);
- }
-#endif
-
- /* Drop the table and index from the internal schema */
- sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0);
-
- /* Reload the table, index and permanent trigger schemas. */
- zWhere = sqlite3MPrintf(pParse->db, "tbl_name=%Q", zName);
- if( !zWhere ) return;
- sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0, zWhere, P3_DYNAMIC);
-
-#ifndef SQLITE_OMIT_TRIGGER
- /* Now, if the table is not stored in the temp database, reload any temp
- ** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined.
- */
- if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
- sqlite3VdbeOp3(v, OP_ParseSchema, 1, 0, zWhere, P3_DYNAMIC);
- }
-#endif
-}
-
-/*
-** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy"
-** command.
-*/
-void sqlite3AlterRenameTable(
- Parse *pParse, /* Parser context. */
- SrcList *pSrc, /* The table to rename. */
- Token *pName /* The new table name. */
-){
- int iDb; /* Database that contains the table */
- char *zDb; /* Name of database iDb */
- Table *pTab; /* Table being renamed */
- char *zName = 0; /* NULL-terminated version of pName */
- sqlite3 *db = pParse->db; /* Database connection */
- int nTabName; /* Number of UTF-8 characters in zTabName */
- const char *zTabName; /* Original name of the table */
- Vdbe *v;
-#ifndef SQLITE_OMIT_TRIGGER
- char *zWhere = 0; /* Where clause to locate temp triggers */
-#endif
- int isVirtualRename = 0; /* True if this is a v-table with an xRename() */
-
- if( db->mallocFailed ) goto exit_rename_table;
- assert( pSrc->nSrc==1 );
- assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
-
- pTab = sqlite3LocateTable(pParse, pSrc->a[0].zName, pSrc->a[0].zDatabase);
- if( !pTab ) goto exit_rename_table;
- iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
- zDb = db->aDb[iDb].zName;
-
- /* Get a NULL terminated version of the new table name. */
- zName = sqlite3NameFromToken(db, pName);
- if( !zName ) goto exit_rename_table;
-
- /* Check that a table or index named 'zName' does not already exist
- ** in database iDb. If so, this is an error.
- */
- if( sqlite3FindTable(db, zName, zDb) || sqlite3FindIndex(db, zName, zDb) ){
- sqlite3ErrorMsg(pParse,
- "there is already another table or index with this name: %s", zName);
- goto exit_rename_table;
- }
-
- /* Make sure it is not a system table being altered, or a reserved name
- ** that the table is being renamed to.
- */
- if( strlen(pTab->zName)>6 && 0==sqlite3StrNICmp(pTab->zName, "sqlite_", 7) ){
- sqlite3ErrorMsg(pParse, "table %s may not be altered", pTab->zName);
- goto exit_rename_table;
- }
- if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
- goto exit_rename_table;
- }
-
-#ifndef SQLITE_OMIT_AUTHORIZATION
- /* Invoke the authorization callback. */
- if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
- goto exit_rename_table;
- }
-#endif
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( sqlite3ViewGetColumnNames(pParse, pTab) ){
- goto exit_rename_table;
- }
- if( IsVirtual(pTab) && pTab->pMod->pModule->xRename ){
- isVirtualRename = 1;
- }
-#endif
-
- /* Begin a transaction and code the VerifyCookie for database iDb.
- ** Then modify the schema cookie (since the ALTER TABLE modifies the
- ** schema). Open a statement transaction if the table is a virtual
- ** table.
- */
- v = sqlite3GetVdbe(pParse);
- if( v==0 ){
- goto exit_rename_table;
- }
- sqlite3BeginWriteOperation(pParse, isVirtualRename, iDb);
- sqlite3ChangeCookie(db, v, iDb);
-
- /* If this is a virtual table, invoke the xRename() function if
- ** one is defined. The xRename() callback will modify the names
- ** of any resources used by the v-table implementation (including other
- ** SQLite tables) that are identified by the name of the virtual table.
- */
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( isVirtualRename ){
- sqlite3VdbeOp3(v, OP_String8, 0, 0, zName, 0);
- sqlite3VdbeOp3(v, OP_VRename, 0, 0, (const char*)pTab->pVtab, P3_VTAB);
- }
-#endif
-
- /* figure out how many UTF-8 characters are in zName */
- zTabName = pTab->zName;
- nTabName = sqlite3Utf8CharLen(zTabName, -1);
-
- /* Modify the sqlite_master table to use the new table name. */
- sqlite3NestedParse(pParse,
- "UPDATE %Q.%s SET "
-#ifdef SQLITE_OMIT_TRIGGER
- "sql = sqlite_rename_table(sql, %Q), "
-#else
- "sql = CASE "
- "WHEN type = 'trigger' THEN sqlite_rename_trigger(sql, %Q)"
- "ELSE sqlite_rename_table(sql, %Q) END, "
-#endif
- "tbl_name = %Q, "
- "name = CASE "
- "WHEN type='table' THEN %Q "
- "WHEN name LIKE 'sqlite_autoindex%%' AND type='index' THEN "
- "'sqlite_autoindex_' || %Q || substr(name,%d+18,10) "
- "ELSE name END "
- "WHERE tbl_name=%Q AND "
- "(type='table' OR type='index' OR type='trigger');",
- zDb, SCHEMA_TABLE(iDb), zName, zName, zName,
-#ifndef SQLITE_OMIT_TRIGGER
- zName,
-#endif
- zName, nTabName, zTabName
- );
-
-#ifndef SQLITE_OMIT_AUTOINCREMENT
- /* If the sqlite_sequence table exists in this database, then update
- ** it with the new table name.
- */
- if( sqlite3FindTable(db, "sqlite_sequence", zDb) ){
- sqlite3NestedParse(pParse,
- "UPDATE %Q.sqlite_sequence set name = %Q WHERE name = %Q",
- zDb, zName, pTab->zName);
- }
-#endif
-
-#ifndef SQLITE_OMIT_TRIGGER
- /* If there are TEMP triggers on this table, modify the sqlite_temp_master
- ** table. Don't do this if the table being ALTERed is itself located in
- ** the temp database.
- */
- if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
- sqlite3NestedParse(pParse,
- "UPDATE sqlite_temp_master SET "
- "sql = sqlite_rename_trigger(sql, %Q), "
- "tbl_name = %Q "
- "WHERE %s;", zName, zName, zWhere);
- sqlite3_free(zWhere);
- }
-#endif
-
- /* Drop and reload the internal table schema. */
- reloadTableSchema(pParse, pTab, zName);
-
-exit_rename_table:
- sqlite3SrcListDelete(pSrc);
- sqlite3_free(zName);
-}
-
-
-/*
-** This function is called after an "ALTER TABLE ... ADD" statement
-** has been parsed. Argument pColDef contains the text of the new
-** column definition.
-**
-** The Table structure pParse->pNewTable was extended to include
-** the new column during parsing.
-*/
-void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
- Table *pNew; /* Copy of pParse->pNewTable */
- Table *pTab; /* Table being altered */
- int iDb; /* Database number */
- const char *zDb; /* Database name */
- const char *zTab; /* Table name */
- char *zCol; /* Null-terminated column definition */
- Column *pCol; /* The new column */
- Expr *pDflt; /* Default value for the new column */
- sqlite3 *db; /* The database connection; */
-
- if( pParse->nErr ) return;
- pNew = pParse->pNewTable;
- assert( pNew );
-
- db = pParse->db;
- assert( sqlite3BtreeHoldsAllMutexes(db) );
- iDb = sqlite3SchemaToIndex(db, pNew->pSchema);
- zDb = db->aDb[iDb].zName;
- zTab = pNew->zName;
- pCol = &pNew->aCol[pNew->nCol-1];
- pDflt = pCol->pDflt;
- pTab = sqlite3FindTable(db, zTab, zDb);
- assert( pTab );
-
-#ifndef SQLITE_OMIT_AUTHORIZATION
- /* Invoke the authorization callback. */
- if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
- return;
- }
-#endif
-
- /* If the default value for the new column was specified with a
- ** literal NULL, then set pDflt to 0. This simplifies checking
- ** for an SQL NULL default below.
- */
- if( pDflt && pDflt->op==TK_NULL ){
- pDflt = 0;
- }
-
- /* Check that the new column is not specified as PRIMARY KEY or UNIQUE.
- ** If there is a NOT NULL constraint, then the default value for the
- ** column must not be NULL.
- */
- if( pCol->isPrimKey ){
- sqlite3ErrorMsg(pParse, "Cannot add a PRIMARY KEY column");
- return;
- }
- if( pNew->pIndex ){
- sqlite3ErrorMsg(pParse, "Cannot add a UNIQUE column");
- return;
- }
- if( pCol->notNull && !pDflt ){
- sqlite3ErrorMsg(pParse,
- "Cannot add a NOT NULL column with default value NULL");
- return;
- }
-
- /* Ensure the default expression is something that sqlite3ValueFromExpr()
- ** can handle (i.e. not CURRENT_TIME etc.)
- */
- if( pDflt ){
- sqlite3_value *pVal;
- if( sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){
- db->mallocFailed = 1;
- return;
- }
- if( !pVal ){
- sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default");
- return;
- }
- sqlite3ValueFree(pVal);
- }
-
- /* Modify the CREATE TABLE statement. */
- zCol = sqlite3DbStrNDup(db, (char*)pColDef->z, pColDef->n);
- if( zCol ){
- char *zEnd = &zCol[pColDef->n-1];
- while( (zEnd>zCol && *zEnd==';') || isspace(*(unsigned char *)zEnd) ){
- *zEnd-- = '\0';
- }
- sqlite3NestedParse(pParse,
- "UPDATE %Q.%s SET "
- "sql = substr(sql,1,%d) || ', ' || %Q || substr(sql,%d,length(sql)) "
- "WHERE type = 'table' AND name = %Q",
- zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1,
- zTab
- );
- sqlite3_free(zCol);
- }
-
- /* If the default value of the new column is NULL, then set the file
- ** format to 2. If the default value of the new column is not NULL,
- ** the file format becomes 3.
- */
- sqlite3MinimumFileFormat(pParse, iDb, pDflt ? 3 : 2);
-
- /* Reload the schema of the modified table. */
- reloadTableSchema(pParse, pTab, pTab->zName);
-}
-
-/*
-** This function is called by the parser after the table-name in
-** an "ALTER TABLE ADD" statement is parsed. Argument
-** pSrc is the full-name of the table being altered.
-**
-** This routine makes a (partial) copy of the Table structure
-** for the table being altered and sets Parse.pNewTable to point
-** to it. Routines called by the parser as the column definition
-** is parsed (i.e. sqlite3AddColumn()) add the new Column data to
-** the copy. The copy of the Table structure is deleted by tokenize.c
-** after parsing is finished.
-**
-** Routine sqlite3AlterFinishAddColumn() will be called to complete
-** coding the "ALTER TABLE ... ADD" statement.
-*/
-void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){
- Table *pNew;
- Table *pTab;
- Vdbe *v;
- int iDb;
- int i;
- int nAlloc;
- sqlite3 *db = pParse->db;
-
- /* Look up the table being altered. */
- assert( pParse->pNewTable==0 );
- assert( sqlite3BtreeHoldsAllMutexes(db) );
- if( db->mallocFailed ) goto exit_begin_add_column;
- pTab = sqlite3LocateTable(pParse, pSrc->a[0].zName, pSrc->a[0].zDatabase);
- if( !pTab ) goto exit_begin_add_column;
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( IsVirtual(pTab) ){
- sqlite3ErrorMsg(pParse, "virtual tables may not be altered");
- goto exit_begin_add_column;
- }
-#endif
-
- /* Make sure this is not an attempt to ALTER a view. */
- if( pTab->pSelect ){
- sqlite3ErrorMsg(pParse, "Cannot add a column to a view");
- goto exit_begin_add_column;
- }
-
- assert( pTab->addColOffset>0 );
- iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
-
- /* Put a copy of the Table struct in Parse.pNewTable for the
- ** sqlite3AddColumn() function and friends to modify.
- */
- pNew = (Table*)sqlite3DbMallocZero(db, sizeof(Table));
- if( !pNew ) goto exit_begin_add_column;
- pParse->pNewTable = pNew;
- pNew->nRef = 1;
- pNew->nCol = pTab->nCol;
- assert( pNew->nCol>0 );
- nAlloc = (((pNew->nCol-1)/8)*8)+8;
- assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 );
- pNew->aCol = (Column*)sqlite3DbMallocZero(db, sizeof(Column)*nAlloc);
- pNew->zName = sqlite3DbStrDup(db, pTab->zName);
- if( !pNew->aCol || !pNew->zName ){
- db->mallocFailed = 1;
- goto exit_begin_add_column;
- }
- memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol);
- for(i=0; inCol; i++){
- Column *pCol = &pNew->aCol[i];
- pCol->zName = sqlite3DbStrDup(db, pCol->zName);
- pCol->zColl = 0;
- pCol->zType = 0;
- pCol->pDflt = 0;
- }
- pNew->pSchema = db->aDb[iDb].pSchema;
- pNew->addColOffset = pTab->addColOffset;
- pNew->nRef = 1;
-
- /* Begin a transaction and increment the schema cookie. */
- sqlite3BeginWriteOperation(pParse, 0, iDb);
- v = sqlite3GetVdbe(pParse);
- if( !v ) goto exit_begin_add_column;
- sqlite3ChangeCookie(db, v, iDb);
-
-exit_begin_add_column:
- sqlite3SrcListDelete(pSrc);
- return;
-}
-#endif /* SQLITE_ALTER_TABLE */
diff --git a/extensions/sqlite/sqlite-source/analyze.c b/extensions/sqlite/sqlite-source/analyze.c
deleted file mode 100644
index 7aef3f67..00000000
--- a/extensions/sqlite/sqlite-source/analyze.c
+++ /dev/null
@@ -1,418 +0,0 @@
-/*
-** 2005 July 8
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains code associated with the ANALYZE command.
-**
-** @(#) $Id$
-*/
-#ifndef SQLITE_OMIT_ANALYZE
-#include "sqliteInt.h"
-
-/*
-** This routine generates code that opens the sqlite_stat1 table on cursor
-** iStatCur.
-**
-** If the sqlite_stat1 tables does not previously exist, it is created.
-** If it does previously exist, all entires associated with table zWhere
-** are removed. If zWhere==0 then all entries are removed.
-*/
-static void openStatTable(
- Parse *pParse, /* Parsing context */
- int iDb, /* The database we are looking in */
- int iStatCur, /* Open the sqlite_stat1 table on this cursor */
- const char *zWhere /* Delete entries associated with this table */
-){
- sqlite3 *db = pParse->db;
- Db *pDb;
- int iRootPage;
- Table *pStat;
- Vdbe *v = sqlite3GetVdbe(pParse);
-
- if( v==0 ) return;
- assert( sqlite3BtreeHoldsAllMutexes(db) );
- assert( sqlite3VdbeDb(v)==db );
- pDb = &db->aDb[iDb];
- if( (pStat = sqlite3FindTable(db, "sqlite_stat1", pDb->zName))==0 ){
- /* The sqlite_stat1 tables does not exist. Create it.
- ** Note that a side-effect of the CREATE TABLE statement is to leave
- ** the rootpage of the new table on the top of the stack. This is
- ** important because the OpenWrite opcode below will be needing it. */
- sqlite3NestedParse(pParse,
- "CREATE TABLE %Q.sqlite_stat1(tbl,idx,stat)",
- pDb->zName
- );
- iRootPage = 0; /* Cause rootpage to be taken from top of stack */
- }else if( zWhere ){
- /* The sqlite_stat1 table exists. Delete all entries associated with
- ** the table zWhere. */
- sqlite3NestedParse(pParse,
- "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q",
- pDb->zName, zWhere
- );
- iRootPage = pStat->tnum;
- }else{
- /* The sqlite_stat1 table already exists. Delete all rows. */
- iRootPage = pStat->tnum;
- sqlite3VdbeAddOp(v, OP_Clear, pStat->tnum, iDb);
- }
-
- /* Open the sqlite_stat1 table for writing. Unless it was created
- ** by this vdbe program, lock it for writing at the shared-cache level.
- ** If this vdbe did create the sqlite_stat1 table, then it must have
- ** already obtained a schema-lock, making the write-lock redundant.
- */
- if( iRootPage>0 ){
- sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1");
- }
- sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
- sqlite3VdbeAddOp(v, OP_OpenWrite, iStatCur, iRootPage);
- sqlite3VdbeAddOp(v, OP_SetNumColumns, iStatCur, 3);
-}
-
-/*
-** Generate code to do an analysis of all indices associated with
-** a single table.
-*/
-static void analyzeOneTable(
- Parse *pParse, /* Parser context */
- Table *pTab, /* Table whose indices are to be analyzed */
- int iStatCur, /* Cursor that writes to the sqlite_stat1 table */
- int iMem /* Available memory locations begin here */
-){
- Index *pIdx; /* An index to being analyzed */
- int iIdxCur; /* Cursor number for index being analyzed */
- int nCol; /* Number of columns in the index */
- Vdbe *v; /* The virtual machine being built up */
- int i; /* Loop counter */
- int topOfLoop; /* The top of the loop */
- int endOfLoop; /* The end of the loop */
- int addr; /* The address of an instruction */
- int iDb; /* Index of database containing pTab */
-
- v = sqlite3GetVdbe(pParse);
- if( v==0 || pTab==0 || pTab->pIndex==0 ){
- /* Do no analysis for tables that have no indices */
- return;
- }
- assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
- iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
- assert( iDb>=0 );
-#ifndef SQLITE_OMIT_AUTHORIZATION
- if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
- pParse->db->aDb[iDb].zName ) ){
- return;
- }
-#endif
-
- /* Establish a read-lock on the table at the shared-cache level. */
- sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
-
- iIdxCur = pParse->nTab;
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
-
- /* Open a cursor to the index to be analyzed
- */
- assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) );
- sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
- VdbeComment((v, "# %s", pIdx->zName));
- sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum,
- (char *)pKey, P3_KEYINFO_HANDOFF);
- nCol = pIdx->nColumn;
- if( iMem+nCol*2>=pParse->nMem ){
- pParse->nMem = iMem+nCol*2+1;
- }
- sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, nCol+1);
-
- /* Memory cells are used as follows:
- **
- ** mem[iMem]: The total number of rows in the table.
- ** mem[iMem+1]: Number of distinct values in column 1
- ** ...
- ** mem[iMem+nCol]: Number of distinct values in column N
- ** mem[iMem+nCol+1] Last observed value of column 1
- ** ...
- ** mem[iMem+nCol+nCol]: Last observed value of column N
- **
- ** Cells iMem through iMem+nCol are initialized to 0. The others
- ** are initialized to NULL.
- */
- for(i=0; i<=nCol; i++){
- sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem+i);
- }
- for(i=0; i0 then it is always the case the D>0 so division by zero
- ** is never possible.
- */
- sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
- addr = sqlite3VdbeAddOp(v, OP_IfNot, 0, 0);
- sqlite3VdbeAddOp(v, OP_NewRowid, iStatCur, 0);
- sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
- sqlite3VdbeOp3(v, OP_String8, 0, 0, pIdx->zName, 0);
- sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
- sqlite3VdbeOp3(v, OP_String8, 0, 0, " ", 0);
- for(i=0; idb;
- Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */
- HashElem *k;
- int iStatCur;
- int iMem;
-
- sqlite3BeginWriteOperation(pParse, 0, iDb);
- iStatCur = pParse->nTab++;
- openStatTable(pParse, iDb, iStatCur, 0);
- iMem = pParse->nMem;
- for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
- Table *pTab = (Table*)sqliteHashData(k);
- analyzeOneTable(pParse, pTab, iStatCur, iMem);
- }
- loadAnalysis(pParse, iDb);
-}
-
-/*
-** Generate code that will do an analysis of a single table in
-** a database.
-*/
-static void analyzeTable(Parse *pParse, Table *pTab){
- int iDb;
- int iStatCur;
-
- assert( pTab!=0 );
- assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
- iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
- sqlite3BeginWriteOperation(pParse, 0, iDb);
- iStatCur = pParse->nTab++;
- openStatTable(pParse, iDb, iStatCur, pTab->zName);
- analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem);
- loadAnalysis(pParse, iDb);
-}
-
-/*
-** Generate code for the ANALYZE command. The parser calls this routine
-** when it recognizes an ANALYZE command.
-**
-** ANALYZE -- 1
-** ANALYZE -- 2
-** ANALYZE ?.? -- 3
-**
-** Form 1 causes all indices in all attached databases to be analyzed.
-** Form 2 analyzes all indices the single database named.
-** Form 3 analyzes all indices associated with the named table.
-*/
-void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
- sqlite3 *db = pParse->db;
- int iDb;
- int i;
- char *z, *zDb;
- Table *pTab;
- Token *pTableName;
-
- /* Read the database schema. If an error occurs, leave an error message
- ** and code in pParse and return NULL. */
- assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
- if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
- return;
- }
-
- if( pName1==0 ){
- /* Form 1: Analyze everything */
- for(i=0; inDb; i++){
- if( i==1 ) continue; /* Do not analyze the TEMP database */
- analyzeDatabase(pParse, i);
- }
- }else if( pName2==0 || pName2->n==0 ){
- /* Form 2: Analyze the database or table named */
- iDb = sqlite3FindDb(db, pName1);
- if( iDb>=0 ){
- analyzeDatabase(pParse, iDb);
- }else{
- z = sqlite3NameFromToken(db, pName1);
- pTab = sqlite3LocateTable(pParse, z, 0);
- sqlite3_free(z);
- if( pTab ){
- analyzeTable(pParse, pTab);
- }
- }
- }else{
- /* Form 3: Analyze the fully qualified table name */
- iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
- if( iDb>=0 ){
- zDb = db->aDb[iDb].zName;
- z = sqlite3NameFromToken(db, pTableName);
- if( z ){
- pTab = sqlite3LocateTable(pParse, z, zDb);
- sqlite3_free(z);
- if( pTab ){
- analyzeTable(pParse, pTab);
- }
- }
- }
- }
-}
-
-/*
-** Used to pass information from the analyzer reader through to the
-** callback routine.
-*/
-typedef struct analysisInfo analysisInfo;
-struct analysisInfo {
- sqlite3 *db;
- const char *zDatabase;
-};
-
-/*
-** This callback is invoked once for each index when reading the
-** sqlite_stat1 table.
-**
-** argv[0] = name of the index
-** argv[1] = results of analysis - on integer for each column
-*/
-static int analysisLoader(void *pData, int argc, char **argv, char **azNotUsed){
- analysisInfo *pInfo = (analysisInfo*)pData;
- Index *pIndex;
- int i, c;
- unsigned int v;
- const char *z;
-
- assert( argc==2 );
- if( argv==0 || argv[0]==0 || argv[1]==0 ){
- return 0;
- }
- pIndex = sqlite3FindIndex(pInfo->db, argv[0], pInfo->zDatabase);
- if( pIndex==0 ){
- return 0;
- }
- z = argv[1];
- for(i=0; *z && i<=pIndex->nColumn; i++){
- v = 0;
- while( (c=z[0])>='0' && c<='9' ){
- v = v*10 + c - '0';
- z++;
- }
- pIndex->aiRowEst[i] = v;
- if( *z==' ' ) z++;
- }
- return 0;
-}
-
-/*
-** Load the content of the sqlite_stat1 table into the index hash tables.
-*/
-int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
- analysisInfo sInfo;
- HashElem *i;
- char *zSql;
- int rc;
-
- assert( iDb>=0 && iDbnDb );
- assert( db->aDb[iDb].pBt!=0 );
- assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
-
- /* Clear any prior statistics */
- for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
- Index *pIdx = sqliteHashData(i);
- sqlite3DefaultRowEst(pIdx);
- }
-
- /* Check to make sure the sqlite_stat1 table existss */
- sInfo.db = db;
- sInfo.zDatabase = db->aDb[iDb].zName;
- if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
- return SQLITE_ERROR;
- }
-
-
- /* Load new statistics out of the sqlite_stat1 table */
- zSql = sqlite3MPrintf(db, "SELECT idx, stat FROM %Q.sqlite_stat1",
- sInfo.zDatabase);
- sqlite3SafetyOff(db);
- rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
- sqlite3SafetyOn(db);
- sqlite3_free(zSql);
- return rc;
-}
-
-
-#endif /* SQLITE_OMIT_ANALYZE */
diff --git a/extensions/sqlite/sqlite-source/attach.c b/extensions/sqlite/sqlite-source/attach.c
deleted file mode 100644
index 271116b7..00000000
--- a/extensions/sqlite/sqlite-source/attach.c
+++ /dev/null
@@ -1,521 +0,0 @@
-/*
-** 2003 April 6
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains code used to implement the ATTACH and DETACH commands.
-**
-** $Id$
-*/
-#include "sqliteInt.h"
-
-#ifndef SQLITE_OMIT_ATTACH
-/*
-** Resolve an expression that was part of an ATTACH or DETACH statement. This
-** is slightly different from resolving a normal SQL expression, because simple
-** identifiers are treated as strings, not possible column names or aliases.
-**
-** i.e. if the parser sees:
-**
-** ATTACH DATABASE abc AS def
-**
-** it treats the two expressions as literal strings 'abc' and 'def' instead of
-** looking for columns of the same name.
-**
-** This only applies to the root node of pExpr, so the statement:
-**
-** ATTACH DATABASE abc||def AS 'db2'
-**
-** will fail because neither abc or def can be resolved.
-*/
-static int resolveAttachExpr(NameContext *pName, Expr *pExpr)
-{
- int rc = SQLITE_OK;
- if( pExpr ){
- if( pExpr->op!=TK_ID ){
- rc = sqlite3ExprResolveNames(pName, pExpr);
- if( rc==SQLITE_OK && !sqlite3ExprIsConstant(pExpr) ){
- sqlite3ErrorMsg(pName->pParse, "invalid name: \"%T\"", &pExpr->span);
- return SQLITE_ERROR;
- }
- }else{
- pExpr->op = TK_STRING;
- }
- }
- return rc;
-}
-
-/*
-** An SQL user-function registered to do the work of an ATTACH statement. The
-** three arguments to the function come directly from an attach statement:
-**
-** ATTACH DATABASE x AS y KEY z
-**
-** SELECT sqlite_attach(x, y, z)
-**
-** If the optional "KEY z" syntax is omitted, an SQL NULL is passed as the
-** third argument.
-*/
-static void attachFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- int i;
- int rc = 0;
- sqlite3 *db = sqlite3_user_data(context);
- const char *zName;
- const char *zFile;
- Db *aNew;
- char *zErrDyn = 0;
- char zErr[128];
-
- zFile = (const char *)sqlite3_value_text(argv[0]);
- zName = (const char *)sqlite3_value_text(argv[1]);
- if( zFile==0 ) zFile = "";
- if( zName==0 ) zName = "";
-
- /* Check for the following errors:
- **
- ** * Too many attached databases,
- ** * Transaction currently open
- ** * Specified database name already being used.
- */
- if( db->nDb>=SQLITE_MAX_ATTACHED+2 ){
- sqlite3_snprintf(
- sizeof(zErr), zErr, "too many attached databases - max %d",
- SQLITE_MAX_ATTACHED
- );
- goto attach_error;
- }
- if( !db->autoCommit ){
- sqlite3_snprintf(sizeof(zErr), zErr,
- "cannot ATTACH database within transaction");
- goto attach_error;
- }
- for(i=0; inDb; i++){
- char *z = db->aDb[i].zName;
- if( z && zName && sqlite3StrICmp(z, zName)==0 ){
- sqlite3_snprintf(sizeof(zErr), zErr,
- "database %s is already in use", zName);
- goto attach_error;
- }
- }
-
- /* Allocate the new entry in the db->aDb[] array and initialise the schema
- ** hash tables.
- */
- if( db->aDb==db->aDbStatic ){
- aNew = sqlite3_malloc( sizeof(db->aDb[0])*3 );
- if( aNew==0 ){
- db->mallocFailed = 1;
- return;
- }
- memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2);
- }else{
- aNew = sqlite3_realloc(db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
- if( aNew==0 ){
- db->mallocFailed = 1;
- return;
- }
- }
- db->aDb = aNew;
- aNew = &db->aDb[db->nDb++];
- memset(aNew, 0, sizeof(*aNew));
-
- /* Open the database file. If the btree is successfully opened, use
- ** it to obtain the database schema. At this point the schema may
- ** or may not be initialised.
- */
- rc = sqlite3BtreeFactory(db, zFile, 0, SQLITE_DEFAULT_CACHE_SIZE,
- db->openFlags | SQLITE_OPEN_MAIN_DB,
- &aNew->pBt);
- if( rc==SQLITE_OK ){
- aNew->pSchema = sqlite3SchemaGet(db, aNew->pBt);
- if( !aNew->pSchema ){
- rc = SQLITE_NOMEM;
- }else if( aNew->pSchema->file_format && aNew->pSchema->enc!=ENC(db) ){
- sqlite3_snprintf(sizeof(zErr), zErr,
- "attached databases must use the same text encoding as main database");
- goto attach_error;
- }
- sqlite3PagerLockingMode(sqlite3BtreePager(aNew->pBt), db->dfltLockMode);
- }
- aNew->zName = sqlite3DbStrDup(db, zName);
- aNew->safety_level = 3;
-
-#if SQLITE_HAS_CODEC
- {
- extern int sqlite3CodecAttach(sqlite3*, int, const void*, int);
- extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
- int nKey;
- char *zKey;
- int t = sqlite3_value_type(argv[2]);
- switch( t ){
- case SQLITE_INTEGER:
- case SQLITE_FLOAT:
- zErrDyn = sqlite3DbStrDup(db, "Invalid key value");
- rc = SQLITE_ERROR;
- break;
-
- case SQLITE_TEXT:
- case SQLITE_BLOB:
- nKey = sqlite3_value_bytes(argv[2]);
- zKey = (char *)sqlite3_value_blob(argv[2]);
- sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
- break;
-
- case SQLITE_NULL:
- /* No key specified. Use the key from the main database */
- sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey);
- sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
- break;
- }
- }
-#endif
-
- /* If the file was opened successfully, read the schema for the new database.
- ** If this fails, or if opening the file failed, then close the file and
- ** remove the entry from the db->aDb[] array. i.e. put everything back the way
- ** we found it.
- */
- if( rc==SQLITE_OK ){
- sqlite3SafetyOn(db);
- rc = sqlite3Init(db, &zErrDyn);
- sqlite3SafetyOff(db);
- }
- if( rc ){
- int iDb = db->nDb - 1;
- assert( iDb>=2 );
- if( db->aDb[iDb].pBt ){
- sqlite3BtreeClose(db->aDb[iDb].pBt);
- db->aDb[iDb].pBt = 0;
- db->aDb[iDb].pSchema = 0;
- }
- sqlite3ResetInternalSchema(db, 0);
- db->nDb = iDb;
- if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
- db->mallocFailed = 1;
- sqlite3_snprintf(sizeof(zErr),zErr, "out of memory");
- }else{
- sqlite3_snprintf(sizeof(zErr),zErr, "unable to open database: %s", zFile);
- }
- goto attach_error;
- }
-
- return;
-
-attach_error:
- /* Return an error if we get here */
- if( zErrDyn ){
- sqlite3_result_error(context, zErrDyn, -1);
- sqlite3_free(zErrDyn);
- }else{
- zErr[sizeof(zErr)-1] = 0;
- sqlite3_result_error(context, zErr, -1);
- }
-}
-
-/*
-** An SQL user-function registered to do the work of an DETACH statement. The
-** three arguments to the function come directly from a detach statement:
-**
-** DETACH DATABASE x
-**
-** SELECT sqlite_detach(x)
-*/
-static void detachFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- const char *zName = (const char *)sqlite3_value_text(argv[0]);
- sqlite3 *db = sqlite3_user_data(context);
- int i;
- Db *pDb = 0;
- char zErr[128];
-
- if( zName==0 ) zName = "";
- for(i=0; inDb; i++){
- pDb = &db->aDb[i];
- if( pDb->pBt==0 ) continue;
- if( sqlite3StrICmp(pDb->zName, zName)==0 ) break;
- }
-
- if( i>=db->nDb ){
- sqlite3_snprintf(sizeof(zErr),zErr, "no such database: %s", zName);
- goto detach_error;
- }
- if( i<2 ){
- sqlite3_snprintf(sizeof(zErr),zErr, "cannot detach database %s", zName);
- goto detach_error;
- }
- if( !db->autoCommit ){
- sqlite3_snprintf(sizeof(zErr), zErr,
- "cannot DETACH database within transaction");
- goto detach_error;
- }
- if( sqlite3BtreeIsInReadTrans(pDb->pBt) ){
- sqlite3_snprintf(sizeof(zErr),zErr, "database %s is locked", zName);
- goto detach_error;
- }
-
- sqlite3BtreeClose(pDb->pBt);
- pDb->pBt = 0;
- pDb->pSchema = 0;
- sqlite3ResetInternalSchema(db, 0);
- return;
-
-detach_error:
- sqlite3_result_error(context, zErr, -1);
-}
-
-/*
-** This procedure generates VDBE code for a single invocation of either the
-** sqlite_detach() or sqlite_attach() SQL user functions.
-*/
-static void codeAttach(
- Parse *pParse, /* The parser context */
- int type, /* Either SQLITE_ATTACH or SQLITE_DETACH */
- const char *zFunc, /* Either "sqlite_attach" or "sqlite_detach */
- int nFunc, /* Number of args to pass to zFunc */
- Expr *pAuthArg, /* Expression to pass to authorization callback */
- Expr *pFilename, /* Name of database file */
- Expr *pDbname, /* Name of the database to use internally */
- Expr *pKey /* Database key for encryption extension */
-){
- int rc;
- NameContext sName;
- Vdbe *v;
- FuncDef *pFunc;
- sqlite3* db = pParse->db;
-
-#ifndef SQLITE_OMIT_AUTHORIZATION
- assert( db->mallocFailed || pAuthArg );
- if( pAuthArg ){
- char *zAuthArg = sqlite3NameFromToken(db, &pAuthArg->span);
- if( !zAuthArg ){
- goto attach_end;
- }
- rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0);
- sqlite3_free(zAuthArg);
- if(rc!=SQLITE_OK ){
- goto attach_end;
- }
- }
-#endif /* SQLITE_OMIT_AUTHORIZATION */
-
- memset(&sName, 0, sizeof(NameContext));
- sName.pParse = pParse;
-
- if(
- SQLITE_OK!=(rc = resolveAttachExpr(&sName, pFilename)) ||
- SQLITE_OK!=(rc = resolveAttachExpr(&sName, pDbname)) ||
- SQLITE_OK!=(rc = resolveAttachExpr(&sName, pKey))
- ){
- pParse->nErr++;
- goto attach_end;
- }
-
- v = sqlite3GetVdbe(pParse);
- sqlite3ExprCode(pParse, pFilename);
- sqlite3ExprCode(pParse, pDbname);
- sqlite3ExprCode(pParse, pKey);
-
- assert( v || db->mallocFailed );
- if( v ){
- sqlite3VdbeAddOp(v, OP_Function, 0, nFunc);
- pFunc = sqlite3FindFunction(db, zFunc, strlen(zFunc), nFunc, SQLITE_UTF8,0);
- sqlite3VdbeChangeP3(v, -1, (char *)pFunc, P3_FUNCDEF);
-
- /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this
- ** statement only). For DETACH, set it to false (expire all existing
- ** statements).
- */
- sqlite3VdbeAddOp(v, OP_Expire, (type==SQLITE_ATTACH), 0);
- }
-
-attach_end:
- sqlite3ExprDelete(pFilename);
- sqlite3ExprDelete(pDbname);
- sqlite3ExprDelete(pKey);
-}
-
-/*
-** Called by the parser to compile a DETACH statement.
-**
-** DETACH pDbname
-*/
-void sqlite3Detach(Parse *pParse, Expr *pDbname){
- codeAttach(pParse, SQLITE_DETACH, "sqlite_detach", 1, pDbname, 0, 0, pDbname);
-}
-
-/*
-** Called by the parser to compile an ATTACH statement.
-**
-** ATTACH p AS pDbname KEY pKey
-*/
-void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){
- codeAttach(pParse, SQLITE_ATTACH, "sqlite_attach", 3, p, p, pDbname, pKey);
-}
-#endif /* SQLITE_OMIT_ATTACH */
-
-/*
-** Register the functions sqlite_attach and sqlite_detach.
-*/
-void sqlite3AttachFunctions(sqlite3 *db){
-#ifndef SQLITE_OMIT_ATTACH
- static const int enc = SQLITE_UTF8;
- sqlite3CreateFunc(db, "sqlite_attach", 3, enc, db, attachFunc, 0, 0);
- sqlite3CreateFunc(db, "sqlite_detach", 1, enc, db, detachFunc, 0, 0);
-#endif
-}
-
-/*
-** Initialize a DbFixer structure. This routine must be called prior
-** to passing the structure to one of the sqliteFixAAAA() routines below.
-**
-** The return value indicates whether or not fixation is required. TRUE
-** means we do need to fix the database references, FALSE means we do not.
-*/
-int sqlite3FixInit(
- DbFixer *pFix, /* The fixer to be initialized */
- Parse *pParse, /* Error messages will be written here */
- int iDb, /* This is the database that must be used */
- const char *zType, /* "view", "trigger", or "index" */
- const Token *pName /* Name of the view, trigger, or index */
-){
- sqlite3 *db;
-
- if( iDb<0 || iDb==1 ) return 0;
- db = pParse->db;
- assert( db->nDb>iDb );
- pFix->pParse = pParse;
- pFix->zDb = db->aDb[iDb].zName;
- pFix->zType = zType;
- pFix->pName = pName;
- return 1;
-}
-
-/*
-** The following set of routines walk through the parse tree and assign
-** a specific database to all table references where the database name
-** was left unspecified in the original SQL statement. The pFix structure
-** must have been initialized by a prior call to sqlite3FixInit().
-**
-** These routines are used to make sure that an index, trigger, or
-** view in one database does not refer to objects in a different database.
-** (Exception: indices, triggers, and views in the TEMP database are
-** allowed to refer to anything.) If a reference is explicitly made
-** to an object in a different database, an error message is added to
-** pParse->zErrMsg and these routines return non-zero. If everything
-** checks out, these routines return 0.
-*/
-int sqlite3FixSrcList(
- DbFixer *pFix, /* Context of the fixation */
- SrcList *pList /* The Source list to check and modify */
-){
- int i;
- const char *zDb;
- struct SrcList_item *pItem;
-
- if( pList==0 ) return 0;
- zDb = pFix->zDb;
- for(i=0, pItem=pList->a; inSrc; i++, pItem++){
- if( pItem->zDatabase==0 ){
- pItem->zDatabase = sqlite3DbStrDup(pFix->pParse->db, zDb);
- }else if( sqlite3StrICmp(pItem->zDatabase,zDb)!=0 ){
- sqlite3ErrorMsg(pFix->pParse,
- "%s %T cannot reference objects in database %s",
- pFix->zType, pFix->pName, pItem->zDatabase);
- return 1;
- }
-#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
- if( sqlite3FixSelect(pFix, pItem->pSelect) ) return 1;
- if( sqlite3FixExpr(pFix, pItem->pOn) ) return 1;
-#endif
- }
- return 0;
-}
-#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
-int sqlite3FixSelect(
- DbFixer *pFix, /* Context of the fixation */
- Select *pSelect /* The SELECT statement to be fixed to one database */
-){
- while( pSelect ){
- if( sqlite3FixExprList(pFix, pSelect->pEList) ){
- return 1;
- }
- if( sqlite3FixSrcList(pFix, pSelect->pSrc) ){
- return 1;
- }
- if( sqlite3FixExpr(pFix, pSelect->pWhere) ){
- return 1;
- }
- if( sqlite3FixExpr(pFix, pSelect->pHaving) ){
- return 1;
- }
- pSelect = pSelect->pPrior;
- }
- return 0;
-}
-int sqlite3FixExpr(
- DbFixer *pFix, /* Context of the fixation */
- Expr *pExpr /* The expression to be fixed to one database */
-){
- while( pExpr ){
- if( sqlite3FixSelect(pFix, pExpr->pSelect) ){
- return 1;
- }
- if( sqlite3FixExprList(pFix, pExpr->pList) ){
- return 1;
- }
- if( sqlite3FixExpr(pFix, pExpr->pRight) ){
- return 1;
- }
- pExpr = pExpr->pLeft;
- }
- return 0;
-}
-int sqlite3FixExprList(
- DbFixer *pFix, /* Context of the fixation */
- ExprList *pList /* The expression to be fixed to one database */
-){
- int i;
- struct ExprList_item *pItem;
- if( pList==0 ) return 0;
- for(i=0, pItem=pList->a; inExpr; i++, pItem++){
- if( sqlite3FixExpr(pFix, pItem->pExpr) ){
- return 1;
- }
- }
- return 0;
-}
-#endif
-
-#ifndef SQLITE_OMIT_TRIGGER
-int sqlite3FixTriggerStep(
- DbFixer *pFix, /* Context of the fixation */
- TriggerStep *pStep /* The trigger step be fixed to one database */
-){
- while( pStep ){
- if( sqlite3FixSelect(pFix, pStep->pSelect) ){
- return 1;
- }
- if( sqlite3FixExpr(pFix, pStep->pWhere) ){
- return 1;
- }
- if( sqlite3FixExprList(pFix, pStep->pExprList) ){
- return 1;
- }
- pStep = pStep->pNext;
- }
- return 0;
-}
-#endif
diff --git a/extensions/sqlite/sqlite-source/auth.c b/extensions/sqlite/sqlite-source/auth.c
deleted file mode 100644
index dd83eda0..00000000
--- a/extensions/sqlite/sqlite-source/auth.c
+++ /dev/null
@@ -1,234 +0,0 @@
-/*
-** 2003 January 11
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains code used to implement the sqlite3_set_authorizer()
-** API. This facility is an optional feature of the library. Embedded
-** systems that do not need this facility may omit it by recompiling
-** the library with -DSQLITE_OMIT_AUTHORIZATION=1
-**
-** $Id$
-*/
-#include "sqliteInt.h"
-
-/*
-** All of the code in this file may be omitted by defining a single
-** macro.
-*/
-#ifndef SQLITE_OMIT_AUTHORIZATION
-
-/*
-** Set or clear the access authorization function.
-**
-** The access authorization function is be called during the compilation
-** phase to verify that the user has read and/or write access permission on
-** various fields of the database. The first argument to the auth function
-** is a copy of the 3rd argument to this routine. The second argument
-** to the auth function is one of these constants:
-**
-** SQLITE_CREATE_INDEX
-** SQLITE_CREATE_TABLE
-** SQLITE_CREATE_TEMP_INDEX
-** SQLITE_CREATE_TEMP_TABLE
-** SQLITE_CREATE_TEMP_TRIGGER
-** SQLITE_CREATE_TEMP_VIEW
-** SQLITE_CREATE_TRIGGER
-** SQLITE_CREATE_VIEW
-** SQLITE_DELETE
-** SQLITE_DROP_INDEX
-** SQLITE_DROP_TABLE
-** SQLITE_DROP_TEMP_INDEX
-** SQLITE_DROP_TEMP_TABLE
-** SQLITE_DROP_TEMP_TRIGGER
-** SQLITE_DROP_TEMP_VIEW
-** SQLITE_DROP_TRIGGER
-** SQLITE_DROP_VIEW
-** SQLITE_INSERT
-** SQLITE_PRAGMA
-** SQLITE_READ
-** SQLITE_SELECT
-** SQLITE_TRANSACTION
-** SQLITE_UPDATE
-**
-** The third and fourth arguments to the auth function are the name of
-** the table and the column that are being accessed. The auth function
-** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE. If
-** SQLITE_OK is returned, it means that access is allowed. SQLITE_DENY
-** means that the SQL statement will never-run - the sqlite3_exec() call
-** will return with an error. SQLITE_IGNORE means that the SQL statement
-** should run but attempts to read the specified column will return NULL
-** and attempts to write the column will be ignored.
-**
-** Setting the auth function to NULL disables this hook. The default
-** setting of the auth function is NULL.
-*/
-int sqlite3_set_authorizer(
- sqlite3 *db,
- int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
- void *pArg
-){
- sqlite3_mutex_enter(db->mutex);
- db->xAuth = xAuth;
- db->pAuthArg = pArg;
- sqlite3ExpirePreparedStatements(db);
- sqlite3_mutex_leave(db->mutex);
- return SQLITE_OK;
-}
-
-/*
-** Write an error message into pParse->zErrMsg that explains that the
-** user-supplied authorization function returned an illegal value.
-*/
-static void sqliteAuthBadReturnCode(Parse *pParse, int rc){
- sqlite3ErrorMsg(pParse, "illegal return value (%d) from the "
- "authorization function - should be SQLITE_OK, SQLITE_IGNORE, "
- "or SQLITE_DENY", rc);
- pParse->rc = SQLITE_ERROR;
-}
-
-/*
-** The pExpr should be a TK_COLUMN expression. The table referred to
-** is in pTabList or else it is the NEW or OLD table of a trigger.
-** Check to see if it is OK to read this particular column.
-**
-** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN
-** instruction into a TK_NULL. If the auth function returns SQLITE_DENY,
-** then generate an error.
-*/
-void sqlite3AuthRead(
- Parse *pParse, /* The parser context */
- Expr *pExpr, /* The expression to check authorization on */
- Schema *pSchema, /* The schema of the expression */
- SrcList *pTabList /* All table that pExpr might refer to */
-){
- sqlite3 *db = pParse->db;
- int rc;
- Table *pTab = 0; /* The table being read */
- const char *zCol; /* Name of the column of the table */
- int iSrc; /* Index in pTabList->a[] of table being read */
- const char *zDBase; /* Name of database being accessed */
- TriggerStack *pStack; /* The stack of current triggers */
- int iDb; /* The index of the database the expression refers to */
-
- if( db->xAuth==0 ) return;
- if( pExpr->op!=TK_COLUMN ) return;
- iDb = sqlite3SchemaToIndex(pParse->db, pSchema);
- if( iDb<0 ){
- /* An attempt to read a column out of a subquery or other
- ** temporary table. */
- return;
- }
- for(iSrc=0; pTabList && iSrcnSrc; iSrc++){
- if( pExpr->iTable==pTabList->a[iSrc].iCursor ) break;
- }
- if( iSrc>=0 && pTabList && iSrcnSrc ){
- pTab = pTabList->a[iSrc].pTab;
- }else if( (pStack = pParse->trigStack)!=0 ){
- /* This must be an attempt to read the NEW or OLD pseudo-tables
- ** of a trigger.
- */
- assert( pExpr->iTable==pStack->newIdx || pExpr->iTable==pStack->oldIdx );
- pTab = pStack->pTab;
- }
- if( pTab==0 ) return;
- if( pExpr->iColumn>=0 ){
- assert( pExpr->iColumnnCol );
- zCol = pTab->aCol[pExpr->iColumn].zName;
- }else if( pTab->iPKey>=0 ){
- assert( pTab->iPKeynCol );
- zCol = pTab->aCol[pTab->iPKey].zName;
- }else{
- zCol = "ROWID";
- }
- assert( iDb>=0 && iDbnDb );
- zDBase = db->aDb[iDb].zName;
- rc = db->xAuth(db->pAuthArg, SQLITE_READ, pTab->zName, zCol, zDBase,
- pParse->zAuthContext);
- if( rc==SQLITE_IGNORE ){
- pExpr->op = TK_NULL;
- }else if( rc==SQLITE_DENY ){
- if( db->nDb>2 || iDb!=0 ){
- sqlite3ErrorMsg(pParse, "access to %s.%s.%s is prohibited",
- zDBase, pTab->zName, zCol);
- }else{
- sqlite3ErrorMsg(pParse, "access to %s.%s is prohibited",pTab->zName,zCol);
- }
- pParse->rc = SQLITE_AUTH;
- }else if( rc!=SQLITE_OK ){
- sqliteAuthBadReturnCode(pParse, rc);
- }
-}
-
-/*
-** Do an authorization check using the code and arguments given. Return
-** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY. If SQLITE_DENY
-** is returned, then the error count and error message in pParse are
-** modified appropriately.
-*/
-int sqlite3AuthCheck(
- Parse *pParse,
- int code,
- const char *zArg1,
- const char *zArg2,
- const char *zArg3
-){
- sqlite3 *db = pParse->db;
- int rc;
-
- /* Don't do any authorization checks if the database is initialising
- ** or if the parser is being invoked from within sqlite3_declare_vtab.
- */
- if( db->init.busy || IN_DECLARE_VTAB ){
- return SQLITE_OK;
- }
-
- if( db->xAuth==0 ){
- return SQLITE_OK;
- }
- rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext);
- if( rc==SQLITE_DENY ){
- sqlite3ErrorMsg(pParse, "not authorized");
- pParse->rc = SQLITE_AUTH;
- }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){
- rc = SQLITE_DENY;
- sqliteAuthBadReturnCode(pParse, rc);
- }
- return rc;
-}
-
-/*
-** Push an authorization context. After this routine is called, the
-** zArg3 argument to authorization callbacks will be zContext until
-** popped. Or if pParse==0, this routine is a no-op.
-*/
-void sqlite3AuthContextPush(
- Parse *pParse,
- AuthContext *pContext,
- const char *zContext
-){
- pContext->pParse = pParse;
- if( pParse ){
- pContext->zAuthContext = pParse->zAuthContext;
- pParse->zAuthContext = zContext;
- }
-}
-
-/*
-** Pop an authorization context that was previously pushed
-** by sqlite3AuthContextPush
-*/
-void sqlite3AuthContextPop(AuthContext *pContext){
- if( pContext->pParse ){
- pContext->pParse->zAuthContext = pContext->zAuthContext;
- pContext->pParse = 0;
- }
-}
-
-#endif /* SQLITE_OMIT_AUTHORIZATION */
diff --git a/extensions/sqlite/sqlite-source/btmutex.c b/extensions/sqlite/sqlite-source/btmutex.c
deleted file mode 100644
index 5866ffeb..00000000
--- a/extensions/sqlite/sqlite-source/btmutex.c
+++ /dev/null
@@ -1,315 +0,0 @@
-/*
-** 2007 August 27
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-**
-** $Id$
-**
-** This file contains code used to implement mutexes on Btree objects.
-** This code really belongs in btree.c. But btree.c is getting too
-** big and we want to break it down some. This packaged seemed like
-** a good breakout.
-*/
-#include "btreeInt.h"
-#if SQLITE_THREADSAFE && !defined(SQLITE_OMIT_SHARED_CACHE)
-
-
-/*
-** Enter a mutex on the given BTree object.
-**
-** If the object is not sharable, then no mutex is ever required
-** and this routine is a no-op. The underlying mutex is non-recursive.
-** But we keep a reference count in Btree.wantToLock so the behavior
-** of this interface is recursive.
-**
-** To avoid deadlocks, multiple Btrees are locked in the same order
-** by all database connections. The p->pNext is a list of other
-** Btrees belonging to the same database connection as the p Btree
-** which need to be locked after p. If we cannot get a lock on
-** p, then first unlock all of the others on p->pNext, then wait
-** for the lock to become available on p, then relock all of the
-** subsequent Btrees that desire a lock.
-*/
-void sqlite3BtreeEnter(Btree *p){
- Btree *pLater;
-
- /* Some basic sanity checking on the Btree. The list of Btrees
- ** connected by pNext and pPrev should be in sorted order by
- ** Btree.pBt value. All elements of the list should belong to
- ** the same connection. Only shared Btrees are on the list. */
- assert( p->pNext==0 || p->pNext->pBt>p->pBt );
- assert( p->pPrev==0 || p->pPrev->pBtpBt );
- assert( p->pNext==0 || p->pNext->pSqlite==p->pSqlite );
- assert( p->pPrev==0 || p->pPrev->pSqlite==p->pSqlite );
- assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
-
- /* Check for locking consistency */
- assert( !p->locked || p->wantToLock>0 );
- assert( p->sharable || p->wantToLock==0 );
-
- /* We should already hold a lock on the database connection */
- assert( sqlite3_mutex_held(p->pSqlite->mutex) );
-
- if( !p->sharable ) return;
- p->wantToLock++;
- if( p->locked ) return;
-
- /* In most cases, we should be able to acquire the lock we
- ** want without having to go throught the ascending lock
- ** procedure that follows. Just be sure not to block.
- */
- if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
- p->locked = 1;
- return;
- }
-
- /* To avoid deadlock, first release all locks with a larger
- ** BtShared address. Then acquire our lock. Then reacquire
- ** the other BtShared locks that we used to hold in ascending
- ** order.
- */
- for(pLater=p->pNext; pLater; pLater=pLater->pNext){
- assert( pLater->sharable );
- assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
- assert( !pLater->locked || pLater->wantToLock>0 );
- if( pLater->locked ){
- sqlite3_mutex_leave(pLater->pBt->mutex);
- pLater->locked = 0;
- }
- }
- sqlite3_mutex_enter(p->pBt->mutex);
- p->locked = 1;
- for(pLater=p->pNext; pLater; pLater=pLater->pNext){
- if( pLater->wantToLock ){
- sqlite3_mutex_enter(pLater->pBt->mutex);
- pLater->locked = 1;
- }
- }
-}
-
-/*
-** Exit the recursive mutex on a Btree.
-*/
-void sqlite3BtreeLeave(Btree *p){
- if( p->sharable ){
- assert( p->wantToLock>0 );
- p->wantToLock--;
- if( p->wantToLock==0 ){
- assert( p->locked );
- sqlite3_mutex_leave(p->pBt->mutex);
- p->locked = 0;
- }
- }
-}
-
-#ifndef NDEBUG
-/*
-** Return true if the BtShared mutex is held on the btree.
-**
-** This routine makes no determination one why or another if the
-** database connection mutex is held.
-**
-** This routine is used only from within assert() statements.
-*/
-int sqlite3BtreeHoldsMutex(Btree *p){
- return (p->sharable==0 ||
- (p->locked && p->wantToLock && sqlite3_mutex_held(p->pBt->mutex)));
-}
-#endif
-
-
-#ifndef SQLITE_OMIT_INCRBLOB
-/*
-** Enter and leave a mutex on a Btree given a cursor owned by that
-** Btree. These entry points are used by incremental I/O and can be
-** omitted if that module is not used.
-*/
-void sqlite3BtreeEnterCursor(BtCursor *pCur){
- sqlite3BtreeEnter(pCur->pBtree);
-}
-void sqlite3BtreeLeaveCursor(BtCursor *pCur){
- sqlite3BtreeLeave(pCur->pBtree);
-}
-#endif /* SQLITE_OMIT_INCRBLOB */
-
-
-/*
-** Enter the mutex on every Btree associated with a database
-** connection. This is needed (for example) prior to parsing
-** a statement since we will be comparing table and column names
-** against all schemas and we do not want those schemas being
-** reset out from under us.
-**
-** There is a corresponding leave-all procedures.
-**
-** Enter the mutexes in accending order by BtShared pointer address
-** to avoid the possibility of deadlock when two threads with
-** two or more btrees in common both try to lock all their btrees
-** at the same instant.
-*/
-void sqlite3BtreeEnterAll(sqlite3 *db){
- int i;
- Btree *p, *pLater;
- assert( sqlite3_mutex_held(db->mutex) );
- for(i=0; inDb; i++){
- p = db->aDb[i].pBt;
- if( p && p->sharable ){
- p->wantToLock++;
- if( !p->locked ){
- assert( p->wantToLock==1 );
- while( p->pPrev ) p = p->pPrev;
- while( p->locked && p->pNext ) p = p->pNext;
- for(pLater = p->pNext; pLater; pLater=pLater->pNext){
- if( pLater->locked ){
- sqlite3_mutex_leave(pLater->pBt->mutex);
- pLater->locked = 0;
- }
- }
- while( p ){
- sqlite3_mutex_enter(p->pBt->mutex);
- p->locked++;
- p = p->pNext;
- }
- }
- }
- }
-}
-void sqlite3BtreeLeaveAll(sqlite3 *db){
- int i;
- Btree *p;
- assert( sqlite3_mutex_held(db->mutex) );
- for(i=0; inDb; i++){
- p = db->aDb[i].pBt;
- if( p && p->sharable ){
- assert( p->wantToLock>0 );
- p->wantToLock--;
- if( p->wantToLock==0 ){
- assert( p->locked );
- sqlite3_mutex_leave(p->pBt->mutex);
- p->locked = 0;
- }
- }
- }
-}
-
-#ifndef NDEBUG
-/*
-** Return true if the current thread holds the database connection
-** mutex and all required BtShared mutexes.
-**
-** This routine is used inside assert() statements only.
-*/
-int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
- int i;
- if( !sqlite3_mutex_held(db->mutex) ){
- return 0;
- }
- for(i=0; inDb; i++){
- Btree *p;
- p = db->aDb[i].pBt;
- if( p && p->sharable &&
- (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
- return 0;
- }
- }
- return 1;
-}
-#endif /* NDEBUG */
-
-/*
-** Potentially dd a new Btree pointer to a BtreeMutexArray.
-** Really only add the Btree if it can possibly be shared with
-** another database connection.
-**
-** The Btrees are kept in sorted order by pBtree->pBt. That
-** way when we go to enter all the mutexes, we can enter them
-** in order without every having to backup and retry and without
-** worrying about deadlock.
-**
-** The number of shared btrees will always be small (usually 0 or 1)
-** so an insertion sort is an adequate algorithm here.
-*/
-void sqlite3BtreeMutexArrayInsert(BtreeMutexArray *pArray, Btree *pBtree){
- int i, j;
- BtShared *pBt;
- if( pBtree==0 || pBtree->sharable==0 ) return;
-#ifndef NDEBUG
- {
- for(i=0; inMutex; i++){
- assert( pArray->aBtree[i]!=pBtree );
- }
- }
-#endif
- assert( pArray->nMutex>=0 );
- assert( pArray->nMutexaBtree)/sizeof(pArray->aBtree[0])-1 );
- pBt = pBtree->pBt;
- for(i=0; inMutex; i++){
- assert( pArray->aBtree[i]!=pBtree );
- if( pArray->aBtree[i]->pBt>pBt ){
- for(j=pArray->nMutex; j>i; j--){
- pArray->aBtree[j] = pArray->aBtree[j-1];
- }
- pArray->aBtree[i] = pBtree;
- pArray->nMutex++;
- return;
- }
- }
- pArray->aBtree[pArray->nMutex++] = pBtree;
-}
-
-/*
-** Enter the mutex of every btree in the array. This routine is
-** called at the beginning of sqlite3VdbeExec(). The mutexes are
-** exited at the end of the same function.
-*/
-void sqlite3BtreeMutexArrayEnter(BtreeMutexArray *pArray){
- int i;
- for(i=0; inMutex; i++){
- Btree *p = pArray->aBtree[i];
- /* Some basic sanity checking */
- assert( i==0 || pArray->aBtree[i-1]->pBtpBt );
- assert( !p->locked || p->wantToLock>0 );
-
- /* We should already hold a lock on the database connection */
- assert( sqlite3_mutex_held(p->pSqlite->mutex) );
-
- p->wantToLock++;
- if( !p->locked && p->sharable ){
- sqlite3_mutex_enter(p->pBt->mutex);
- p->locked = 1;
- }
- }
-}
-
-/*
-** Leave the mutex of every btree in the group.
-*/
-void sqlite3BtreeMutexArrayLeave(BtreeMutexArray *pArray){
- int i;
- for(i=0; inMutex; i++){
- Btree *p = pArray->aBtree[i];
- /* Some basic sanity checking */
- assert( i==0 || pArray->aBtree[i-1]->pBtpBt );
- assert( p->locked || !p->sharable );
- assert( p->wantToLock>0 );
-
- /* We should already hold a lock on the database connection */
- assert( sqlite3_mutex_held(p->pSqlite->mutex) );
-
- p->wantToLock--;
- if( p->wantToLock==0 && p->locked ){
- sqlite3_mutex_leave(p->pBt->mutex);
- p->locked = 0;
- }
- }
-}
-
-
-#endif /* SQLITE_THREADSAFE && !SQLITE_OMIT_SHARED_CACHE */
diff --git a/extensions/sqlite/sqlite-source/btree.c b/extensions/sqlite/sqlite-source/btree.c
deleted file mode 100644
index 0ba3655a..00000000
--- a/extensions/sqlite/sqlite-source/btree.c
+++ /dev/null
@@ -1,6890 +0,0 @@
-/*
-** 2004 April 6
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** $Id$
-**
-** This file implements a external (disk-based) database using BTrees.
-** See the header comment on "btreeInt.h" for additional information.
-** Including a description of file format and an overview of operation.
-*/
-#include "btreeInt.h"
-
-/*
-** The header string that appears at the beginning of every
-** SQLite database.
-*/
-static const char zMagicHeader[] = SQLITE_FILE_HEADER;
-
-/*
-** Set this global variable to 1 to enable tracing using the TRACE
-** macro.
-*/
-#if SQLITE_TEST
-int sqlite3_btree_trace=0; /* True to enable tracing */
-#endif
-
-
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
-/*
-** A flag to indicate whether or not shared cache is enabled. Also,
-** a list of BtShared objects that are eligible for participation
-** in shared cache. The variables have file scope during normal builds,
-** but the test harness needs to access these variables so we make them
-** global for test builds.
-*/
-#ifdef SQLITE_TEST
-BtShared *sqlite3SharedCacheList = 0;
-int sqlite3SharedCacheEnabled = 0;
-#else
-static BtShared *sqlite3SharedCacheList = 0;
-static int sqlite3SharedCacheEnabled = 0;
-#endif
-#endif /* SQLITE_OMIT_SHARED_CACHE */
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
-/*
-** Enable or disable the shared pager and schema features.
-**
-** This routine has no effect on existing database connections.
-** The shared cache setting effects only future calls to
-** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
-*/
-int sqlite3_enable_shared_cache(int enable){
- sqlite3SharedCacheEnabled = enable;
- return SQLITE_OK;
-}
-#endif
-
-
-/*
-** Forward declaration
-*/
-static int checkReadLocks(Btree*,Pgno,BtCursor*);
-
-
-#ifdef SQLITE_OMIT_SHARED_CACHE
- /*
- ** The functions queryTableLock(), lockTable() and unlockAllTables()
- ** manipulate entries in the BtShared.pLock linked list used to store
- ** shared-cache table level locks. If the library is compiled with the
- ** shared-cache feature disabled, then there is only ever one user
- ** of each BtShared structure and so this locking is not necessary.
- ** So define the lock related functions as no-ops.
- */
- #define queryTableLock(a,b,c) SQLITE_OK
- #define lockTable(a,b,c) SQLITE_OK
- #define unlockAllTables(a)
-#endif
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
-/*
-** Query to see if btree handle p may obtain a lock of type eLock
-** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
-** SQLITE_OK if the lock may be obtained (by calling lockTable()), or
-** SQLITE_LOCKED if not.
-*/
-static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){
- BtShared *pBt = p->pBt;
- BtLock *pIter;
-
- assert( sqlite3BtreeHoldsMutex(p) );
-
- /* This is a no-op if the shared-cache is not enabled */
- if( !p->sharable ){
- return SQLITE_OK;
- }
-
- /* This (along with lockTable()) is where the ReadUncommitted flag is
- ** dealt with. If the caller is querying for a read-lock and the flag is
- ** set, it is unconditionally granted - even if there are write-locks
- ** on the table. If a write-lock is requested, the ReadUncommitted flag
- ** is not considered.
- **
- ** In function lockTable(), if a read-lock is demanded and the
- ** ReadUncommitted flag is set, no entry is added to the locks list
- ** (BtShared.pLock).
- **
- ** To summarize: If the ReadUncommitted flag is set, then read cursors do
- ** not create or respect table locks. The locking procedure for a
- ** write-cursor does not change.
- */
- if(
- !p->pSqlite ||
- 0==(p->pSqlite->flags&SQLITE_ReadUncommitted) ||
- eLock==WRITE_LOCK ||
- iTab==MASTER_ROOT
- ){
- for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
- if( pIter->pBtree!=p && pIter->iTable==iTab &&
- (pIter->eLock!=eLock || eLock!=READ_LOCK) ){
- return SQLITE_LOCKED;
- }
- }
- }
- return SQLITE_OK;
-}
-#endif /* !SQLITE_OMIT_SHARED_CACHE */
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
-/*
-** Add a lock on the table with root-page iTable to the shared-btree used
-** by Btree handle p. Parameter eLock must be either READ_LOCK or
-** WRITE_LOCK.
-**
-** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
-** SQLITE_NOMEM may also be returned.
-*/
-static int lockTable(Btree *p, Pgno iTable, u8 eLock){
- BtShared *pBt = p->pBt;
- BtLock *pLock = 0;
- BtLock *pIter;
-
- assert( sqlite3BtreeHoldsMutex(p) );
-
- /* This is a no-op if the shared-cache is not enabled */
- if( !p->sharable ){
- return SQLITE_OK;
- }
-
- assert( SQLITE_OK==queryTableLock(p, iTable, eLock) );
-
- /* If the read-uncommitted flag is set and a read-lock is requested,
- ** return early without adding an entry to the BtShared.pLock list. See
- ** comment in function queryTableLock() for more info on handling
- ** the ReadUncommitted flag.
- */
- if(
- (p->pSqlite) &&
- (p->pSqlite->flags&SQLITE_ReadUncommitted) &&
- (eLock==READ_LOCK) &&
- iTable!=MASTER_ROOT
- ){
- return SQLITE_OK;
- }
-
- /* First search the list for an existing lock on this table. */
- for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
- if( pIter->iTable==iTable && pIter->pBtree==p ){
- pLock = pIter;
- break;
- }
- }
-
- /* If the above search did not find a BtLock struct associating Btree p
- ** with table iTable, allocate one and link it into the list.
- */
- if( !pLock ){
- pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
- if( !pLock ){
- return SQLITE_NOMEM;
- }
- pLock->iTable = iTable;
- pLock->pBtree = p;
- pLock->pNext = pBt->pLock;
- pBt->pLock = pLock;
- }
-
- /* Set the BtLock.eLock variable to the maximum of the current lock
- ** and the requested lock. This means if a write-lock was already held
- ** and a read-lock requested, we don't incorrectly downgrade the lock.
- */
- assert( WRITE_LOCK>READ_LOCK );
- if( eLock>pLock->eLock ){
- pLock->eLock = eLock;
- }
-
- return SQLITE_OK;
-}
-#endif /* !SQLITE_OMIT_SHARED_CACHE */
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
-/*
-** Release all the table locks (locks obtained via calls to the lockTable()
-** procedure) held by Btree handle p.
-*/
-static void unlockAllTables(Btree *p){
- BtLock **ppIter = &p->pBt->pLock;
-
- assert( sqlite3BtreeHoldsMutex(p) );
- assert( p->sharable || 0==*ppIter );
-
- while( *ppIter ){
- BtLock *pLock = *ppIter;
- if( pLock->pBtree==p ){
- *ppIter = pLock->pNext;
- sqlite3_free(pLock);
- }else{
- ppIter = &pLock->pNext;
- }
- }
-}
-#endif /* SQLITE_OMIT_SHARED_CACHE */
-
-static void releasePage(MemPage *pPage); /* Forward reference */
-
-/*
-** Verify that the cursor holds a mutex on the BtShared
-*/
-#ifndef NDEBUG
-static int cursorHoldsMutex(BtCursor *p){
- return sqlite3_mutex_held(p->pBt->mutex);
-}
-#endif
-
-
-#ifndef SQLITE_OMIT_INCRBLOB
-/*
-** Invalidate the overflow page-list cache for cursor pCur, if any.
-*/
-static void invalidateOverflowCache(BtCursor *pCur){
- assert( cursorHoldsMutex(pCur) );
- sqlite3_free(pCur->aOverflow);
- pCur->aOverflow = 0;
-}
-
-/*
-** Invalidate the overflow page-list cache for all cursors opened
-** on the shared btree structure pBt.
-*/
-static void invalidateAllOverflowCache(BtShared *pBt){
- BtCursor *p;
- assert( sqlite3_mutex_held(pBt->mutex) );
- for(p=pBt->pCursor; p; p=p->pNext){
- invalidateOverflowCache(p);
- }
-}
-#else
- #define invalidateOverflowCache(x)
- #define invalidateAllOverflowCache(x)
-#endif
-
-/*
-** Save the current cursor position in the variables BtCursor.nKey
-** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
-*/
-static int saveCursorPosition(BtCursor *pCur){
- int rc;
-
- assert( CURSOR_VALID==pCur->eState );
- assert( 0==pCur->pKey );
- assert( cursorHoldsMutex(pCur) );
-
- rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
-
- /* If this is an intKey table, then the above call to BtreeKeySize()
- ** stores the integer key in pCur->nKey. In this case this value is
- ** all that is required. Otherwise, if pCur is not open on an intKey
- ** table, then malloc space for and store the pCur->nKey bytes of key
- ** data.
- */
- if( rc==SQLITE_OK && 0==pCur->pPage->intKey){
- void *pKey = sqlite3_malloc(pCur->nKey);
- if( pKey ){
- rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey);
- if( rc==SQLITE_OK ){
- pCur->pKey = pKey;
- }else{
- sqlite3_free(pKey);
- }
- }else{
- rc = SQLITE_NOMEM;
- }
- }
- assert( !pCur->pPage->intKey || !pCur->pKey );
-
- if( rc==SQLITE_OK ){
- releasePage(pCur->pPage);
- pCur->pPage = 0;
- pCur->eState = CURSOR_REQUIRESEEK;
- }
-
- invalidateOverflowCache(pCur);
- return rc;
-}
-
-/*
-** Save the positions of all cursors except pExcept open on the table
-** with root-page iRoot. Usually, this is called just before cursor
-** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
-*/
-static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
- BtCursor *p;
- assert( sqlite3_mutex_held(pBt->mutex) );
- assert( pExcept==0 || pExcept->pBt==pBt );
- for(p=pBt->pCursor; p; p=p->pNext){
- if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
- p->eState==CURSOR_VALID ){
- int rc = saveCursorPosition(p);
- if( SQLITE_OK!=rc ){
- return rc;
- }
- }
- }
- return SQLITE_OK;
-}
-
-/*
-** Clear the current cursor position.
-*/
-static void clearCursorPosition(BtCursor *pCur){
- assert( cursorHoldsMutex(pCur) );
- sqlite3_free(pCur->pKey);
- pCur->pKey = 0;
- pCur->eState = CURSOR_INVALID;
-}
-
-/*
-** Restore the cursor to the position it was in (or as close to as possible)
-** when saveCursorPosition() was called. Note that this call deletes the
-** saved position info stored by saveCursorPosition(), so there can be
-** at most one effective restoreOrClearCursorPosition() call after each
-** saveCursorPosition().
-**
-** If the second argument argument - doSeek - is false, then instead of
-** returning the cursor to it's saved position, any saved position is deleted
-** and the cursor state set to CURSOR_INVALID.
-*/
-int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur){
- int rc;
- assert( cursorHoldsMutex(pCur) );
- assert( pCur->eState>=CURSOR_REQUIRESEEK );
- if( pCur->eState==CURSOR_FAULT ){
- return pCur->skip;
- }
-#ifndef SQLITE_OMIT_INCRBLOB
- if( pCur->isIncrblobHandle ){
- return SQLITE_ABORT;
- }
-#endif
- pCur->eState = CURSOR_INVALID;
- rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip);
- if( rc==SQLITE_OK ){
- sqlite3_free(pCur->pKey);
- pCur->pKey = 0;
- assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
- }
- return rc;
-}
-
-#define restoreOrClearCursorPosition(p) \
- (p->eState>=CURSOR_REQUIRESEEK ? \
- sqlite3BtreeRestoreOrClearCursorPosition(p) : \
- SQLITE_OK)
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
-/*
-** Given a page number of a regular database page, return the page
-** number for the pointer-map page that contains the entry for the
-** input page number.
-*/
-static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
- int nPagesPerMapPage, iPtrMap, ret;
- assert( sqlite3_mutex_held(pBt->mutex) );
- nPagesPerMapPage = (pBt->usableSize/5)+1;
- iPtrMap = (pgno-2)/nPagesPerMapPage;
- ret = (iPtrMap*nPagesPerMapPage) + 2;
- if( ret==PENDING_BYTE_PAGE(pBt) ){
- ret++;
- }
- return ret;
-}
-
-/*
-** Write an entry into the pointer map.
-**
-** This routine updates the pointer map entry for page number 'key'
-** so that it maps to type 'eType' and parent page number 'pgno'.
-** An error code is returned if something goes wrong, otherwise SQLITE_OK.
-*/
-static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
- DbPage *pDbPage; /* The pointer map page */
- u8 *pPtrmap; /* The pointer map data */
- Pgno iPtrmap; /* The pointer map page number */
- int offset; /* Offset in pointer map page */
- int rc;
-
- assert( sqlite3_mutex_held(pBt->mutex) );
- /* The master-journal page number must never be used as a pointer map page */
- assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
-
- assert( pBt->autoVacuum );
- if( key==0 ){
- return SQLITE_CORRUPT_BKPT;
- }
- iPtrmap = PTRMAP_PAGENO(pBt, key);
- rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- offset = PTRMAP_PTROFFSET(pBt, key);
- pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
-
- if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
- TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
- rc = sqlite3PagerWrite(pDbPage);
- if( rc==SQLITE_OK ){
- pPtrmap[offset] = eType;
- put4byte(&pPtrmap[offset+1], parent);
- }
- }
-
- sqlite3PagerUnref(pDbPage);
- return rc;
-}
-
-/*
-** Read an entry from the pointer map.
-**
-** This routine retrieves the pointer map entry for page 'key', writing
-** the type and parent page number to *pEType and *pPgno respectively.
-** An error code is returned if something goes wrong, otherwise SQLITE_OK.
-*/
-static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
- DbPage *pDbPage; /* The pointer map page */
- int iPtrmap; /* Pointer map page index */
- u8 *pPtrmap; /* Pointer map page data */
- int offset; /* Offset of entry in pointer map */
- int rc;
-
- assert( sqlite3_mutex_held(pBt->mutex) );
-
- iPtrmap = PTRMAP_PAGENO(pBt, key);
- rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
- if( rc!=0 ){
- return rc;
- }
- pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
-
- offset = PTRMAP_PTROFFSET(pBt, key);
- assert( pEType!=0 );
- *pEType = pPtrmap[offset];
- if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
-
- sqlite3PagerUnref(pDbPage);
- if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
- return SQLITE_OK;
-}
-
-#endif /* SQLITE_OMIT_AUTOVACUUM */
-
-/*
-** Given a btree page and a cell index (0 means the first cell on
-** the page, 1 means the second cell, and so forth) return a pointer
-** to the cell content.
-**
-** This routine works only for pages that do not contain overflow cells.
-*/
-#define findCell(pPage, iCell) \
- ((pPage)->aData + get2byte(&(pPage)->aData[(pPage)->cellOffset+2*(iCell)]))
-#ifdef SQLITE_TEST
-u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell){
- assert( iCell>=0 );
- assert( iCellaData[pPage->hdrOffset+3]) );
- return findCell(pPage, iCell);
-}
-#endif
-
-/*
-** This a more complex version of sqlite3BtreeFindCell() that works for
-** pages that do contain overflow cells. See insert
-*/
-static u8 *findOverflowCell(MemPage *pPage, int iCell){
- int i;
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- for(i=pPage->nOverflow-1; i>=0; i--){
- int k;
- struct _OvflCell *pOvfl;
- pOvfl = &pPage->aOvfl[i];
- k = pOvfl->idx;
- if( k<=iCell ){
- if( k==iCell ){
- return pOvfl->pCell;
- }
- iCell--;
- }
- }
- return findCell(pPage, iCell);
-}
-
-/*
-** Parse a cell content block and fill in the CellInfo structure. There
-** are two versions of this function. sqlite3BtreeParseCell() takes a
-** cell index as the second argument and sqlite3BtreeParseCellPtr()
-** takes a pointer to the body of the cell as its second argument.
-**
-** Within this file, the parseCell() macro can be called instead of
-** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster.
-*/
-void sqlite3BtreeParseCellPtr(
- MemPage *pPage, /* Page containing the cell */
- u8 *pCell, /* Pointer to the cell text. */
- CellInfo *pInfo /* Fill in this structure */
-){
- int n; /* Number bytes in cell content header */
- u32 nPayload; /* Number of bytes of cell payload */
-
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
-
- pInfo->pCell = pCell;
- assert( pPage->leaf==0 || pPage->leaf==1 );
- n = pPage->childPtrSize;
- assert( n==4-4*pPage->leaf );
- if( pPage->hasData ){
- n += getVarint32(&pCell[n], &nPayload);
- }else{
- nPayload = 0;
- }
- pInfo->nData = nPayload;
- if( pPage->intKey ){
- n += getVarint(&pCell[n], (u64 *)&pInfo->nKey);
- }else{
- u32 x;
- n += getVarint32(&pCell[n], &x);
- pInfo->nKey = x;
- nPayload += x;
- }
- pInfo->nPayload = nPayload;
- pInfo->nHeader = n;
- if( nPayload<=pPage->maxLocal ){
- /* This is the (easy) common case where the entire payload fits
- ** on the local page. No overflow is required.
- */
- int nSize; /* Total size of cell content in bytes */
- pInfo->nLocal = nPayload;
- pInfo->iOverflow = 0;
- nSize = nPayload + n;
- if( nSize<4 ){
- nSize = 4; /* Minimum cell size is 4 */
- }
- pInfo->nSize = nSize;
- }else{
- /* If the payload will not fit completely on the local page, we have
- ** to decide how much to store locally and how much to spill onto
- ** overflow pages. The strategy is to minimize the amount of unused
- ** space on overflow pages while keeping the amount of local storage
- ** in between minLocal and maxLocal.
- **
- ** Warning: changing the way overflow payload is distributed in any
- ** way will result in an incompatible file format.
- */
- int minLocal; /* Minimum amount of payload held locally */
- int maxLocal; /* Maximum amount of payload held locally */
- int surplus; /* Overflow payload available for local storage */
-
- minLocal = pPage->minLocal;
- maxLocal = pPage->maxLocal;
- surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
- if( surplus <= maxLocal ){
- pInfo->nLocal = surplus;
- }else{
- pInfo->nLocal = minLocal;
- }
- pInfo->iOverflow = pInfo->nLocal + n;
- pInfo->nSize = pInfo->iOverflow + 4;
- }
-}
-#define parseCell(pPage, iCell, pInfo) \
- sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
-void sqlite3BtreeParseCell(
- MemPage *pPage, /* Page containing the cell */
- int iCell, /* The cell index. First cell is 0 */
- CellInfo *pInfo /* Fill in this structure */
-){
- parseCell(pPage, iCell, pInfo);
-}
-
-/*
-** Compute the total number of bytes that a Cell needs in the cell
-** data area of the btree-page. The return number includes the cell
-** data header and the local payload, but not any overflow page or
-** the space used by the cell pointer.
-*/
-#ifndef NDEBUG
-static int cellSize(MemPage *pPage, int iCell){
- CellInfo info;
- sqlite3BtreeParseCell(pPage, iCell, &info);
- return info.nSize;
-}
-#endif
-static int cellSizePtr(MemPage *pPage, u8 *pCell){
- CellInfo info;
- sqlite3BtreeParseCellPtr(pPage, pCell, &info);
- return info.nSize;
-}
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
-/*
-** If the cell pCell, part of page pPage contains a pointer
-** to an overflow page, insert an entry into the pointer-map
-** for the overflow page.
-*/
-static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
- if( pCell ){
- CellInfo info;
- sqlite3BtreeParseCellPtr(pPage, pCell, &info);
- assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
- if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
- Pgno ovfl = get4byte(&pCell[info.iOverflow]);
- return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
- }
- }
- return SQLITE_OK;
-}
-/*
-** If the cell with index iCell on page pPage contains a pointer
-** to an overflow page, insert an entry into the pointer-map
-** for the overflow page.
-*/
-static int ptrmapPutOvfl(MemPage *pPage, int iCell){
- u8 *pCell;
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- pCell = findOverflowCell(pPage, iCell);
- return ptrmapPutOvflPtr(pPage, pCell);
-}
-#endif
-
-
-/*
-** Defragment the page given. All Cells are moved to the
-** end of the page and all free space is collected into one
-** big FreeBlk that occurs in between the header and cell
-** pointer array and the cell content area.
-*/
-static int defragmentPage(MemPage *pPage){
- int i; /* Loop counter */
- int pc; /* Address of a i-th cell */
- int addr; /* Offset of first byte after cell pointer array */
- int hdr; /* Offset to the page header */
- int size; /* Size of a cell */
- int usableSize; /* Number of usable bytes on a page */
- int cellOffset; /* Offset to the cell pointer array */
- int brk; /* Offset to the cell content area */
- int nCell; /* Number of cells on the page */
- unsigned char *data; /* The page data */
- unsigned char *temp; /* Temp area for cell content */
-
- assert( sqlite3PagerIswriteable(pPage->pDbPage) );
- assert( pPage->pBt!=0 );
- assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
- assert( pPage->nOverflow==0 );
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- temp = sqlite3_malloc( pPage->pBt->pageSize );
- if( temp==0 ) return SQLITE_NOMEM;
- data = pPage->aData;
- hdr = pPage->hdrOffset;
- cellOffset = pPage->cellOffset;
- nCell = pPage->nCell;
- assert( nCell==get2byte(&data[hdr+3]) );
- usableSize = pPage->pBt->usableSize;
- brk = get2byte(&data[hdr+5]);
- memcpy(&temp[brk], &data[brk], usableSize - brk);
- brk = usableSize;
- for(i=0; ipBt->usableSize );
- size = cellSizePtr(pPage, &temp[pc]);
- brk -= size;
- memcpy(&data[brk], &temp[pc], size);
- put2byte(pAddr, brk);
- }
- assert( brk>=cellOffset+2*nCell );
- put2byte(&data[hdr+5], brk);
- data[hdr+1] = 0;
- data[hdr+2] = 0;
- data[hdr+7] = 0;
- addr = cellOffset+2*nCell;
- memset(&data[addr], 0, brk-addr);
- sqlite3_free(temp);
- return SQLITE_OK;
-}
-
-/*
-** Allocate nByte bytes of space on a page.
-**
-** Return the index into pPage->aData[] of the first byte of
-** the new allocation. Or return 0 if there is not enough free
-** space on the page to satisfy the allocation request.
-**
-** If the page contains nBytes of free space but does not contain
-** nBytes of contiguous free space, then this routine automatically
-** calls defragementPage() to consolidate all free space before
-** allocating the new chunk.
-*/
-static int allocateSpace(MemPage *pPage, int nByte){
- int addr, pc, hdr;
- int size;
- int nFrag;
- int top;
- int nCell;
- int cellOffset;
- unsigned char *data;
-
- data = pPage->aData;
- assert( sqlite3PagerIswriteable(pPage->pDbPage) );
- assert( pPage->pBt );
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- if( nByte<4 ) nByte = 4;
- if( pPage->nFreenOverflow>0 ) return 0;
- pPage->nFree -= nByte;
- hdr = pPage->hdrOffset;
-
- nFrag = data[hdr+7];
- if( nFrag<60 ){
- /* Search the freelist looking for a slot big enough to satisfy the
- ** space request. */
- addr = hdr+1;
- while( (pc = get2byte(&data[addr]))>0 ){
- size = get2byte(&data[pc+2]);
- if( size>=nByte ){
- if( sizecellOffset;
- if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){
- if( defragmentPage(pPage) ) return 0;
- top = get2byte(&data[hdr+5]);
- }
- top -= nByte;
- assert( cellOffset + 2*nCell <= top );
- put2byte(&data[hdr+5], top);
- return top;
-}
-
-/*
-** Return a section of the pPage->aData to the freelist.
-** The first byte of the new free block is pPage->aDisk[start]
-** and the size of the block is "size" bytes.
-**
-** Most of the effort here is involved in coalesing adjacent
-** free blocks into a single big free block.
-*/
-static void freeSpace(MemPage *pPage, int start, int size){
- int addr, pbegin, hdr;
- unsigned char *data = pPage->aData;
-
- assert( pPage->pBt!=0 );
- assert( sqlite3PagerIswriteable(pPage->pDbPage) );
- assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
- assert( (start + size)<=pPage->pBt->usableSize );
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- if( size<4 ) size = 4;
-
-#ifdef SQLITE_SECURE_DELETE
- /* Overwrite deleted information with zeros when the SECURE_DELETE
- ** option is enabled at compile-time */
- memset(&data[start], 0, size);
-#endif
-
- /* Add the space back into the linked list of freeblocks */
- hdr = pPage->hdrOffset;
- addr = hdr + 1;
- while( (pbegin = get2byte(&data[addr]))0 ){
- assert( pbegin<=pPage->pBt->usableSize-4 );
- assert( pbegin>addr );
- addr = pbegin;
- }
- assert( pbegin<=pPage->pBt->usableSize-4 );
- assert( pbegin>addr || pbegin==0 );
- put2byte(&data[addr], start);
- put2byte(&data[start], pbegin);
- put2byte(&data[start+2], size);
- pPage->nFree += size;
-
- /* Coalesce adjacent free blocks */
- addr = pPage->hdrOffset + 1;
- while( (pbegin = get2byte(&data[addr]))>0 ){
- int pnext, psize;
- assert( pbegin>addr );
- assert( pbegin<=pPage->pBt->usableSize-4 );
- pnext = get2byte(&data[pbegin]);
- psize = get2byte(&data[pbegin+2]);
- if( pbegin + psize + 3 >= pnext && pnext>0 ){
- int frag = pnext - (pbegin+psize);
- assert( frag<=data[pPage->hdrOffset+7] );
- data[pPage->hdrOffset+7] -= frag;
- put2byte(&data[pbegin], get2byte(&data[pnext]));
- put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
- }else{
- addr = pbegin;
- }
- }
-
- /* If the cell content area begins with a freeblock, remove it. */
- if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
- int top;
- pbegin = get2byte(&data[hdr+1]);
- memcpy(&data[hdr+1], &data[pbegin], 2);
- top = get2byte(&data[hdr+5]);
- put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2]));
- }
-}
-
-/*
-** Decode the flags byte (the first byte of the header) for a page
-** and initialize fields of the MemPage structure accordingly.
-*/
-static void decodeFlags(MemPage *pPage, int flagByte){
- BtShared *pBt; /* A copy of pPage->pBt */
-
- assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0;
- pPage->zeroData = (flagByte & PTF_ZERODATA)!=0;
- pPage->leaf = (flagByte & PTF_LEAF)!=0;
- pPage->childPtrSize = 4*(pPage->leaf==0);
- pBt = pPage->pBt;
- if( flagByte & PTF_LEAFDATA ){
- pPage->leafData = 1;
- pPage->maxLocal = pBt->maxLeaf;
- pPage->minLocal = pBt->minLeaf;
- }else{
- pPage->leafData = 0;
- pPage->maxLocal = pBt->maxLocal;
- pPage->minLocal = pBt->minLocal;
- }
- pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
-}
-
-/*
-** Initialize the auxiliary information for a disk block.
-**
-** The pParent parameter must be a pointer to the MemPage which
-** is the parent of the page being initialized. The root of a
-** BTree has no parent and so for that page, pParent==NULL.
-**
-** Return SQLITE_OK on success. If we see that the page does
-** not contain a well-formed database page, then return
-** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
-** guarantee that the page is well-formed. It only shows that
-** we failed to detect any corruption.
-*/
-int sqlite3BtreeInitPage(
- MemPage *pPage, /* The page to be initialized */
- MemPage *pParent /* The parent. Might be NULL */
-){
- int pc; /* Address of a freeblock within pPage->aData[] */
- int hdr; /* Offset to beginning of page header */
- u8 *data; /* Equal to pPage->aData */
- BtShared *pBt; /* The main btree structure */
- int usableSize; /* Amount of usable space on each page */
- int cellOffset; /* Offset from start of page to first cell pointer */
- int nFree; /* Number of unused bytes on the page */
- int top; /* First byte of the cell content area */
-
- pBt = pPage->pBt;
- assert( pBt!=0 );
- assert( pParent==0 || pParent->pBt==pBt );
- assert( sqlite3_mutex_held(pBt->mutex) );
- assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
- assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
- assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
- if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){
- /* The parent page should never change unless the file is corrupt */
- return SQLITE_CORRUPT_BKPT;
- }
- if( pPage->isInit ) return SQLITE_OK;
- if( pPage->pParent==0 && pParent!=0 ){
- pPage->pParent = pParent;
- sqlite3PagerRef(pParent->pDbPage);
- }
- hdr = pPage->hdrOffset;
- data = pPage->aData;
- decodeFlags(pPage, data[hdr]);
- pPage->nOverflow = 0;
- pPage->idxShift = 0;
- usableSize = pBt->usableSize;
- pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
- top = get2byte(&data[hdr+5]);
- pPage->nCell = get2byte(&data[hdr+3]);
- if( pPage->nCell>MX_CELL(pBt) ){
- /* To many cells for a single page. The page must be corrupt */
- return SQLITE_CORRUPT_BKPT;
- }
- if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){
- /* All pages must have at least one cell, except for root pages */
- return SQLITE_CORRUPT_BKPT;
- }
-
- /* Compute the total free space on the page */
- pc = get2byte(&data[hdr+1]);
- nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
- while( pc>0 ){
- int next, size;
- if( pc>usableSize-4 ){
- /* Free block is off the page */
- return SQLITE_CORRUPT_BKPT;
- }
- next = get2byte(&data[pc]);
- size = get2byte(&data[pc+2]);
- if( next>0 && next<=pc+size+3 ){
- /* Free blocks must be in accending order */
- return SQLITE_CORRUPT_BKPT;
- }
- nFree += size;
- pc = next;
- }
- pPage->nFree = nFree;
- if( nFree>=usableSize ){
- /* Free space cannot exceed total page size */
- return SQLITE_CORRUPT_BKPT;
- }
-
- pPage->isInit = 1;
- return SQLITE_OK;
-}
-
-/*
-** Set up a raw page so that it looks like a database page holding
-** no entries.
-*/
-static void zeroPage(MemPage *pPage, int flags){
- unsigned char *data = pPage->aData;
- BtShared *pBt = pPage->pBt;
- int hdr = pPage->hdrOffset;
- int first;
-
- assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
- assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
- assert( sqlite3PagerGetData(pPage->pDbPage) == data );
- assert( sqlite3PagerIswriteable(pPage->pDbPage) );
- assert( sqlite3_mutex_held(pBt->mutex) );
- memset(&data[hdr], 0, pBt->usableSize - hdr);
- data[hdr] = flags;
- first = hdr + 8 + 4*((flags&PTF_LEAF)==0);
- memset(&data[hdr+1], 0, 4);
- data[hdr+7] = 0;
- put2byte(&data[hdr+5], pBt->usableSize);
- pPage->nFree = pBt->usableSize - first;
- decodeFlags(pPage, flags);
- pPage->hdrOffset = hdr;
- pPage->cellOffset = first;
- pPage->nOverflow = 0;
- pPage->idxShift = 0;
- pPage->nCell = 0;
- pPage->isInit = 1;
-}
-
-/*
-** Get a page from the pager. Initialize the MemPage.pBt and
-** MemPage.aData elements if needed.
-**
-** If the noContent flag is set, it means that we do not care about
-** the content of the page at this time. So do not go to the disk
-** to fetch the content. Just fill in the content with zeros for now.
-** If in the future we call sqlite3PagerWrite() on this page, that
-** means we have started to be concerned about content and the disk
-** read should occur at that point.
-*/
-int sqlite3BtreeGetPage(
- BtShared *pBt, /* The btree */
- Pgno pgno, /* Number of the page to fetch */
- MemPage **ppPage, /* Return the page in this parameter */
- int noContent /* Do not load page content if true */
-){
- int rc;
- MemPage *pPage;
- DbPage *pDbPage;
-
- assert( sqlite3_mutex_held(pBt->mutex) );
- rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
- if( rc ) return rc;
- pPage = (MemPage *)sqlite3PagerGetExtra(pDbPage);
- pPage->aData = sqlite3PagerGetData(pDbPage);
- pPage->pDbPage = pDbPage;
- pPage->pBt = pBt;
- pPage->pgno = pgno;
- pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
- *ppPage = pPage;
- return SQLITE_OK;
-}
-
-/*
-** Get a page from the pager and initialize it. This routine
-** is just a convenience wrapper around separate calls to
-** sqlite3BtreeGetPage() and sqlite3BtreeInitPage().
-*/
-static int getAndInitPage(
- BtShared *pBt, /* The database file */
- Pgno pgno, /* Number of the page to get */
- MemPage **ppPage, /* Write the page pointer here */
- MemPage *pParent /* Parent of the page */
-){
- int rc;
- assert( sqlite3_mutex_held(pBt->mutex) );
- if( pgno==0 ){
- return SQLITE_CORRUPT_BKPT;
- }
- rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0);
- if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
- rc = sqlite3BtreeInitPage(*ppPage, pParent);
- }
- return rc;
-}
-
-/*
-** Release a MemPage. This should be called once for each prior
-** call to sqlite3BtreeGetPage.
-*/
-static void releasePage(MemPage *pPage){
- if( pPage ){
- assert( pPage->aData );
- assert( pPage->pBt );
- assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
- assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- sqlite3PagerUnref(pPage->pDbPage);
- }
-}
-
-/*
-** This routine is called when the reference count for a page
-** reaches zero. We need to unref the pParent pointer when that
-** happens.
-*/
-static void pageDestructor(DbPage *pData, int pageSize){
- MemPage *pPage;
- assert( (pageSize & 7)==0 );
- pPage = (MemPage *)sqlite3PagerGetExtra(pData);
- assert( pPage->isInit==0 || sqlite3_mutex_held(pPage->pBt->mutex) );
- if( pPage->pParent ){
- MemPage *pParent = pPage->pParent;
- assert( pParent->pBt==pPage->pBt );
- pPage->pParent = 0;
- releasePage(pParent);
- }
- pPage->isInit = 0;
-}
-
-/*
-** During a rollback, when the pager reloads information into the cache
-** so that the cache is restored to its original state at the start of
-** the transaction, for each page restored this routine is called.
-**
-** This routine needs to reset the extra data section at the end of the
-** page to agree with the restored data.
-*/
-static void pageReinit(DbPage *pData, int pageSize){
- MemPage *pPage;
- assert( (pageSize & 7)==0 );
- pPage = (MemPage *)sqlite3PagerGetExtra(pData);
- if( pPage->isInit ){
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- pPage->isInit = 0;
- sqlite3BtreeInitPage(pPage, pPage->pParent);
- }
-}
-
-/*
-** Open a database file.
-**
-** zFilename is the name of the database file. If zFilename is NULL
-** a new database with a random name is created. This randomly named
-** database file will be deleted when sqlite3BtreeClose() is called.
-** If zFilename is ":memory:" then an in-memory database is created
-** that is automatically destroyed when it is closed.
-*/
-int sqlite3BtreeOpen(
- const char *zFilename, /* Name of the file containing the BTree database */
- sqlite3 *pSqlite, /* Associated database handle */
- Btree **ppBtree, /* Pointer to new Btree object written here */
- int flags, /* Options */
- int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
-){
- sqlite3_vfs *pVfs; /* The VFS to use for this btree */
- BtShared *pBt = 0; /* Shared part of btree structure */
- Btree *p; /* Handle to return */
- int rc = SQLITE_OK;
- int nReserve;
- unsigned char zDbHeader[100];
-
- /* Set the variable isMemdb to true for an in-memory database, or
- ** false for a file-based database. This symbol is only required if
- ** either of the shared-data or autovacuum features are compiled
- ** into the library.
- */
-#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
- #ifdef SQLITE_OMIT_MEMORYDB
- const int isMemdb = 0;
- #else
- const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
- #endif
-#endif
-
- assert( pSqlite!=0 );
- assert( sqlite3_mutex_held(pSqlite->mutex) );
-
- pVfs = pSqlite->pVfs;
- p = sqlite3MallocZero(sizeof(Btree));
- if( !p ){
- return SQLITE_NOMEM;
- }
- p->inTrans = TRANS_NONE;
- p->pSqlite = pSqlite;
-
-#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
- /*
- ** If this Btree is a candidate for shared cache, try to find an
- ** existing BtShared object that we can share with
- */
- if( (flags & BTREE_PRIVATE)==0
- && isMemdb==0
- && (pSqlite->flags & SQLITE_Vtab)==0
- && zFilename && zFilename[0]
- ){
- if( sqlite3SharedCacheEnabled ){
- int nFullPathname = pVfs->mxPathname+1;
- char *zFullPathname = (char *)sqlite3_malloc(nFullPathname);
- sqlite3_mutex *mutexShared;
- p->sharable = 1;
- if( pSqlite ){
- pSqlite->flags |= SQLITE_SharedCache;
- }
- if( !zFullPathname ){
- sqlite3_free(p);
- return SQLITE_NOMEM;
- }
- sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
- mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
- sqlite3_mutex_enter(mutexShared);
- for(pBt=sqlite3SharedCacheList; pBt; pBt=pBt->pNext){
- assert( pBt->nRef>0 );
- if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
- && sqlite3PagerVfs(pBt->pPager)==pVfs ){
- p->pBt = pBt;
- pBt->nRef++;
- break;
- }
- }
- sqlite3_mutex_leave(mutexShared);
- sqlite3_free(zFullPathname);
- }
-#ifdef SQLITE_DEBUG
- else{
- /* In debug mode, we mark all persistent databases as sharable
- ** even when they are not. This exercises the locking code and
- ** gives more opportunity for asserts(sqlite3_mutex_held())
- ** statements to find locking problems.
- */
- p->sharable = 1;
- }
-#endif
- }
-#endif
- if( pBt==0 ){
- /*
- ** The following asserts make sure that structures used by the btree are
- ** the right size. This is to guard against size changes that result
- ** when compiling on a different architecture.
- */
- assert( sizeof(i64)==8 || sizeof(i64)==4 );
- assert( sizeof(u64)==8 || sizeof(u64)==4 );
- assert( sizeof(u32)==4 );
- assert( sizeof(u16)==2 );
- assert( sizeof(Pgno)==4 );
-
- pBt = sqlite3MallocZero( sizeof(*pBt) );
- if( pBt==0 ){
- rc = SQLITE_NOMEM;
- goto btree_open_out;
- }
- rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
- EXTRA_SIZE, flags, vfsFlags);
- if( rc==SQLITE_OK ){
- rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
- }
- if( rc!=SQLITE_OK ){
- goto btree_open_out;
- }
- p->pBt = pBt;
-
- sqlite3PagerSetDestructor(pBt->pPager, pageDestructor);
- sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
- pBt->pCursor = 0;
- pBt->pPage1 = 0;
- pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
- pBt->pageSize = get2byte(&zDbHeader[16]);
- if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
- || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
- pBt->pageSize = 0;
- sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
- pBt->maxEmbedFrac = 64; /* 25% */
- pBt->minEmbedFrac = 32; /* 12.5% */
- pBt->minLeafFrac = 32; /* 12.5% */
-#ifndef SQLITE_OMIT_AUTOVACUUM
- /* If the magic name ":memory:" will create an in-memory database, then
- ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
- ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
- ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
- ** regular file-name. In this case the auto-vacuum applies as per normal.
- */
- if( zFilename && !isMemdb ){
- pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
- pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
- }
-#endif
- nReserve = 0;
- }else{
- nReserve = zDbHeader[20];
- pBt->maxEmbedFrac = zDbHeader[21];
- pBt->minEmbedFrac = zDbHeader[22];
- pBt->minLeafFrac = zDbHeader[23];
- pBt->pageSizeFixed = 1;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
- pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
-#endif
- }
- pBt->usableSize = pBt->pageSize - nReserve;
- assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
- sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
-
-#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
- /* Add the new BtShared object to the linked list sharable BtShareds.
- */
- if( p->sharable ){
- sqlite3_mutex *mutexShared;
- pBt->nRef = 1;
- mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
- if( SQLITE_THREADSAFE ){
- pBt->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
- if( pBt->mutex==0 ){
- rc = SQLITE_NOMEM;
- pSqlite->mallocFailed = 0;
- goto btree_open_out;
- }
- }
- sqlite3_mutex_enter(mutexShared);
- pBt->pNext = sqlite3SharedCacheList;
- sqlite3SharedCacheList = pBt;
- sqlite3_mutex_leave(mutexShared);
- }
-#endif
- }
-
-#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
- /* If the new Btree uses a sharable pBtShared, then link the new
- ** Btree into the list of all sharable Btrees for the same connection.
- ** The list is kept in ascending order by pBt address.
- */
- if( p->sharable ){
- int i;
- Btree *pSib;
- for(i=0; inDb; i++){
- if( (pSib = pSqlite->aDb[i].pBt)!=0 && pSib->sharable ){
- while( pSib->pPrev ){ pSib = pSib->pPrev; }
- if( p->pBtpBt ){
- p->pNext = pSib;
- p->pPrev = 0;
- pSib->pPrev = p;
- }else{
- while( pSib->pNext && pSib->pNext->pBtpBt ){
- pSib = pSib->pNext;
- }
- p->pNext = pSib->pNext;
- p->pPrev = pSib;
- if( p->pNext ){
- p->pNext->pPrev = p;
- }
- pSib->pNext = p;
- }
- break;
- }
- }
- }
-#endif
- *ppBtree = p;
-
-btree_open_out:
- if( rc!=SQLITE_OK ){
- if( pBt && pBt->pPager ){
- sqlite3PagerClose(pBt->pPager);
- }
- sqlite3_free(pBt);
- sqlite3_free(p);
- *ppBtree = 0;
- }
- return rc;
-}
-
-/*
-** Decrement the BtShared.nRef counter. When it reaches zero,
-** remove the BtShared structure from the sharing list. Return
-** true if the BtShared.nRef counter reaches zero and return
-** false if it is still positive.
-*/
-static int removeFromSharingList(BtShared *pBt){
-#ifndef SQLITE_OMIT_SHARED_CACHE
- sqlite3_mutex *pMaster;
- BtShared *pList;
- int removed = 0;
-
- assert( sqlite3_mutex_notheld(pBt->mutex) );
- pMaster = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
- sqlite3_mutex_enter(pMaster);
- pBt->nRef--;
- if( pBt->nRef<=0 ){
- if( sqlite3SharedCacheList==pBt ){
- sqlite3SharedCacheList = pBt->pNext;
- }else{
- pList = sqlite3SharedCacheList;
- while( pList && pList->pNext!=pBt ){
- pList=pList->pNext;
- }
- if( pList ){
- pList->pNext = pBt->pNext;
- }
- }
- if( SQLITE_THREADSAFE ){
- sqlite3_mutex_free(pBt->mutex);
- }
- removed = 1;
- }
- sqlite3_mutex_leave(pMaster);
- return removed;
-#else
- return 1;
-#endif
-}
-
-/*
-** Close an open database and invalidate all cursors.
-*/
-int sqlite3BtreeClose(Btree *p){
- BtShared *pBt = p->pBt;
- BtCursor *pCur;
-
- /* Close all cursors opened via this handle. */
- assert( sqlite3_mutex_held(p->pSqlite->mutex) );
- sqlite3BtreeEnter(p);
- pCur = pBt->pCursor;
- while( pCur ){
- BtCursor *pTmp = pCur;
- pCur = pCur->pNext;
- if( pTmp->pBtree==p ){
- sqlite3BtreeCloseCursor(pTmp);
- }
- }
-
- /* Rollback any active transaction and free the handle structure.
- ** The call to sqlite3BtreeRollback() drops any table-locks held by
- ** this handle.
- */
- sqlite3BtreeRollback(p);
- sqlite3BtreeLeave(p);
-
- /* If there are still other outstanding references to the shared-btree
- ** structure, return now. The remainder of this procedure cleans
- ** up the shared-btree.
- */
- assert( p->wantToLock==0 && p->locked==0 );
- if( !p->sharable || removeFromSharingList(pBt) ){
- /* The pBt is no longer on the sharing list, so we can access
- ** it without having to hold the mutex.
- **
- ** Clean out and delete the BtShared object.
- */
- assert( !pBt->pCursor );
- sqlite3PagerClose(pBt->pPager);
- if( pBt->xFreeSchema && pBt->pSchema ){
- pBt->xFreeSchema(pBt->pSchema);
- }
- sqlite3_free(pBt->pSchema);
- sqlite3_free(pBt);
- }
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
- assert( p->wantToLock==0 );
- assert( p->locked==0 );
- if( p->pPrev ) p->pPrev->pNext = p->pNext;
- if( p->pNext ) p->pNext->pPrev = p->pPrev;
-#endif
-
- sqlite3_free(p);
- return SQLITE_OK;
-}
-
-/*
-** Change the busy handler callback function.
-*/
-int sqlite3BtreeSetBusyHandler(Btree *p, BusyHandler *pHandler){
- BtShared *pBt = p->pBt;
- assert( sqlite3_mutex_held(p->pSqlite->mutex) );
- sqlite3BtreeEnter(p);
- pBt->pBusyHandler = pHandler;
- sqlite3PagerSetBusyhandler(pBt->pPager, pHandler);
- sqlite3BtreeLeave(p);
- return SQLITE_OK;
-}
-
-/*
-** Change the limit on the number of pages allowed in the cache.
-**
-** The maximum number of cache pages is set to the absolute
-** value of mxPage. If mxPage is negative, the pager will
-** operate asynchronously - it will not stop to do fsync()s
-** to insure data is written to the disk surface before
-** continuing. Transactions still work if synchronous is off,
-** and the database cannot be corrupted if this program
-** crashes. But if the operating system crashes or there is
-** an abrupt power failure when synchronous is off, the database
-** could be left in an inconsistent and unrecoverable state.
-** Synchronous is on by default so database corruption is not
-** normally a worry.
-*/
-int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
- BtShared *pBt = p->pBt;
- assert( sqlite3_mutex_held(p->pSqlite->mutex) );
- sqlite3BtreeEnter(p);
- sqlite3PagerSetCachesize(pBt->pPager, mxPage);
- sqlite3BtreeLeave(p);
- return SQLITE_OK;
-}
-
-/*
-** Change the way data is synced to disk in order to increase or decrease
-** how well the database resists damage due to OS crashes and power
-** failures. Level 1 is the same as asynchronous (no syncs() occur and
-** there is a high probability of damage) Level 2 is the default. There
-** is a very low but non-zero probability of damage. Level 3 reduces the
-** probability of damage to near zero but with a write performance reduction.
-*/
-#ifndef SQLITE_OMIT_PAGER_PRAGMAS
-int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
- BtShared *pBt = p->pBt;
- assert( sqlite3_mutex_held(p->pSqlite->mutex) );
- sqlite3BtreeEnter(p);
- sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
- sqlite3BtreeLeave(p);
- return SQLITE_OK;
-}
-#endif
-
-/*
-** Return TRUE if the given btree is set to safety level 1. In other
-** words, return TRUE if no sync() occurs on the disk files.
-*/
-int sqlite3BtreeSyncDisabled(Btree *p){
- BtShared *pBt = p->pBt;
- int rc;
- assert( sqlite3_mutex_held(p->pSqlite->mutex) );
- sqlite3BtreeEnter(p);
- assert( pBt && pBt->pPager );
- rc = sqlite3PagerNosync(pBt->pPager);
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
-/*
-** Change the default pages size and the number of reserved bytes per page.
-**
-** The page size must be a power of 2 between 512 and 65536. If the page
-** size supplied does not meet this constraint then the page size is not
-** changed.
-**
-** Page sizes are constrained to be a power of two so that the region
-** of the database file used for locking (beginning at PENDING_BYTE,
-** the first byte past the 1GB boundary, 0x40000000) needs to occur
-** at the beginning of a page.
-**
-** If parameter nReserve is less than zero, then the number of reserved
-** bytes per page is left unchanged.
-*/
-int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){
- int rc = SQLITE_OK;
- BtShared *pBt = p->pBt;
- sqlite3BtreeEnter(p);
- if( pBt->pageSizeFixed ){
- sqlite3BtreeLeave(p);
- return SQLITE_READONLY;
- }
- if( nReserve<0 ){
- nReserve = pBt->pageSize - pBt->usableSize;
- }
- if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
- ((pageSize-1)&pageSize)==0 ){
- assert( (pageSize & 7)==0 );
- assert( !pBt->pPage1 && !pBt->pCursor );
- pBt->pageSize = pageSize;
- rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
- }
- pBt->usableSize = pBt->pageSize - nReserve;
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-/*
-** Return the currently defined page size
-*/
-int sqlite3BtreeGetPageSize(Btree *p){
- return p->pBt->pageSize;
-}
-int sqlite3BtreeGetReserve(Btree *p){
- int n;
- sqlite3BtreeEnter(p);
- n = p->pBt->pageSize - p->pBt->usableSize;
- sqlite3BtreeLeave(p);
- return n;
-}
-
-/*
-** Set the maximum page count for a database if mxPage is positive.
-** No changes are made if mxPage is 0 or negative.
-** Regardless of the value of mxPage, return the maximum page count.
-*/
-int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
- int n;
- sqlite3BtreeEnter(p);
- n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
- sqlite3BtreeLeave(p);
- return n;
-}
-#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
-
-/*
-** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
-** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
-** is disabled. The default value for the auto-vacuum property is
-** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
-*/
-int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
-#ifdef SQLITE_OMIT_AUTOVACUUM
- return SQLITE_READONLY;
-#else
- BtShared *pBt = p->pBt;
- int rc = SQLITE_OK;
- int av = (autoVacuum?1:0);
-
- sqlite3BtreeEnter(p);
- if( pBt->pageSizeFixed && av!=pBt->autoVacuum ){
- rc = SQLITE_READONLY;
- }else{
- pBt->autoVacuum = av;
- }
- sqlite3BtreeLeave(p);
- return rc;
-#endif
-}
-
-/*
-** Return the value of the 'auto-vacuum' property. If auto-vacuum is
-** enabled 1 is returned. Otherwise 0.
-*/
-int sqlite3BtreeGetAutoVacuum(Btree *p){
-#ifdef SQLITE_OMIT_AUTOVACUUM
- return BTREE_AUTOVACUUM_NONE;
-#else
- int rc;
- sqlite3BtreeEnter(p);
- rc = (
- (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
- (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
- BTREE_AUTOVACUUM_INCR
- );
- sqlite3BtreeLeave(p);
- return rc;
-#endif
-}
-
-
-/*
-** Get a reference to pPage1 of the database file. This will
-** also acquire a readlock on that file.
-**
-** SQLITE_OK is returned on success. If the file is not a
-** well-formed database file, then SQLITE_CORRUPT is returned.
-** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
-** is returned if we run out of memory.
-*/
-static int lockBtree(BtShared *pBt){
- int rc, pageSize;
- MemPage *pPage1;
-
- assert( sqlite3_mutex_held(pBt->mutex) );
- if( pBt->pPage1 ) return SQLITE_OK;
- rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0);
- if( rc!=SQLITE_OK ) return rc;
-
-
- /* Do some checking to help insure the file we opened really is
- ** a valid database file.
- */
- rc = SQLITE_NOTADB;
- if( sqlite3PagerPagecount(pBt->pPager)>0 ){
- u8 *page1 = pPage1->aData;
- if( memcmp(page1, zMagicHeader, 16)!=0 ){
- goto page1_init_failed;
- }
- if( page1[18]>1 ){
- pBt->readOnly = 1;
- }
- if( page1[19]>1 ){
- goto page1_init_failed;
- }
- pageSize = get2byte(&page1[16]);
- if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
- (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
- ){
- goto page1_init_failed;
- }
- assert( (pageSize & 7)==0 );
- pBt->pageSize = pageSize;
- pBt->usableSize = pageSize - page1[20];
- if( pBt->usableSize<500 ){
- goto page1_init_failed;
- }
- pBt->maxEmbedFrac = page1[21];
- pBt->minEmbedFrac = page1[22];
- pBt->minLeafFrac = page1[23];
-#ifndef SQLITE_OMIT_AUTOVACUUM
- pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
- pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
-#endif
- }
-
- /* maxLocal is the maximum amount of payload to store locally for
- ** a cell. Make sure it is small enough so that at least minFanout
- ** cells can will fit on one page. We assume a 10-byte page header.
- ** Besides the payload, the cell must store:
- ** 2-byte pointer to the cell
- ** 4-byte child pointer
- ** 9-byte nKey value
- ** 4-byte nData value
- ** 4-byte overflow page pointer
- ** So a cell consists of a 2-byte poiner, a header which is as much as
- ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
- ** page pointer.
- */
- pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23;
- pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23;
- pBt->maxLeaf = pBt->usableSize - 35;
- pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23;
- if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){
- goto page1_init_failed;
- }
- assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
- pBt->pPage1 = pPage1;
- return SQLITE_OK;
-
-page1_init_failed:
- releasePage(pPage1);
- pBt->pPage1 = 0;
- return rc;
-}
-
-/*
-** This routine works like lockBtree() except that it also invokes the
-** busy callback if there is lock contention.
-*/
-static int lockBtreeWithRetry(Btree *pRef){
- int rc = SQLITE_OK;
-
- assert( sqlite3BtreeHoldsMutex(pRef) );
- if( pRef->inTrans==TRANS_NONE ){
- u8 inTransaction = pRef->pBt->inTransaction;
- btreeIntegrity(pRef);
- rc = sqlite3BtreeBeginTrans(pRef, 0);
- pRef->pBt->inTransaction = inTransaction;
- pRef->inTrans = TRANS_NONE;
- if( rc==SQLITE_OK ){
- pRef->pBt->nTransaction--;
- }
- btreeIntegrity(pRef);
- }
- return rc;
-}
-
-
-/*
-** If there are no outstanding cursors and we are not in the middle
-** of a transaction but there is a read lock on the database, then
-** this routine unrefs the first page of the database file which
-** has the effect of releasing the read lock.
-**
-** If there are any outstanding cursors, this routine is a no-op.
-**
-** If there is a transaction in progress, this routine is a no-op.
-*/
-static void unlockBtreeIfUnused(BtShared *pBt){
- assert( sqlite3_mutex_held(pBt->mutex) );
- if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
- if( sqlite3PagerRefcount(pBt->pPager)>=1 ){
- if( pBt->pPage1->aData==0 ){
- MemPage *pPage = pBt->pPage1;
- pPage->aData = sqlite3PagerGetData(pPage->pDbPage);
- pPage->pBt = pBt;
- pPage->pgno = 1;
- }
- releasePage(pBt->pPage1);
- }
- pBt->pPage1 = 0;
- pBt->inStmt = 0;
- }
-}
-
-/*
-** Create a new database by initializing the first page of the
-** file.
-*/
-static int newDatabase(BtShared *pBt){
- MemPage *pP1;
- unsigned char *data;
- int rc;
-
- assert( sqlite3_mutex_held(pBt->mutex) );
- if( sqlite3PagerPagecount(pBt->pPager)>0 ) return SQLITE_OK;
- pP1 = pBt->pPage1;
- assert( pP1!=0 );
- data = pP1->aData;
- rc = sqlite3PagerWrite(pP1->pDbPage);
- if( rc ) return rc;
- memcpy(data, zMagicHeader, sizeof(zMagicHeader));
- assert( sizeof(zMagicHeader)==16 );
- put2byte(&data[16], pBt->pageSize);
- data[18] = 1;
- data[19] = 1;
- data[20] = pBt->pageSize - pBt->usableSize;
- data[21] = pBt->maxEmbedFrac;
- data[22] = pBt->minEmbedFrac;
- data[23] = pBt->minLeafFrac;
- memset(&data[24], 0, 100-24);
- zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
- pBt->pageSizeFixed = 1;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
- assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
- put4byte(&data[36 + 4*4], pBt->autoVacuum);
- put4byte(&data[36 + 7*4], pBt->incrVacuum);
-#endif
- return SQLITE_OK;
-}
-
-/*
-** Attempt to start a new transaction. A write-transaction
-** is started if the second argument is nonzero, otherwise a read-
-** transaction. If the second argument is 2 or more and exclusive
-** transaction is started, meaning that no other process is allowed
-** to access the database. A preexisting transaction may not be
-** upgraded to exclusive by calling this routine a second time - the
-** exclusivity flag only works for a new transaction.
-**
-** A write-transaction must be started before attempting any
-** changes to the database. None of the following routines
-** will work unless a transaction is started first:
-**
-** sqlite3BtreeCreateTable()
-** sqlite3BtreeCreateIndex()
-** sqlite3BtreeClearTable()
-** sqlite3BtreeDropTable()
-** sqlite3BtreeInsert()
-** sqlite3BtreeDelete()
-** sqlite3BtreeUpdateMeta()
-**
-** If an initial attempt to acquire the lock fails because of lock contention
-** and the database was previously unlocked, then invoke the busy handler
-** if there is one. But if there was previously a read-lock, do not
-** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
-** returned when there is already a read-lock in order to avoid a deadlock.
-**
-** Suppose there are two processes A and B. A has a read lock and B has
-** a reserved lock. B tries to promote to exclusive but is blocked because
-** of A's read lock. A tries to promote to reserved but is blocked by B.
-** One or the other of the two processes must give way or there can be
-** no progress. By returning SQLITE_BUSY and not invoking the busy callback
-** when A already has a read lock, we encourage A to give up and let B
-** proceed.
-*/
-int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
- BtShared *pBt = p->pBt;
- int rc = SQLITE_OK;
-
- sqlite3BtreeEnter(p);
- btreeIntegrity(p);
-
- /* If the btree is already in a write-transaction, or it
- ** is already in a read-transaction and a read-transaction
- ** is requested, this is a no-op.
- */
- if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
- goto trans_begun;
- }
-
- /* Write transactions are not possible on a read-only database */
- if( pBt->readOnly && wrflag ){
- rc = SQLITE_READONLY;
- goto trans_begun;
- }
-
- /* If another database handle has already opened a write transaction
- ** on this shared-btree structure and a second write transaction is
- ** requested, return SQLITE_BUSY.
- */
- if( pBt->inTransaction==TRANS_WRITE && wrflag ){
- rc = SQLITE_BUSY;
- goto trans_begun;
- }
-
- do {
- if( pBt->pPage1==0 ){
- rc = lockBtree(pBt);
- }
-
- if( rc==SQLITE_OK && wrflag ){
- if( pBt->readOnly ){
- rc = SQLITE_READONLY;
- }else{
- rc = sqlite3PagerBegin(pBt->pPage1->pDbPage, wrflag>1);
- if( rc==SQLITE_OK ){
- rc = newDatabase(pBt);
- }
- }
- }
-
- if( rc==SQLITE_OK ){
- if( wrflag ) pBt->inStmt = 0;
- }else{
- unlockBtreeIfUnused(pBt);
- }
- }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
- sqlite3InvokeBusyHandler(pBt->pBusyHandler) );
-
- if( rc==SQLITE_OK ){
- if( p->inTrans==TRANS_NONE ){
- pBt->nTransaction++;
- }
- p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
- if( p->inTrans>pBt->inTransaction ){
- pBt->inTransaction = p->inTrans;
- }
- }
-
-
-trans_begun:
- btreeIntegrity(p);
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
-
-/*
-** Set the pointer-map entries for all children of page pPage. Also, if
-** pPage contains cells that point to overflow pages, set the pointer
-** map entries for the overflow pages as well.
-*/
-static int setChildPtrmaps(MemPage *pPage){
- int i; /* Counter variable */
- int nCell; /* Number of cells in page pPage */
- int rc; /* Return code */
- BtShared *pBt = pPage->pBt;
- int isInitOrig = pPage->isInit;
- Pgno pgno = pPage->pgno;
-
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- rc = sqlite3BtreeInitPage(pPage, pPage->pParent);
- if( rc!=SQLITE_OK ){
- goto set_child_ptrmaps_out;
- }
- nCell = pPage->nCell;
-
- for(i=0; ileaf ){
- Pgno childPgno = get4byte(pCell);
- rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
- if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
- }
- }
-
- if( !pPage->leaf ){
- Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
- rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
- }
-
-set_child_ptrmaps_out:
- pPage->isInit = isInitOrig;
- return rc;
-}
-
-/*
-** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow
-** page, is a pointer to page iFrom. Modify this pointer so that it points to
-** iTo. Parameter eType describes the type of pointer to be modified, as
-** follows:
-**
-** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
-** page of pPage.
-**
-** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
-** page pointed to by one of the cells on pPage.
-**
-** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
-** overflow page in the list.
-*/
-static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- if( eType==PTRMAP_OVERFLOW2 ){
- /* The pointer is always the first 4 bytes of the page in this case. */
- if( get4byte(pPage->aData)!=iFrom ){
- return SQLITE_CORRUPT_BKPT;
- }
- put4byte(pPage->aData, iTo);
- }else{
- int isInitOrig = pPage->isInit;
- int i;
- int nCell;
-
- sqlite3BtreeInitPage(pPage, 0);
- nCell = pPage->nCell;
-
- for(i=0; iaData[pPage->hdrOffset+8])!=iFrom ){
- return SQLITE_CORRUPT_BKPT;
- }
- put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
- }
-
- pPage->isInit = isInitOrig;
- }
- return SQLITE_OK;
-}
-
-
-/*
-** Move the open database page pDbPage to location iFreePage in the
-** database. The pDbPage reference remains valid.
-*/
-static int relocatePage(
- BtShared *pBt, /* Btree */
- MemPage *pDbPage, /* Open page to move */
- u8 eType, /* Pointer map 'type' entry for pDbPage */
- Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
- Pgno iFreePage /* The location to move pDbPage to */
-){
- MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
- Pgno iDbPage = pDbPage->pgno;
- Pager *pPager = pBt->pPager;
- int rc;
-
- assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
- eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
- assert( sqlite3_mutex_held(pBt->mutex) );
- assert( pDbPage->pBt==pBt );
-
- /* Move page iDbPage from it's current location to page number iFreePage */
- TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
- iDbPage, iFreePage, iPtrPage, eType));
- rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- pDbPage->pgno = iFreePage;
-
- /* If pDbPage was a btree-page, then it may have child pages and/or cells
- ** that point to overflow pages. The pointer map entries for all these
- ** pages need to be changed.
- **
- ** If pDbPage is an overflow page, then the first 4 bytes may store a
- ** pointer to a subsequent overflow page. If this is the case, then
- ** the pointer map needs to be updated for the subsequent overflow page.
- */
- if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
- rc = setChildPtrmaps(pDbPage);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- }else{
- Pgno nextOvfl = get4byte(pDbPage->aData);
- if( nextOvfl!=0 ){
- rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- }
- }
-
- /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
- ** that it points at iFreePage. Also fix the pointer map entry for
- ** iPtrPage.
- */
- if( eType!=PTRMAP_ROOTPAGE ){
- rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- rc = sqlite3PagerWrite(pPtrPage->pDbPage);
- if( rc!=SQLITE_OK ){
- releasePage(pPtrPage);
- return rc;
- }
- rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
- releasePage(pPtrPage);
- if( rc==SQLITE_OK ){
- rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
- }
- }
- return rc;
-}
-
-/* Forward declaration required by incrVacuumStep(). */
-static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
-
-/*
-** Perform a single step of an incremental-vacuum. If successful,
-** return SQLITE_OK. If there is no work to do (and therefore no
-** point in calling this function again), return SQLITE_DONE.
-**
-** More specificly, this function attempts to re-organize the
-** database so that the last page of the file currently in use
-** is no longer in use.
-**
-** If the nFin parameter is non-zero, the implementation assumes
-** that the caller will keep calling incrVacuumStep() until
-** it returns SQLITE_DONE or an error, and that nFin is the
-** number of pages the database file will contain after this
-** process is complete.
-*/
-static int incrVacuumStep(BtShared *pBt, Pgno nFin){
- Pgno iLastPg; /* Last page in the database */
- Pgno nFreeList; /* Number of pages still on the free-list */
-
- assert( sqlite3_mutex_held(pBt->mutex) );
- iLastPg = pBt->nTrunc;
- if( iLastPg==0 ){
- iLastPg = sqlite3PagerPagecount(pBt->pPager);
- }
-
- if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
- int rc;
- u8 eType;
- Pgno iPtrPage;
-
- nFreeList = get4byte(&pBt->pPage1->aData[36]);
- if( nFreeList==0 || nFin==iLastPg ){
- return SQLITE_DONE;
- }
-
- rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- if( eType==PTRMAP_ROOTPAGE ){
- return SQLITE_CORRUPT_BKPT;
- }
-
- if( eType==PTRMAP_FREEPAGE ){
- if( nFin==0 ){
- /* Remove the page from the files free-list. This is not required
- ** if nFin is non-zero. In that case, the free-list will be
- ** truncated to zero after this function returns, so it doesn't
- ** matter if it still contains some garbage entries.
- */
- Pgno iFreePg;
- MemPage *pFreePg;
- rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- assert( iFreePg==iLastPg );
- releasePage(pFreePg);
- }
- } else {
- Pgno iFreePg; /* Index of free page to move pLastPg to */
- MemPage *pLastPg;
-
- rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- /* If nFin is zero, this loop runs exactly once and page pLastPg
- ** is swapped with the first free page pulled off the free list.
- **
- ** On the other hand, if nFin is greater than zero, then keep
- ** looping until a free-page located within the first nFin pages
- ** of the file is found.
- */
- do {
- MemPage *pFreePg;
- rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
- if( rc!=SQLITE_OK ){
- releasePage(pLastPg);
- return rc;
- }
- releasePage(pFreePg);
- }while( nFin!=0 && iFreePg>nFin );
- assert( iFreePgpDbPage);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg);
- releasePage(pLastPg);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- }
- }
-
- pBt->nTrunc = iLastPg - 1;
- while( pBt->nTrunc==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, pBt->nTrunc) ){
- pBt->nTrunc--;
- }
- return SQLITE_OK;
-}
-
-/*
-** A write-transaction must be opened before calling this function.
-** It performs a single unit of work towards an incremental vacuum.
-**
-** If the incremental vacuum is finished after this function has run,
-** SQLITE_DONE is returned. If it is not finished, but no error occured,
-** SQLITE_OK is returned. Otherwise an SQLite error code.
-*/
-int sqlite3BtreeIncrVacuum(Btree *p){
- int rc;
- BtShared *pBt = p->pBt;
-
- sqlite3BtreeEnter(p);
- assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
- if( !pBt->autoVacuum ){
- rc = SQLITE_DONE;
- }else{
- invalidateAllOverflowCache(pBt);
- rc = incrVacuumStep(pBt, 0);
- }
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-/*
-** This routine is called prior to sqlite3PagerCommit when a transaction
-** is commited for an auto-vacuum database.
-**
-** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
-** the database file should be truncated to during the commit process.
-** i.e. the database has been reorganized so that only the first *pnTrunc
-** pages are in use.
-*/
-static int autoVacuumCommit(BtShared *pBt, Pgno *pnTrunc){
- int rc = SQLITE_OK;
- Pager *pPager = pBt->pPager;
-#ifndef NDEBUG
- int nRef = sqlite3PagerRefcount(pPager);
-#endif
-
- assert( sqlite3_mutex_held(pBt->mutex) );
- invalidateAllOverflowCache(pBt);
- assert(pBt->autoVacuum);
- if( !pBt->incrVacuum ){
- Pgno nFin = 0;
-
- if( pBt->nTrunc==0 ){
- Pgno nFree;
- Pgno nPtrmap;
- const int pgsz = pBt->pageSize;
- Pgno nOrig = sqlite3PagerPagecount(pBt->pPager);
-
- if( PTRMAP_ISPAGE(pBt, nOrig) ){
- return SQLITE_CORRUPT_BKPT;
- }
- if( nOrig==PENDING_BYTE_PAGE(pBt) ){
- nOrig--;
- }
- nFree = get4byte(&pBt->pPage1->aData[36]);
- nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5);
- nFin = nOrig - nFree - nPtrmap;
- if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<=PENDING_BYTE_PAGE(pBt) ){
- nFin--;
- }
- while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
- nFin--;
- }
- }
-
- while( rc==SQLITE_OK ){
- rc = incrVacuumStep(pBt, nFin);
- }
- if( rc==SQLITE_DONE ){
- assert(nFin==0 || pBt->nTrunc==0 || nFin<=pBt->nTrunc);
- rc = SQLITE_OK;
- if( pBt->nTrunc ){
- rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
- put4byte(&pBt->pPage1->aData[32], 0);
- put4byte(&pBt->pPage1->aData[36], 0);
- pBt->nTrunc = nFin;
- }
- }
- if( rc!=SQLITE_OK ){
- sqlite3PagerRollback(pPager);
- }
- }
-
- if( rc==SQLITE_OK ){
- *pnTrunc = pBt->nTrunc;
- pBt->nTrunc = 0;
- }
- assert( nRef==sqlite3PagerRefcount(pPager) );
- return rc;
-}
-
-#endif
-
-/*
-** This routine does the first phase of a two-phase commit. This routine
-** causes a rollback journal to be created (if it does not already exist)
-** and populated with enough information so that if a power loss occurs
-** the database can be restored to its original state by playing back
-** the journal. Then the contents of the journal are flushed out to
-** the disk. After the journal is safely on oxide, the changes to the
-** database are written into the database file and flushed to oxide.
-** At the end of this call, the rollback journal still exists on the
-** disk and we are still holding all locks, so the transaction has not
-** committed. See sqlite3BtreeCommit() for the second phase of the
-** commit process.
-**
-** This call is a no-op if no write-transaction is currently active on pBt.
-**
-** Otherwise, sync the database file for the btree pBt. zMaster points to
-** the name of a master journal file that should be written into the
-** individual journal file, or is NULL, indicating no master journal file
-** (single database transaction).
-**
-** When this is called, the master journal should already have been
-** created, populated with this journal pointer and synced to disk.
-**
-** Once this is routine has returned, the only thing required to commit
-** the write-transaction for this database file is to delete the journal.
-*/
-int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
- int rc = SQLITE_OK;
- if( p->inTrans==TRANS_WRITE ){
- BtShared *pBt = p->pBt;
- Pgno nTrunc = 0;
- sqlite3BtreeEnter(p);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- rc = autoVacuumCommit(pBt, &nTrunc);
- if( rc!=SQLITE_OK ){
- sqlite3BtreeLeave(p);
- return rc;
- }
- }
-#endif
- rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, nTrunc);
- sqlite3BtreeLeave(p);
- }
- return rc;
-}
-
-/*
-** Commit the transaction currently in progress.
-**
-** This routine implements the second phase of a 2-phase commit. The
-** sqlite3BtreeSync() routine does the first phase and should be invoked
-** prior to calling this routine. The sqlite3BtreeSync() routine did
-** all the work of writing information out to disk and flushing the
-** contents so that they are written onto the disk platter. All this
-** routine has to do is delete or truncate the rollback journal
-** (which causes the transaction to commit) and drop locks.
-**
-** This will release the write lock on the database file. If there
-** are no active cursors, it also releases the read lock.
-*/
-int sqlite3BtreeCommitPhaseTwo(Btree *p){
- BtShared *pBt = p->pBt;
-
- sqlite3BtreeEnter(p);
- btreeIntegrity(p);
-
- /* If the handle has a write-transaction open, commit the shared-btrees
- ** transaction and set the shared state to TRANS_READ.
- */
- if( p->inTrans==TRANS_WRITE ){
- int rc;
- assert( pBt->inTransaction==TRANS_WRITE );
- assert( pBt->nTransaction>0 );
- rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
- if( rc!=SQLITE_OK ){
- sqlite3BtreeLeave(p);
- return rc;
- }
- pBt->inTransaction = TRANS_READ;
- pBt->inStmt = 0;
- }
- unlockAllTables(p);
-
- /* If the handle has any kind of transaction open, decrement the transaction
- ** count of the shared btree. If the transaction count reaches 0, set
- ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
- ** will unlock the pager.
- */
- if( p->inTrans!=TRANS_NONE ){
- pBt->nTransaction--;
- if( 0==pBt->nTransaction ){
- pBt->inTransaction = TRANS_NONE;
- }
- }
-
- /* Set the handles current transaction state to TRANS_NONE and unlock
- ** the pager if this call closed the only read or write transaction.
- */
- p->inTrans = TRANS_NONE;
- unlockBtreeIfUnused(pBt);
-
- btreeIntegrity(p);
- sqlite3BtreeLeave(p);
- return SQLITE_OK;
-}
-
-/*
-** Do both phases of a commit.
-*/
-int sqlite3BtreeCommit(Btree *p){
- int rc;
- sqlite3BtreeEnter(p);
- rc = sqlite3BtreeCommitPhaseOne(p, 0);
- if( rc==SQLITE_OK ){
- rc = sqlite3BtreeCommitPhaseTwo(p);
- }
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-#ifndef NDEBUG
-/*
-** Return the number of write-cursors open on this handle. This is for use
-** in assert() expressions, so it is only compiled if NDEBUG is not
-** defined.
-**
-** For the purposes of this routine, a write-cursor is any cursor that
-** is capable of writing to the databse. That means the cursor was
-** originally opened for writing and the cursor has not be disabled
-** by having its state changed to CURSOR_FAULT.
-*/
-static int countWriteCursors(BtShared *pBt){
- BtCursor *pCur;
- int r = 0;
- for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
- if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
- }
- return r;
-}
-#endif
-
-/*
-** This routine sets the state to CURSOR_FAULT and the error
-** code to errCode for every cursor on BtShared that pBtree
-** references.
-**
-** Every cursor is tripped, including cursors that belong
-** to other database connections that happen to be sharing
-** the cache with pBtree.
-**
-** This routine gets called when a rollback occurs.
-** All cursors using the same cache must be tripped
-** to prevent them from trying to use the btree after
-** the rollback. The rollback may have deleted tables
-** or moved root pages, so it is not sufficient to
-** save the state of the cursor. The cursor must be
-** invalidated.
-*/
-void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
- BtCursor *p;
- sqlite3BtreeEnter(pBtree);
- for(p=pBtree->pBt->pCursor; p; p=p->pNext){
- clearCursorPosition(p);
- p->eState = CURSOR_FAULT;
- p->skip = errCode;
- }
- sqlite3BtreeLeave(pBtree);
-}
-
-/*
-** Rollback the transaction in progress. All cursors will be
-** invalided by this operation. Any attempt to use a cursor
-** that was open at the beginning of this operation will result
-** in an error.
-**
-** This will release the write lock on the database file. If there
-** are no active cursors, it also releases the read lock.
-*/
-int sqlite3BtreeRollback(Btree *p){
- int rc;
- BtShared *pBt = p->pBt;
- MemPage *pPage1;
-
- sqlite3BtreeEnter(p);
- rc = saveAllCursors(pBt, 0, 0);
-#ifndef SQLITE_OMIT_SHARED_CACHE
- if( rc!=SQLITE_OK ){
- /* This is a horrible situation. An IO or malloc() error occured whilst
- ** trying to save cursor positions. If this is an automatic rollback (as
- ** the result of a constraint, malloc() failure or IO error) then
- ** the cache may be internally inconsistent (not contain valid trees) so
- ** we cannot simply return the error to the caller. Instead, abort
- ** all queries that may be using any of the cursors that failed to save.
- */
- sqlite3BtreeTripAllCursors(p, rc);
- }
-#endif
- btreeIntegrity(p);
- unlockAllTables(p);
-
- if( p->inTrans==TRANS_WRITE ){
- int rc2;
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
- pBt->nTrunc = 0;
-#endif
-
- assert( TRANS_WRITE==pBt->inTransaction );
- rc2 = sqlite3PagerRollback(pBt->pPager);
- if( rc2!=SQLITE_OK ){
- rc = rc2;
- }
-
- /* The rollback may have destroyed the pPage1->aData value. So
- ** call sqlite3BtreeGetPage() on page 1 again to make
- ** sure pPage1->aData is set correctly. */
- if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
- releasePage(pPage1);
- }
- assert( countWriteCursors(pBt)==0 );
- pBt->inTransaction = TRANS_READ;
- }
-
- if( p->inTrans!=TRANS_NONE ){
- assert( pBt->nTransaction>0 );
- pBt->nTransaction--;
- if( 0==pBt->nTransaction ){
- pBt->inTransaction = TRANS_NONE;
- }
- }
-
- p->inTrans = TRANS_NONE;
- pBt->inStmt = 0;
- unlockBtreeIfUnused(pBt);
-
- btreeIntegrity(p);
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-/*
-** Start a statement subtransaction. The subtransaction can
-** can be rolled back independently of the main transaction.
-** You must start a transaction before starting a subtransaction.
-** The subtransaction is ended automatically if the main transaction
-** commits or rolls back.
-**
-** Only one subtransaction may be active at a time. It is an error to try
-** to start a new subtransaction if another subtransaction is already active.
-**
-** Statement subtransactions are used around individual SQL statements
-** that are contained within a BEGIN...COMMIT block. If a constraint
-** error occurs within the statement, the effect of that one statement
-** can be rolled back without having to rollback the entire transaction.
-*/
-int sqlite3BtreeBeginStmt(Btree *p){
- int rc;
- BtShared *pBt = p->pBt;
- sqlite3BtreeEnter(p);
- if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){
- rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- }else{
- assert( pBt->inTransaction==TRANS_WRITE );
- rc = pBt->readOnly ? SQLITE_OK : sqlite3PagerStmtBegin(pBt->pPager);
- pBt->inStmt = 1;
- }
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-
-/*
-** Commit the statment subtransaction currently in progress. If no
-** subtransaction is active, this is a no-op.
-*/
-int sqlite3BtreeCommitStmt(Btree *p){
- int rc;
- BtShared *pBt = p->pBt;
- sqlite3BtreeEnter(p);
- if( pBt->inStmt && !pBt->readOnly ){
- rc = sqlite3PagerStmtCommit(pBt->pPager);
- }else{
- rc = SQLITE_OK;
- }
- pBt->inStmt = 0;
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-/*
-** Rollback the active statement subtransaction. If no subtransaction
-** is active this routine is a no-op.
-**
-** All cursors will be invalidated by this operation. Any attempt
-** to use a cursor that was open at the beginning of this operation
-** will result in an error.
-*/
-int sqlite3BtreeRollbackStmt(Btree *p){
- int rc = SQLITE_OK;
- BtShared *pBt = p->pBt;
- sqlite3BtreeEnter(p);
- if( pBt->inStmt && !pBt->readOnly ){
- rc = sqlite3PagerStmtRollback(pBt->pPager);
- assert( countWriteCursors(pBt)==0 );
- pBt->inStmt = 0;
- }
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-/*
-** Default key comparison function to be used if no comparison function
-** is specified on the sqlite3BtreeCursor() call.
-*/
-static int dfltCompare(
- void *NotUsed, /* User data is not used */
- int n1, const void *p1, /* First key to compare */
- int n2, const void *p2 /* Second key to compare */
-){
- int c;
- c = memcmp(p1, p2, n1pBt;
-
- assert( sqlite3BtreeHoldsMutex(p) );
- *ppCur = 0;
- if( wrFlag ){
- if( pBt->readOnly ){
- return SQLITE_READONLY;
- }
- if( checkReadLocks(p, iTable, 0) ){
- return SQLITE_LOCKED;
- }
- }
-
- if( pBt->pPage1==0 ){
- rc = lockBtreeWithRetry(p);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- if( pBt->readOnly && wrFlag ){
- return SQLITE_READONLY;
- }
- }
- pCur = sqlite3MallocZero( sizeof(*pCur) );
- if( pCur==0 ){
- rc = SQLITE_NOMEM;
- goto create_cursor_exception;
- }
- pCur->pgnoRoot = (Pgno)iTable;
- if( iTable==1 && sqlite3PagerPagecount(pBt->pPager)==0 ){
- rc = SQLITE_EMPTY;
- goto create_cursor_exception;
- }
- rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
- if( rc!=SQLITE_OK ){
- goto create_cursor_exception;
- }
-
- /* Now that no other errors can occur, finish filling in the BtCursor
- ** variables, link the cursor into the BtShared list and set *ppCur (the
- ** output argument to this function).
- */
- pCur->xCompare = xCmp ? xCmp : dfltCompare;
- pCur->pArg = pArg;
- pCur->pBtree = p;
- pCur->pBt = pBt;
- pCur->wrFlag = wrFlag;
- pCur->pNext = pBt->pCursor;
- if( pCur->pNext ){
- pCur->pNext->pPrev = pCur;
- }
- pBt->pCursor = pCur;
- pCur->eState = CURSOR_INVALID;
- *ppCur = pCur;
-
- return SQLITE_OK;
-
-create_cursor_exception:
- if( pCur ){
- releasePage(pCur->pPage);
- sqlite3_free(pCur);
- }
- unlockBtreeIfUnused(pBt);
- return rc;
-}
-int sqlite3BtreeCursor(
- Btree *p, /* The btree */
- int iTable, /* Root page of table to open */
- int wrFlag, /* 1 to write. 0 read-only */
- int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */
- void *pArg, /* First arg to xCompare() */
- BtCursor **ppCur /* Write new cursor here */
-){
- int rc;
- sqlite3BtreeEnter(p);
- rc = btreeCursor(p, iTable, wrFlag, xCmp, pArg, ppCur);
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-
-/*
-** Close a cursor. The read lock on the database file is released
-** when the last cursor is closed.
-*/
-int sqlite3BtreeCloseCursor(BtCursor *pCur){
- BtShared *pBt = pCur->pBt;
- Btree *pBtree = pCur->pBtree;
-
- sqlite3BtreeEnter(pBtree);
- clearCursorPosition(pCur);
- if( pCur->pPrev ){
- pCur->pPrev->pNext = pCur->pNext;
- }else{
- pBt->pCursor = pCur->pNext;
- }
- if( pCur->pNext ){
- pCur->pNext->pPrev = pCur->pPrev;
- }
- releasePage(pCur->pPage);
- unlockBtreeIfUnused(pBt);
- invalidateOverflowCache(pCur);
- sqlite3_free(pCur);
- sqlite3BtreeLeave(pBtree);
- return SQLITE_OK;
-}
-
-/*
-** Make a temporary cursor by filling in the fields of pTempCur.
-** The temporary cursor is not on the cursor list for the Btree.
-*/
-void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){
- assert( cursorHoldsMutex(pCur) );
- memcpy(pTempCur, pCur, sizeof(*pCur));
- pTempCur->pNext = 0;
- pTempCur->pPrev = 0;
- if( pTempCur->pPage ){
- sqlite3PagerRef(pTempCur->pPage->pDbPage);
- }
-}
-
-/*
-** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
-** function above.
-*/
-void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){
- assert( cursorHoldsMutex(pCur) );
- if( pCur->pPage ){
- sqlite3PagerUnref(pCur->pPage->pDbPage);
- }
-}
-
-/*
-** Make sure the BtCursor* given in the argument has a valid
-** BtCursor.info structure. If it is not already valid, call
-** sqlite3BtreeParseCell() to fill it in.
-**
-** BtCursor.info is a cache of the information in the current cell.
-** Using this cache reduces the number of calls to sqlite3BtreeParseCell().
-**
-** 2007-06-25: There is a bug in some versions of MSVC that cause the
-** compiler to crash when getCellInfo() is implemented as a macro.
-** But there is a measureable speed advantage to using the macro on gcc
-** (when less compiler optimizations like -Os or -O0 are used and the
-** compiler is not doing agressive inlining.) So we use a real function
-** for MSVC and a macro for everything else. Ticket #2457.
-*/
-#ifndef NDEBUG
- static void assertCellInfo(BtCursor *pCur){
- CellInfo info;
- memset(&info, 0, sizeof(info));
- sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &info);
- assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
- }
-#else
- #define assertCellInfo(x)
-#endif
-#ifdef _MSC_VER
- /* Use a real function in MSVC to work around bugs in that compiler. */
- static void getCellInfo(BtCursor *pCur){
- if( pCur->info.nSize==0 ){
- sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info);
- }else{
- assertCellInfo(pCur);
- }
- }
-#else /* if not _MSC_VER */
- /* Use a macro in all other compilers so that the function is inlined */
-#define getCellInfo(pCur) \
- if( pCur->info.nSize==0 ){ \
- sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info); \
- }else{ \
- assertCellInfo(pCur); \
- }
-#endif /* _MSC_VER */
-
-/*
-** Set *pSize to the size of the buffer needed to hold the value of
-** the key for the current entry. If the cursor is not pointing
-** to a valid entry, *pSize is set to 0.
-**
-** For a table with the INTKEY flag set, this routine returns the key
-** itself, not the number of bytes in the key.
-*/
-int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
- int rc;
-
- assert( cursorHoldsMutex(pCur) );
- rc = restoreOrClearCursorPosition(pCur);
- if( rc==SQLITE_OK ){
- assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
- if( pCur->eState==CURSOR_INVALID ){
- *pSize = 0;
- }else{
- getCellInfo(pCur);
- *pSize = pCur->info.nKey;
- }
- }
- return rc;
-}
-
-/*
-** Set *pSize to the number of bytes of data in the entry the
-** cursor currently points to. Always return SQLITE_OK.
-** Failure is not possible. If the cursor is not currently
-** pointing to an entry (which can happen, for example, if
-** the database is empty) then *pSize is set to 0.
-*/
-int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
- int rc;
-
- assert( cursorHoldsMutex(pCur) );
- rc = restoreOrClearCursorPosition(pCur);
- if( rc==SQLITE_OK ){
- assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
- if( pCur->eState==CURSOR_INVALID ){
- /* Not pointing at a valid entry - set *pSize to 0. */
- *pSize = 0;
- }else{
- getCellInfo(pCur);
- *pSize = pCur->info.nData;
- }
- }
- return rc;
-}
-
-/*
-** Given the page number of an overflow page in the database (parameter
-** ovfl), this function finds the page number of the next page in the
-** linked list of overflow pages. If possible, it uses the auto-vacuum
-** pointer-map data instead of reading the content of page ovfl to do so.
-**
-** If an error occurs an SQLite error code is returned. Otherwise:
-**
-** Unless pPgnoNext is NULL, the page number of the next overflow
-** page in the linked list is written to *pPgnoNext. If page ovfl
-** is the last page in it's linked list, *pPgnoNext is set to zero.
-**
-** If ppPage is not NULL, *ppPage is set to the MemPage* handle
-** for page ovfl. The underlying pager page may have been requested
-** with the noContent flag set, so the page data accessable via
-** this handle may not be trusted.
-*/
-static int getOverflowPage(
- BtShared *pBt,
- Pgno ovfl, /* Overflow page */
- MemPage **ppPage, /* OUT: MemPage handle */
- Pgno *pPgnoNext /* OUT: Next overflow page number */
-){
- Pgno next = 0;
- int rc;
-
- assert( sqlite3_mutex_held(pBt->mutex) );
- /* One of these must not be NULL. Otherwise, why call this function? */
- assert(ppPage || pPgnoNext);
-
- /* If pPgnoNext is NULL, then this function is being called to obtain
- ** a MemPage* reference only. No page-data is required in this case.
- */
- if( !pPgnoNext ){
- return sqlite3BtreeGetPage(pBt, ovfl, ppPage, 1);
- }
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
- /* Try to find the next page in the overflow list using the
- ** autovacuum pointer-map pages. Guess that the next page in
- ** the overflow list is page number (ovfl+1). If that guess turns
- ** out to be wrong, fall back to loading the data of page
- ** number ovfl to determine the next page number.
- */
- if( pBt->autoVacuum ){
- Pgno pgno;
- Pgno iGuess = ovfl+1;
- u8 eType;
-
- while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
- iGuess++;
- }
-
- if( iGuess<=sqlite3PagerPagecount(pBt->pPager) ){
- rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- if( eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
- next = iGuess;
- }
- }
- }
-#endif
-
- if( next==0 || ppPage ){
- MemPage *pPage = 0;
-
- rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, next!=0);
- assert(rc==SQLITE_OK || pPage==0);
- if( next==0 && rc==SQLITE_OK ){
- next = get4byte(pPage->aData);
- }
-
- if( ppPage ){
- *ppPage = pPage;
- }else{
- releasePage(pPage);
- }
- }
- *pPgnoNext = next;
-
- return rc;
-}
-
-/*
-** Copy data from a buffer to a page, or from a page to a buffer.
-**
-** pPayload is a pointer to data stored on database page pDbPage.
-** If argument eOp is false, then nByte bytes of data are copied
-** from pPayload to the buffer pointed at by pBuf. If eOp is true,
-** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
-** of data are copied from the buffer pBuf to pPayload.
-**
-** SQLITE_OK is returned on success, otherwise an error code.
-*/
-static int copyPayload(
- void *pPayload, /* Pointer to page data */
- void *pBuf, /* Pointer to buffer */
- int nByte, /* Number of bytes to copy */
- int eOp, /* 0 -> copy from page, 1 -> copy to page */
- DbPage *pDbPage /* Page containing pPayload */
-){
- if( eOp ){
- /* Copy data from buffer to page (a write operation) */
- int rc = sqlite3PagerWrite(pDbPage);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- memcpy(pPayload, pBuf, nByte);
- }else{
- /* Copy data from page to buffer (a read operation) */
- memcpy(pBuf, pPayload, nByte);
- }
- return SQLITE_OK;
-}
-
-/*
-** This function is used to read or overwrite payload information
-** for the entry that the pCur cursor is pointing to. If the eOp
-** parameter is 0, this is a read operation (data copied into
-** buffer pBuf). If it is non-zero, a write (data copied from
-** buffer pBuf).
-**
-** A total of "amt" bytes are read or written beginning at "offset".
-** Data is read to or from the buffer pBuf.
-**
-** This routine does not make a distinction between key and data.
-** It just reads or writes bytes from the payload area. Data might
-** appear on the main page or be scattered out on multiple overflow
-** pages.
-**
-** If the BtCursor.isIncrblobHandle flag is set, and the current
-** cursor entry uses one or more overflow pages, this function
-** allocates space for and lazily popluates the overflow page-list
-** cache array (BtCursor.aOverflow). Subsequent calls use this
-** cache to make seeking to the supplied offset more efficient.
-**
-** Once an overflow page-list cache has been allocated, it may be
-** invalidated if some other cursor writes to the same table, or if
-** the cursor is moved to a different row. Additionally, in auto-vacuum
-** mode, the following events may invalidate an overflow page-list cache.
-**
-** * An incremental vacuum,
-** * A commit in auto_vacuum="full" mode,
-** * Creating a table (may require moving an overflow page).
-*/
-static int accessPayload(
- BtCursor *pCur, /* Cursor pointing to entry to read from */
- int offset, /* Begin reading this far into payload */
- int amt, /* Read this many bytes */
- unsigned char *pBuf, /* Write the bytes into this buffer */
- int skipKey, /* offset begins at data if this is true */
- int eOp /* zero to read. non-zero to write. */
-){
- unsigned char *aPayload;
- int rc = SQLITE_OK;
- u32 nKey;
- int iIdx = 0;
- MemPage *pPage = pCur->pPage; /* Btree page of current cursor entry */
- BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
-
- assert( pPage );
- assert( pCur->eState==CURSOR_VALID );
- assert( pCur->idx>=0 && pCur->idxnCell );
- assert( offset>=0 );
- assert( cursorHoldsMutex(pCur) );
-
- getCellInfo(pCur);
- aPayload = pCur->info.pCell + pCur->info.nHeader;
- nKey = (pPage->intKey ? 0 : pCur->info.nKey);
-
- if( skipKey ){
- offset += nKey;
- }
- if( offset+amt > nKey+pCur->info.nData ){
- /* Trying to read or write past the end of the data is an error */
- return SQLITE_ERROR;
- }
-
- /* Check if data must be read/written to/from the btree page itself. */
- if( offsetinfo.nLocal ){
- int a = amt;
- if( a+offset>pCur->info.nLocal ){
- a = pCur->info.nLocal - offset;
- }
- rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
- offset = 0;
- pBuf += a;
- amt -= a;
- }else{
- offset -= pCur->info.nLocal;
- }
-
- if( rc==SQLITE_OK && amt>0 ){
- const int ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
- Pgno nextPage;
-
- nextPage = get4byte(&aPayload[pCur->info.nLocal]);
-
-#ifndef SQLITE_OMIT_INCRBLOB
- /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
- ** has not been allocated, allocate it now. The array is sized at
- ** one entry for each overflow page in the overflow chain. The
- ** page number of the first overflow page is stored in aOverflow[0],
- ** etc. A value of 0 in the aOverflow[] array means "not yet known"
- ** (the cache is lazily populated).
- */
- if( pCur->isIncrblobHandle && !pCur->aOverflow ){
- int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
- pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
- if( nOvfl && !pCur->aOverflow ){
- rc = SQLITE_NOMEM;
- }
- }
-
- /* If the overflow page-list cache has been allocated and the
- ** entry for the first required overflow page is valid, skip
- ** directly to it.
- */
- if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
- iIdx = (offset/ovflSize);
- nextPage = pCur->aOverflow[iIdx];
- offset = (offset%ovflSize);
- }
-#endif
-
- for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
-
-#ifndef SQLITE_OMIT_INCRBLOB
- /* If required, populate the overflow page-list cache. */
- if( pCur->aOverflow ){
- assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
- pCur->aOverflow[iIdx] = nextPage;
- }
-#endif
-
- if( offset>=ovflSize ){
- /* The only reason to read this page is to obtain the page
- ** number for the next page in the overflow chain. The page
- ** data is not required. So first try to lookup the overflow
- ** page-list cache, if any, then fall back to the getOverflowPage()
- ** function.
- */
-#ifndef SQLITE_OMIT_INCRBLOB
- if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
- nextPage = pCur->aOverflow[iIdx+1];
- } else
-#endif
- rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
- offset -= ovflSize;
- }else{
- /* Need to read this page properly. It contains some of the
- ** range of data that is being read (eOp==0) or written (eOp!=0).
- */
- DbPage *pDbPage;
- int a = amt;
- rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
- if( rc==SQLITE_OK ){
- aPayload = sqlite3PagerGetData(pDbPage);
- nextPage = get4byte(aPayload);
- if( a + offset > ovflSize ){
- a = ovflSize - offset;
- }
- rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
- sqlite3PagerUnref(pDbPage);
- offset = 0;
- amt -= a;
- pBuf += a;
- }
- }
- }
- }
-
- if( rc==SQLITE_OK && amt>0 ){
- return SQLITE_CORRUPT_BKPT;
- }
- return rc;
-}
-
-/*
-** Read part of the key associated with cursor pCur. Exactly
-** "amt" bytes will be transfered into pBuf[]. The transfer
-** begins at "offset".
-**
-** Return SQLITE_OK on success or an error code if anything goes
-** wrong. An error is returned if "offset+amt" is larger than
-** the available payload.
-*/
-int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
- int rc;
-
- assert( cursorHoldsMutex(pCur) );
- rc = restoreOrClearCursorPosition(pCur);
- if( rc==SQLITE_OK ){
- assert( pCur->eState==CURSOR_VALID );
- assert( pCur->pPage!=0 );
- if( pCur->pPage->intKey ){
- return SQLITE_CORRUPT_BKPT;
- }
- assert( pCur->pPage->intKey==0 );
- assert( pCur->idx>=0 && pCur->idxpPage->nCell );
- rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
- }
- return rc;
-}
-
-/*
-** Read part of the data associated with cursor pCur. Exactly
-** "amt" bytes will be transfered into pBuf[]. The transfer
-** begins at "offset".
-**
-** Return SQLITE_OK on success or an error code if anything goes
-** wrong. An error is returned if "offset+amt" is larger than
-** the available payload.
-*/
-int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
- int rc;
-
- assert( cursorHoldsMutex(pCur) );
- rc = restoreOrClearCursorPosition(pCur);
- if( rc==SQLITE_OK ){
- assert( pCur->eState==CURSOR_VALID );
- assert( pCur->pPage!=0 );
- assert( pCur->idx>=0 && pCur->idxpPage->nCell );
- rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
- }
- return rc;
-}
-
-/*
-** Return a pointer to payload information from the entry that the
-** pCur cursor is pointing to. The pointer is to the beginning of
-** the key if skipKey==0 and it points to the beginning of data if
-** skipKey==1. The number of bytes of available key/data is written
-** into *pAmt. If *pAmt==0, then the value returned will not be
-** a valid pointer.
-**
-** This routine is an optimization. It is common for the entire key
-** and data to fit on the local page and for there to be no overflow
-** pages. When that is so, this routine can be used to access the
-** key and data without making a copy. If the key and/or data spills
-** onto overflow pages, then accessPayload() must be used to reassembly
-** the key/data and copy it into a preallocated buffer.
-**
-** The pointer returned by this routine looks directly into the cached
-** page of the database. The data might change or move the next time
-** any btree routine is called.
-*/
-static const unsigned char *fetchPayload(
- BtCursor *pCur, /* Cursor pointing to entry to read from */
- int *pAmt, /* Write the number of available bytes here */
- int skipKey /* read beginning at data if this is true */
-){
- unsigned char *aPayload;
- MemPage *pPage;
- u32 nKey;
- int nLocal;
-
- assert( pCur!=0 && pCur->pPage!=0 );
- assert( pCur->eState==CURSOR_VALID );
- assert( cursorHoldsMutex(pCur) );
- pPage = pCur->pPage;
- assert( pCur->idx>=0 && pCur->idxnCell );
- getCellInfo(pCur);
- aPayload = pCur->info.pCell;
- aPayload += pCur->info.nHeader;
- if( pPage->intKey ){
- nKey = 0;
- }else{
- nKey = pCur->info.nKey;
- }
- if( skipKey ){
- aPayload += nKey;
- nLocal = pCur->info.nLocal - nKey;
- }else{
- nLocal = pCur->info.nLocal;
- if( nLocal>nKey ){
- nLocal = nKey;
- }
- }
- *pAmt = nLocal;
- return aPayload;
-}
-
-
-/*
-** For the entry that cursor pCur is point to, return as
-** many bytes of the key or data as are available on the local
-** b-tree page. Write the number of available bytes into *pAmt.
-**
-** The pointer returned is ephemeral. The key/data may move
-** or be destroyed on the next call to any Btree routine,
-** including calls from other threads against the same cache.
-** Hence, a mutex on the BtShared should be held prior to calling
-** this routine.
-**
-** These routines is used to get quick access to key and data
-** in the common case where no overflow pages are used.
-*/
-const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
- assert( cursorHoldsMutex(pCur) );
- if( pCur->eState==CURSOR_VALID ){
- return (const void*)fetchPayload(pCur, pAmt, 0);
- }
- return 0;
-}
-const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
- assert( cursorHoldsMutex(pCur) );
- if( pCur->eState==CURSOR_VALID ){
- return (const void*)fetchPayload(pCur, pAmt, 1);
- }
- return 0;
-}
-
-
-/*
-** Move the cursor down to a new child page. The newPgno argument is the
-** page number of the child page to move to.
-*/
-static int moveToChild(BtCursor *pCur, u32 newPgno){
- int rc;
- MemPage *pNewPage;
- MemPage *pOldPage;
- BtShared *pBt = pCur->pBt;
-
- assert( cursorHoldsMutex(pCur) );
- assert( pCur->eState==CURSOR_VALID );
- rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
- if( rc ) return rc;
- pNewPage->idxParent = pCur->idx;
- pOldPage = pCur->pPage;
- pOldPage->idxShift = 0;
- releasePage(pOldPage);
- pCur->pPage = pNewPage;
- pCur->idx = 0;
- pCur->info.nSize = 0;
- if( pNewPage->nCell<1 ){
- return SQLITE_CORRUPT_BKPT;
- }
- return SQLITE_OK;
-}
-
-/*
-** Return true if the page is the virtual root of its table.
-**
-** The virtual root page is the root page for most tables. But
-** for the table rooted on page 1, sometime the real root page
-** is empty except for the right-pointer. In such cases the
-** virtual root page is the page that the right-pointer of page
-** 1 is pointing to.
-*/
-int sqlite3BtreeIsRootPage(MemPage *pPage){
- MemPage *pParent;
-
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- pParent = pPage->pParent;
- if( pParent==0 ) return 1;
- if( pParent->pgno>1 ) return 0;
- if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
- return 0;
-}
-
-/*
-** Move the cursor up to the parent page.
-**
-** pCur->idx is set to the cell index that contains the pointer
-** to the page we are coming from. If we are coming from the
-** right-most child page then pCur->idx is set to one more than
-** the largest cell index.
-*/
-void sqlite3BtreeMoveToParent(BtCursor *pCur){
- MemPage *pParent;
- MemPage *pPage;
- int idxParent;
-
- assert( cursorHoldsMutex(pCur) );
- assert( pCur->eState==CURSOR_VALID );
- pPage = pCur->pPage;
- assert( pPage!=0 );
- assert( !sqlite3BtreeIsRootPage(pPage) );
- pParent = pPage->pParent;
- assert( pParent!=0 );
- idxParent = pPage->idxParent;
- sqlite3PagerRef(pParent->pDbPage);
- releasePage(pPage);
- pCur->pPage = pParent;
- pCur->info.nSize = 0;
- assert( pParent->idxShift==0 );
- pCur->idx = idxParent;
-}
-
-/*
-** Move the cursor to the root page
-*/
-static int moveToRoot(BtCursor *pCur){
- MemPage *pRoot;
- int rc = SQLITE_OK;
- Btree *p = pCur->pBtree;
- BtShared *pBt = p->pBt;
-
- assert( cursorHoldsMutex(pCur) );
- assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
- assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
- assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
- if( pCur->eState>=CURSOR_REQUIRESEEK ){
- if( pCur->eState==CURSOR_FAULT ){
- return pCur->skip;
- }
- clearCursorPosition(pCur);
- }
- pRoot = pCur->pPage;
- if( pRoot && pRoot->pgno==pCur->pgnoRoot ){
- assert( pRoot->isInit );
- }else{
- if(
- SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0))
- ){
- pCur->eState = CURSOR_INVALID;
- return rc;
- }
- releasePage(pCur->pPage);
- pCur->pPage = pRoot;
- }
- pCur->idx = 0;
- pCur->info.nSize = 0;
- if( pRoot->nCell==0 && !pRoot->leaf ){
- Pgno subpage;
- assert( pRoot->pgno==1 );
- subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
- assert( subpage>0 );
- pCur->eState = CURSOR_VALID;
- rc = moveToChild(pCur, subpage);
- }
- pCur->eState = ((pCur->pPage->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
- return rc;
-}
-
-/*
-** Move the cursor down to the left-most leaf entry beneath the
-** entry to which it is currently pointing.
-**
-** The left-most leaf is the one with the smallest key - the first
-** in ascending order.
-*/
-static int moveToLeftmost(BtCursor *pCur){
- Pgno pgno;
- int rc = SQLITE_OK;
- MemPage *pPage;
-
- assert( cursorHoldsMutex(pCur) );
- assert( pCur->eState==CURSOR_VALID );
- while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
- assert( pCur->idx>=0 && pCur->idxnCell );
- pgno = get4byte(findCell(pPage, pCur->idx));
- rc = moveToChild(pCur, pgno);
- }
- return rc;
-}
-
-/*
-** Move the cursor down to the right-most leaf entry beneath the
-** page to which it is currently pointing. Notice the difference
-** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
-** finds the left-most entry beneath the *entry* whereas moveToRightmost()
-** finds the right-most entry beneath the *page*.
-**
-** The right-most entry is the one with the largest key - the last
-** key in ascending order.
-*/
-static int moveToRightmost(BtCursor *pCur){
- Pgno pgno;
- int rc = SQLITE_OK;
- MemPage *pPage;
-
- assert( cursorHoldsMutex(pCur) );
- assert( pCur->eState==CURSOR_VALID );
- while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
- pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
- pCur->idx = pPage->nCell;
- rc = moveToChild(pCur, pgno);
- }
- if( rc==SQLITE_OK ){
- pCur->idx = pPage->nCell - 1;
- pCur->info.nSize = 0;
- }
- return SQLITE_OK;
-}
-
-/* Move the cursor to the first entry in the table. Return SQLITE_OK
-** on success. Set *pRes to 0 if the cursor actually points to something
-** or set *pRes to 1 if the table is empty.
-*/
-int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
- int rc;
-
- assert( cursorHoldsMutex(pCur) );
- assert( sqlite3_mutex_held(pCur->pBtree->pSqlite->mutex) );
- rc = moveToRoot(pCur);
- if( rc==SQLITE_OK ){
- if( pCur->eState==CURSOR_INVALID ){
- assert( pCur->pPage->nCell==0 );
- *pRes = 1;
- rc = SQLITE_OK;
- }else{
- assert( pCur->pPage->nCell>0 );
- *pRes = 0;
- rc = moveToLeftmost(pCur);
- }
- }
- return rc;
-}
-
-/* Move the cursor to the last entry in the table. Return SQLITE_OK
-** on success. Set *pRes to 0 if the cursor actually points to something
-** or set *pRes to 1 if the table is empty.
-*/
-int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
- int rc;
-
- assert( cursorHoldsMutex(pCur) );
- assert( sqlite3_mutex_held(pCur->pBtree->pSqlite->mutex) );
- rc = moveToRoot(pCur);
- if( rc==SQLITE_OK ){
- if( CURSOR_INVALID==pCur->eState ){
- assert( pCur->pPage->nCell==0 );
- *pRes = 1;
- }else{
- assert( pCur->eState==CURSOR_VALID );
- *pRes = 0;
- rc = moveToRightmost(pCur);
- }
- }
- return rc;
-}
-
-/* Move the cursor so that it points to an entry near pKey/nKey.
-** Return a success code.
-**
-** For INTKEY tables, only the nKey parameter is used. pKey is
-** ignored. For other tables, nKey is the number of bytes of data
-** in pKey. The comparison function specified when the cursor was
-** created is used to compare keys.
-**
-** If an exact match is not found, then the cursor is always
-** left pointing at a leaf page which would hold the entry if it
-** were present. The cursor might point to an entry that comes
-** before or after the key.
-**
-** The result of comparing the key with the entry to which the
-** cursor is written to *pRes if pRes!=NULL. The meaning of
-** this value is as follows:
-**
-** *pRes<0 The cursor is left pointing at an entry that
-** is smaller than pKey or if the table is empty
-** and the cursor is therefore left point to nothing.
-**
-** *pRes==0 The cursor is left pointing at an entry that
-** exactly matches pKey.
-**
-** *pRes>0 The cursor is left pointing at an entry that
-** is larger than pKey.
-**
-*/
-int sqlite3BtreeMoveto(
- BtCursor *pCur, /* The cursor to be moved */
- const void *pKey, /* The key content for indices. Not used by tables */
- i64 nKey, /* Size of pKey. Or the key for tables */
- int biasRight, /* If true, bias the search to the high end */
- int *pRes /* Search result flag */
-){
- int rc;
-
- assert( cursorHoldsMutex(pCur) );
- assert( sqlite3_mutex_held(pCur->pBtree->pSqlite->mutex) );
- rc = moveToRoot(pCur);
- if( rc ){
- return rc;
- }
- assert( pCur->pPage );
- assert( pCur->pPage->isInit );
- if( pCur->eState==CURSOR_INVALID ){
- *pRes = -1;
- assert( pCur->pPage->nCell==0 );
- return SQLITE_OK;
- }
- for(;;){
- int lwr, upr;
- Pgno chldPg;
- MemPage *pPage = pCur->pPage;
- int c = -1; /* pRes return if table is empty must be -1 */
- lwr = 0;
- upr = pPage->nCell-1;
- if( !pPage->intKey && pKey==0 ){
- return SQLITE_CORRUPT_BKPT;
- }
- if( biasRight ){
- pCur->idx = upr;
- }else{
- pCur->idx = (upr+lwr)/2;
- }
- if( lwr<=upr ) for(;;){
- void *pCellKey;
- i64 nCellKey;
- pCur->info.nSize = 0;
- if( pPage->intKey ){
- u8 *pCell;
- pCell = findCell(pPage, pCur->idx) + pPage->childPtrSize;
- if( pPage->hasData ){
- u32 dummy;
- pCell += getVarint32(pCell, &dummy);
- }
- getVarint(pCell, (u64 *)&nCellKey);
- if( nCellKeynKey ){
- c = +1;
- }else{
- c = 0;
- }
- }else{
- int available;
- pCellKey = (void *)fetchPayload(pCur, &available, 0);
- nCellKey = pCur->info.nKey;
- if( available>=nCellKey ){
- c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
- }else{
- pCellKey = sqlite3_malloc( nCellKey );
- if( pCellKey==0 ) return SQLITE_NOMEM;
- rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey);
- c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
- sqlite3_free(pCellKey);
- if( rc ){
- return rc;
- }
- }
- }
- if( c==0 ){
- if( pPage->leafData && !pPage->leaf ){
- lwr = pCur->idx;
- upr = lwr - 1;
- break;
- }else{
- if( pRes ) *pRes = 0;
- return SQLITE_OK;
- }
- }
- if( c<0 ){
- lwr = pCur->idx+1;
- }else{
- upr = pCur->idx-1;
- }
- if( lwr>upr ){
- break;
- }
- pCur->idx = (lwr+upr)/2;
- }
- assert( lwr==upr+1 );
- assert( pPage->isInit );
- if( pPage->leaf ){
- chldPg = 0;
- }else if( lwr>=pPage->nCell ){
- chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
- }else{
- chldPg = get4byte(findCell(pPage, lwr));
- }
- if( chldPg==0 ){
- assert( pCur->idx>=0 && pCur->idxpPage->nCell );
- if( pRes ) *pRes = c;
- return SQLITE_OK;
- }
- pCur->idx = lwr;
- pCur->info.nSize = 0;
- rc = moveToChild(pCur, chldPg);
- if( rc ){
- return rc;
- }
- }
- /* NOT REACHED */
-}
-
-
-/*
-** Return TRUE if the cursor is not pointing at an entry of the table.
-**
-** TRUE will be returned after a call to sqlite3BtreeNext() moves
-** past the last entry in the table or sqlite3BtreePrev() moves past
-** the first entry. TRUE is also returned if the table is empty.
-*/
-int sqlite3BtreeEof(BtCursor *pCur){
- /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
- ** have been deleted? This API will need to change to return an error code
- ** as well as the boolean result value.
- */
- return (CURSOR_VALID!=pCur->eState);
-}
-
-/*
-** Return the database connection handle for a cursor.
-*/
-sqlite3 *sqlite3BtreeCursorDb(const BtCursor *pCur){
- assert( sqlite3_mutex_held(pCur->pBtree->pSqlite->mutex) );
- return pCur->pBtree->pSqlite;
-}
-
-/*
-** Advance the cursor to the next entry in the database. If
-** successful then set *pRes=0. If the cursor
-** was already pointing to the last entry in the database before
-** this routine was called, then set *pRes=1.
-*/
-static int btreeNext(BtCursor *pCur, int *pRes){
- int rc;
- MemPage *pPage;
-
- assert( cursorHoldsMutex(pCur) );
- rc = restoreOrClearCursorPosition(pCur);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- assert( pRes!=0 );
- pPage = pCur->pPage;
- if( CURSOR_INVALID==pCur->eState ){
- *pRes = 1;
- return SQLITE_OK;
- }
- if( pCur->skip>0 ){
- pCur->skip = 0;
- *pRes = 0;
- return SQLITE_OK;
- }
- pCur->skip = 0;
-
- assert( pPage->isInit );
- assert( pCur->idxnCell );
-
- pCur->idx++;
- pCur->info.nSize = 0;
- if( pCur->idx>=pPage->nCell ){
- if( !pPage->leaf ){
- rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
- if( rc ) return rc;
- rc = moveToLeftmost(pCur);
- *pRes = 0;
- return rc;
- }
- do{
- if( sqlite3BtreeIsRootPage(pPage) ){
- *pRes = 1;
- pCur->eState = CURSOR_INVALID;
- return SQLITE_OK;
- }
- sqlite3BtreeMoveToParent(pCur);
- pPage = pCur->pPage;
- }while( pCur->idx>=pPage->nCell );
- *pRes = 0;
- if( pPage->leafData ){
- rc = sqlite3BtreeNext(pCur, pRes);
- }else{
- rc = SQLITE_OK;
- }
- return rc;
- }
- *pRes = 0;
- if( pPage->leaf ){
- return SQLITE_OK;
- }
- rc = moveToLeftmost(pCur);
- return rc;
-}
-int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
- int rc;
- assert( cursorHoldsMutex(pCur) );
- rc = btreeNext(pCur, pRes);
- return rc;
-}
-
-
-/*
-** Step the cursor to the back to the previous entry in the database. If
-** successful then set *pRes=0. If the cursor
-** was already pointing to the first entry in the database before
-** this routine was called, then set *pRes=1.
-*/
-static int btreePrevious(BtCursor *pCur, int *pRes){
- int rc;
- Pgno pgno;
- MemPage *pPage;
-
- assert( cursorHoldsMutex(pCur) );
- rc = restoreOrClearCursorPosition(pCur);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- if( CURSOR_INVALID==pCur->eState ){
- *pRes = 1;
- return SQLITE_OK;
- }
- if( pCur->skip<0 ){
- pCur->skip = 0;
- *pRes = 0;
- return SQLITE_OK;
- }
- pCur->skip = 0;
-
- pPage = pCur->pPage;
- assert( pPage->isInit );
- assert( pCur->idx>=0 );
- if( !pPage->leaf ){
- pgno = get4byte( findCell(pPage, pCur->idx) );
- rc = moveToChild(pCur, pgno);
- if( rc ){
- return rc;
- }
- rc = moveToRightmost(pCur);
- }else{
- while( pCur->idx==0 ){
- if( sqlite3BtreeIsRootPage(pPage) ){
- pCur->eState = CURSOR_INVALID;
- *pRes = 1;
- return SQLITE_OK;
- }
- sqlite3BtreeMoveToParent(pCur);
- pPage = pCur->pPage;
- }
- pCur->idx--;
- pCur->info.nSize = 0;
- if( pPage->leafData && !pPage->leaf ){
- rc = sqlite3BtreePrevious(pCur, pRes);
- }else{
- rc = SQLITE_OK;
- }
- }
- *pRes = 0;
- return rc;
-}
-int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
- int rc;
- assert( cursorHoldsMutex(pCur) );
- rc = btreePrevious(pCur, pRes);
- return rc;
-}
-
-/*
-** Allocate a new page from the database file.
-**
-** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
-** has already been called on the new page.) The new page has also
-** been referenced and the calling routine is responsible for calling
-** sqlite3PagerUnref() on the new page when it is done.
-**
-** SQLITE_OK is returned on success. Any other return value indicates
-** an error. *ppPage and *pPgno are undefined in the event of an error.
-** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
-**
-** If the "nearby" parameter is not 0, then a (feeble) effort is made to
-** locate a page close to the page number "nearby". This can be used in an
-** attempt to keep related pages close to each other in the database file,
-** which in turn can make database access faster.
-**
-** If the "exact" parameter is not 0, and the page-number nearby exists
-** anywhere on the free-list, then it is guarenteed to be returned. This
-** is only used by auto-vacuum databases when allocating a new table.
-*/
-static int allocateBtreePage(
- BtShared *pBt,
- MemPage **ppPage,
- Pgno *pPgno,
- Pgno nearby,
- u8 exact
-){
- MemPage *pPage1;
- int rc;
- int n; /* Number of pages on the freelist */
- int k; /* Number of leaves on the trunk of the freelist */
- MemPage *pTrunk = 0;
- MemPage *pPrevTrunk = 0;
-
- assert( sqlite3_mutex_held(pBt->mutex) );
- pPage1 = pBt->pPage1;
- n = get4byte(&pPage1->aData[36]);
- if( n>0 ){
- /* There are pages on the freelist. Reuse one of those pages. */
- Pgno iTrunk;
- u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
-
- /* If the 'exact' parameter was true and a query of the pointer-map
- ** shows that the page 'nearby' is somewhere on the free-list, then
- ** the entire-list will be searched for that page.
- */
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( exact && nearby<=sqlite3PagerPagecount(pBt->pPager) ){
- u8 eType;
- assert( nearby>0 );
- assert( pBt->autoVacuum );
- rc = ptrmapGet(pBt, nearby, &eType, 0);
- if( rc ) return rc;
- if( eType==PTRMAP_FREEPAGE ){
- searchList = 1;
- }
- *pPgno = nearby;
- }
-#endif
-
- /* Decrement the free-list count by 1. Set iTrunk to the index of the
- ** first free-list trunk page. iPrevTrunk is initially 1.
- */
- rc = sqlite3PagerWrite(pPage1->pDbPage);
- if( rc ) return rc;
- put4byte(&pPage1->aData[36], n-1);
-
- /* The code within this loop is run only once if the 'searchList' variable
- ** is not true. Otherwise, it runs once for each trunk-page on the
- ** free-list until the page 'nearby' is located.
- */
- do {
- pPrevTrunk = pTrunk;
- if( pPrevTrunk ){
- iTrunk = get4byte(&pPrevTrunk->aData[0]);
- }else{
- iTrunk = get4byte(&pPage1->aData[32]);
- }
- rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
- if( rc ){
- pTrunk = 0;
- goto end_allocate_page;
- }
-
- k = get4byte(&pTrunk->aData[4]);
- if( k==0 && !searchList ){
- /* The trunk has no leaves and the list is not being searched.
- ** So extract the trunk page itself and use it as the newly
- ** allocated page */
- assert( pPrevTrunk==0 );
- rc = sqlite3PagerWrite(pTrunk->pDbPage);
- if( rc ){
- goto end_allocate_page;
- }
- *pPgno = iTrunk;
- memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
- *ppPage = pTrunk;
- pTrunk = 0;
- TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
- }else if( k>pBt->usableSize/4 - 8 ){
- /* Value of k is out of range. Database corruption */
- rc = SQLITE_CORRUPT_BKPT;
- goto end_allocate_page;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- }else if( searchList && nearby==iTrunk ){
- /* The list is being searched and this trunk page is the page
- ** to allocate, regardless of whether it has leaves.
- */
- assert( *pPgno==iTrunk );
- *ppPage = pTrunk;
- searchList = 0;
- rc = sqlite3PagerWrite(pTrunk->pDbPage);
- if( rc ){
- goto end_allocate_page;
- }
- if( k==0 ){
- if( !pPrevTrunk ){
- memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
- }else{
- memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
- }
- }else{
- /* The trunk page is required by the caller but it contains
- ** pointers to free-list leaves. The first leaf becomes a trunk
- ** page in this case.
- */
- MemPage *pNewTrunk;
- Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
- rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
- if( rc!=SQLITE_OK ){
- goto end_allocate_page;
- }
- rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
- if( rc!=SQLITE_OK ){
- releasePage(pNewTrunk);
- goto end_allocate_page;
- }
- memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
- put4byte(&pNewTrunk->aData[4], k-1);
- memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
- releasePage(pNewTrunk);
- if( !pPrevTrunk ){
- put4byte(&pPage1->aData[32], iNewTrunk);
- }else{
- rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
- if( rc ){
- goto end_allocate_page;
- }
- put4byte(&pPrevTrunk->aData[0], iNewTrunk);
- }
- }
- pTrunk = 0;
- TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
-#endif
- }else{
- /* Extract a leaf from the trunk */
- int closest;
- Pgno iPage;
- unsigned char *aData = pTrunk->aData;
- rc = sqlite3PagerWrite(pTrunk->pDbPage);
- if( rc ){
- goto end_allocate_page;
- }
- if( nearby>0 ){
- int i, dist;
- closest = 0;
- dist = get4byte(&aData[8]) - nearby;
- if( dist<0 ) dist = -dist;
- for(i=1; isqlite3PagerPagecount(pBt->pPager) ){
- /* Free page off the end of the file */
- return SQLITE_CORRUPT_BKPT;
- }
- TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
- ": %d more free pages\n",
- *pPgno, closest+1, k, pTrunk->pgno, n-1));
- if( closestpDbPage);
- rc = sqlite3PagerWrite((*ppPage)->pDbPage);
- if( rc!=SQLITE_OK ){
- releasePage(*ppPage);
- }
- }
- searchList = 0;
- }
- }
- releasePage(pPrevTrunk);
- pPrevTrunk = 0;
- }while( searchList );
- }else{
- /* There are no pages on the freelist, so create a new page at the
- ** end of the file */
- *pPgno = sqlite3PagerPagecount(pBt->pPager) + 1;
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->nTrunc ){
- /* An incr-vacuum has already run within this transaction. So the
- ** page to allocate is not from the physical end of the file, but
- ** at pBt->nTrunc.
- */
- *pPgno = pBt->nTrunc+1;
- if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
- (*pPgno)++;
- }
- }
- if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
- /* If *pPgno refers to a pointer-map page, allocate two new pages
- ** at the end of the file instead of one. The first allocated page
- ** becomes a new pointer-map page, the second is used by the caller.
- */
- TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
- assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
- (*pPgno)++;
- }
- if( pBt->nTrunc ){
- pBt->nTrunc = *pPgno;
- }
-#endif
-
- assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
- rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0);
- if( rc ) return rc;
- rc = sqlite3PagerWrite((*ppPage)->pDbPage);
- if( rc!=SQLITE_OK ){
- releasePage(*ppPage);
- }
- TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
- }
-
- assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
-
-end_allocate_page:
- releasePage(pTrunk);
- releasePage(pPrevTrunk);
- return rc;
-}
-
-/*
-** Add a page of the database file to the freelist.
-**
-** sqlite3PagerUnref() is NOT called for pPage.
-*/
-static int freePage(MemPage *pPage){
- BtShared *pBt = pPage->pBt;
- MemPage *pPage1 = pBt->pPage1;
- int rc, n, k;
-
- /* Prepare the page for freeing */
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- assert( pPage->pgno>1 );
- pPage->isInit = 0;
- releasePage(pPage->pParent);
- pPage->pParent = 0;
-
- /* Increment the free page count on pPage1 */
- rc = sqlite3PagerWrite(pPage1->pDbPage);
- if( rc ) return rc;
- n = get4byte(&pPage1->aData[36]);
- put4byte(&pPage1->aData[36], n+1);
-
-#ifdef SQLITE_SECURE_DELETE
- /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
- ** always fully overwrite deleted information with zeros.
- */
- rc = sqlite3PagerWrite(pPage->pDbPage);
- if( rc ) return rc;
- memset(pPage->aData, 0, pPage->pBt->pageSize);
-#endif
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
- /* If the database supports auto-vacuum, write an entry in the pointer-map
- ** to indicate that the page is free.
- */
- if( pBt->autoVacuum ){
- rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0);
- if( rc ) return rc;
- }
-#endif
-
- if( n==0 ){
- /* This is the first free page */
- rc = sqlite3PagerWrite(pPage->pDbPage);
- if( rc ) return rc;
- memset(pPage->aData, 0, 8);
- put4byte(&pPage1->aData[32], pPage->pgno);
- TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
- }else{
- /* Other free pages already exist. Retrive the first trunk page
- ** of the freelist and find out how many leaves it has. */
- MemPage *pTrunk;
- rc = sqlite3BtreeGetPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk, 0);
- if( rc ) return rc;
- k = get4byte(&pTrunk->aData[4]);
- if( k>=pBt->usableSize/4 - 8 ){
- /* The trunk is full. Turn the page being freed into a new
- ** trunk page with no leaves. */
- rc = sqlite3PagerWrite(pPage->pDbPage);
- if( rc==SQLITE_OK ){
- put4byte(pPage->aData, pTrunk->pgno);
- put4byte(&pPage->aData[4], 0);
- put4byte(&pPage1->aData[32], pPage->pgno);
- TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
- pPage->pgno, pTrunk->pgno));
- }
- }else if( k<0 ){
- rc = SQLITE_CORRUPT;
- }else{
- /* Add the newly freed page as a leaf on the current trunk */
- rc = sqlite3PagerWrite(pTrunk->pDbPage);
- if( rc==SQLITE_OK ){
- put4byte(&pTrunk->aData[4], k+1);
- put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
-#ifndef SQLITE_SECURE_DELETE
- sqlite3PagerDontWrite(pPage->pDbPage);
-#endif
- }
- TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
- }
- releasePage(pTrunk);
- }
- return rc;
-}
-
-/*
-** Free any overflow pages associated with the given Cell.
-*/
-static int clearCell(MemPage *pPage, unsigned char *pCell){
- BtShared *pBt = pPage->pBt;
- CellInfo info;
- Pgno ovflPgno;
- int rc;
- int nOvfl;
- int ovflPageSize;
-
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- sqlite3BtreeParseCellPtr(pPage, pCell, &info);
- if( info.iOverflow==0 ){
- return SQLITE_OK; /* No overflow pages. Return without doing anything */
- }
- ovflPgno = get4byte(&pCell[info.iOverflow]);
- ovflPageSize = pBt->usableSize - 4;
- nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
- assert( ovflPgno==0 || nOvfl>0 );
- while( nOvfl-- ){
- MemPage *pOvfl;
- if( ovflPgno==0 || ovflPgno>sqlite3PagerPagecount(pBt->pPager) ){
- return SQLITE_CORRUPT_BKPT;
- }
-
- rc = getOverflowPage(pBt, ovflPgno, &pOvfl, (nOvfl==0)?0:&ovflPgno);
- if( rc ) return rc;
- rc = freePage(pOvfl);
- sqlite3PagerUnref(pOvfl->pDbPage);
- if( rc ) return rc;
- }
- return SQLITE_OK;
-}
-
-/*
-** Create the byte sequence used to represent a cell on page pPage
-** and write that byte sequence into pCell[]. Overflow pages are
-** allocated and filled in as necessary. The calling procedure
-** is responsible for making sure sufficient space has been allocated
-** for pCell[].
-**
-** Note that pCell does not necessary need to point to the pPage->aData
-** area. pCell might point to some temporary storage. The cell will
-** be constructed in this temporary area then copied into pPage->aData
-** later.
-*/
-static int fillInCell(
- MemPage *pPage, /* The page that contains the cell */
- unsigned char *pCell, /* Complete text of the cell */
- const void *pKey, i64 nKey, /* The key */
- const void *pData,int nData, /* The data */
- int nZero, /* Extra zero bytes to append to pData */
- int *pnSize /* Write cell size here */
-){
- int nPayload;
- const u8 *pSrc;
- int nSrc, n, rc;
- int spaceLeft;
- MemPage *pOvfl = 0;
- MemPage *pToRelease = 0;
- unsigned char *pPrior;
- unsigned char *pPayload;
- BtShared *pBt = pPage->pBt;
- Pgno pgnoOvfl = 0;
- int nHeader;
- CellInfo info;
-
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
-
- /* Fill in the header. */
- nHeader = 0;
- if( !pPage->leaf ){
- nHeader += 4;
- }
- if( pPage->hasData ){
- nHeader += putVarint(&pCell[nHeader], nData+nZero);
- }else{
- nData = nZero = 0;
- }
- nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
- sqlite3BtreeParseCellPtr(pPage, pCell, &info);
- assert( info.nHeader==nHeader );
- assert( info.nKey==nKey );
- assert( info.nData==nData+nZero );
-
- /* Fill in the payload */
- nPayload = nData + nZero;
- if( pPage->intKey ){
- pSrc = pData;
- nSrc = nData;
- nData = 0;
- }else{
- nPayload += nKey;
- pSrc = pKey;
- nSrc = nKey;
- }
- *pnSize = info.nSize;
- spaceLeft = info.nLocal;
- pPayload = &pCell[nHeader];
- pPrior = &pCell[info.iOverflow];
-
- while( nPayload>0 ){
- if( spaceLeft==0 ){
- int isExact = 0;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
- if( pBt->autoVacuum ){
- do{
- pgnoOvfl++;
- } while(
- PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
- );
- if( pgnoOvfl>1 ){
- /* isExact = 1; */
- }
- }
-#endif
- rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, isExact);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- /* If the database supports auto-vacuum, and the second or subsequent
- ** overflow page is being allocated, add an entry to the pointer-map
- ** for that page now.
- **
- ** If this is the first overflow page, then write a partial entry
- ** to the pointer-map. If we write nothing to this pointer-map slot,
- ** then the optimistic overflow chain processing in clearCell()
- ** may misinterpret the uninitialised values and delete the
- ** wrong pages from the database.
- */
- if( pBt->autoVacuum && rc==SQLITE_OK ){
- u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
- rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
- if( rc ){
- releasePage(pOvfl);
- }
- }
-#endif
- if( rc ){
- releasePage(pToRelease);
- return rc;
- }
- put4byte(pPrior, pgnoOvfl);
- releasePage(pToRelease);
- pToRelease = pOvfl;
- pPrior = pOvfl->aData;
- put4byte(pPrior, 0);
- pPayload = &pOvfl->aData[4];
- spaceLeft = pBt->usableSize - 4;
- }
- n = nPayload;
- if( n>spaceLeft ) n = spaceLeft;
- if( nSrc>0 ){
- if( n>nSrc ) n = nSrc;
- assert( pSrc );
- memcpy(pPayload, pSrc, n);
- }else{
- memset(pPayload, 0, n);
- }
- nPayload -= n;
- pPayload += n;
- pSrc += n;
- nSrc -= n;
- spaceLeft -= n;
- if( nSrc==0 ){
- nSrc = nData;
- pSrc = pData;
- }
- }
- releasePage(pToRelease);
- return SQLITE_OK;
-}
-
-/*
-** Change the MemPage.pParent pointer on the page whose number is
-** given in the second argument so that MemPage.pParent holds the
-** pointer in the third argument.
-*/
-static int reparentPage(BtShared *pBt, Pgno pgno, MemPage *pNewParent, int idx){
- MemPage *pThis;
- DbPage *pDbPage;
-
- assert( sqlite3_mutex_held(pBt->mutex) );
- assert( pNewParent!=0 );
- if( pgno==0 ) return SQLITE_OK;
- assert( pBt->pPager!=0 );
- pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
- if( pDbPage ){
- pThis = (MemPage *)sqlite3PagerGetExtra(pDbPage);
- if( pThis->isInit ){
- assert( pThis->aData==sqlite3PagerGetData(pDbPage) );
- if( pThis->pParent!=pNewParent ){
- if( pThis->pParent ) sqlite3PagerUnref(pThis->pParent->pDbPage);
- pThis->pParent = pNewParent;
- sqlite3PagerRef(pNewParent->pDbPage);
- }
- pThis->idxParent = idx;
- }
- sqlite3PagerUnref(pDbPage);
- }
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno);
- }
-#endif
- return SQLITE_OK;
-}
-
-
-
-/*
-** Change the pParent pointer of all children of pPage to point back
-** to pPage.
-**
-** In other words, for every child of pPage, invoke reparentPage()
-** to make sure that each child knows that pPage is its parent.
-**
-** This routine gets called after you memcpy() one page into
-** another.
-*/
-static int reparentChildPages(MemPage *pPage){
- int i;
- BtShared *pBt = pPage->pBt;
- int rc = SQLITE_OK;
-
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- if( pPage->leaf ) return SQLITE_OK;
-
- for(i=0; inCell; i++){
- u8 *pCell = findCell(pPage, i);
- if( !pPage->leaf ){
- rc = reparentPage(pBt, get4byte(pCell), pPage, i);
- if( rc!=SQLITE_OK ) return rc;
- }
- }
- if( !pPage->leaf ){
- rc = reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]),
- pPage, i);
- pPage->idxShift = 0;
- }
- return rc;
-}
-
-/*
-** Remove the i-th cell from pPage. This routine effects pPage only.
-** The cell content is not freed or deallocated. It is assumed that
-** the cell content has been copied someplace else. This routine just
-** removes the reference to the cell from pPage.
-**
-** "sz" must be the number of bytes in the cell.
-*/
-static void dropCell(MemPage *pPage, int idx, int sz){
- int i; /* Loop counter */
- int pc; /* Offset to cell content of cell being deleted */
- u8 *data; /* pPage->aData */
- u8 *ptr; /* Used to move bytes around within data[] */
-
- assert( idx>=0 && idxnCell );
- assert( sz==cellSize(pPage, idx) );
- assert( sqlite3PagerIswriteable(pPage->pDbPage) );
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- data = pPage->aData;
- ptr = &data[pPage->cellOffset + 2*idx];
- pc = get2byte(ptr);
- assert( pc>10 && pc+sz<=pPage->pBt->usableSize );
- freeSpace(pPage, pc, sz);
- for(i=idx+1; inCell; i++, ptr+=2){
- ptr[0] = ptr[2];
- ptr[1] = ptr[3];
- }
- pPage->nCell--;
- put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
- pPage->nFree += 2;
- pPage->idxShift = 1;
-}
-
-/*
-** Insert a new cell on pPage at cell index "i". pCell points to the
-** content of the cell.
-**
-** If the cell content will fit on the page, then put it there. If it
-** will not fit, then make a copy of the cell content into pTemp if
-** pTemp is not null. Regardless of pTemp, allocate a new entry
-** in pPage->aOvfl[] and make it point to the cell content (either
-** in pTemp or the original pCell) and also record its index.
-** Allocating a new entry in pPage->aCell[] implies that
-** pPage->nOverflow is incremented.
-**
-** If nSkip is non-zero, then do not copy the first nSkip bytes of the
-** cell. The caller will overwrite them after this function returns. If
-** nSkip is non-zero, then pCell may not point to an invalid memory location
-** (but pCell+nSkip is always valid).
-*/
-static int insertCell(
- MemPage *pPage, /* Page into which we are copying */
- int i, /* New cell becomes the i-th cell of the page */
- u8 *pCell, /* Content of the new cell */
- int sz, /* Bytes of content in pCell */
- u8 *pTemp, /* Temp storage space for pCell, if needed */
- u8 nSkip /* Do not write the first nSkip bytes of the cell */
-){
- int idx; /* Where to write new cell content in data[] */
- int j; /* Loop counter */
- int top; /* First byte of content for any cell in data[] */
- int end; /* First byte past the last cell pointer in data[] */
- int ins; /* Index in data[] where new cell pointer is inserted */
- int hdr; /* Offset into data[] of the page header */
- int cellOffset; /* Address of first cell pointer in data[] */
- u8 *data; /* The content of the whole page */
- u8 *ptr; /* Used for moving information around in data[] */
-
- assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
- assert( sz==cellSizePtr(pPage, pCell) );
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- if( pPage->nOverflow || sz+2>pPage->nFree ){
- if( pTemp ){
- memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
- pCell = pTemp;
- }
- j = pPage->nOverflow++;
- assert( jaOvfl)/sizeof(pPage->aOvfl[0]) );
- pPage->aOvfl[j].pCell = pCell;
- pPage->aOvfl[j].idx = i;
- pPage->nFree = 0;
- }else{
- int rc = sqlite3PagerWrite(pPage->pDbPage);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- assert( sqlite3PagerIswriteable(pPage->pDbPage) );
- data = pPage->aData;
- hdr = pPage->hdrOffset;
- top = get2byte(&data[hdr+5]);
- cellOffset = pPage->cellOffset;
- end = cellOffset + 2*pPage->nCell + 2;
- ins = cellOffset + 2*i;
- if( end > top - sz ){
- rc = defragmentPage(pPage);
- if( rc!=SQLITE_OK ) return rc;
- top = get2byte(&data[hdr+5]);
- assert( end + sz <= top );
- }
- idx = allocateSpace(pPage, sz);
- assert( idx>0 );
- assert( end <= get2byte(&data[hdr+5]) );
- pPage->nCell++;
- pPage->nFree -= 2;
- memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
- for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
- ptr[0] = ptr[-2];
- ptr[1] = ptr[-1];
- }
- put2byte(&data[ins], idx);
- put2byte(&data[hdr+3], pPage->nCell);
- pPage->idxShift = 1;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pPage->pBt->autoVacuum ){
- /* The cell may contain a pointer to an overflow page. If so, write
- ** the entry for the overflow page into the pointer map.
- */
- CellInfo info;
- sqlite3BtreeParseCellPtr(pPage, pCell, &info);
- assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
- if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
- Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
- rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
- if( rc!=SQLITE_OK ) return rc;
- }
- }
-#endif
- }
-
- return SQLITE_OK;
-}
-
-/*
-** Add a list of cells to a page. The page should be initially empty.
-** The cells are guaranteed to fit on the page.
-*/
-static void assemblePage(
- MemPage *pPage, /* The page to be assemblied */
- int nCell, /* The number of cells to add to this page */
- u8 **apCell, /* Pointers to cell bodies */
- int *aSize /* Sizes of the cells */
-){
- int i; /* Loop counter */
- int totalSize; /* Total size of all cells */
- int hdr; /* Index of page header */
- int cellptr; /* Address of next cell pointer */
- int cellbody; /* Address of next cell body */
- u8 *data; /* Data for the page */
-
- assert( pPage->nOverflow==0 );
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- totalSize = 0;
- for(i=0; inFree );
- assert( pPage->nCell==0 );
- cellptr = pPage->cellOffset;
- data = pPage->aData;
- hdr = pPage->hdrOffset;
- put2byte(&data[hdr+3], nCell);
- if( nCell ){
- cellbody = allocateSpace(pPage, totalSize);
- assert( cellbody>0 );
- assert( pPage->nFree >= 2*nCell );
- pPage->nFree -= 2*nCell;
- for(i=0; ipBt->usableSize );
- }
- pPage->nCell = nCell;
-}
-
-/*
-** The following parameters determine how many adjacent pages get involved
-** in a balancing operation. NN is the number of neighbors on either side
-** of the page that participate in the balancing operation. NB is the
-** total number of pages that participate, including the target page and
-** NN neighbors on either side.
-**
-** The minimum value of NN is 1 (of course). Increasing NN above 1
-** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
-** in exchange for a larger degradation in INSERT and UPDATE performance.
-** The value of NN appears to give the best results overall.
-*/
-#define NN 1 /* Number of neighbors on either side of pPage */
-#define NB (NN*2+1) /* Total pages involved in the balance */
-
-/* Forward reference */
-static int balance(MemPage*, int);
-
-#ifndef SQLITE_OMIT_QUICKBALANCE
-/*
-** This version of balance() handles the common special case where
-** a new entry is being inserted on the extreme right-end of the
-** tree, in other words, when the new entry will become the largest
-** entry in the tree.
-**
-** Instead of trying balance the 3 right-most leaf pages, just add
-** a new page to the right-hand side and put the one new entry in
-** that page. This leaves the right side of the tree somewhat
-** unbalanced. But odds are that we will be inserting new entries
-** at the end soon afterwards so the nearly empty page will quickly
-** fill up. On average.
-**
-** pPage is the leaf page which is the right-most page in the tree.
-** pParent is its parent. pPage must have a single overflow entry
-** which is also the right-most entry on the page.
-*/
-static int balance_quick(MemPage *pPage, MemPage *pParent){
- int rc;
- MemPage *pNew;
- Pgno pgnoNew;
- u8 *pCell;
- int szCell;
- CellInfo info;
- BtShared *pBt = pPage->pBt;
- int parentIdx = pParent->nCell; /* pParent new divider cell index */
- int parentSize; /* Size of new divider cell */
- u8 parentCell[64]; /* Space for the new divider cell */
-
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
-
- /* Allocate a new page. Insert the overflow cell from pPage
- ** into it. Then remove the overflow cell from pPage.
- */
- rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- pCell = pPage->aOvfl[0].pCell;
- szCell = cellSizePtr(pPage, pCell);
- zeroPage(pNew, pPage->aData[0]);
- assemblePage(pNew, 1, &pCell, &szCell);
- pPage->nOverflow = 0;
-
- /* Set the parent of the newly allocated page to pParent. */
- pNew->pParent = pParent;
- sqlite3PagerRef(pParent->pDbPage);
-
- /* pPage is currently the right-child of pParent. Change this
- ** so that the right-child is the new page allocated above and
- ** pPage is the next-to-right child.
- */
- assert( pPage->nCell>0 );
- pCell = findCell(pPage, pPage->nCell-1);
- sqlite3BtreeParseCellPtr(pPage, pCell, &info);
- rc = fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, 0, &parentSize);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- assert( parentSize<64 );
- rc = insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno);
- put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
- /* If this is an auto-vacuum database, update the pointer map
- ** with entries for the new page, and any pointer from the
- ** cell on the page to an overflow page.
- */
- if( pBt->autoVacuum ){
- rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
- if( rc==SQLITE_OK ){
- rc = ptrmapPutOvfl(pNew, 0);
- }
- if( rc!=SQLITE_OK ){
- releasePage(pNew);
- return rc;
- }
- }
-#endif
-
- /* Release the reference to the new page and balance the parent page,
- ** in case the divider cell inserted caused it to become overfull.
- */
- releasePage(pNew);
- return balance(pParent, 0);
-}
-#endif /* SQLITE_OMIT_QUICKBALANCE */
-
-/*
-** This routine redistributes Cells on pPage and up to NN*2 siblings
-** of pPage so that all pages have about the same amount of free space.
-** Usually NN siblings on either side of pPage is used in the balancing,
-** though more siblings might come from one side if pPage is the first
-** or last child of its parent. If pPage has fewer than 2*NN siblings
-** (something which can only happen if pPage is the root page or a
-** child of root) then all available siblings participate in the balancing.
-**
-** The number of siblings of pPage might be increased or decreased by one or
-** two in an effort to keep pages nearly full but not over full. The root page
-** is special and is allowed to be nearly empty. If pPage is
-** the root page, then the depth of the tree might be increased
-** or decreased by one, as necessary, to keep the root page from being
-** overfull or completely empty.
-**
-** Note that when this routine is called, some of the Cells on pPage
-** might not actually be stored in pPage->aData[]. This can happen
-** if the page is overfull. Part of the job of this routine is to
-** make sure all Cells for pPage once again fit in pPage->aData[].
-**
-** In the course of balancing the siblings of pPage, the parent of pPage
-** might become overfull or underfull. If that happens, then this routine
-** is called recursively on the parent.
-**
-** If this routine fails for any reason, it might leave the database
-** in a corrupted state. So if this routine fails, the database should
-** be rolled back.
-*/
-static int balance_nonroot(MemPage *pPage){
- MemPage *pParent; /* The parent of pPage */
- BtShared *pBt; /* The whole database */
- int nCell = 0; /* Number of cells in apCell[] */
- int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
- int nOld; /* Number of pages in apOld[] */
- int nNew; /* Number of pages in apNew[] */
- int nDiv; /* Number of cells in apDiv[] */
- int i, j, k; /* Loop counters */
- int idx; /* Index of pPage in pParent->aCell[] */
- int nxDiv; /* Next divider slot in pParent->aCell[] */
- int rc; /* The return code */
- int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
- int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
- int usableSpace; /* Bytes in pPage beyond the header */
- int pageFlags; /* Value of pPage->aData[0] */
- int subtotal; /* Subtotal of bytes in cells on one page */
- int iSpace = 0; /* First unused byte of aSpace[] */
- MemPage *apOld[NB]; /* pPage and up to two siblings */
- Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
- MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
- MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
- Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */
- u8 *apDiv[NB]; /* Divider cells in pParent */
- int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
- int szNew[NB+2]; /* Combined size of cells place on i-th page */
- u8 **apCell = 0; /* All cells begin balanced */
- int *szCell; /* Local size of all cells in apCell[] */
- u8 *aCopy[NB]; /* Space for holding data of apCopy[] */
- u8 *aSpace; /* Space to hold copies of dividers cells */
-#ifndef SQLITE_OMIT_AUTOVACUUM
- u8 *aFrom = 0;
-#endif
-
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
-
- /*
- ** Find the parent page.
- */
- assert( pPage->isInit );
- assert( sqlite3PagerIswriteable(pPage->pDbPage) || pPage->nOverflow==1 );
- pBt = pPage->pBt;
- pParent = pPage->pParent;
- assert( pParent );
- if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){
- return rc;
- }
- TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
-
-#ifndef SQLITE_OMIT_QUICKBALANCE
- /*
- ** A special case: If a new entry has just been inserted into a
- ** table (that is, a btree with integer keys and all data at the leaves)
- ** and the new entry is the right-most entry in the tree (it has the
- ** largest key) then use the special balance_quick() routine for
- ** balancing. balance_quick() is much faster and results in a tighter
- ** packing of data in the common case.
- */
- if( pPage->leaf &&
- pPage->intKey &&
- pPage->leafData &&
- pPage->nOverflow==1 &&
- pPage->aOvfl[0].idx==pPage->nCell &&
- pPage->pParent->pgno!=1 &&
- get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
- ){
- /*
- ** TODO: Check the siblings to the left of pPage. It may be that
- ** they are not full and no new page is required.
- */
- return balance_quick(pPage, pParent);
- }
-#endif
-
- if( SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage)) ){
- return rc;
- }
-
- /*
- ** Find the cell in the parent page whose left child points back
- ** to pPage. The "idx" variable is the index of that cell. If pPage
- ** is the rightmost child of pParent then set idx to pParent->nCell
- */
- if( pParent->idxShift ){
- Pgno pgno;
- pgno = pPage->pgno;
- assert( pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
- for(idx=0; idxnCell; idx++){
- if( get4byte(findCell(pParent, idx))==pgno ){
- break;
- }
- }
- assert( idxnCell
- || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno );
- }else{
- idx = pPage->idxParent;
- }
-
- /*
- ** Initialize variables so that it will be safe to jump
- ** directly to balance_cleanup at any moment.
- */
- nOld = nNew = 0;
- sqlite3PagerRef(pParent->pDbPage);
-
- /*
- ** Find sibling pages to pPage and the cells in pParent that divide
- ** the siblings. An attempt is made to find NN siblings on either
- ** side of pPage. More siblings are taken from one side, however, if
- ** pPage there are fewer than NN siblings on the other side. If pParent
- ** has NB or fewer children then all children of pParent are taken.
- */
- nxDiv = idx - NN;
- if( nxDiv + NB > pParent->nCell ){
- nxDiv = pParent->nCell - NB + 1;
- }
- if( nxDiv<0 ){
- nxDiv = 0;
- }
- nDiv = 0;
- for(i=0, k=nxDiv; inCell ){
- apDiv[i] = findCell(pParent, k);
- nDiv++;
- assert( !pParent->leaf );
- pgnoOld[i] = get4byte(apDiv[i]);
- }else if( k==pParent->nCell ){
- pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
- }else{
- break;
- }
- rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
- if( rc ) goto balance_cleanup;
- apOld[i]->idxParent = k;
- apCopy[i] = 0;
- assert( i==nOld );
- nOld++;
- nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
- }
-
- /* Make nMaxCells a multiple of 2 in order to preserve 8-byte
- ** alignment */
- nMaxCells = (nMaxCells + 1)&~1;
-
- /*
- ** Allocate space for memory structures
- */
- apCell = sqlite3_malloc(
- nMaxCells*sizeof(u8*) /* apCell */
- + nMaxCells*sizeof(int) /* szCell */
- + ROUND8(sizeof(MemPage))*NB /* aCopy */
- + pBt->pageSize*(5+NB) /* aSpace */
- + (ISAUTOVACUUM ? nMaxCells : 0) /* aFrom */
- );
- if( apCell==0 ){
- rc = SQLITE_NOMEM;
- goto balance_cleanup;
- }
- szCell = (int*)&apCell[nMaxCells];
- aCopy[0] = (u8*)&szCell[nMaxCells];
- assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
- for(i=1; ipageSize+ROUND8(sizeof(MemPage))];
- assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
- }
- aSpace = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
- assert( ((aSpace - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- aFrom = &aSpace[5*pBt->pageSize];
- }
-#endif
-
- /*
- ** Make copies of the content of pPage and its siblings into aOld[].
- ** The rest of this function will use data from the copies rather
- ** that the original pages since the original pages will be in the
- ** process of being overwritten.
- */
- for(i=0; iaData = (void*)&p[1];
- memcpy(p->aData, apOld[i]->aData, pBt->pageSize);
- }
-
- /*
- ** Load pointers to all cells on sibling pages and the divider cells
- ** into the local apCell[] array. Make copies of the divider cells
- ** into space obtained form aSpace[] and remove the the divider Cells
- ** from pParent.
- **
- ** If the siblings are on leaf pages, then the child pointers of the
- ** divider cells are stripped from the cells before they are copied
- ** into aSpace[]. In this way, all cells in apCell[] are without
- ** child pointers. If siblings are not leaves, then all cell in
- ** apCell[] include child pointers. Either way, all cells in apCell[]
- ** are alike.
- **
- ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
- ** leafData: 1 if pPage holds key+data and pParent holds only keys.
- */
- nCell = 0;
- leafCorrection = pPage->leaf*4;
- leafData = pPage->leafData && pPage->leaf;
- for(i=0; inCell+pOld->nOverflow;
- for(j=0; jautoVacuum ){
- int a;
- aFrom[nCell] = i;
- for(a=0; anOverflow; a++){
- if( pOld->aOvfl[a].pCell==apCell[nCell] ){
- aFrom[nCell] = 0xFF;
- break;
- }
- }
- }
-#endif
- nCell++;
- }
- if( ipageSize*5 );
- memcpy(pTemp, apDiv[i], sz);
- apCell[nCell] = pTemp+leafCorrection;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- aFrom[nCell] = 0xFF;
- }
-#endif
- dropCell(pParent, nxDiv, sz);
- szCell[nCell] -= leafCorrection;
- assert( get4byte(pTemp)==pgnoOld[i] );
- if( !pOld->leaf ){
- assert( leafCorrection==0 );
- /* The right pointer of the child page pOld becomes the left
- ** pointer of the divider cell */
- memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
- }else{
- assert( leafCorrection==4 );
- if( szCell[nCell]<4 ){
- /* Do not allow any cells smaller than 4 bytes. */
- szCell[nCell] = 4;
- }
- }
- nCell++;
- }
- }
- }
-
- /*
- ** Figure out the number of pages needed to hold all nCell cells.
- ** Store this number in "k". Also compute szNew[] which is the total
- ** size of all cells on the i-th page and cntNew[] which is the index
- ** in apCell[] of the cell that divides page i from page i+1.
- ** cntNew[k] should equal nCell.
- **
- ** Values computed by this block:
- **
- ** k: The total number of sibling pages
- ** szNew[i]: Spaced used on the i-th sibling page.
- ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
- ** the right of the i-th sibling page.
- ** usableSpace: Number of bytes of space available on each sibling.
- **
- */
- usableSpace = pBt->usableSize - 12 + leafCorrection;
- for(subtotal=k=i=0; i usableSpace ){
- szNew[k] = subtotal - szCell[i];
- cntNew[k] = i;
- if( leafData ){ i--; }
- subtotal = 0;
- k++;
- }
- }
- szNew[k] = subtotal;
- cntNew[k] = nCell;
- k++;
-
- /*
- ** The packing computed by the previous block is biased toward the siblings
- ** on the left side. The left siblings are always nearly full, while the
- ** right-most sibling might be nearly empty. This block of code attempts
- ** to adjust the packing of siblings to get a better balance.
- **
- ** This adjustment is more than an optimization. The packing above might
- ** be so out of balance as to be illegal. For example, the right-most
- ** sibling might be completely empty. This adjustment is not optional.
- */
- for(i=k-1; i>0; i--){
- int szRight = szNew[i]; /* Size of sibling on the right */
- int szLeft = szNew[i-1]; /* Size of sibling on the left */
- int r; /* Index of right-most cell in left sibling */
- int d; /* Index of first cell to the left of right sibling */
-
- r = cntNew[i-1] - 1;
- d = r + 1 - leafData;
- assert( d0) or we are the
- ** a virtual root page. A virtual root page is when the real root
- ** page is page 1 and we are the only child of that page.
- */
- assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
-
- /*
- ** Allocate k new pages. Reuse old pages where possible.
- */
- assert( pPage->pgno>1 );
- pageFlags = pPage->aData[0];
- for(i=0; ipDbPage);
- nNew++;
- if( rc ) goto balance_cleanup;
- }else{
- assert( i>0 );
- rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
- if( rc ) goto balance_cleanup;
- apNew[i] = pNew;
- nNew++;
- }
- zeroPage(pNew, pageFlags);
- }
-
- /* Free any old pages that were not reused as new pages.
- */
- while( ii ){
- int t;
- MemPage *pT;
- t = pgnoNew[i];
- pT = apNew[i];
- pgnoNew[i] = pgnoNew[minI];
- apNew[i] = apNew[minI];
- pgnoNew[minI] = t;
- apNew[minI] = pT;
- }
- }
- TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
- pgnoOld[0],
- nOld>=2 ? pgnoOld[1] : 0,
- nOld>=3 ? pgnoOld[2] : 0,
- pgnoNew[0], szNew[0],
- nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
- nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
- nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
- nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
-
- /*
- ** Evenly distribute the data in apCell[] across the new pages.
- ** Insert divider cells into pParent as necessary.
- */
- j = 0;
- for(i=0; ipgno==pgnoNew[i] );
- assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
- assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
- assert( pNew->nOverflow==0 );
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
- /* If this is an auto-vacuum database, update the pointer map entries
- ** that point to the siblings that were rearranged. These can be: left
- ** children of cells, the right-child of the page, or overflow pages
- ** pointed to by cells.
- */
- if( pBt->autoVacuum ){
- for(k=j; kpgno!=pNew->pgno ){
- rc = ptrmapPutOvfl(pNew, k-j);
- if( rc!=SQLITE_OK ){
- goto balance_cleanup;
- }
- }
- }
- }
-#endif
-
- j = cntNew[i];
-
- /* If the sibling page assembled above was not the right-most sibling,
- ** insert a divider cell into the parent page.
- */
- if( ileaf ){
- memcpy(&pNew->aData[8], pCell, 4);
- pTemp = 0;
- }else if( leafData ){
- /* If the tree is a leaf-data tree, and the siblings are leaves,
- ** then there is no divider cell in apCell[]. Instead, the divider
- ** cell consists of the integer key for the right-most cell of
- ** the sibling-page assembled above only.
- */
- CellInfo info;
- j--;
- sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
- pCell = &aSpace[iSpace];
- fillInCell(pParent, pCell, 0, info.nKey, 0, 0, 0, &sz);
- iSpace += sz;
- assert( iSpace<=pBt->pageSize*5 );
- pTemp = 0;
- }else{
- pCell -= 4;
- pTemp = &aSpace[iSpace];
- iSpace += sz;
- assert( iSpace<=pBt->pageSize*5 );
- /* Obscure case for non-leaf-data trees: If the cell at pCell was
- ** previously stored on a leaf node, and it's reported size was 4
- ** bytes, then it may actually be smaller than this
- ** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of
- ** any cell). But it's important to pass the correct size to
- ** insertCell(), so reparse the cell now.
- **
- ** Note that this can never happen in an SQLite data file, as all
- ** cells are at least 4 bytes. It only happens in b-trees used
- ** to evaluate "IN (SELECT ...)" and similar clauses.
- */
- if( szCell[j]==4 ){
- assert(leafCorrection==4);
- sz = cellSizePtr(pParent, pCell);
- }
- }
- rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
- if( rc!=SQLITE_OK ) goto balance_cleanup;
- put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- /* If this is an auto-vacuum database, and not a leaf-data tree,
- ** then update the pointer map with an entry for the overflow page
- ** that the cell just inserted points to (if any).
- */
- if( pBt->autoVacuum && !leafData ){
- rc = ptrmapPutOvfl(pParent, nxDiv);
- if( rc!=SQLITE_OK ){
- goto balance_cleanup;
- }
- }
-#endif
- j++;
- nxDiv++;
- }
- }
- assert( j==nCell );
- assert( nOld>0 );
- assert( nNew>0 );
- if( (pageFlags & PTF_LEAF)==0 ){
- memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4);
- }
- if( nxDiv==pParent->nCell+pParent->nOverflow ){
- /* Right-most sibling is the right-most child of pParent */
- put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
- }else{
- /* Right-most sibling is the left child of the first entry in pParent
- ** past the right-most divider entry */
- put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
- }
-
- /*
- ** Reparent children of all cells.
- */
- for(i=0; iisInit );
- rc = balance(pParent, 0);
-
- /*
- ** Cleanup before returning.
- */
-balance_cleanup:
- sqlite3_free(apCell);
- for(i=0; ipgno, nOld, nNew, nCell));
- return rc;
-}
-
-/*
-** This routine is called for the root page of a btree when the root
-** page contains no cells. This is an opportunity to make the tree
-** shallower by one level.
-*/
-static int balance_shallower(MemPage *pPage){
- MemPage *pChild; /* The only child page of pPage */
- Pgno pgnoChild; /* Page number for pChild */
- int rc = SQLITE_OK; /* Return code from subprocedures */
- BtShared *pBt; /* The main BTree structure */
- int mxCellPerPage; /* Maximum number of cells per page */
- u8 **apCell; /* All cells from pages being balanced */
- int *szCell; /* Local size of all cells */
-
- assert( pPage->pParent==0 );
- assert( pPage->nCell==0 );
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- pBt = pPage->pBt;
- mxCellPerPage = MX_CELL(pBt);
- apCell = sqlite3_malloc( mxCellPerPage*(sizeof(u8*)+sizeof(int)) );
- if( apCell==0 ) return SQLITE_NOMEM;
- szCell = (int*)&apCell[mxCellPerPage];
- if( pPage->leaf ){
- /* The table is completely empty */
- TRACE(("BALANCE: empty table %d\n", pPage->pgno));
- }else{
- /* The root page is empty but has one child. Transfer the
- ** information from that one child into the root page if it
- ** will fit. This reduces the depth of the tree by one.
- **
- ** If the root page is page 1, it has less space available than
- ** its child (due to the 100 byte header that occurs at the beginning
- ** of the database fle), so it might not be able to hold all of the
- ** information currently contained in the child. If this is the
- ** case, then do not do the transfer. Leave page 1 empty except
- ** for the right-pointer to the child page. The child page becomes
- ** the virtual root of the tree.
- */
- pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
- assert( pgnoChild>0 );
- assert( pgnoChild<=sqlite3PagerPagecount(pPage->pBt->pPager) );
- rc = sqlite3BtreeGetPage(pPage->pBt, pgnoChild, &pChild, 0);
- if( rc ) goto end_shallow_balance;
- if( pPage->pgno==1 ){
- rc = sqlite3BtreeInitPage(pChild, pPage);
- if( rc ) goto end_shallow_balance;
- assert( pChild->nOverflow==0 );
- if( pChild->nFree>=100 ){
- /* The child information will fit on the root page, so do the
- ** copy */
- int i;
- zeroPage(pPage, pChild->aData[0]);
- for(i=0; inCell; i++){
- apCell[i] = findCell(pChild,i);
- szCell[i] = cellSizePtr(pChild, apCell[i]);
- }
- assemblePage(pPage, pChild->nCell, apCell, szCell);
- /* Copy the right-pointer of the child to the parent. */
- put4byte(&pPage->aData[pPage->hdrOffset+8],
- get4byte(&pChild->aData[pChild->hdrOffset+8]));
- freePage(pChild);
- TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
- }else{
- /* The child has more information that will fit on the root.
- ** The tree is already balanced. Do nothing. */
- TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
- }
- }else{
- memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
- pPage->isInit = 0;
- pPage->pParent = 0;
- rc = sqlite3BtreeInitPage(pPage, 0);
- assert( rc==SQLITE_OK );
- freePage(pChild);
- TRACE(("BALANCE: transfer child %d into root %d\n",
- pChild->pgno, pPage->pgno));
- }
- rc = reparentChildPages(pPage);
- assert( pPage->nOverflow==0 );
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- int i;
- for(i=0; inCell; i++){
- rc = ptrmapPutOvfl(pPage, i);
- if( rc!=SQLITE_OK ){
- goto end_shallow_balance;
- }
- }
- }
-#endif
- releasePage(pChild);
- }
-end_shallow_balance:
- sqlite3_free(apCell);
- return rc;
-}
-
-
-/*
-** The root page is overfull
-**
-** When this happens, Create a new child page and copy the
-** contents of the root into the child. Then make the root
-** page an empty page with rightChild pointing to the new
-** child. Finally, call balance_internal() on the new child
-** to cause it to split.
-*/
-static int balance_deeper(MemPage *pPage){
- int rc; /* Return value from subprocedures */
- MemPage *pChild; /* Pointer to a new child page */
- Pgno pgnoChild; /* Page number of the new child page */
- BtShared *pBt; /* The BTree */
- int usableSize; /* Total usable size of a page */
- u8 *data; /* Content of the parent page */
- u8 *cdata; /* Content of the child page */
- int hdr; /* Offset to page header in parent */
- int brk; /* Offset to content of first cell in parent */
-
- assert( pPage->pParent==0 );
- assert( pPage->nOverflow>0 );
- pBt = pPage->pBt;
- assert( sqlite3_mutex_held(pBt->mutex) );
- rc = allocateBtreePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
- if( rc ) return rc;
- assert( sqlite3PagerIswriteable(pChild->pDbPage) );
- usableSize = pBt->usableSize;
- data = pPage->aData;
- hdr = pPage->hdrOffset;
- brk = get2byte(&data[hdr+5]);
- cdata = pChild->aData;
- memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
- memcpy(&cdata[brk], &data[brk], usableSize-brk);
- assert( pChild->isInit==0 );
- rc = sqlite3BtreeInitPage(pChild, pPage);
- if( rc ) goto balancedeeper_out;
- memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0]));
- pChild->nOverflow = pPage->nOverflow;
- if( pChild->nOverflow ){
- pChild->nFree = 0;
- }
- assert( pChild->nCell==pPage->nCell );
- zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
- put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
- TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- int i;
- rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
- if( rc ) goto balancedeeper_out;
- for(i=0; inCell; i++){
- rc = ptrmapPutOvfl(pChild, i);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- }
- }
-#endif
- rc = balance_nonroot(pChild);
-
-balancedeeper_out:
- releasePage(pChild);
- return rc;
-}
-
-/*
-** Decide if the page pPage needs to be balanced. If balancing is
-** required, call the appropriate balancing routine.
-*/
-static int balance(MemPage *pPage, int insert){
- int rc = SQLITE_OK;
- assert( sqlite3_mutex_held(pPage->pBt->mutex) );
- if( pPage->pParent==0 ){
- rc = sqlite3PagerWrite(pPage->pDbPage);
- if( rc==SQLITE_OK && pPage->nOverflow>0 ){
- rc = balance_deeper(pPage);
- }
- if( rc==SQLITE_OK && pPage->nCell==0 ){
- rc = balance_shallower(pPage);
- }
- }else{
- if( pPage->nOverflow>0 ||
- (!insert && pPage->nFree>pPage->pBt->usableSize*2/3) ){
- rc = balance_nonroot(pPage);
- }
- }
- return rc;
-}
-
-/*
-** This routine checks all cursors that point to table pgnoRoot.
-** If any of those cursors were opened with wrFlag==0 in a different
-** database connection (a database connection that shares the pager
-** cache with the current connection) and that other connection
-** is not in the ReadUncommmitted state, then this routine returns
-** SQLITE_LOCKED.
-**
-** In addition to checking for read-locks (where a read-lock
-** means a cursor opened with wrFlag==0) this routine also moves
-** all write cursors so that they are pointing to the
-** first Cell on the root page. This is necessary because an insert
-** or delete might change the number of cells on a page or delete
-** a page entirely and we do not want to leave any cursors
-** pointing to non-existant pages or cells.
-*/
-static int checkReadLocks(Btree *pBtree, Pgno pgnoRoot, BtCursor *pExclude){
- BtCursor *p;
- BtShared *pBt = pBtree->pBt;
- sqlite3 *db = pBtree->pSqlite;
- assert( sqlite3BtreeHoldsMutex(pBtree) );
- for(p=pBt->pCursor; p; p=p->pNext){
- if( p==pExclude ) continue;
- if( p->eState!=CURSOR_VALID ) continue;
- if( p->pgnoRoot!=pgnoRoot ) continue;
- if( p->wrFlag==0 ){
- sqlite3 *dbOther = p->pBtree->pSqlite;
- if( dbOther==0 ||
- (dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0) ){
- return SQLITE_LOCKED;
- }
- }else if( p->pPage->pgno!=p->pgnoRoot ){
- moveToRoot(p);
- }
- }
- return SQLITE_OK;
-}
-
-/*
-** Insert a new record into the BTree. The key is given by (pKey,nKey)
-** and the data is given by (pData,nData). The cursor is used only to
-** define what table the record should be inserted into. The cursor
-** is left pointing at a random location.
-**
-** For an INTKEY table, only the nKey value of the key is used. pKey is
-** ignored. For a ZERODATA table, the pData and nData are both ignored.
-*/
-int sqlite3BtreeInsert(
- BtCursor *pCur, /* Insert data into the table of this cursor */
- const void *pKey, i64 nKey, /* The key of the new record */
- const void *pData, int nData, /* The data of the new record */
- int nZero, /* Number of extra 0 bytes to append to data */
- int appendBias /* True if this is likely an append */
-){
- int rc;
- int loc;
- int szNew;
- MemPage *pPage;
- Btree *p = pCur->pBtree;
- BtShared *pBt = p->pBt;
- unsigned char *oldCell;
- unsigned char *newCell = 0;
-
- assert( cursorHoldsMutex(pCur) );
- if( pBt->inTransaction!=TRANS_WRITE ){
- /* Must start a transaction before doing an insert */
- rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- return rc;
- }
- assert( !pBt->readOnly );
- if( !pCur->wrFlag ){
- return SQLITE_PERM; /* Cursor not open for writing */
- }
- if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
- return SQLITE_LOCKED; /* The table pCur points to has a read lock */
- }
- if( pCur->eState==CURSOR_FAULT ){
- return pCur->skip;
- }
-
- /* Save the positions of any other cursors open on this table */
- clearCursorPosition(pCur);
- if(
- SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) ||
- SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, appendBias, &loc))
- ){
- return rc;
- }
-
- pPage = pCur->pPage;
- assert( pPage->intKey || nKey>=0 );
- assert( pPage->leaf || !pPage->leafData );
- TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
- pCur->pgnoRoot, nKey, nData, pPage->pgno,
- loc==0 ? "overwrite" : "new entry"));
- assert( pPage->isInit );
- newCell = sqlite3_malloc( MX_CELL_SIZE(pBt) );
- if( newCell==0 ) return SQLITE_NOMEM;
- rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
- if( rc ) goto end_insert;
- assert( szNew==cellSizePtr(pPage, newCell) );
- assert( szNew<=MX_CELL_SIZE(pBt) );
- if( loc==0 && CURSOR_VALID==pCur->eState ){
- int szOld;
- assert( pCur->idx>=0 && pCur->idxnCell );
- rc = sqlite3PagerWrite(pPage->pDbPage);
- if( rc ){
- goto end_insert;
- }
- oldCell = findCell(pPage, pCur->idx);
- if( !pPage->leaf ){
- memcpy(newCell, oldCell, 4);
- }
- szOld = cellSizePtr(pPage, oldCell);
- rc = clearCell(pPage, oldCell);
- if( rc ) goto end_insert;
- dropCell(pPage, pCur->idx, szOld);
- }else if( loc<0 && pPage->nCell>0 ){
- assert( pPage->leaf );
- pCur->idx++;
- pCur->info.nSize = 0;
- }else{
- assert( pPage->leaf );
- }
- rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0);
- if( rc!=SQLITE_OK ) goto end_insert;
- rc = balance(pPage, 1);
- /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
- /* fflush(stdout); */
- if( rc==SQLITE_OK ){
- moveToRoot(pCur);
- }
-end_insert:
- sqlite3_free(newCell);
- return rc;
-}
-
-/*
-** Delete the entry that the cursor is pointing to. The cursor
-** is left pointing at a random location.
-*/
-int sqlite3BtreeDelete(BtCursor *pCur){
- MemPage *pPage = pCur->pPage;
- unsigned char *pCell;
- int rc;
- Pgno pgnoChild = 0;
- Btree *p = pCur->pBtree;
- BtShared *pBt = p->pBt;
-
- assert( cursorHoldsMutex(pCur) );
- assert( pPage->isInit );
- if( pBt->inTransaction!=TRANS_WRITE ){
- /* Must start a transaction before doing a delete */
- rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- return rc;
- }
- assert( !pBt->readOnly );
- if( pCur->eState==CURSOR_FAULT ){
- return pCur->skip;
- }
- if( pCur->idx >= pPage->nCell ){
- return SQLITE_ERROR; /* The cursor is not pointing to anything */
- }
- if( !pCur->wrFlag ){
- return SQLITE_PERM; /* Did not open this cursor for writing */
- }
- if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
- return SQLITE_LOCKED; /* The table pCur points to has a read lock */
- }
-
- /* Restore the current cursor position (a no-op if the cursor is not in
- ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors
- ** open on the same table. Then call sqlite3PagerWrite() on the page
- ** that the entry will be deleted from.
- */
- if(
- (rc = restoreOrClearCursorPosition(pCur))!=0 ||
- (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
- (rc = sqlite3PagerWrite(pPage->pDbPage))!=0
- ){
- return rc;
- }
-
- /* Locate the cell within it's page and leave pCell pointing to the
- ** data. The clearCell() call frees any overflow pages associated with the
- ** cell. The cell itself is still intact.
- */
- pCell = findCell(pPage, pCur->idx);
- if( !pPage->leaf ){
- pgnoChild = get4byte(pCell);
- }
- rc = clearCell(pPage, pCell);
- if( rc ){
- return rc;
- }
-
- if( !pPage->leaf ){
- /*
- ** The entry we are about to delete is not a leaf so if we do not
- ** do something we will leave a hole on an internal page.
- ** We have to fill the hole by moving in a cell from a leaf. The
- ** next Cell after the one to be deleted is guaranteed to exist and
- ** to be a leaf so we can use it.
- */
- BtCursor leafCur;
- unsigned char *pNext;
- int szNext; /* The compiler warning is wrong: szNext is always
- ** initialized before use. Adding an extra initialization
- ** to silence the compiler slows down the code. */
- int notUsed;
- unsigned char *tempCell = 0;
- assert( !pPage->leafData );
- sqlite3BtreeGetTempCursor(pCur, &leafCur);
- rc = sqlite3BtreeNext(&leafCur, ¬Used);
- if( rc==SQLITE_OK ){
- rc = sqlite3PagerWrite(leafCur.pPage->pDbPage);
- }
- if( rc==SQLITE_OK ){
- TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
- pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
- dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
- pNext = findCell(leafCur.pPage, leafCur.idx);
- szNext = cellSizePtr(leafCur.pPage, pNext);
- assert( MX_CELL_SIZE(pBt)>=szNext+4 );
- tempCell = sqlite3_malloc( MX_CELL_SIZE(pBt) );
- if( tempCell==0 ){
- rc = SQLITE_NOMEM;
- }
- }
- if( rc==SQLITE_OK ){
- rc = insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell, 0);
- }
- if( rc==SQLITE_OK ){
- put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild);
- rc = balance(pPage, 0);
- }
- if( rc==SQLITE_OK ){
- dropCell(leafCur.pPage, leafCur.idx, szNext);
- rc = balance(leafCur.pPage, 0);
- }
- sqlite3_free(tempCell);
- sqlite3BtreeReleaseTempCursor(&leafCur);
- }else{
- TRACE(("DELETE: table=%d delete from leaf %d\n",
- pCur->pgnoRoot, pPage->pgno));
- dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
- rc = balance(pPage, 0);
- }
- if( rc==SQLITE_OK ){
- moveToRoot(pCur);
- }
- return rc;
-}
-
-/*
-** Create a new BTree table. Write into *piTable the page
-** number for the root page of the new table.
-**
-** The type of type is determined by the flags parameter. Only the
-** following values of flags are currently in use. Other values for
-** flags might not work:
-**
-** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
-** BTREE_ZERODATA Used for SQL indices
-*/
-static int btreeCreateTable(Btree *p, int *piTable, int flags){
- BtShared *pBt = p->pBt;
- MemPage *pRoot;
- Pgno pgnoRoot;
- int rc;
-
- assert( sqlite3BtreeHoldsMutex(p) );
- if( pBt->inTransaction!=TRANS_WRITE ){
- /* Must start a transaction first */
- rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- return rc;
- }
- assert( !pBt->readOnly );
-
-#ifdef SQLITE_OMIT_AUTOVACUUM
- rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
- if( rc ){
- return rc;
- }
-#else
- if( pBt->autoVacuum ){
- Pgno pgnoMove; /* Move a page here to make room for the root-page */
- MemPage *pPageMove; /* The page to move to. */
-
- /* Creating a new table may probably require moving an existing database
- ** to make room for the new tables root page. In case this page turns
- ** out to be an overflow page, delete all overflow page-map caches
- ** held by open cursors.
- */
- invalidateAllOverflowCache(pBt);
-
- /* Read the value of meta[3] from the database to determine where the
- ** root page of the new table should go. meta[3] is the largest root-page
- ** created so far, so the new root-page is (meta[3]+1).
- */
- rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- pgnoRoot++;
-
- /* The new root-page may not be allocated on a pointer-map page, or the
- ** PENDING_BYTE page.
- */
- if( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
- pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
- pgnoRoot++;
- }
- assert( pgnoRoot>=3 );
-
- /* Allocate a page. The page that currently resides at pgnoRoot will
- ** be moved to the allocated page (unless the allocated page happens
- ** to reside at pgnoRoot).
- */
- rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- if( pgnoMove!=pgnoRoot ){
- /* pgnoRoot is the page that will be used for the root-page of
- ** the new table (assuming an error did not occur). But we were
- ** allocated pgnoMove. If required (i.e. if it was not allocated
- ** by extending the file), the current page at position pgnoMove
- ** is already journaled.
- */
- u8 eType;
- Pgno iPtrPage;
-
- releasePage(pPageMove);
-
- /* Move the page currently at pgnoRoot to pgnoMove. */
- rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
- if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
- releasePage(pRoot);
- return rc;
- }
- assert( eType!=PTRMAP_ROOTPAGE );
- assert( eType!=PTRMAP_FREEPAGE );
- rc = sqlite3PagerWrite(pRoot->pDbPage);
- if( rc!=SQLITE_OK ){
- releasePage(pRoot);
- return rc;
- }
- rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove);
- releasePage(pRoot);
-
- /* Obtain the page at pgnoRoot */
- if( rc!=SQLITE_OK ){
- return rc;
- }
- rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- rc = sqlite3PagerWrite(pRoot->pDbPage);
- if( rc!=SQLITE_OK ){
- releasePage(pRoot);
- return rc;
- }
- }else{
- pRoot = pPageMove;
- }
-
- /* Update the pointer-map and meta-data with the new root-page number. */
- rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
- if( rc ){
- releasePage(pRoot);
- return rc;
- }
- rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
- if( rc ){
- releasePage(pRoot);
- return rc;
- }
-
- }else{
- rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
- if( rc ) return rc;
- }
-#endif
- assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
- zeroPage(pRoot, flags | PTF_LEAF);
- sqlite3PagerUnref(pRoot->pDbPage);
- *piTable = (int)pgnoRoot;
- return SQLITE_OK;
-}
-int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
- int rc;
- sqlite3BtreeEnter(p);
- rc = btreeCreateTable(p, piTable, flags);
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-/*
-** Erase the given database page and all its children. Return
-** the page to the freelist.
-*/
-static int clearDatabasePage(
- BtShared *pBt, /* The BTree that contains the table */
- Pgno pgno, /* Page number to clear */
- MemPage *pParent, /* Parent page. NULL for the root */
- int freePageFlag /* Deallocate page if true */
-){
- MemPage *pPage = 0;
- int rc;
- unsigned char *pCell;
- int i;
-
- assert( sqlite3_mutex_held(pBt->mutex) );
- if( pgno>sqlite3PagerPagecount(pBt->pPager) ){
- return SQLITE_CORRUPT_BKPT;
- }
-
- rc = getAndInitPage(pBt, pgno, &pPage, pParent);
- if( rc ) goto cleardatabasepage_out;
- for(i=0; inCell; i++){
- pCell = findCell(pPage, i);
- if( !pPage->leaf ){
- rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1);
- if( rc ) goto cleardatabasepage_out;
- }
- rc = clearCell(pPage, pCell);
- if( rc ) goto cleardatabasepage_out;
- }
- if( !pPage->leaf ){
- rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1);
- if( rc ) goto cleardatabasepage_out;
- }
- if( freePageFlag ){
- rc = freePage(pPage);
- }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
- zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
- }
-
-cleardatabasepage_out:
- releasePage(pPage);
- return rc;
-}
-
-/*
-** Delete all information from a single table in the database. iTable is
-** the page number of the root of the table. After this routine returns,
-** the root page is empty, but still exists.
-**
-** This routine will fail with SQLITE_LOCKED if there are any open
-** read cursors on the table. Open write cursors are moved to the
-** root of the table.
-*/
-int sqlite3BtreeClearTable(Btree *p, int iTable){
- int rc;
- BtShared *pBt = p->pBt;
- sqlite3BtreeEnter(p);
- if( p->inTrans!=TRANS_WRITE ){
- rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- }else if( (rc = checkReadLocks(p, iTable, 0))!=SQLITE_OK ){
- /* nothing to do */
- }else if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){
- /* nothing to do */
- }else{
- rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
- }
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-/*
-** Erase all information in a table and add the root of the table to
-** the freelist. Except, the root of the principle table (the one on
-** page 1) is never added to the freelist.
-**
-** This routine will fail with SQLITE_LOCKED if there are any open
-** cursors on the table.
-**
-** If AUTOVACUUM is enabled and the page at iTable is not the last
-** root page in the database file, then the last root page
-** in the database file is moved into the slot formerly occupied by
-** iTable and that last slot formerly occupied by the last root page
-** is added to the freelist instead of iTable. In this say, all
-** root pages are kept at the beginning of the database file, which
-** is necessary for AUTOVACUUM to work right. *piMoved is set to the
-** page number that used to be the last root page in the file before
-** the move. If no page gets moved, *piMoved is set to 0.
-** The last root page is recorded in meta[3] and the value of
-** meta[3] is updated by this procedure.
-*/
-static int btreeDropTable(Btree *p, int iTable, int *piMoved){
- int rc;
- MemPage *pPage = 0;
- BtShared *pBt = p->pBt;
-
- assert( sqlite3BtreeHoldsMutex(p) );
- if( p->inTrans!=TRANS_WRITE ){
- return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- }
-
- /* It is illegal to drop a table if any cursors are open on the
- ** database. This is because in auto-vacuum mode the backend may
- ** need to move another root-page to fill a gap left by the deleted
- ** root page. If an open cursor was using this page a problem would
- ** occur.
- */
- if( pBt->pCursor ){
- return SQLITE_LOCKED;
- }
-
- rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
- if( rc ) return rc;
- rc = sqlite3BtreeClearTable(p, iTable);
- if( rc ){
- releasePage(pPage);
- return rc;
- }
-
- *piMoved = 0;
-
- if( iTable>1 ){
-#ifdef SQLITE_OMIT_AUTOVACUUM
- rc = freePage(pPage);
- releasePage(pPage);
-#else
- if( pBt->autoVacuum ){
- Pgno maxRootPgno;
- rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno);
- if( rc!=SQLITE_OK ){
- releasePage(pPage);
- return rc;
- }
-
- if( iTable==maxRootPgno ){
- /* If the table being dropped is the table with the largest root-page
- ** number in the database, put the root page on the free list.
- */
- rc = freePage(pPage);
- releasePage(pPage);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- }else{
- /* The table being dropped does not have the largest root-page
- ** number in the database. So move the page that does into the
- ** gap left by the deleted root-page.
- */
- MemPage *pMove;
- releasePage(pPage);
- rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable);
- releasePage(pMove);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- rc = freePage(pMove);
- releasePage(pMove);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- *piMoved = maxRootPgno;
- }
-
- /* Set the new 'max-root-page' value in the database header. This
- ** is the old value less one, less one more if that happens to
- ** be a root-page number, less one again if that is the
- ** PENDING_BYTE_PAGE.
- */
- maxRootPgno--;
- if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
- maxRootPgno--;
- }
- if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
- maxRootPgno--;
- }
- assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
-
- rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
- }else{
- rc = freePage(pPage);
- releasePage(pPage);
- }
-#endif
- }else{
- /* If sqlite3BtreeDropTable was called on page 1. */
- zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
- releasePage(pPage);
- }
- return rc;
-}
-int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
- int rc;
- sqlite3BtreeEnter(p);
- rc = btreeDropTable(p, iTable, piMoved);
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-
-/*
-** Read the meta-information out of a database file. Meta[0]
-** is the number of free pages currently in the database. Meta[1]
-** through meta[15] are available for use by higher layers. Meta[0]
-** is read-only, the others are read/write.
-**
-** The schema layer numbers meta values differently. At the schema
-** layer (and the SetCookie and ReadCookie opcodes) the number of
-** free pages is not visible. So Cookie[0] is the same as Meta[1].
-*/
-int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
- DbPage *pDbPage;
- int rc;
- unsigned char *pP1;
- BtShared *pBt = p->pBt;
-
- sqlite3BtreeEnter(p);
-
- /* Reading a meta-data value requires a read-lock on page 1 (and hence
- ** the sqlite_master table. We grab this lock regardless of whether or
- ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
- ** 1 is treated as a special case by queryTableLock() and lockTable()).
- */
- rc = queryTableLock(p, 1, READ_LOCK);
- if( rc!=SQLITE_OK ){
- sqlite3BtreeLeave(p);
- return rc;
- }
-
- assert( idx>=0 && idx<=15 );
- rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage);
- if( rc ){
- sqlite3BtreeLeave(p);
- return rc;
- }
- pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage);
- *pMeta = get4byte(&pP1[36 + idx*4]);
- sqlite3PagerUnref(pDbPage);
-
- /* If autovacuumed is disabled in this build but we are trying to
- ** access an autovacuumed database, then make the database readonly.
- */
-#ifdef SQLITE_OMIT_AUTOVACUUM
- if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
-#endif
-
- /* Grab the read-lock on page 1. */
- rc = lockTable(p, 1, READ_LOCK);
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-/*
-** Write meta-information back into the database. Meta[0] is
-** read-only and may not be written.
-*/
-int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
- BtShared *pBt = p->pBt;
- unsigned char *pP1;
- int rc;
- assert( idx>=1 && idx<=15 );
- sqlite3BtreeEnter(p);
- if( p->inTrans!=TRANS_WRITE ){
- rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
- }else{
- assert( pBt->pPage1!=0 );
- pP1 = pBt->pPage1->aData;
- rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
- if( rc==SQLITE_OK ){
- put4byte(&pP1[36 + idx*4], iMeta);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( idx==7 ){
- assert( pBt->autoVacuum || iMeta==0 );
- assert( iMeta==0 || iMeta==1 );
- pBt->incrVacuum = iMeta;
- }
-#endif
- }
- }
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-/*
-** Return the flag byte at the beginning of the page that the cursor
-** is currently pointing to.
-*/
-int sqlite3BtreeFlags(BtCursor *pCur){
- /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
- ** restoreOrClearCursorPosition() here.
- */
- MemPage *pPage = pCur->pPage;
- assert( cursorHoldsMutex(pCur) );
- assert( pPage->pBt==pCur->pBt );
- return pPage ? pPage->aData[pPage->hdrOffset] : 0;
-}
-
-
-/*
-** Return the pager associated with a BTree. This routine is used for
-** testing and debugging only.
-*/
-Pager *sqlite3BtreePager(Btree *p){
- return p->pBt->pPager;
-}
-
-#ifndef SQLITE_OMIT_INTEGRITY_CHECK
-/*
-** Append a message to the error message string.
-*/
-static void checkAppendMsg(
- IntegrityCk *pCheck,
- char *zMsg1,
- const char *zFormat,
- ...
-){
- va_list ap;
- char *zMsg2;
- if( !pCheck->mxErr ) return;
- pCheck->mxErr--;
- pCheck->nErr++;
- va_start(ap, zFormat);
- zMsg2 = sqlite3VMPrintf(0, zFormat, ap);
- va_end(ap);
- if( zMsg1==0 ) zMsg1 = "";
- if( pCheck->zErrMsg ){
- char *zOld = pCheck->zErrMsg;
- pCheck->zErrMsg = 0;
- sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
- sqlite3_free(zOld);
- }else{
- sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
- }
- sqlite3_free(zMsg2);
-}
-#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
-
-#ifndef SQLITE_OMIT_INTEGRITY_CHECK
-/*
-** Add 1 to the reference count for page iPage. If this is the second
-** reference to the page, add an error message to pCheck->zErrMsg.
-** Return 1 if there are 2 ore more references to the page and 0 if
-** if this is the first reference to the page.
-**
-** Also check that the page number is in bounds.
-*/
-static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
- if( iPage==0 ) return 1;
- if( iPage>pCheck->nPage || iPage<0 ){
- checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
- return 1;
- }
- if( pCheck->anRef[iPage]==1 ){
- checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
- return 1;
- }
- return (pCheck->anRef[iPage]++)>1;
-}
-
-#ifndef SQLITE_OMIT_AUTOVACUUM
-/*
-** Check that the entry in the pointer-map for page iChild maps to
-** page iParent, pointer type ptrType. If not, append an error message
-** to pCheck.
-*/
-static void checkPtrmap(
- IntegrityCk *pCheck, /* Integrity check context */
- Pgno iChild, /* Child page number */
- u8 eType, /* Expected pointer map type */
- Pgno iParent, /* Expected pointer map parent page number */
- char *zContext /* Context description (used for error msg) */
-){
- int rc;
- u8 ePtrmapType;
- Pgno iPtrmapParent;
-
- rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
- if( rc!=SQLITE_OK ){
- checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
- return;
- }
-
- if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
- checkAppendMsg(pCheck, zContext,
- "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
- iChild, eType, iParent, ePtrmapType, iPtrmapParent);
- }
-}
-#endif
-
-/*
-** Check the integrity of the freelist or of an overflow page list.
-** Verify that the number of pages on the list is N.
-*/
-static void checkList(
- IntegrityCk *pCheck, /* Integrity checking context */
- int isFreeList, /* True for a freelist. False for overflow page list */
- int iPage, /* Page number for first page in the list */
- int N, /* Expected number of pages in the list */
- char *zContext /* Context for error messages */
-){
- int i;
- int expected = N;
- int iFirst = iPage;
- while( N-- > 0 && pCheck->mxErr ){
- DbPage *pOvflPage;
- unsigned char *pOvflData;
- if( iPage<1 ){
- checkAppendMsg(pCheck, zContext,
- "%d of %d pages missing from overflow list starting at %d",
- N+1, expected, iFirst);
- break;
- }
- if( checkRef(pCheck, iPage, zContext) ) break;
- if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
- checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
- break;
- }
- pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
- if( isFreeList ){
- int n = get4byte(&pOvflData[4]);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pCheck->pBt->autoVacuum ){
- checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
- }
-#endif
- if( n>pCheck->pBt->usableSize/4-8 ){
- checkAppendMsg(pCheck, zContext,
- "freelist leaf count too big on page %d", iPage);
- N--;
- }else{
- for(i=0; ipBt->autoVacuum ){
- checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
- }
-#endif
- checkRef(pCheck, iFreePage, zContext);
- }
- N -= n;
- }
- }
-#ifndef SQLITE_OMIT_AUTOVACUUM
- else{
- /* If this database supports auto-vacuum and iPage is not the last
- ** page in this overflow list, check that the pointer-map entry for
- ** the following page matches iPage.
- */
- if( pCheck->pBt->autoVacuum && N>0 ){
- i = get4byte(pOvflData);
- checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
- }
- }
-#endif
- iPage = get4byte(pOvflData);
- sqlite3PagerUnref(pOvflPage);
- }
-}
-#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
-
-#ifndef SQLITE_OMIT_INTEGRITY_CHECK
-/*
-** Do various sanity checks on a single page of a tree. Return
-** the tree depth. Root pages return 0. Parents of root pages
-** return 1, and so forth.
-**
-** These checks are done:
-**
-** 1. Make sure that cells and freeblocks do not overlap
-** but combine to completely cover the page.
-** NO 2. Make sure cell keys are in order.
-** NO 3. Make sure no key is less than or equal to zLowerBound.
-** NO 4. Make sure no key is greater than or equal to zUpperBound.
-** 5. Check the integrity of overflow pages.
-** 6. Recursively call checkTreePage on all children.
-** 7. Verify that the depth of all children is the same.
-** 8. Make sure this page is at least 33% full or else it is
-** the root of the tree.
-*/
-static int checkTreePage(
- IntegrityCk *pCheck, /* Context for the sanity check */
- int iPage, /* Page number of the page to check */
- MemPage *pParent, /* Parent page */
- char *zParentContext /* Parent context */
-){
- MemPage *pPage;
- int i, rc, depth, d2, pgno, cnt;
- int hdr, cellStart;
- int nCell;
- u8 *data;
- BtShared *pBt;
- int usableSize;
- char zContext[100];
- char *hit;
-
- sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
-
- /* Check that the page exists
- */
- pBt = pCheck->pBt;
- usableSize = pBt->usableSize;
- if( iPage==0 ) return 0;
- if( checkRef(pCheck, iPage, zParentContext) ) return 0;
- if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
- checkAppendMsg(pCheck, zContext,
- "unable to get the page. error code=%d", rc);
- return 0;
- }
- if( (rc = sqlite3BtreeInitPage(pPage, pParent))!=0 ){
- checkAppendMsg(pCheck, zContext,
- "sqlite3BtreeInitPage() returns error code %d", rc);
- releasePage(pPage);
- return 0;
- }
-
- /* Check out all the cells.
- */
- depth = 0;
- for(i=0; inCell && pCheck->mxErr; i++){
- u8 *pCell;
- int sz;
- CellInfo info;
-
- /* Check payload overflow pages
- */
- sqlite3_snprintf(sizeof(zContext), zContext,
- "On tree page %d cell %d: ", iPage, i);
- pCell = findCell(pPage,i);
- sqlite3BtreeParseCellPtr(pPage, pCell, &info);
- sz = info.nData;
- if( !pPage->intKey ) sz += info.nKey;
- assert( sz==info.nPayload );
- if( sz>info.nLocal ){
- int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
- Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
- }
-#endif
- checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
- }
-
- /* Check sanity of left child page.
- */
- if( !pPage->leaf ){
- pgno = get4byte(pCell);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
- }
-#endif
- d2 = checkTreePage(pCheck,pgno,pPage,zContext);
- if( i>0 && d2!=depth ){
- checkAppendMsg(pCheck, zContext, "Child page depth differs");
- }
- depth = d2;
- }
- }
- if( !pPage->leaf ){
- pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
- sqlite3_snprintf(sizeof(zContext), zContext,
- "On page %d at right child: ", iPage);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->autoVacuum ){
- checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
- }
-#endif
- checkTreePage(pCheck, pgno, pPage, zContext);
- }
-
- /* Check for complete coverage of the page
- */
- data = pPage->aData;
- hdr = pPage->hdrOffset;
- hit = sqlite3MallocZero( usableSize );
- if( hit ){
- memset(hit, 1, get2byte(&data[hdr+5]));
- nCell = get2byte(&data[hdr+3]);
- cellStart = hdr + 12 - 4*pPage->leaf;
- for(i=0; i=usableSize || pc<0 ){
- checkAppendMsg(pCheck, 0,
- "Corruption detected in cell %d on page %d",i,iPage,0);
- }else{
- for(j=pc+size-1; j>=pc; j--) hit[j]++;
- }
- }
- for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i=usableSize || i<0 ){
- checkAppendMsg(pCheck, 0,
- "Corruption detected in cell %d on page %d",i,iPage,0);
- }else{
- for(j=i+size-1; j>=i; j--) hit[j]++;
- }
- i = get2byte(&data[i]);
- }
- for(i=cnt=0; i1 ){
- checkAppendMsg(pCheck, 0,
- "Multiple uses for byte %d of page %d", i, iPage);
- break;
- }
- }
- if( cnt!=data[hdr+7] ){
- checkAppendMsg(pCheck, 0,
- "Fragmented space is %d byte reported as %d on page %d",
- cnt, data[hdr+7], iPage);
- }
- }
- sqlite3_free(hit);
-
- releasePage(pPage);
- return depth+1;
-}
-#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
-
-#ifndef SQLITE_OMIT_INTEGRITY_CHECK
-/*
-** This routine does a complete check of the given BTree file. aRoot[] is
-** an array of pages numbers were each page number is the root page of
-** a table. nRoot is the number of entries in aRoot.
-**
-** If everything checks out, this routine returns NULL. If something is
-** amiss, an error message is written into memory obtained from malloc()
-** and a pointer to that error message is returned. The calling function
-** is responsible for freeing the error message when it is done.
-*/
-char *sqlite3BtreeIntegrityCheck(
- Btree *p, /* The btree to be checked */
- int *aRoot, /* An array of root pages numbers for individual trees */
- int nRoot, /* Number of entries in aRoot[] */
- int mxErr, /* Stop reporting errors after this many */
- int *pnErr /* Write number of errors seen to this variable */
-){
- int i;
- int nRef;
- IntegrityCk sCheck;
- BtShared *pBt = p->pBt;
-
- sqlite3BtreeEnter(p);
- nRef = sqlite3PagerRefcount(pBt->pPager);
- if( lockBtreeWithRetry(p)!=SQLITE_OK ){
- sqlite3BtreeLeave(p);
- return sqlite3StrDup("Unable to acquire a read lock on the database");
- }
- sCheck.pBt = pBt;
- sCheck.pPager = pBt->pPager;
- sCheck.nPage = sqlite3PagerPagecount(sCheck.pPager);
- sCheck.mxErr = mxErr;
- sCheck.nErr = 0;
- *pnErr = 0;
-#ifndef SQLITE_OMIT_AUTOVACUUM
- if( pBt->nTrunc!=0 ){
- sCheck.nPage = pBt->nTrunc;
- }
-#endif
- if( sCheck.nPage==0 ){
- unlockBtreeIfUnused(pBt);
- sqlite3BtreeLeave(p);
- return 0;
- }
- sCheck.anRef = sqlite3_malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
- if( !sCheck.anRef ){
- unlockBtreeIfUnused(pBt);
- *pnErr = 1;
- sqlite3BtreeLeave(p);
- return sqlite3MPrintf(p->pSqlite, "Unable to malloc %d bytes",
- (sCheck.nPage+1)*sizeof(sCheck.anRef[0]));
- }
- for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
- i = PENDING_BYTE_PAGE(pBt);
- if( i<=sCheck.nPage ){
- sCheck.anRef[i] = 1;
- }
- sCheck.zErrMsg = 0;
-
- /* Check the integrity of the freelist
- */
- checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
- get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
-
- /* Check all the tables.
- */
- for(i=0; iautoVacuum && aRoot[i]>1 ){
- checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
- }
-#endif
- checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ");
- }
-
- /* Make sure every page in the file is referenced
- */
- for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
-#ifdef SQLITE_OMIT_AUTOVACUUM
- if( sCheck.anRef[i]==0 ){
- checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
- }
-#else
- /* If the database supports auto-vacuum, make sure no tables contain
- ** references to pointer-map pages.
- */
- if( sCheck.anRef[i]==0 &&
- (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
- checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
- }
- if( sCheck.anRef[i]!=0 &&
- (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
- checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
- }
-#endif
- }
-
- /* Make sure this analysis did not leave any unref() pages
- */
- unlockBtreeIfUnused(pBt);
- if( nRef != sqlite3PagerRefcount(pBt->pPager) ){
- checkAppendMsg(&sCheck, 0,
- "Outstanding page count goes from %d to %d during this analysis",
- nRef, sqlite3PagerRefcount(pBt->pPager)
- );
- }
-
- /* Clean up and report errors.
- */
- sqlite3BtreeLeave(p);
- sqlite3_free(sCheck.anRef);
- *pnErr = sCheck.nErr;
- return sCheck.zErrMsg;
-}
-#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
-
-/*
-** Return the full pathname of the underlying database file.
-**
-** The pager filename is invariant as long as the pager is
-** open so it is safe to access without the BtShared mutex.
-*/
-const char *sqlite3BtreeGetFilename(Btree *p){
- assert( p->pBt->pPager!=0 );
- return sqlite3PagerFilename(p->pBt->pPager);
-}
-
-/*
-** Return the pathname of the directory that contains the database file.
-**
-** The pager directory name is invariant as long as the pager is
-** open so it is safe to access without the BtShared mutex.
-*/
-const char *sqlite3BtreeGetDirname(Btree *p){
- assert( p->pBt->pPager!=0 );
- return sqlite3PagerDirname(p->pBt->pPager);
-}
-
-/*
-** Return the pathname of the journal file for this database. The return
-** value of this routine is the same regardless of whether the journal file
-** has been created or not.
-**
-** The pager journal filename is invariant as long as the pager is
-** open so it is safe to access without the BtShared mutex.
-*/
-const char *sqlite3BtreeGetJournalname(Btree *p){
- assert( p->pBt->pPager!=0 );
- return sqlite3PagerJournalname(p->pBt->pPager);
-}
-
-#ifndef SQLITE_OMIT_VACUUM
-/*
-** Copy the complete content of pBtFrom into pBtTo. A transaction
-** must be active for both files.
-**
-** The size of file pBtFrom may be reduced by this operation.
-** If anything goes wrong, the transaction on pBtFrom is rolled back.
-*/
-static int btreeCopyFile(Btree *pTo, Btree *pFrom){
- int rc = SQLITE_OK;
- Pgno i, nPage, nToPage, iSkip;
-
- BtShared *pBtTo = pTo->pBt;
- BtShared *pBtFrom = pFrom->pBt;
-
- if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){
- return SQLITE_ERROR;
- }
- if( pBtTo->pCursor ) return SQLITE_BUSY;
- nToPage = sqlite3PagerPagecount(pBtTo->pPager);
- nPage = sqlite3PagerPagecount(pBtFrom->pPager);
- iSkip = PENDING_BYTE_PAGE(pBtTo);
- for(i=1; rc==SQLITE_OK && i<=nPage; i++){
- DbPage *pDbPage;
- if( i==iSkip ) continue;
- rc = sqlite3PagerGet(pBtFrom->pPager, i, &pDbPage);
- if( rc ) break;
- rc = sqlite3PagerOverwrite(pBtTo->pPager, i, sqlite3PagerGetData(pDbPage));
- sqlite3PagerUnref(pDbPage);
- }
-
- /* If the file is shrinking, journal the pages that are being truncated
- ** so that they can be rolled back if the commit fails.
- */
- for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
- DbPage *pDbPage;
- if( i==iSkip ) continue;
- rc = sqlite3PagerGet(pBtTo->pPager, i, &pDbPage);
- if( rc ) break;
- rc = sqlite3PagerWrite(pDbPage);
- sqlite3PagerDontWrite(pDbPage);
- /* Yeah. It seems wierd to call DontWrite() right after Write(). But
- ** that is because the names of those procedures do not exactly
- ** represent what they do. Write() really means "put this page in the
- ** rollback journal and mark it as dirty so that it will be written
- ** to the database file later." DontWrite() undoes the second part of
- ** that and prevents the page from being written to the database. The
- ** page is still on the rollback journal, though. And that is the whole
- ** point of this loop: to put pages on the rollback journal. */
- sqlite3PagerUnref(pDbPage);
- }
- if( !rc && nPagepPager, nPage);
- }
-
- if( rc ){
- sqlite3BtreeRollback(pTo);
- }
- return rc;
-}
-int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
- int rc;
- sqlite3BtreeEnter(pTo);
- sqlite3BtreeEnter(pFrom);
- rc = btreeCopyFile(pTo, pFrom);
- sqlite3BtreeLeave(pFrom);
- sqlite3BtreeLeave(pTo);
- return rc;
-}
-
-#endif /* SQLITE_OMIT_VACUUM */
-
-/*
-** Return non-zero if a transaction is active.
-*/
-int sqlite3BtreeIsInTrans(Btree *p){
- assert( p==0 || sqlite3_mutex_held(p->pSqlite->mutex) );
- return (p && (p->inTrans==TRANS_WRITE));
-}
-
-/*
-** Return non-zero if a statement transaction is active.
-*/
-int sqlite3BtreeIsInStmt(Btree *p){
- assert( sqlite3BtreeHoldsMutex(p) );
- return (p->pBt && p->pBt->inStmt);
-}
-
-/*
-** Return non-zero if a read (or write) transaction is active.
-*/
-int sqlite3BtreeIsInReadTrans(Btree *p){
- assert( sqlite3_mutex_held(p->pSqlite->mutex) );
- return (p && (p->inTrans!=TRANS_NONE));
-}
-
-/*
-** This function returns a pointer to a blob of memory associated with
-** a single shared-btree. The memory is used by client code for it's own
-** purposes (for example, to store a high-level schema associated with
-** the shared-btree). The btree layer manages reference counting issues.
-**
-** The first time this is called on a shared-btree, nBytes bytes of memory
-** are allocated, zeroed, and returned to the caller. For each subsequent
-** call the nBytes parameter is ignored and a pointer to the same blob
-** of memory returned.
-**
-** Just before the shared-btree is closed, the function passed as the
-** xFree argument when the memory allocation was made is invoked on the
-** blob of allocated memory. This function should not call sqlite3_free()
-** on the memory, the btree layer does that.
-*/
-void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
- BtShared *pBt = p->pBt;
- sqlite3BtreeEnter(p);
- if( !pBt->pSchema ){
- pBt->pSchema = sqlite3MallocZero(nBytes);
- pBt->xFreeSchema = xFree;
- }
- sqlite3BtreeLeave(p);
- return pBt->pSchema;
-}
-
-/*
-** Return true if another user of the same shared btree as the argument
-** handle holds an exclusive lock on the sqlite_master table.
-*/
-int sqlite3BtreeSchemaLocked(Btree *p){
- int rc;
- assert( sqlite3_mutex_held(p->pSqlite->mutex) );
- sqlite3BtreeEnter(p);
- rc = (queryTableLock(p, MASTER_ROOT, READ_LOCK)!=SQLITE_OK);
- sqlite3BtreeLeave(p);
- return rc;
-}
-
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
-/*
-** Obtain a lock on the table whose root page is iTab. The
-** lock is a write lock if isWritelock is true or a read lock
-** if it is false.
-*/
-int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
- int rc = SQLITE_OK;
- u8 lockType = (isWriteLock?WRITE_LOCK:READ_LOCK);
- sqlite3BtreeEnter(p);
- rc = queryTableLock(p, iTab, lockType);
- if( rc==SQLITE_OK ){
- rc = lockTable(p, iTab, lockType);
- }
- sqlite3BtreeLeave(p);
- return rc;
-}
-#endif
-
-#ifndef SQLITE_OMIT_INCRBLOB
-/*
-** Argument pCsr must be a cursor opened for writing on an
-** INTKEY table currently pointing at a valid table entry.
-** This function modifies the data stored as part of that entry.
-** Only the data content may only be modified, it is not possible
-** to change the length of the data stored.
-*/
-int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
- assert( cursorHoldsMutex(pCsr) );
- assert( sqlite3_mutex_held(pCsr->pBtree->pSqlite->mutex) );
- assert(pCsr->isIncrblobHandle);
- if( pCsr->eState>=CURSOR_REQUIRESEEK ){
- if( pCsr->eState==CURSOR_FAULT ){
- return pCsr->skip;
- }else{
- return SQLITE_ABORT;
- }
- }
-
- /* Check some preconditions:
- ** (a) the cursor is open for writing,
- ** (b) there is no read-lock on the table being modified and
- ** (c) the cursor points at a valid row of an intKey table.
- */
- if( !pCsr->wrFlag ){
- return SQLITE_READONLY;
- }
- assert( !pCsr->pBt->readOnly
- && pCsr->pBt->inTransaction==TRANS_WRITE );
- if( checkReadLocks(pCsr->pBtree, pCsr->pgnoRoot, pCsr) ){
- return SQLITE_LOCKED; /* The table pCur points to has a read lock */
- }
- if( pCsr->eState==CURSOR_INVALID || !pCsr->pPage->intKey ){
- return SQLITE_ERROR;
- }
-
- return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1);
-}
-
-/*
-** Set a flag on this cursor to cache the locations of pages from the
-** overflow list for the current row. This is used by cursors opened
-** for incremental blob IO only.
-**
-** This function sets a flag only. The actual page location cache
-** (stored in BtCursor.aOverflow[]) is allocated and used by function
-** accessPayload() (the worker function for sqlite3BtreeData() and
-** sqlite3BtreePutData()).
-*/
-void sqlite3BtreeCacheOverflow(BtCursor *pCur){
- assert( cursorHoldsMutex(pCur) );
- assert( sqlite3_mutex_held(pCur->pBtree->pSqlite->mutex) );
- assert(!pCur->isIncrblobHandle);
- assert(!pCur->aOverflow);
- pCur->isIncrblobHandle = 1;
-}
-#endif
diff --git a/extensions/sqlite/sqlite-source/btree.h b/extensions/sqlite/sqlite-source/btree.h
deleted file mode 100644
index 21541fc5..00000000
--- a/extensions/sqlite/sqlite-source/btree.h
+++ /dev/null
@@ -1,204 +0,0 @@
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This header file defines the interface that the sqlite B-Tree file
-** subsystem. See comments in the source code for a detailed description
-** of what each interface routine does.
-**
-** @(#) $Id$
-*/
-#ifndef _BTREE_H_
-#define _BTREE_H_
-
-/* TODO: This definition is just included so other modules compile. It
-** needs to be revisited.
-*/
-#define SQLITE_N_BTREE_META 10
-
-/*
-** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
-** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
-*/
-#ifndef SQLITE_DEFAULT_AUTOVACUUM
- #define SQLITE_DEFAULT_AUTOVACUUM 0
-#endif
-
-#define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */
-#define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */
-#define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */
-
-/*
-** Forward declarations of structure
-*/
-typedef struct Btree Btree;
-typedef struct BtCursor BtCursor;
-typedef struct BtShared BtShared;
-typedef struct BtreeMutexArray BtreeMutexArray;
-
-/*
-** This structure records all of the Btrees that need to hold
-** a mutex before we enter sqlite3VdbeExec(). The Btrees are
-** are placed in aBtree[] in order of aBtree[]->pBt. That way,
-** we can always lock and unlock them all quickly.
-*/
-struct BtreeMutexArray {
- int nMutex;
- Btree *aBtree[SQLITE_MAX_ATTACHED+1];
-};
-
-
-int sqlite3BtreeOpen(
- const char *zFilename, /* Name of database file to open */
- sqlite3 *db, /* Associated database connection */
- Btree **, /* Return open Btree* here */
- int flags, /* Flags */
- int vfsFlags /* Flags passed through to VFS open */
-);
-
-/* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the
-** following values.
-**
-** NOTE: These values must match the corresponding PAGER_ values in
-** pager.h.
-*/
-#define BTREE_OMIT_JOURNAL 1 /* Do not use journal. No argument */
-#define BTREE_NO_READLOCK 2 /* Omit readlocks on readonly files */
-#define BTREE_MEMORY 4 /* In-memory DB. No argument */
-#define BTREE_READONLY 8 /* Open the database in read-only mode */
-#define BTREE_READWRITE 16 /* Open for both reading and writing */
-#define BTREE_CREATE 32 /* Create the database if it does not exist */
-
-/* Additional values for the 4th argument of sqlite3BtreeOpen that
-** are not associated with PAGER_ values.
-*/
-#define BTREE_PRIVATE 64 /* Never share with other connections */
-
-int sqlite3BtreeClose(Btree*);
-int sqlite3BtreeSetBusyHandler(Btree*,BusyHandler*);
-int sqlite3BtreeSetCacheSize(Btree*,int);
-int sqlite3BtreeSetSafetyLevel(Btree*,int,int);
-int sqlite3BtreeSyncDisabled(Btree*);
-int sqlite3BtreeSetPageSize(Btree*,int,int);
-int sqlite3BtreeGetPageSize(Btree*);
-int sqlite3BtreeMaxPageCount(Btree*,int);
-int sqlite3BtreeGetReserve(Btree*);
-int sqlite3BtreeSetAutoVacuum(Btree *, int);
-int sqlite3BtreeGetAutoVacuum(Btree *);
-int sqlite3BtreeBeginTrans(Btree*,int);
-int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster);
-int sqlite3BtreeCommitPhaseTwo(Btree*);
-int sqlite3BtreeCommit(Btree*);
-int sqlite3BtreeRollback(Btree*);
-int sqlite3BtreeBeginStmt(Btree*);
-int sqlite3BtreeCommitStmt(Btree*);
-int sqlite3BtreeRollbackStmt(Btree*);
-int sqlite3BtreeCreateTable(Btree*, int*, int flags);
-int sqlite3BtreeIsInTrans(Btree*);
-int sqlite3BtreeIsInStmt(Btree*);
-int sqlite3BtreeIsInReadTrans(Btree*);
-void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));
-int sqlite3BtreeSchemaLocked(Btree *);
-int sqlite3BtreeLockTable(Btree *, int, u8);
-
-const char *sqlite3BtreeGetFilename(Btree *);
-const char *sqlite3BtreeGetDirname(Btree *);
-const char *sqlite3BtreeGetJournalname(Btree *);
-int sqlite3BtreeCopyFile(Btree *, Btree *);
-
-int sqlite3BtreeIncrVacuum(Btree *);
-
-/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR
-** of the following flags:
-*/
-#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */
-#define BTREE_ZERODATA 2 /* Table has keys only - no data */
-#define BTREE_LEAFDATA 4 /* Data stored in leaves only. Implies INTKEY */
-
-int sqlite3BtreeDropTable(Btree*, int, int*);
-int sqlite3BtreeClearTable(Btree*, int);
-int sqlite3BtreeGetMeta(Btree*, int idx, u32 *pValue);
-int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value);
-void sqlite3BtreeTripAllCursors(Btree*, int);
-
-int sqlite3BtreeCursor(
- Btree*, /* BTree containing table to open */
- int iTable, /* Index of root page */
- int wrFlag, /* 1 for writing. 0 for read-only */
- int(*)(void*,int,const void*,int,const void*), /* Key comparison function */
- void*, /* First argument to compare function */
- BtCursor **ppCursor /* Returned cursor */
-);
-
-int sqlite3BtreeCloseCursor(BtCursor*);
-int sqlite3BtreeMoveto(BtCursor*,const void *pKey,i64 nKey,int bias,int *pRes);
-int sqlite3BtreeDelete(BtCursor*);
-int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey,
- const void *pData, int nData,
- int nZero, int bias);
-int sqlite3BtreeFirst(BtCursor*, int *pRes);
-int sqlite3BtreeLast(BtCursor*, int *pRes);
-int sqlite3BtreeNext(BtCursor*, int *pRes);
-int sqlite3BtreeEof(BtCursor*);
-int sqlite3BtreeFlags(BtCursor*);
-int sqlite3BtreePrevious(BtCursor*, int *pRes);
-int sqlite3BtreeKeySize(BtCursor*, i64 *pSize);
-int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*);
-sqlite3 *sqlite3BtreeCursorDb(const BtCursor*);
-const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt);
-const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt);
-int sqlite3BtreeDataSize(BtCursor*, u32 *pSize);
-int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*);
-
-char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
-struct Pager *sqlite3BtreePager(Btree*);
-
-int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
-void sqlite3BtreeCacheOverflow(BtCursor *);
-
-#ifdef SQLITE_TEST
-int sqlite3BtreeCursorInfo(BtCursor*, int*, int);
-void sqlite3BtreeCursorList(Btree*);
-int sqlite3BtreePageDump(Btree*, int, int recursive);
-#endif
-
-/*
-** If we are not using shared cache, then there is no need to
-** use mutexes to access the BtShared structures. So make the
-** Enter and Leave procedures no-ops.
-*/
-#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE
- void sqlite3BtreeEnter(Btree*);
- void sqlite3BtreeLeave(Btree*);
- int sqlite3BtreeHoldsMutex(Btree*);
- void sqlite3BtreeEnterCursor(BtCursor*);
- void sqlite3BtreeLeaveCursor(BtCursor*);
- void sqlite3BtreeEnterAll(sqlite3*);
- void sqlite3BtreeLeaveAll(sqlite3*);
- int sqlite3BtreeHoldsAllMutexes(sqlite3*);
- void sqlite3BtreeMutexArrayEnter(BtreeMutexArray*);
- void sqlite3BtreeMutexArrayLeave(BtreeMutexArray*);
- void sqlite3BtreeMutexArrayInsert(BtreeMutexArray*, Btree*);
-#else
-# define sqlite3BtreeEnter(X)
-# define sqlite3BtreeLeave(X)
-# define sqlite3BtreeHoldsMutex(X) 1
-# define sqlite3BtreeEnterCursor(X)
-# define sqlite3BtreeLeaveCursor(X)
-# define sqlite3BtreeEnterAll(X)
-# define sqlite3BtreeLeaveAll(X)
-# define sqlite3BtreeHoldsAllMutexes(X) 1
-# define sqlite3BtreeMutexArrayEnter(X)
-# define sqlite3BtreeMutexArrayLeave(X)
-# define sqlite3BtreeMutexArrayInsert(X,Y)
-#endif
-
-
-#endif /* _BTREE_H_ */
diff --git a/extensions/sqlite/sqlite-source/btreeInt.h b/extensions/sqlite/sqlite-source/btreeInt.h
deleted file mode 100644
index 6d290893..00000000
--- a/extensions/sqlite/sqlite-source/btreeInt.h
+++ /dev/null
@@ -1,648 +0,0 @@
-/*
-** 2004 April 6
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** $Id$
-**
-** This file implements a external (disk-based) database using BTrees.
-** For a detailed discussion of BTrees, refer to
-**
-** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
-** "Sorting And Searching", pages 473-480. Addison-Wesley
-** Publishing Company, Reading, Massachusetts.
-**
-** The basic idea is that each page of the file contains N database
-** entries and N+1 pointers to subpages.
-**
-** ----------------------------------------------------------------
-** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
-** ----------------------------------------------------------------
-**
-** All of the keys on the page that Ptr(0) points to have values less
-** than Key(0). All of the keys on page Ptr(1) and its subpages have
-** values greater than Key(0) and less than Key(1). All of the keys
-** on Ptr(N) and its subpages have values greater than Key(N-1). And
-** so forth.
-**
-** Finding a particular key requires reading O(log(M)) pages from the
-** disk where M is the number of entries in the tree.
-**
-** In this implementation, a single file can hold one or more separate
-** BTrees. Each BTree is identified by the index of its root page. The
-** key and data for any entry are combined to form the "payload". A
-** fixed amount of payload can be carried directly on the database
-** page. If the payload is larger than the preset amount then surplus
-** bytes are stored on overflow pages. The payload for an entry
-** and the preceding pointer are combined to form a "Cell". Each
-** page has a small header which contains the Ptr(N) pointer and other
-** information such as the size of key and data.
-**
-** FORMAT DETAILS
-**
-** The file is divided into pages. The first page is called page 1,
-** the second is page 2, and so forth. A page number of zero indicates
-** "no such page". The page size can be anything between 512 and 65536.
-** Each page can be either a btree page, a freelist page or an overflow
-** page.
-**
-** The first page is always a btree page. The first 100 bytes of the first
-** page contain a special header (the "file header") that describes the file.
-** The format of the file header is as follows:
-**
-** OFFSET SIZE DESCRIPTION
-** 0 16 Header string: "SQLite format 3\000"
-** 16 2 Page size in bytes.
-** 18 1 File format write version
-** 19 1 File format read version
-** 20 1 Bytes of unused space at the end of each page
-** 21 1 Max embedded payload fraction
-** 22 1 Min embedded payload fraction
-** 23 1 Min leaf payload fraction
-** 24 4 File change counter
-** 28 4 Reserved for future use
-** 32 4 First freelist page
-** 36 4 Number of freelist pages in the file
-** 40 60 15 4-byte meta values passed to higher layers
-**
-** All of the integer values are big-endian (most significant byte first).
-**
-** The file change counter is incremented when the database is changed
-** This counter allows other processes to know when the file has changed
-** and thus when they need to flush their cache.
-**
-** The max embedded payload fraction is the amount of the total usable
-** space in a page that can be consumed by a single cell for standard
-** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default
-** is to limit the maximum cell size so that at least 4 cells will fit
-** on one page. Thus the default max embedded payload fraction is 64.
-**
-** If the payload for a cell is larger than the max payload, then extra
-** payload is spilled to overflow pages. Once an overflow page is allocated,
-** as many bytes as possible are moved into the overflow pages without letting
-** the cell size drop below the min embedded payload fraction.
-**
-** The min leaf payload fraction is like the min embedded payload fraction
-** except that it applies to leaf nodes in a LEAFDATA tree. The maximum
-** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
-** not specified in the header.
-**
-** Each btree pages is divided into three sections: The header, the
-** cell pointer array, and the cell content area. Page 1 also has a 100-byte
-** file header that occurs before the page header.
-**
-** |----------------|
-** | file header | 100 bytes. Page 1 only.
-** |----------------|
-** | page header | 8 bytes for leaves. 12 bytes for interior nodes
-** |----------------|
-** | cell pointer | | 2 bytes per cell. Sorted order.
-** | array | | Grows downward
-** | | v
-** |----------------|
-** | unallocated |
-** | space |
-** |----------------| ^ Grows upwards
-** | cell content | | Arbitrary order interspersed with freeblocks.
-** | area | | and free space fragments.
-** |----------------|
-**
-** The page headers looks like this:
-**
-** OFFSET SIZE DESCRIPTION
-** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
-** 1 2 byte offset to the first freeblock
-** 3 2 number of cells on this page
-** 5 2 first byte of the cell content area
-** 7 1 number of fragmented free bytes
-** 8 4 Right child (the Ptr(N) value). Omitted on leaves.
-**
-** The flags define the format of this btree page. The leaf flag means that
-** this page has no children. The zerodata flag means that this page carries
-** only keys and no data. The intkey flag means that the key is a integer
-** which is stored in the key size entry of the cell header rather than in
-** the payload area.
-**
-** The cell pointer array begins on the first byte after the page header.
-** The cell pointer array contains zero or more 2-byte numbers which are
-** offsets from the beginning of the page to the cell content in the cell
-** content area. The cell pointers occur in sorted order. The system strives
-** to keep free space after the last cell pointer so that new cells can
-** be easily added without having to defragment the page.
-**
-** Cell content is stored at the very end of the page and grows toward the
-** beginning of the page.
-**
-** Unused space within the cell content area is collected into a linked list of
-** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset
-** to the first freeblock is given in the header. Freeblocks occur in
-** increasing order. Because a freeblock must be at least 4 bytes in size,
-** any group of 3 or fewer unused bytes in the cell content area cannot
-** exist on the freeblock chain. A group of 3 or fewer free bytes is called
-** a fragment. The total number of bytes in all fragments is recorded.
-** in the page header at offset 7.
-**
-** SIZE DESCRIPTION
-** 2 Byte offset of the next freeblock
-** 2 Bytes in this freeblock
-**
-** Cells are of variable length. Cells are stored in the cell content area at
-** the end of the page. Pointers to the cells are in the cell pointer array
-** that immediately follows the page header. Cells is not necessarily
-** contiguous or in order, but cell pointers are contiguous and in order.
-**
-** Cell content makes use of variable length integers. A variable
-** length integer is 1 to 9 bytes where the lower 7 bits of each
-** byte are used. The integer consists of all bytes that have bit 8 set and
-** the first byte with bit 8 clear. The most significant byte of the integer
-** appears first. A variable-length integer may not be more than 9 bytes long.
-** As a special case, all 8 bytes of the 9th byte are used as data. This
-** allows a 64-bit integer to be encoded in 9 bytes.
-**
-** 0x00 becomes 0x00000000
-** 0x7f becomes 0x0000007f
-** 0x81 0x00 becomes 0x00000080
-** 0x82 0x00 becomes 0x00000100
-** 0x80 0x7f becomes 0x0000007f
-** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678
-** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081
-**
-** Variable length integers are used for rowids and to hold the number of
-** bytes of key and data in a btree cell.
-**
-** The content of a cell looks like this:
-**
-** SIZE DESCRIPTION
-** 4 Page number of the left child. Omitted if leaf flag is set.
-** var Number of bytes of data. Omitted if the zerodata flag is set.
-** var Number of bytes of key. Or the key itself if intkey flag is set.
-** * Payload
-** 4 First page of the overflow chain. Omitted if no overflow
-**
-** Overflow pages form a linked list. Each page except the last is completely
-** filled with data (pagesize - 4 bytes). The last page can have as little
-** as 1 byte of data.
-**
-** SIZE DESCRIPTION
-** 4 Page number of next overflow page
-** * Data
-**
-** Freelist pages come in two subtypes: trunk pages and leaf pages. The
-** file header points to the first in a linked list of trunk page. Each trunk
-** page points to multiple leaf pages. The content of a leaf page is
-** unspecified. A trunk page looks like this:
-**
-** SIZE DESCRIPTION
-** 4 Page number of next trunk page
-** 4 Number of leaf pointers on this page
-** * zero or more pages numbers of leaves
-*/
-#include "sqliteInt.h"
-#include "pager.h"
-#include "btree.h"
-#include "os.h"
-#include
-
-/* Round up a number to the next larger multiple of 8. This is used
-** to force 8-byte alignment on 64-bit architectures.
-*/
-#define ROUND8(x) ((x+7)&~7)
-
-
-/* The following value is the maximum cell size assuming a maximum page
-** size give above.
-*/
-#define MX_CELL_SIZE(pBt) (pBt->pageSize-8)
-
-/* The maximum number of cells on a single page of the database. This
-** assumes a minimum cell size of 3 bytes. Such small cells will be
-** exceedingly rare, but they are possible.
-*/
-#define MX_CELL(pBt) ((pBt->pageSize-8)/3)
-
-/* Forward declarations */
-typedef struct MemPage MemPage;
-typedef struct BtLock BtLock;
-
-/*
-** This is a magic string that appears at the beginning of every
-** SQLite database in order to identify the file as a real database.
-**
-** You can change this value at compile-time by specifying a
-** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The
-** header must be exactly 16 bytes including the zero-terminator so
-** the string itself should be 15 characters long. If you change
-** the header, then your custom library will not be able to read
-** databases generated by the standard tools and the standard tools
-** will not be able to read databases created by your custom library.
-*/
-#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
-# define SQLITE_FILE_HEADER "SQLite format 3"
-#endif
-
-/*
-** Page type flags. An ORed combination of these flags appear as the
-** first byte of on-disk image of every BTree page.
-*/
-#define PTF_INTKEY 0x01
-#define PTF_ZERODATA 0x02
-#define PTF_LEAFDATA 0x04
-#define PTF_LEAF 0x08
-
-/*
-** As each page of the file is loaded into memory, an instance of the following
-** structure is appended and initialized to zero. This structure stores
-** information about the page that is decoded from the raw file page.
-**
-** The pParent field points back to the parent page. This allows us to
-** walk up the BTree from any leaf to the root. Care must be taken to
-** unref() the parent page pointer when this page is no longer referenced.
-** The pageDestructor() routine handles that chore.
-**
-** Access to all fields of this structure is controlled by the mutex
-** stored in MemPage.pBt->mutex.
-*/
-struct MemPage {
- u8 isInit; /* True if previously initialized. MUST BE FIRST! */
- u8 idxShift; /* True if Cell indices have changed */
- u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
- u8 intKey; /* True if intkey flag is set */
- u8 leaf; /* True if leaf flag is set */
- u8 zeroData; /* True if table stores keys only */
- u8 leafData; /* True if tables stores data on leaves only */
- u8 hasData; /* True if this page stores data */
- u8 hdrOffset; /* 100 for page 1. 0 otherwise */
- u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
- u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
- u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */
- u16 cellOffset; /* Index in aData of first cell pointer */
- u16 idxParent; /* Index in parent of this node */
- u16 nFree; /* Number of free bytes on the page */
- u16 nCell; /* Number of cells on this page, local and ovfl */
- struct _OvflCell { /* Cells that will not fit on aData[] */
- u8 *pCell; /* Pointers to the body of the overflow cell */
- u16 idx; /* Insert this cell before idx-th non-overflow cell */
- } aOvfl[5];
- BtShared *pBt; /* Pointer to BtShared that this page is part of */
- u8 *aData; /* Pointer to disk image of the page data */
- DbPage *pDbPage; /* Pager page handle */
- Pgno pgno; /* Page number for this page */
- MemPage *pParent; /* The parent of this page. NULL for root */
-};
-
-/*
-** The in-memory image of a disk page has the auxiliary information appended
-** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
-** that extra information.
-*/
-#define EXTRA_SIZE sizeof(MemPage)
-
-/* A Btree handle
-**
-** A database connection contains a pointer to an instance of
-** this object for every database file that it has open. This structure
-** is opaque to the database connection. The database connection cannot
-** see the internals of this structure and only deals with pointers to
-** this structure.
-**
-** For some database files, the same underlying database cache might be
-** shared between multiple connections. In that case, each contection
-** has it own pointer to this object. But each instance of this object
-** points to the same BtShared object. The database cache and the
-** schema associated with the database file are all contained within
-** the BtShared object.
-**
-** All fields in this structure are accessed under sqlite3.mutex.
-** The pBt pointer itself may not be changed while there exists cursors
-** in the referenced BtShared that point back to this Btree since those
-** cursors have to do go through this Btree to find their BtShared and
-** they often do so without holding sqlite3.mutex.
-*/
-struct Btree {
- sqlite3 *pSqlite; /* The database connection holding this btree */
- BtShared *pBt; /* Sharable content of this btree */
- u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
- u8 sharable; /* True if we can share pBt with other pSqlite */
- u8 locked; /* True if pSqlite currently has pBt locked */
- int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */
- Btree *pNext; /* List of other sharable Btrees from the same pSqlite */
- Btree *pPrev; /* Back pointer of the same list */
-};
-
-/*
-** Btree.inTrans may take one of the following values.
-**
-** If the shared-data extension is enabled, there may be multiple users
-** of the Btree structure. At most one of these may open a write transaction,
-** but any number may have active read transactions.
-*/
-#define TRANS_NONE 0
-#define TRANS_READ 1
-#define TRANS_WRITE 2
-
-/*
-** An instance of this object represents a single database file.
-**
-** A single database file can be in use as the same time by two
-** or more database connections. When two or more connections are
-** sharing the same database file, each connection has it own
-** private Btree object for the file and each of those Btrees points
-** to this one BtShared object. BtShared.nRef is the number of
-** connections currently sharing this database file.
-**
-** Fields in this structure are accessed under the BtShared.mutex
-** mutex, except for nRef and pNext which are accessed under the
-** global SQLITE_MUTEX_STATIC_MASTER mutex. The pPager field
-** may not be modified once it is initially set as long as nRef>0.
-** The pSchema field may be set once under BtShared.mutex and
-** thereafter is unchanged as long as nRef>0.
-*/
-struct BtShared {
- Pager *pPager; /* The page cache */
- BtCursor *pCursor; /* A list of all open cursors */
- MemPage *pPage1; /* First page of the database */
- u8 inStmt; /* True if we are in a statement subtransaction */
- u8 readOnly; /* True if the underlying file is readonly */
- u8 maxEmbedFrac; /* Maximum payload as % of total page size */
- u8 minEmbedFrac; /* Minimum payload as % of total page size */
- u8 minLeafFrac; /* Minimum leaf payload as % of total page size */
- u8 pageSizeFixed; /* True if the page size can no longer be changed */
-#ifndef SQLITE_OMIT_AUTOVACUUM
- u8 autoVacuum; /* True if auto-vacuum is enabled */
- u8 incrVacuum; /* True if incr-vacuum is enabled */
- Pgno nTrunc; /* Non-zero if the db will be truncated (incr vacuum) */
-#endif
- u16 pageSize; /* Total number of bytes on a page */
- u16 usableSize; /* Number of usable bytes on each page */
- int maxLocal; /* Maximum local payload in non-LEAFDATA tables */
- int minLocal; /* Minimum local payload in non-LEAFDATA tables */
- int maxLeaf; /* Maximum local payload in a LEAFDATA table */
- int minLeaf; /* Minimum local payload in a LEAFDATA table */
- BusyHandler *pBusyHandler; /* Callback for when there is lock contention */
- u8 inTransaction; /* Transaction state */
- int nTransaction; /* Number of open transactions (read + write) */
- void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */
- void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */
- sqlite3_mutex *mutex; /* Non-recursive mutex required to access this struct */
-#ifndef SQLITE_OMIT_SHARED_CACHE
- int nRef; /* Number of references to this structure */
- BtShared *pNext; /* Next on a list of sharable BtShared structs */
- BtLock *pLock; /* List of locks held on this shared-btree struct */
-#endif
-};
-
-/*
-** An instance of the following structure is used to hold information
-** about a cell. The parseCellPtr() function fills in this structure
-** based on information extract from the raw disk page.
-*/
-typedef struct CellInfo CellInfo;
-struct CellInfo {
- u8 *pCell; /* Pointer to the start of cell content */
- i64 nKey; /* The key for INTKEY tables, or number of bytes in key */
- u32 nData; /* Number of bytes of data */
- u32 nPayload; /* Total amount of payload */
- u16 nHeader; /* Size of the cell content header in bytes */
- u16 nLocal; /* Amount of payload held locally */
- u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */
- u16 nSize; /* Size of the cell content on the main b-tree page */
-};
-
-/*
-** A cursor is a pointer to a particular entry within a particular
-** b-tree within a database file.
-**
-** The entry is identified by its MemPage and the index in
-** MemPage.aCell[] of the entry.
-**
-** When a single database file can shared by two more database connections,
-** but cursors cannot be shared. Each cursor is associated with a
-** particular database connection identified BtCursor.pBtree.pSqlite.
-**
-** Fields in this structure are accessed under the BtShared.mutex
-** found at self->pBt->mutex.
-*/
-struct BtCursor {
- Btree *pBtree; /* The Btree to which this cursor belongs */
- BtShared *pBt; /* The BtShared this cursor points to */
- BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
- int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */
- void *pArg; /* First arg to xCompare() */
- Pgno pgnoRoot; /* The root page of this tree */
- MemPage *pPage; /* Page that contains the entry */
- int idx; /* Index of the entry in pPage->aCell[] */
- CellInfo info; /* A parse of the cell we are pointing at */
- u8 wrFlag; /* True if writable */
- u8 eState; /* One of the CURSOR_XXX constants (see below) */
- void *pKey; /* Saved key that was cursor's last known position */
- i64 nKey; /* Size of pKey, or last integer key */
- int skip; /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */
-#ifndef SQLITE_OMIT_INCRBLOB
- u8 isIncrblobHandle; /* True if this cursor is an incr. io handle */
- Pgno *aOverflow; /* Cache of overflow page locations */
-#endif
-};
-
-/*
-** Potential values for BtCursor.eState.
-**
-** CURSOR_VALID:
-** Cursor points to a valid entry. getPayload() etc. may be called.
-**
-** CURSOR_INVALID:
-** Cursor does not point to a valid entry. This can happen (for example)
-** because the table is empty or because BtreeCursorFirst() has not been
-** called.
-**
-** CURSOR_REQUIRESEEK:
-** The table that this cursor was opened on still exists, but has been
-** modified since the cursor was last used. The cursor position is saved
-** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
-** this state, restoreOrClearCursorPosition() can be called to attempt to
-** seek the cursor to the saved position.
-**
-** CURSOR_FAULT:
-** A unrecoverable error (an I/O error or a malloc failure) has occurred
-** on a different connection that shares the BtShared cache with this
-** cursor. The error has left the cache in an inconsistent state.
-** Do nothing else with this cursor. Any attempt to use the cursor
-** should return the error code stored in BtCursor.skip
-*/
-#define CURSOR_INVALID 0
-#define CURSOR_VALID 1
-#define CURSOR_REQUIRESEEK 2
-#define CURSOR_FAULT 3
-
-/*
-** The TRACE macro will print high-level status information about the
-** btree operation when the global variable sqlite3_btree_trace is
-** enabled.
-*/
-#if SQLITE_TEST
-# define TRACE(X) if( sqlite3_btree_trace ){ printf X; fflush(stdout); }
-#else
-# define TRACE(X)
-#endif
-
-/*
-** Routines to read and write variable-length integers. These used to
-** be defined locally, but now we use the varint routines in the util.c
-** file.
-*/
-#define getVarint sqlite3GetVarint
-#define getVarint32(A,B) ((*B=*(A))<=0x7f?1:sqlite3GetVarint32(A,B))
-#define putVarint sqlite3PutVarint
-
-/* The database page the PENDING_BYTE occupies. This page is never used.
-** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They
-** should possibly be consolidated (presumably in pager.h).
-**
-** If disk I/O is omitted (meaning that the database is stored purely
-** in memory) then there is no pending byte.
-*/
-#ifdef SQLITE_OMIT_DISKIO
-# define PENDING_BYTE_PAGE(pBt) 0x7fffffff
-#else
-# define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1)
-#endif
-
-/*
-** A linked list of the following structures is stored at BtShared.pLock.
-** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor
-** is opened on the table with root page BtShared.iTable. Locks are removed
-** from this list when a transaction is committed or rolled back, or when
-** a btree handle is closed.
-*/
-struct BtLock {
- Btree *pBtree; /* Btree handle holding this lock */
- Pgno iTable; /* Root page of table */
- u8 eLock; /* READ_LOCK or WRITE_LOCK */
- BtLock *pNext; /* Next in BtShared.pLock list */
-};
-
-/* Candidate values for BtLock.eLock */
-#define READ_LOCK 1
-#define WRITE_LOCK 2
-
-/*
-** These macros define the location of the pointer-map entry for a
-** database page. The first argument to each is the number of usable
-** bytes on each page of the database (often 1024). The second is the
-** page number to look up in the pointer map.
-**
-** PTRMAP_PAGENO returns the database page number of the pointer-map
-** page that stores the required pointer. PTRMAP_PTROFFSET returns
-** the offset of the requested map entry.
-**
-** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
-** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
-** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
-** this test.
-*/
-#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
-#define PTRMAP_PTROFFSET(pBt, pgno) (5*(pgno-ptrmapPageno(pBt, pgno)-1))
-#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
-
-/*
-** The pointer map is a lookup table that identifies the parent page for
-** each child page in the database file. The parent page is the page that
-** contains a pointer to the child. Every page in the database contains
-** 0 or 1 parent pages. (In this context 'database page' refers
-** to any page that is not part of the pointer map itself.) Each pointer map
-** entry consists of a single byte 'type' and a 4 byte parent page number.
-** The PTRMAP_XXX identifiers below are the valid types.
-**
-** The purpose of the pointer map is to facility moving pages from one
-** position in the file to another as part of autovacuum. When a page
-** is moved, the pointer in its parent must be updated to point to the
-** new location. The pointer map is used to locate the parent page quickly.
-**
-** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
-** used in this case.
-**
-** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
-** is not used in this case.
-**
-** PTRMAP_OVERFLOW1: The database page is the first page in a list of
-** overflow pages. The page number identifies the page that
-** contains the cell with a pointer to this overflow page.
-**
-** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
-** overflow pages. The page-number identifies the previous
-** page in the overflow page list.
-**
-** PTRMAP_BTREE: The database page is a non-root btree page. The page number
-** identifies the parent page in the btree.
-*/
-#define PTRMAP_ROOTPAGE 1
-#define PTRMAP_FREEPAGE 2
-#define PTRMAP_OVERFLOW1 3
-#define PTRMAP_OVERFLOW2 4
-#define PTRMAP_BTREE 5
-
-/* A bunch of assert() statements to check the transaction state variables
-** of handle p (type Btree*) are internally consistent.
-*/
-#define btreeIntegrity(p) \
- assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
- assert( p->pBt->inTransaction>=p->inTrans );
-
-
-/*
-** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
-** if the database supports auto-vacuum or not. Because it is used
-** within an expression that is an argument to another macro
-** (sqliteMallocRaw), it is not possible to use conditional compilation.
-** So, this macro is defined instead.
-*/
-#ifndef SQLITE_OMIT_AUTOVACUUM
-#define ISAUTOVACUUM (pBt->autoVacuum)
-#else
-#define ISAUTOVACUUM 0
-#endif
-
-
-/*
-** This structure is passed around through all the sanity checking routines
-** in order to keep track of some global state information.
-*/
-typedef struct IntegrityCk IntegrityCk;
-struct IntegrityCk {
- BtShared *pBt; /* The tree being checked out */
- Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
- int nPage; /* Number of pages in the database */
- int *anRef; /* Number of times each page is referenced */
- int mxErr; /* Stop accumulating errors when this reaches zero */
- char *zErrMsg; /* An error message. NULL if no errors seen. */
- int nErr; /* Number of messages written to zErrMsg so far */
-};
-
-/*
-** Read or write a two- and four-byte big-endian integer values.
-*/
-#define get2byte(x) ((x)[0]<<8 | (x)[1])
-#define put2byte(p,v) ((p)[0] = (v)>>8, (p)[1] = (v))
-#define get4byte sqlite3Get4byte
-#define put4byte sqlite3Put4byte
-
-/*
-** Internal routines that should be accessed by the btree layer only.
-*/
-int sqlite3BtreeGetPage(BtShared*, Pgno, MemPage**, int);
-int sqlite3BtreeInitPage(MemPage *pPage, MemPage *pParent);
-void sqlite3BtreeParseCellPtr(MemPage*, u8*, CellInfo*);
-void sqlite3BtreeParseCell(MemPage*, int, CellInfo*);
-#ifdef SQLITE_TEST
-u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell);
-#endif
-int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur);
-void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur);
-void sqlite3BtreeReleaseTempCursor(BtCursor *pCur);
-int sqlite3BtreeIsRootPage(MemPage *pPage);
-void sqlite3BtreeMoveToParent(BtCursor *pCur);
diff --git a/extensions/sqlite/sqlite-source/build.c b/extensions/sqlite/sqlite-source/build.c
deleted file mode 100644
index 2323f2a4..00000000
--- a/extensions/sqlite/sqlite-source/build.c
+++ /dev/null
@@ -1,3409 +0,0 @@
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains C code routines that are called by the SQLite parser
-** when syntax rules are reduced. The routines in this file handle the
-** following kinds of SQL syntax:
-**
-** CREATE TABLE
-** DROP TABLE
-** CREATE INDEX
-** DROP INDEX
-** creating ID lists
-** BEGIN TRANSACTION
-** COMMIT
-** ROLLBACK
-**
-** $Id$
-*/
-#include "sqliteInt.h"
-#include
-
-/*
-** This routine is called when a new SQL statement is beginning to
-** be parsed. Initialize the pParse structure as needed.
-*/
-void sqlite3BeginParse(Parse *pParse, int explainFlag){
- pParse->explain = explainFlag;
- pParse->nVar = 0;
-}
-
-#ifndef SQLITE_OMIT_SHARED_CACHE
-/*
-** The TableLock structure is only used by the sqlite3TableLock() and
-** codeTableLocks() functions.
-*/
-struct TableLock {
- int iDb; /* The database containing the table to be locked */
- int iTab; /* The root page of the table to be locked */
- u8 isWriteLock; /* True for write lock. False for a read lock */
- const char *zName; /* Name of the table */
-};
-
-/*
-** Record the fact that we want to lock a table at run-time.
-**
-** The table to be locked has root page iTab and is found in database iDb.
-** A read or a write lock can be taken depending on isWritelock.
-**
-** This routine just records the fact that the lock is desired. The
-** code to make the lock occur is generated by a later call to
-** codeTableLocks() which occurs during sqlite3FinishCoding().
-*/
-void sqlite3TableLock(
- Parse *pParse, /* Parsing context */
- int iDb, /* Index of the database containing the table to lock */
- int iTab, /* Root page number of the table to be locked */
- u8 isWriteLock, /* True for a write lock */
- const char *zName /* Name of the table to be locked */
-){
- int i;
- int nBytes;
- TableLock *p;
-
- if( iDb<0 ){
- return;
- }
-
- for(i=0; inTableLock; i++){
- p = &pParse->aTableLock[i];
- if( p->iDb==iDb && p->iTab==iTab ){
- p->isWriteLock = (p->isWriteLock || isWriteLock);
- return;
- }
- }
-
- nBytes = sizeof(TableLock) * (pParse->nTableLock+1);
- pParse->aTableLock =
- sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes);
- if( pParse->aTableLock ){
- p = &pParse->aTableLock[pParse->nTableLock++];
- p->iDb = iDb;
- p->iTab = iTab;
- p->isWriteLock = isWriteLock;
- p->zName = zName;
- }else{
- pParse->nTableLock = 0;
- pParse->db->mallocFailed = 1;
- }
-}
-
-/*
-** Code an OP_TableLock instruction for each table locked by the
-** statement (configured by calls to sqlite3TableLock()).
-*/
-static void codeTableLocks(Parse *pParse){
- int i;
- Vdbe *pVdbe;
-
- if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){
- return;
- }
-
- for(i=0; inTableLock; i++){
- TableLock *p = &pParse->aTableLock[i];
- int p1 = p->iDb;
- if( p->isWriteLock ){
- p1 = -1*(p1+1);
- }
- sqlite3VdbeOp3(pVdbe, OP_TableLock, p1, p->iTab, p->zName, P3_STATIC);
- }
-}
-#else
- #define codeTableLocks(x)
-#endif
-
-/*
-** This routine is called after a single SQL statement has been
-** parsed and a VDBE program to execute that statement has been
-** prepared. This routine puts the finishing touches on the
-** VDBE program and resets the pParse structure for the next
-** parse.
-**
-** Note that if an error occurred, it might be the case that
-** no VDBE code was generated.
-*/
-void sqlite3FinishCoding(Parse *pParse){
- sqlite3 *db;
- Vdbe *v;
-
- db = pParse->db;
- if( db->mallocFailed ) return;
- if( pParse->nested ) return;
- if( !pParse->pVdbe ){
- if( pParse->rc==SQLITE_OK && pParse->nErr ){
- pParse->rc = SQLITE_ERROR;
- return;
- }
- }
-
- /* Begin by generating some termination code at the end of the
- ** vdbe program
- */
- v = sqlite3GetVdbe(pParse);
- if( v ){
- sqlite3VdbeAddOp(v, OP_Halt, 0, 0);
-
- /* The cookie mask contains one bit for each database file open.
- ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
- ** set for each database that is used. Generate code to start a
- ** transaction on each used database and to verify the schema cookie
- ** on each used database.
- */
- if( pParse->cookieGoto>0 ){
- u32 mask;
- int iDb;
- sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
- for(iDb=0, mask=1; iDbnDb; mask<<=1, iDb++){
- if( (mask & pParse->cookieMask)==0 ) continue;
- sqlite3VdbeUsesBtree(v, iDb);
- sqlite3VdbeAddOp(v, OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
- sqlite3VdbeAddOp(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
- }
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( pParse->pVirtualLock ){
- char *vtab = (char *)pParse->pVirtualLock->pVtab;
- sqlite3VdbeOp3(v, OP_VBegin, 0, 0, vtab, P3_VTAB);
- }
-#endif
-
- /* Once all the cookies have been verified and transactions opened,
- ** obtain the required table-locks. This is a no-op unless the
- ** shared-cache feature is enabled.
- */
- codeTableLocks(pParse);
- sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->cookieGoto);
- }
-
-#ifndef SQLITE_OMIT_TRACE
- /* Add a No-op that contains the complete text of the compiled SQL
- ** statement as its P3 argument. This does not change the functionality
- ** of the program.
- **
- ** This is used to implement sqlite3_trace().
- */
- sqlite3VdbeOp3(v, OP_Noop, 0, 0, pParse->zSql, pParse->zTail-pParse->zSql);
-#endif /* SQLITE_OMIT_TRACE */
- }
-
-
- /* Get the VDBE program ready for execution
- */
- if( v && pParse->nErr==0 && !db->mallocFailed ){
-#ifdef SQLITE_DEBUG
- FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
- sqlite3VdbeTrace(v, trace);
-#endif
- sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
- pParse->nTab+3, pParse->explain);
- pParse->rc = SQLITE_DONE;
- pParse->colNamesSet = 0;
- }else if( pParse->rc==SQLITE_OK ){
- pParse->rc = SQLITE_ERROR;
- }
- pParse->nTab = 0;
- pParse->nMem = 0;
- pParse->nSet = 0;
- pParse->nVar = 0;
- pParse->cookieMask = 0;
- pParse->cookieGoto = 0;
-}
-
-/*
-** Run the parser and code generator recursively in order to generate
-** code for the SQL statement given onto the end of the pParse context
-** currently under construction. When the parser is run recursively
-** this way, the final OP_Halt is not appended and other initialization
-** and finalization steps are omitted because those are handling by the
-** outermost parser.
-**
-** Not everything is nestable. This facility is designed to permit
-** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
-** care if you decide to try to use this routine for some other purposes.
-*/
-void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
- va_list ap;
- char *zSql;
-# define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
- char saveBuf[SAVE_SZ];
-
- if( pParse->nErr ) return;
- assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
- va_start(ap, zFormat);
- zSql = sqlite3VMPrintf(pParse->db, zFormat, ap);
- va_end(ap);
- if( zSql==0 ){
- pParse->db->mallocFailed = 1;
- return; /* A malloc must have failed */
- }
- pParse->nested++;
- memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
- memset(&pParse->nVar, 0, SAVE_SZ);
- sqlite3RunParser(pParse, zSql, 0);
- sqlite3_free(zSql);
- memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
- pParse->nested--;
-}
-
-/*
-** Locate the in-memory structure that describes a particular database
-** table given the name of that table and (optionally) the name of the
-** database containing the table. Return NULL if not found.
-**
-** If zDatabase is 0, all databases are searched for the table and the
-** first matching table is returned. (No checking for duplicate table
-** names is done.) The search order is TEMP first, then MAIN, then any
-** auxiliary databases added using the ATTACH command.
-**
-** See also sqlite3LocateTable().
-*/
-Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
- Table *p = 0;
- int i;
- assert( zName!=0 );
- for(i=OMIT_TEMPDB; inDb; i++){
- int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
- if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
- p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName)+1);
- if( p ) break;
- }
- return p;
-}
-
-/*
-** Locate the in-memory structure that describes a particular database
-** table given the name of that table and (optionally) the name of the
-** database containing the table. Return NULL if not found. Also leave an
-** error message in pParse->zErrMsg.
-**
-** The difference between this routine and sqlite3FindTable() is that this
-** routine leaves an error message in pParse->zErrMsg where
-** sqlite3FindTable() does not.
-*/
-Table *sqlite3LocateTable(Parse *pParse, const char *zName, const char *zDbase){
- Table *p;
-
- /* Read the database schema. If an error occurs, leave an error message
- ** and code in pParse and return NULL. */
- if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
- return 0;
- }
-
- p = sqlite3FindTable(pParse->db, zName, zDbase);
- if( p==0 ){
- if( zDbase ){
- sqlite3ErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
- }else{
- sqlite3ErrorMsg(pParse, "no such table: %s", zName);
- }
- pParse->checkSchema = 1;
- }
- return p;
-}
-
-/*
-** Locate the in-memory structure that describes
-** a particular index given the name of that index
-** and the name of the database that contains the index.
-** Return NULL if not found.
-**
-** If zDatabase is 0, all databases are searched for the
-** table and the first matching index is returned. (No checking
-** for duplicate index names is done.) The search order is
-** TEMP first, then MAIN, then any auxiliary databases added
-** using the ATTACH command.
-*/
-Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
- Index *p = 0;
- int i;
- for(i=OMIT_TEMPDB; inDb; i++){
- int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
- Schema *pSchema = db->aDb[j].pSchema;
- if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
- assert( pSchema || (j==1 && !db->aDb[1].pBt) );
- if( pSchema ){
- p = sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName)+1);
- }
- if( p ) break;
- }
- return p;
-}
-
-/*
-** Reclaim the memory used by an index
-*/
-static void freeIndex(Index *p){
- sqlite3_free(p->zColAff);
- sqlite3_free(p);
-}
-
-/*
-** Remove the given index from the index hash table, and free
-** its memory structures.
-**
-** The index is removed from the database hash tables but
-** it is not unlinked from the Table that it indexes.
-** Unlinking from the Table must be done by the calling function.
-*/
-static void sqliteDeleteIndex(Index *p){
- Index *pOld;
- const char *zName = p->zName;
-
- pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen( zName)+1, 0);
- assert( pOld==0 || pOld==p );
- freeIndex(p);
-}
-
-/*
-** For the index called zIdxName which is found in the database iDb,
-** unlike that index from its Table then remove the index from
-** the index hash table and free all memory structures associated
-** with the index.
-*/
-void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
- Index *pIndex;
- int len;
- Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
-
- len = strlen(zIdxName);
- pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0);
- if( pIndex ){
- if( pIndex->pTable->pIndex==pIndex ){
- pIndex->pTable->pIndex = pIndex->pNext;
- }else{
- Index *p;
- for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
- if( p && p->pNext==pIndex ){
- p->pNext = pIndex->pNext;
- }
- }
- freeIndex(pIndex);
- }
- db->flags |= SQLITE_InternChanges;
-}
-
-/*
-** Erase all schema information from the in-memory hash tables of
-** a single database. This routine is called to reclaim memory
-** before the database closes. It is also called during a rollback
-** if there were schema changes during the transaction or if a
-** schema-cookie mismatch occurs.
-**
-** If iDb<=0 then reset the internal schema tables for all database
-** files. If iDb>=2 then reset the internal schema for only the
-** single file indicated.
-*/
-void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
- int i, j;
-
- assert( iDb>=0 && iDbnDb );
- for(i=iDb; inDb; i++){
- Db *pDb = &db->aDb[i];
- if( pDb->pSchema ){
- sqlite3SchemaFree(pDb->pSchema);
- }
- if( iDb>0 ) return;
- }
- assert( iDb==0 );
- db->flags &= ~SQLITE_InternChanges;
-
- /* If one or more of the auxiliary database files has been closed,
- ** then remove them from the auxiliary database list. We take the
- ** opportunity to do this here since we have just deleted all of the
- ** schema hash tables and therefore do not have to make any changes
- ** to any of those tables.
- */
- for(i=0; inDb; i++){
- struct Db *pDb = &db->aDb[i];
- if( pDb->pBt==0 ){
- if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
- pDb->pAux = 0;
- }
- }
- for(i=j=2; inDb; i++){
- struct Db *pDb = &db->aDb[i];
- if( pDb->pBt==0 ){
- sqlite3_free(pDb->zName);
- pDb->zName = 0;
- continue;
- }
- if( jaDb[j] = db->aDb[i];
- }
- j++;
- }
- memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
- db->nDb = j;
- if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
- memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
- sqlite3_free(db->aDb);
- db->aDb = db->aDbStatic;
- }
-}
-
-/*
-** This routine is called when a commit occurs.
-*/
-void sqlite3CommitInternalChanges(sqlite3 *db){
- db->flags &= ~SQLITE_InternChanges;
-}
-
-/*
-** Clear the column names from a table or view.
-*/
-static void sqliteResetColumnNames(Table *pTable){
- int i;
- Column *pCol;
- assert( pTable!=0 );
- if( (pCol = pTable->aCol)!=0 ){
- for(i=0; inCol; i++, pCol++){
- sqlite3_free(pCol->zName);
- sqlite3ExprDelete(pCol->pDflt);
- sqlite3_free(pCol->zType);
- sqlite3_free(pCol->zColl);
- }
- sqlite3_free(pTable->aCol);
- }
- pTable->aCol = 0;
- pTable->nCol = 0;
-}
-
-/*
-** Remove the memory data structures associated with the given
-** Table. No changes are made to disk by this routine.
-**
-** This routine just deletes the data structure. It does not unlink
-** the table data structure from the hash table. Nor does it remove
-** foreign keys from the sqlite.aFKey hash table. But it does destroy
-** memory structures of the indices and foreign keys associated with
-** the table.
-*/
-void sqlite3DeleteTable(Table *pTable){
- Index *pIndex, *pNext;
- FKey *pFKey, *pNextFKey;
-
- if( pTable==0 ) return;
-
- /* Do not delete the table until the reference count reaches zero. */
- pTable->nRef--;
- if( pTable->nRef>0 ){
- return;
- }
- assert( pTable->nRef==0 );
-
- /* Delete all indices associated with this table
- */
- for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
- pNext = pIndex->pNext;
- assert( pIndex->pSchema==pTable->pSchema );
- sqliteDeleteIndex(pIndex);
- }
-
-#ifndef SQLITE_OMIT_FOREIGN_KEY
- /* Delete all foreign keys associated with this table. The keys
- ** should have already been unlinked from the pSchema->aFKey hash table
- */
- for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
- pNextFKey = pFKey->pNextFrom;
- assert( sqlite3HashFind(&pTable->pSchema->aFKey,
- pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
- sqlite3_free(pFKey);
- }
-#endif
-
- /* Delete the Table structure itself.
- */
- sqliteResetColumnNames(pTable);
- sqlite3_free(pTable->zName);
- sqlite3_free(pTable->zColAff);
- sqlite3SelectDelete(pTable->pSelect);
-#ifndef SQLITE_OMIT_CHECK
- sqlite3ExprDelete(pTable->pCheck);
-#endif
- sqlite3VtabClear(pTable);
- sqlite3_free(pTable);
-}
-
-/*
-** Unlink the given table from the hash tables and the delete the
-** table structure with all its indices and foreign keys.
-*/
-void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
- Table *p;
- FKey *pF1, *pF2;
- Db *pDb;
-
- assert( db!=0 );
- assert( iDb>=0 && iDbnDb );
- assert( zTabName && zTabName[0] );
- pDb = &db->aDb[iDb];
- p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0);
- if( p ){
-#ifndef SQLITE_OMIT_FOREIGN_KEY
- for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
- int nTo = strlen(pF1->zTo) + 1;
- pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo);
- if( pF2==pF1 ){
- sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo);
- }else{
- while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
- if( pF2 ){
- pF2->pNextTo = pF1->pNextTo;
- }
- }
- }
-#endif
- sqlite3DeleteTable(p);
- }
- db->flags |= SQLITE_InternChanges;
-}
-
-/*
-** Given a token, return a string that consists of the text of that
-** token with any quotations removed. Space to hold the returned string
-** is obtained from sqliteMalloc() and must be freed by the calling
-** function.
-**
-** Tokens are often just pointers into the original SQL text and so
-** are not \000 terminated and are not persistent. The returned string
-** is \000 terminated and is persistent.
-*/
-char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
- char *zName;
- if( pName ){
- zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
- sqlite3Dequote(zName);
- }else{
- zName = 0;
- }
- return zName;
-}
-
-/*
-** Open the sqlite_master table stored in database number iDb for
-** writing. The table is opened using cursor 0.
-*/
-void sqlite3OpenMasterTable(Parse *p, int iDb){
- Vdbe *v = sqlite3GetVdbe(p);
- sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
- sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
- sqlite3VdbeAddOp(v, OP_OpenWrite, 0, MASTER_ROOT);
- sqlite3VdbeAddOp(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */
-}
-
-/*
-** The token *pName contains the name of a database (either "main" or
-** "temp" or the name of an attached db). This routine returns the
-** index of the named database in db->aDb[], or -1 if the named db
-** does not exist.
-*/
-int sqlite3FindDb(sqlite3 *db, Token *pName){
- int i = -1; /* Database number */
- int n; /* Number of characters in the name */
- Db *pDb; /* A database whose name space is being searched */
- char *zName; /* Name we are searching for */
-
- zName = sqlite3NameFromToken(db, pName);
- if( zName ){
- n = strlen(zName);
- for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
- if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) &&
- 0==sqlite3StrICmp(pDb->zName, zName) ){
- break;
- }
- }
- sqlite3_free(zName);
- }
- return i;
-}
-
-/* The table or view or trigger name is passed to this routine via tokens
-** pName1 and pName2. If the table name was fully qualified, for example:
-**
-** CREATE TABLE xxx.yyy (...);
-**
-** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
-** the table name is not fully qualified, i.e.:
-**
-** CREATE TABLE yyy(...);
-**
-** Then pName1 is set to "yyy" and pName2 is "".
-**
-** This routine sets the *ppUnqual pointer to point at the token (pName1 or
-** pName2) that stores the unqualified table name. The index of the
-** database "xxx" is returned.
-*/
-int sqlite3TwoPartName(
- Parse *pParse, /* Parsing and code generating context */
- Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
- Token *pName2, /* The "yyy" in the name "xxx.yyy" */
- Token **pUnqual /* Write the unqualified object name here */
-){
- int iDb; /* Database holding the object */
- sqlite3 *db = pParse->db;
-
- if( pName2 && pName2->n>0 ){
- assert( !db->init.busy );
- *pUnqual = pName2;
- iDb = sqlite3FindDb(db, pName1);
- if( iDb<0 ){
- sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
- pParse->nErr++;
- return -1;
- }
- }else{
- assert( db->init.iDb==0 || db->init.busy );
- iDb = db->init.iDb;
- *pUnqual = pName1;
- }
- return iDb;
-}
-
-/*
-** This routine is used to check if the UTF-8 string zName is a legal
-** unqualified name for a new schema object (table, index, view or
-** trigger). All names are legal except those that begin with the string
-** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
-** is reserved for internal use.
-*/
-int sqlite3CheckObjectName(Parse *pParse, const char *zName){
- if( !pParse->db->init.busy && pParse->nested==0
- && (pParse->db->flags & SQLITE_WriteSchema)==0
- && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
- sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
- return SQLITE_ERROR;
- }
- return SQLITE_OK;
-}
-
-/*
-** Begin constructing a new table representation in memory. This is
-** the first of several action routines that get called in response
-** to a CREATE TABLE statement. In particular, this routine is called
-** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
-** flag is true if the table should be stored in the auxiliary database
-** file instead of in the main database file. This is normally the case
-** when the "TEMP" or "TEMPORARY" keyword occurs in between
-** CREATE and TABLE.
-**
-** The new table record is initialized and put in pParse->pNewTable.
-** As more of the CREATE TABLE statement is parsed, additional action
-** routines will be called to add more information to this record.
-** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
-** is called to complete the construction of the new table record.
-*/
-void sqlite3StartTable(
- Parse *pParse, /* Parser context */
- Token *pName1, /* First part of the name of the table or view */
- Token *pName2, /* Second part of the name of the table or view */
- int isTemp, /* True if this is a TEMP table */
- int isView, /* True if this is a VIEW */
- int isVirtual, /* True if this is a VIRTUAL table */
- int noErr /* Do nothing if table already exists */
-){
- Table *pTable;
- char *zName = 0; /* The name of the new table */
- sqlite3 *db = pParse->db;
- Vdbe *v;
- int iDb; /* Database number to create the table in */
- Token *pName; /* Unqualified name of the table to create */
-
- /* The table or view name to create is passed to this routine via tokens
- ** pName1 and pName2. If the table name was fully qualified, for example:
- **
- ** CREATE TABLE xxx.yyy (...);
- **
- ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
- ** the table name is not fully qualified, i.e.:
- **
- ** CREATE TABLE yyy(...);
- **
- ** Then pName1 is set to "yyy" and pName2 is "".
- **
- ** The call below sets the pName pointer to point at the token (pName1 or
- ** pName2) that stores the unqualified table name. The variable iDb is
- ** set to the index of the database that the table or view is to be
- ** created in.
- */
- iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
- if( iDb<0 ) return;
- if( !OMIT_TEMPDB && isTemp && iDb>1 ){
- /* If creating a temp table, the name may not be qualified */
- sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
- return;
- }
- if( !OMIT_TEMPDB && isTemp ) iDb = 1;
-
- pParse->sNameToken = *pName;
- zName = sqlite3NameFromToken(db, pName);
- if( zName==0 ) return;
- if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
- goto begin_table_error;
- }
- if( db->init.iDb==1 ) isTemp = 1;
-#ifndef SQLITE_OMIT_AUTHORIZATION
- assert( (isTemp & 1)==isTemp );
- {
- int code;
- char *zDb = db->aDb[iDb].zName;
- if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
- goto begin_table_error;
- }
- if( isView ){
- if( !OMIT_TEMPDB && isTemp ){
- code = SQLITE_CREATE_TEMP_VIEW;
- }else{
- code = SQLITE_CREATE_VIEW;
- }
- }else{
- if( !OMIT_TEMPDB && isTemp ){
- code = SQLITE_CREATE_TEMP_TABLE;
- }else{
- code = SQLITE_CREATE_TABLE;
- }
- }
- if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
- goto begin_table_error;
- }
- }
-#endif
-
- /* Make sure the new table name does not collide with an existing
- ** index or table name in the same database. Issue an error message if
- ** it does. The exception is if the statement being parsed was passed
- ** to an sqlite3_declare_vtab() call. In that case only the column names
- ** and types will be used, so there is no need to test for namespace
- ** collisions.
- */
- if( !IN_DECLARE_VTAB ){
- if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
- goto begin_table_error;
- }
- pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
- if( pTable ){
- if( !noErr ){
- sqlite3ErrorMsg(pParse, "table %T already exists", pName);
- }
- goto begin_table_error;
- }
- if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){
- sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
- goto begin_table_error;
- }
- }
-
- pTable = sqlite3DbMallocZero(db, sizeof(Table));
- if( pTable==0 ){
- db->mallocFailed = 1;
- pParse->rc = SQLITE_NOMEM;
- pParse->nErr++;
- goto begin_table_error;
- }
- pTable->zName = zName;
- pTable->iPKey = -1;
- pTable->pSchema = db->aDb[iDb].pSchema;
- pTable->nRef = 1;
- if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable);
- pParse->pNewTable = pTable;
-
- /* If this is the magic sqlite_sequence table used by autoincrement,
- ** then record a pointer to this table in the main database structure
- ** so that INSERT can find the table easily.
- */
-#ifndef SQLITE_OMIT_AUTOINCREMENT
- if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
- pTable->pSchema->pSeqTab = pTable;
- }
-#endif
-
- /* Begin generating the code that will insert the table record into
- ** the SQLITE_MASTER table. Note in particular that we must go ahead
- ** and allocate the record number for the table entry now. Before any
- ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
- ** indices to be created and the table record must come before the
- ** indices. Hence, the record number for the table must be allocated
- ** now.
- */
- if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
- int lbl;
- int fileFormat;
- sqlite3BeginWriteOperation(pParse, 0, iDb);
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( isVirtual ){
- sqlite3VdbeAddOp(v, OP_VBegin, 0, 0);
- }
-#endif
-
- /* If the file format and encoding in the database have not been set,
- ** set them now.
- */
- sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1); /* file_format */
- sqlite3VdbeUsesBtree(v, iDb);
- lbl = sqlite3VdbeMakeLabel(v);
- sqlite3VdbeAddOp(v, OP_If, 0, lbl);
- fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
- 1 : SQLITE_MAX_FILE_FORMAT;
- sqlite3VdbeAddOp(v, OP_Integer, fileFormat, 0);
- sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1);
- sqlite3VdbeAddOp(v, OP_Integer, ENC(db), 0);
- sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 4);
- sqlite3VdbeResolveLabel(v, lbl);
-
- /* This just creates a place-holder record in the sqlite_master table.
- ** The record created does not contain anything yet. It will be replaced
- ** by the real entry in code generated at sqlite3EndTable().
- **
- ** The rowid for the new entry is left on the top of the stack.
- ** The rowid value is needed by the code that sqlite3EndTable will
- ** generate.
- */
-#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
- if( isView || isVirtual ){
- sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
- }else
-#endif
- {
- sqlite3VdbeAddOp(v, OP_CreateTable, iDb, 0);
- }
- sqlite3OpenMasterTable(pParse, iDb);
- sqlite3VdbeAddOp(v, OP_NewRowid, 0, 0);
- sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
- sqlite3VdbeAddOp(v, OP_Insert, 0, OPFLAG_APPEND);
- sqlite3VdbeAddOp(v, OP_Close, 0, 0);
- sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
- }
-
- /* Normal (non-error) return. */
- return;
-
- /* If an error occurs, we jump here */
-begin_table_error:
- sqlite3_free(zName);
- return;
-}
-
-/*
-** This macro is used to compare two strings in a case-insensitive manner.
-** It is slightly faster than calling sqlite3StrICmp() directly, but
-** produces larger code.
-**
-** WARNING: This macro is not compatible with the strcmp() family. It
-** returns true if the two strings are equal, otherwise false.
-*/
-#define STRICMP(x, y) (\
-sqlite3UpperToLower[*(unsigned char *)(x)]== \
-sqlite3UpperToLower[*(unsigned char *)(y)] \
-&& sqlite3StrICmp((x)+1,(y)+1)==0 )
-
-/*
-** Add a new column to the table currently being constructed.
-**
-** The parser calls this routine once for each column declaration
-** in a CREATE TABLE statement. sqlite3StartTable() gets called
-** first to get things going. Then this routine is called for each
-** column.
-*/
-void sqlite3AddColumn(Parse *pParse, Token *pName){
- Table *p;
- int i;
- char *z;
- Column *pCol;
- if( (p = pParse->pNewTable)==0 ) return;
- if( p->nCol+1>SQLITE_MAX_COLUMN ){
- sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
- return;
- }
- z = sqlite3NameFromToken(pParse->db, pName);
- if( z==0 ) return;
- for(i=0; inCol; i++){
- if( STRICMP(z, p->aCol[i].zName) ){
- sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
- sqlite3_free(z);
- return;
- }
- }
- if( (p->nCol & 0x7)==0 ){
- Column *aNew;
- aNew = sqlite3DbRealloc(pParse->db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
- if( aNew==0 ){
- sqlite3_free(z);
- return;
- }
- p->aCol = aNew;
- }
- pCol = &p->aCol[p->nCol];
- memset(pCol, 0, sizeof(p->aCol[0]));
- pCol->zName = z;
-
- /* If there is no type specified, columns have the default affinity
- ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
- ** be called next to set pCol->affinity correctly.
- */
- pCol->affinity = SQLITE_AFF_NONE;
- p->nCol++;
-}
-
-/*
-** This routine is called by the parser while in the middle of
-** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
-** been seen on a column. This routine sets the notNull flag on
-** the column currently under construction.
-*/
-void sqlite3AddNotNull(Parse *pParse, int onError){
- Table *p;
- int i;
- if( (p = pParse->pNewTable)==0 ) return;
- i = p->nCol-1;
- if( i>=0 ) p->aCol[i].notNull = onError;
-}
-
-/*
-** Scan the column type name zType (length nType) and return the
-** associated affinity type.
-**
-** This routine does a case-independent search of zType for the
-** substrings in the following table. If one of the substrings is
-** found, the corresponding affinity is returned. If zType contains
-** more than one of the substrings, entries toward the top of
-** the table take priority. For example, if zType is 'BLOBINT',
-** SQLITE_AFF_INTEGER is returned.
-**
-** Substring | Affinity
-** --------------------------------
-** 'INT' | SQLITE_AFF_INTEGER
-** 'CHAR' | SQLITE_AFF_TEXT
-** 'CLOB' | SQLITE_AFF_TEXT
-** 'TEXT' | SQLITE_AFF_TEXT
-** 'BLOB' | SQLITE_AFF_NONE
-** 'REAL' | SQLITE_AFF_REAL
-** 'FLOA' | SQLITE_AFF_REAL
-** 'DOUB' | SQLITE_AFF_REAL
-**
-** If none of the substrings in the above table are found,
-** SQLITE_AFF_NUMERIC is returned.
-*/
-char sqlite3AffinityType(const Token *pType){
- u32 h = 0;
- char aff = SQLITE_AFF_NUMERIC;
- const unsigned char *zIn = pType->z;
- const unsigned char *zEnd = &pType->z[pType->n];
-
- while( zIn!=zEnd ){
- h = (h<<8) + sqlite3UpperToLower[*zIn];
- zIn++;
- if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
- aff = SQLITE_AFF_TEXT;
- }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
- aff = SQLITE_AFF_TEXT;
- }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
- aff = SQLITE_AFF_TEXT;
- }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
- && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
- aff = SQLITE_AFF_NONE;
-#ifndef SQLITE_OMIT_FLOATING_POINT
- }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
- && aff==SQLITE_AFF_NUMERIC ){
- aff = SQLITE_AFF_REAL;
- }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
- && aff==SQLITE_AFF_NUMERIC ){
- aff = SQLITE_AFF_REAL;
- }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
- && aff==SQLITE_AFF_NUMERIC ){
- aff = SQLITE_AFF_REAL;
-#endif
- }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
- aff = SQLITE_AFF_INTEGER;
- break;
- }
- }
-
- return aff;
-}
-
-/*
-** This routine is called by the parser while in the middle of
-** parsing a CREATE TABLE statement. The pFirst token is the first
-** token in the sequence of tokens that describe the type of the
-** column currently under construction. pLast is the last token
-** in the sequence. Use this information to construct a string
-** that contains the typename of the column and store that string
-** in zType.
-*/
-void sqlite3AddColumnType(Parse *pParse, Token *pType){
- Table *p;
- int i;
- Column *pCol;
-
- if( (p = pParse->pNewTable)==0 ) return;
- i = p->nCol-1;
- if( i<0 ) return;
- pCol = &p->aCol[i];
- sqlite3_free(pCol->zType);
- pCol->zType = sqlite3NameFromToken(pParse->db, pType);
- pCol->affinity = sqlite3AffinityType(pType);
-}
-
-/*
-** The expression is the default value for the most recently added column
-** of the table currently under construction.
-**
-** Default value expressions must be constant. Raise an exception if this
-** is not the case.
-**
-** This routine is called by the parser while in the middle of
-** parsing a CREATE TABLE statement.
-*/
-void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
- Table *p;
- Column *pCol;
- if( (p = pParse->pNewTable)!=0 ){
- pCol = &(p->aCol[p->nCol-1]);
- if( !sqlite3ExprIsConstantOrFunction(pExpr) ){
- sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
- pCol->zName);
- }else{
- Expr *pCopy;
- sqlite3 *db = pParse->db;
- sqlite3ExprDelete(pCol->pDflt);
- pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr);
- if( pCopy ){
- sqlite3TokenCopy(db, &pCopy->span, &pExpr->span);
- }
- }
- }
- sqlite3ExprDelete(pExpr);
-}
-
-/*
-** Designate the PRIMARY KEY for the table. pList is a list of names
-** of columns that form the primary key. If pList is NULL, then the
-** most recently added column of the table is the primary key.
-**
-** A table can have at most one primary key. If the table already has
-** a primary key (and this is the second primary key) then create an
-** error.
-**
-** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
-** then we will try to use that column as the rowid. Set the Table.iPKey
-** field of the table under construction to be the index of the
-** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
-** no INTEGER PRIMARY KEY.
-**
-** If the key is not an INTEGER PRIMARY KEY, then create a unique
-** index for the key. No index is created for INTEGER PRIMARY KEYs.
-*/
-void sqlite3AddPrimaryKey(
- Parse *pParse, /* Parsing context */
- ExprList *pList, /* List of field names to be indexed */
- int onError, /* What to do with a uniqueness conflict */
- int autoInc, /* True if the AUTOINCREMENT keyword is present */
- int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
-){
- Table *pTab = pParse->pNewTable;
- char *zType = 0;
- int iCol = -1, i;
- if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
- if( pTab->hasPrimKey ){
- sqlite3ErrorMsg(pParse,
- "table \"%s\" has more than one primary key", pTab->zName);
- goto primary_key_exit;
- }
- pTab->hasPrimKey = 1;
- if( pList==0 ){
- iCol = pTab->nCol - 1;
- pTab->aCol[iCol].isPrimKey = 1;
- }else{
- for(i=0; inExpr; i++){
- for(iCol=0; iColnCol; iCol++){
- if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
- break;
- }
- }
- if( iColnCol ){
- pTab->aCol[iCol].isPrimKey = 1;
- }
- }
- if( pList->nExpr>1 ) iCol = -1;
- }
- if( iCol>=0 && iColnCol ){
- zType = pTab->aCol[iCol].zType;
- }
- if( zType && sqlite3StrICmp(zType, "INTEGER")==0
- && sortOrder==SQLITE_SO_ASC ){
- pTab->iPKey = iCol;
- pTab->keyConf = onError;
- pTab->autoInc = autoInc;
- }else if( autoInc ){
-#ifndef SQLITE_OMIT_AUTOINCREMENT
- sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
- "INTEGER PRIMARY KEY");
-#endif
- }else{
- sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
- pList = 0;
- }
-
-primary_key_exit:
- sqlite3ExprListDelete(pList);
- return;
-}
-
-/*
-** Add a new CHECK constraint to the table currently under construction.
-*/
-void sqlite3AddCheckConstraint(
- Parse *pParse, /* Parsing context */
- Expr *pCheckExpr /* The check expression */
-){
-#ifndef SQLITE_OMIT_CHECK
- Table *pTab = pParse->pNewTable;
- sqlite3 *db = pParse->db;
- if( pTab && !IN_DECLARE_VTAB ){
- /* The CHECK expression must be duplicated so that tokens refer
- ** to malloced space and not the (ephemeral) text of the CREATE TABLE
- ** statement */
- pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck,
- sqlite3ExprDup(db, pCheckExpr));
- }
-#endif
- sqlite3ExprDelete(pCheckExpr);
-}
-
-/*
-** Set the collation function of the most recently parsed table column
-** to the CollSeq given.
-*/
-void sqlite3AddCollateType(Parse *pParse, const char *zType, int nType){
- Table *p;
- int i;
-
- if( (p = pParse->pNewTable)==0 ) return;
- i = p->nCol-1;
-
- if( sqlite3LocateCollSeq(pParse, zType, nType) ){
- Index *pIdx;
- p->aCol[i].zColl = sqlite3DbStrNDup(pParse->db, zType, nType);
-
- /* If the column is declared as " PRIMARY KEY COLLATE ",
- ** then an index may have been created on this column before the
- ** collation type was added. Correct this if it is the case.
- */
- for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
- assert( pIdx->nColumn==1 );
- if( pIdx->aiColumn[0]==i ){
- pIdx->azColl[0] = p->aCol[i].zColl;
- }
- }
- }
-}
-
-/*
-** This function returns the collation sequence for database native text
-** encoding identified by the string zName, length nName.
-**
-** If the requested collation sequence is not available, or not available
-** in the database native encoding, the collation factory is invoked to
-** request it. If the collation factory does not supply such a sequence,
-** and the sequence is available in another text encoding, then that is
-** returned instead.
-**
-** If no versions of the requested collations sequence are available, or
-** another error occurs, NULL is returned and an error message written into
-** pParse.
-**
-** This routine is a wrapper around sqlite3FindCollSeq(). This routine
-** invokes the collation factory if the named collation cannot be found
-** and generates an error message.
-*/
-CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
- sqlite3 *db = pParse->db;
- u8 enc = ENC(db);
- u8 initbusy = db->init.busy;
- CollSeq *pColl;
-
- pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy);
- if( !initbusy && (!pColl || !pColl->xCmp) ){
- pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
- if( !pColl ){
- if( nName<0 ){
- nName = strlen(zName);
- }
- sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
- pColl = 0;
- }
- }
-
- return pColl;
-}
-
-
-/*
-** Generate code that will increment the schema cookie.
-**
-** The schema cookie is used to determine when the schema for the
-** database changes. After each schema change, the cookie value
-** changes. When a process first reads the schema it records the
-** cookie. Thereafter, whenever it goes to access the database,
-** it checks the cookie to make sure the schema has not changed
-** since it was last read.
-**
-** This plan is not completely bullet-proof. It is possible for
-** the schema to change multiple times and for the cookie to be
-** set back to prior value. But schema changes are infrequent
-** and the probability of hitting the same cookie value is only
-** 1 chance in 2^32. So we're safe enough.
-*/
-void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){
- sqlite3VdbeAddOp(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, 0);
- sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 0);
-}
-
-/*
-** Measure the number of characters needed to output the given
-** identifier. The number returned includes any quotes used
-** but does not include the null terminator.
-**
-** The estimate is conservative. It might be larger that what is
-** really needed.
-*/
-static int identLength(const char *z){
- int n;
- for(n=0; *z; n++, z++){
- if( *z=='"' ){ n++; }
- }
- return n + 2;
-}
-
-/*
-** Write an identifier onto the end of the given string. Add
-** quote characters as needed.
-*/
-static void identPut(char *z, int *pIdx, char *zSignedIdent){
- unsigned char *zIdent = (unsigned char*)zSignedIdent;
- int i, j, needQuote;
- i = *pIdx;
- for(j=0; zIdent[j]; j++){
- if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
- }
- needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
- || sqlite3KeywordCode(zIdent, j)!=TK_ID;
- if( needQuote ) z[i++] = '"';
- for(j=0; zIdent[j]; j++){
- z[i++] = zIdent[j];
- if( zIdent[j]=='"' ) z[i++] = '"';
- }
- if( needQuote ) z[i++] = '"';
- z[i] = 0;
- *pIdx = i;
-}
-
-/*
-** Generate a CREATE TABLE statement appropriate for the given
-** table. Memory to hold the text of the statement is obtained
-** from sqliteMalloc() and must be freed by the calling function.
-*/
-static char *createTableStmt(Table *p, int isTemp){
- int i, k, n;
- char *zStmt;
- char *zSep, *zSep2, *zEnd, *z;
- Column *pCol;
- n = 0;
- for(pCol = p->aCol, i=0; inCol; i++, pCol++){
- n += identLength(pCol->zName);
- z = pCol->zType;
- if( z ){
- n += (strlen(z) + 1);
- }
- }
- n += identLength(p->zName);
- if( n<50 ){
- zSep = "";
- zSep2 = ",";
- zEnd = ")";
- }else{
- zSep = "\n ";
- zSep2 = ",\n ";
- zEnd = "\n)";
- }
- n += 35 + 6*p->nCol;
- zStmt = sqlite3_malloc( n );
- if( zStmt==0 ) return 0;
- sqlite3_snprintf(n, zStmt,
- !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE ");
- k = strlen(zStmt);
- identPut(zStmt, &k, p->zName);
- zStmt[k++] = '(';
- for(pCol=p->aCol, i=0; inCol; i++, pCol++){
- sqlite3_snprintf(n-k, &zStmt[k], zSep);
- k += strlen(&zStmt[k]);
- zSep = zSep2;
- identPut(zStmt, &k, pCol->zName);
- if( (z = pCol->zType)!=0 ){
- zStmt[k++] = ' ';
- assert( strlen(z)+k+1<=n );
- sqlite3_snprintf(n-k, &zStmt[k], "%s", z);
- k += strlen(z);
- }
- }
- sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
- return zStmt;
-}
-
-/*
-** This routine is called to report the final ")" that terminates
-** a CREATE TABLE statement.
-**
-** The table structure that other action routines have been building
-** is added to the internal hash tables, assuming no errors have
-** occurred.
-**
-** An entry for the table is made in the master table on disk, unless
-** this is a temporary table or db->init.busy==1. When db->init.busy==1
-** it means we are reading the sqlite_master table because we just
-** connected to the database or because the sqlite_master table has
-** recently changed, so the entry for this table already exists in
-** the sqlite_master table. We do not want to create it again.
-**
-** If the pSelect argument is not NULL, it means that this routine
-** was called to create a table generated from a
-** "CREATE TABLE ... AS SELECT ..." statement. The column names of
-** the new table will match the result set of the SELECT.
-*/
-void sqlite3EndTable(
- Parse *pParse, /* Parse context */
- Token *pCons, /* The ',' token after the last column defn. */
- Token *pEnd, /* The final ')' token in the CREATE TABLE */
- Select *pSelect /* Select from a "CREATE ... AS SELECT" */
-){
- Table *p;
- sqlite3 *db = pParse->db;
- int iDb;
-
- if( (pEnd==0 && pSelect==0) || pParse->nErr || db->mallocFailed ) {
- return;
- }
- p = pParse->pNewTable;
- if( p==0 ) return;
-
- assert( !db->init.busy || !pSelect );
-
- iDb = sqlite3SchemaToIndex(db, p->pSchema);
-
-#ifndef SQLITE_OMIT_CHECK
- /* Resolve names in all CHECK constraint expressions.
- */
- if( p->pCheck ){
- SrcList sSrc; /* Fake SrcList for pParse->pNewTable */
- NameContext sNC; /* Name context for pParse->pNewTable */
-
- memset(&sNC, 0, sizeof(sNC));
- memset(&sSrc, 0, sizeof(sSrc));
- sSrc.nSrc = 1;
- sSrc.a[0].zName = p->zName;
- sSrc.a[0].pTab = p;
- sSrc.a[0].iCursor = -1;
- sNC.pParse = pParse;
- sNC.pSrcList = &sSrc;
- sNC.isCheck = 1;
- if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){
- return;
- }
- }
-#endif /* !defined(SQLITE_OMIT_CHECK) */
-
- /* If the db->init.busy is 1 it means we are reading the SQL off the
- ** "sqlite_master" or "sqlite_temp_master" table on the disk.
- ** So do not write to the disk again. Extract the root page number
- ** for the table from the db->init.newTnum field. (The page number
- ** should have been put there by the sqliteOpenCb routine.)
- */
- if( db->init.busy ){
- p->tnum = db->init.newTnum;
- }
-
- /* If not initializing, then create a record for the new table
- ** in the SQLITE_MASTER table of the database. The record number
- ** for the new table entry should already be on the stack.
- **
- ** If this is a TEMPORARY table, write the entry into the auxiliary
- ** file instead of into the main database file.
- */
- if( !db->init.busy ){
- int n;
- Vdbe *v;
- char *zType; /* "view" or "table" */
- char *zType2; /* "VIEW" or "TABLE" */
- char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
-
- v = sqlite3GetVdbe(pParse);
- if( v==0 ) return;
-
- sqlite3VdbeAddOp(v, OP_Close, 0, 0);
-
- /* Create the rootpage for the new table and push it onto the stack.
- ** A view has no rootpage, so just push a zero onto the stack for
- ** views. Initialize zType at the same time.
- */
- if( p->pSelect==0 ){
- /* A regular table */
- zType = "table";
- zType2 = "TABLE";
-#ifndef SQLITE_OMIT_VIEW
- }else{
- /* A view */
- zType = "view";
- zType2 = "VIEW";
-#endif
- }
-
- /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
- ** statement to populate the new table. The root-page number for the
- ** new table is on the top of the vdbe stack.
- **
- ** Once the SELECT has been coded by sqlite3Select(), it is in a
- ** suitable state to query for the column names and types to be used
- ** by the new table.
- **
- ** A shared-cache write-lock is not required to write to the new table,
- ** as a schema-lock must have already been obtained to create it. Since
- ** a schema-lock excludes all other database users, the write-lock would
- ** be redundant.
- */
- if( pSelect ){
- Table *pSelTab;
- sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
- sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
- sqlite3VdbeAddOp(v, OP_OpenWrite, 1, 0);
- pParse->nTab = 2;
- sqlite3Select(pParse, pSelect, SRT_Table, 1, 0, 0, 0, 0);
- sqlite3VdbeAddOp(v, OP_Close, 1, 0);
- if( pParse->nErr==0 ){
- pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
- if( pSelTab==0 ) return;
- assert( p->aCol==0 );
- p->nCol = pSelTab->nCol;
- p->aCol = pSelTab->aCol;
- pSelTab->nCol = 0;
- pSelTab->aCol = 0;
- sqlite3DeleteTable(pSelTab);
- }
- }
-
- /* Compute the complete text of the CREATE statement */
- if( pSelect ){
- zStmt = createTableStmt(p, p->pSchema==db->aDb[1].pSchema);
- }else{
- n = pEnd->z - pParse->sNameToken.z + 1;
- zStmt = sqlite3MPrintf(db,
- "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
- );
- }
-
- /* A slot for the record has already been allocated in the
- ** SQLITE_MASTER table. We just need to update that slot with all
- ** the information we've collected. The rowid for the preallocated
- ** slot is the 2nd item on the stack. The top of the stack is the
- ** root page for the new table (or a 0 if this is a view).
- */
- sqlite3NestedParse(pParse,
- "UPDATE %Q.%s "
- "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#0, sql=%Q "
- "WHERE rowid=#1",
- db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
- zType,
- p->zName,
- p->zName,
- zStmt
- );
- sqlite3_free(zStmt);
- sqlite3ChangeCookie(db, v, iDb);
-
-#ifndef SQLITE_OMIT_AUTOINCREMENT
- /* Check to see if we need to create an sqlite_sequence table for
- ** keeping track of autoincrement keys.
- */
- if( p->autoInc ){
- Db *pDb = &db->aDb[iDb];
- if( pDb->pSchema->pSeqTab==0 ){
- sqlite3NestedParse(pParse,
- "CREATE TABLE %Q.sqlite_sequence(name,seq)",
- pDb->zName
- );
- }
- }
-#endif
-
- /* Reparse everything to update our internal data structures */
- sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
- sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P3_DYNAMIC);
- }
-
-
- /* Add the table to the in-memory representation of the database.
- */
- if( db->init.busy && pParse->nErr==0 ){
- Table *pOld;
- FKey *pFKey;
- Schema *pSchema = p->pSchema;
- pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p);
- if( pOld ){
- assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
- db->mallocFailed = 1;
- return;
- }
-#ifndef SQLITE_OMIT_FOREIGN_KEY
- for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
- void *data;
- int nTo = strlen(pFKey->zTo) + 1;
- pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo);
- data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey);
- if( data==(void *)pFKey ){
- db->mallocFailed = 1;
- }
- }
-#endif
- pParse->pNewTable = 0;
- db->nTable++;
- db->flags |= SQLITE_InternChanges;
-
-#ifndef SQLITE_OMIT_ALTERTABLE
- if( !p->pSelect ){
- const char *zName = (const char *)pParse->sNameToken.z;
- int nName;
- assert( !pSelect && pCons && pEnd );
- if( pCons->z==0 ){
- pCons = pEnd;
- }
- nName = (const char *)pCons->z - zName;
- p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
- }
-#endif
- }
-}
-
-#ifndef SQLITE_OMIT_VIEW
-/*
-** The parser calls this routine in order to create a new VIEW
-*/
-void sqlite3CreateView(
- Parse *pParse, /* The parsing context */
- Token *pBegin, /* The CREATE token that begins the statement */
- Token *pName1, /* The token that holds the name of the view */
- Token *pName2, /* The token that holds the name of the view */
- Select *pSelect, /* A SELECT statement that will become the new view */
- int isTemp, /* TRUE for a TEMPORARY view */
- int noErr /* Suppress error messages if VIEW already exists */
-){
- Table *p;
- int n;
- const unsigned char *z;
- Token sEnd;
- DbFixer sFix;
- Token *pName;
- int iDb;
- sqlite3 *db = pParse->db;
-
- if( pParse->nVar>0 ){
- sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
- sqlite3SelectDelete(pSelect);
- return;
- }
- sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
- p = pParse->pNewTable;
- if( p==0 || pParse->nErr ){
- sqlite3SelectDelete(pSelect);
- return;
- }
- sqlite3TwoPartName(pParse, pName1, pName2, &pName);
- iDb = sqlite3SchemaToIndex(db, p->pSchema);
- if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
- && sqlite3FixSelect(&sFix, pSelect)
- ){
- sqlite3SelectDelete(pSelect);
- return;
- }
-
- /* Make a copy of the entire SELECT statement that defines the view.
- ** This will force all the Expr.token.z values to be dynamically
- ** allocated rather than point to the input string - which means that
- ** they will persist after the current sqlite3_exec() call returns.
- */
- p->pSelect = sqlite3SelectDup(db, pSelect);
- sqlite3SelectDelete(pSelect);
- if( db->mallocFailed ){
- return;
- }
- if( !db->init.busy ){
- sqlite3ViewGetColumnNames(pParse, p);
- }
-
- /* Locate the end of the CREATE VIEW statement. Make sEnd point to
- ** the end.
- */
- sEnd = pParse->sLastToken;
- if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
- sEnd.z += sEnd.n;
- }
- sEnd.n = 0;
- n = sEnd.z - pBegin->z;
- z = (const unsigned char*)pBegin->z;
- while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
- sEnd.z = &z[n-1];
- sEnd.n = 1;
-
- /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
- sqlite3EndTable(pParse, 0, &sEnd, 0);
- return;
-}
-#endif /* SQLITE_OMIT_VIEW */
-
-#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
-/*
-** The Table structure pTable is really a VIEW. Fill in the names of
-** the columns of the view in the pTable structure. Return the number
-** of errors. If an error is seen leave an error message in pParse->zErrMsg.
-*/
-int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
- Table *pSelTab; /* A fake table from which we get the result set */
- Select *pSel; /* Copy of the SELECT that implements the view */
- int nErr = 0; /* Number of errors encountered */
- int n; /* Temporarily holds the number of cursors assigned */
- sqlite3 *db = pParse->db; /* Database connection for malloc errors */
-
- assert( pTable );
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( sqlite3VtabCallConnect(pParse, pTable) ){
- return SQLITE_ERROR;
- }
- if( IsVirtual(pTable) ) return 0;
-#endif
-
-#ifndef SQLITE_OMIT_VIEW
- /* A positive nCol means the columns names for this view are
- ** already known.
- */
- if( pTable->nCol>0 ) return 0;
-
- /* A negative nCol is a special marker meaning that we are currently
- ** trying to compute the column names. If we enter this routine with
- ** a negative nCol, it means two or more views form a loop, like this:
- **
- ** CREATE VIEW one AS SELECT * FROM two;
- ** CREATE VIEW two AS SELECT * FROM one;
- **
- ** Actually, this error is caught previously and so the following test
- ** should always fail. But we will leave it in place just to be safe.
- */
- if( pTable->nCol<0 ){
- sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
- return 1;
- }
- assert( pTable->nCol>=0 );
-
- /* If we get this far, it means we need to compute the table names.
- ** Note that the call to sqlite3ResultSetOfSelect() will expand any
- ** "*" elements in the results set of the view and will assign cursors
- ** to the elements of the FROM clause. But we do not want these changes
- ** to be permanent. So the computation is done on a copy of the SELECT
- ** statement that defines the view.
- */
- assert( pTable->pSelect );
- pSel = sqlite3SelectDup(db, pTable->pSelect);
- if( pSel ){
- n = pParse->nTab;
- sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
- pTable->nCol = -1;
- pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
- pParse->nTab = n;
- if( pSelTab ){
- assert( pTable->aCol==0 );
- pTable->nCol = pSelTab->nCol;
- pTable->aCol = pSelTab->aCol;
- pSelTab->nCol = 0;
- pSelTab->aCol = 0;
- sqlite3DeleteTable(pSelTab);
- pTable->pSchema->flags |= DB_UnresetViews;
- }else{
- pTable->nCol = 0;
- nErr++;
- }
- sqlite3SelectDelete(pSel);
- } else {
- nErr++;
- }
-#endif /* SQLITE_OMIT_VIEW */
- return nErr;
-}
-#endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
-
-#ifndef SQLITE_OMIT_VIEW
-/*
-** Clear the column names from every VIEW in database idx.
-*/
-static void sqliteViewResetAll(sqlite3 *db, int idx){
- HashElem *i;
- if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
- for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
- Table *pTab = sqliteHashData(i);
- if( pTab->pSelect ){
- sqliteResetColumnNames(pTab);
- }
- }
- DbClearProperty(db, idx, DB_UnresetViews);
-}
-#else
-# define sqliteViewResetAll(A,B)
-#endif /* SQLITE_OMIT_VIEW */
-
-/*
-** This function is called by the VDBE to adjust the internal schema
-** used by SQLite when the btree layer moves a table root page. The
-** root-page of a table or index in database iDb has changed from iFrom
-** to iTo.
-**
-** Ticket #1728: The symbol table might still contain information
-** on tables and/or indices that are the process of being deleted.
-** If you are unlucky, one of those deleted indices or tables might
-** have the same rootpage number as the real table or index that is
-** being moved. So we cannot stop searching after the first match
-** because the first match might be for one of the deleted indices
-** or tables and not the table/index that is actually being moved.
-** We must continue looping until all tables and indices with
-** rootpage==iFrom have been converted to have a rootpage of iTo
-** in order to be certain that we got the right one.
-*/
-#ifndef SQLITE_OMIT_AUTOVACUUM
-void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
- HashElem *pElem;
- Hash *pHash;
-
- pHash = &pDb->pSchema->tblHash;
- for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
- Table *pTab = sqliteHashData(pElem);
- if( pTab->tnum==iFrom ){
- pTab->tnum = iTo;
- }
- }
- pHash = &pDb->pSchema->idxHash;
- for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
- Index *pIdx = sqliteHashData(pElem);
- if( pIdx->tnum==iFrom ){
- pIdx->tnum = iTo;
- }
- }
-}
-#endif
-
-/*
-** Write code to erase the table with root-page iTable from database iDb.
-** Also write code to modify the sqlite_master table and internal schema
-** if a root-page of another table is moved by the btree-layer whilst
-** erasing iTable (this can happen with an auto-vacuum database).
-*/
-static void destroyRootPage(Parse *pParse, int iTable, int iDb){
- Vdbe *v = sqlite3GetVdbe(pParse);
- sqlite3VdbeAddOp(v, OP_Destroy, iTable, iDb);
-#ifndef SQLITE_OMIT_AUTOVACUUM
- /* OP_Destroy pushes an integer onto the stack. If this integer
- ** is non-zero, then it is the root page number of a table moved to
- ** location iTable. The following code modifies the sqlite_master table to
- ** reflect this.
- **
- ** The "#0" in the SQL is a special constant that means whatever value
- ** is on the top of the stack. See sqlite3RegisterExpr().
- */
- sqlite3NestedParse(pParse,
- "UPDATE %Q.%s SET rootpage=%d WHERE #0 AND rootpage=#0",
- pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable);
-#endif
-}
-
-/*
-** Write VDBE code to erase table pTab and all associated indices on disk.
-** Code to update the sqlite_master tables and internal schema definitions
-** in case a root-page belonging to another table is moved by the btree layer
-** is also added (this can happen with an auto-vacuum database).
-*/
-static void destroyTable(Parse *pParse, Table *pTab){
-#ifdef SQLITE_OMIT_AUTOVACUUM
- Index *pIdx;
- int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
- destroyRootPage(pParse, pTab->tnum, iDb);
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- destroyRootPage(pParse, pIdx->tnum, iDb);
- }
-#else
- /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
- ** is not defined), then it is important to call OP_Destroy on the
- ** table and index root-pages in order, starting with the numerically
- ** largest root-page number. This guarantees that none of the root-pages
- ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
- ** following were coded:
- **
- ** OP_Destroy 4 0
- ** ...
- ** OP_Destroy 5 0
- **
- ** and root page 5 happened to be the largest root-page number in the
- ** database, then root page 5 would be moved to page 4 by the
- ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
- ** a free-list page.
- */
- int iTab = pTab->tnum;
- int iDestroyed = 0;
-
- while( 1 ){
- Index *pIdx;
- int iLargest = 0;
-
- if( iDestroyed==0 || iTabpIndex; pIdx; pIdx=pIdx->pNext){
- int iIdx = pIdx->tnum;
- assert( pIdx->pSchema==pTab->pSchema );
- if( (iDestroyed==0 || (iIdxiLargest ){
- iLargest = iIdx;
- }
- }
- if( iLargest==0 ){
- return;
- }else{
- int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
- destroyRootPage(pParse, iLargest, iDb);
- iDestroyed = iLargest;
- }
- }
-#endif
-}
-
-/*
-** This routine is called to do the work of a DROP TABLE statement.
-** pName is the name of the table to be dropped.
-*/
-void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
- Table *pTab;
- Vdbe *v;
- sqlite3 *db = pParse->db;
- int iDb;
-
- if( pParse->nErr || db->mallocFailed ){
- goto exit_drop_table;
- }
- assert( pName->nSrc==1 );
- pTab = sqlite3LocateTable(pParse, pName->a[0].zName, pName->a[0].zDatabase);
-
- if( pTab==0 ){
- if( noErr ){
- sqlite3ErrorClear(pParse);
- }
- goto exit_drop_table;
- }
- iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
- assert( iDb>=0 && iDbnDb );
-#ifndef SQLITE_OMIT_AUTHORIZATION
- {
- int code;
- const char *zTab = SCHEMA_TABLE(iDb);
- const char *zDb = db->aDb[iDb].zName;
- const char *zArg2 = 0;
- if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
- goto exit_drop_table;
- }
- if( isView ){
- if( !OMIT_TEMPDB && iDb==1 ){
- code = SQLITE_DROP_TEMP_VIEW;
- }else{
- code = SQLITE_DROP_VIEW;
- }
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- }else if( IsVirtual(pTab) ){
- if( sqlite3ViewGetColumnNames(pParse, pTab) ){
- goto exit_drop_table;
- }
- code = SQLITE_DROP_VTABLE;
- zArg2 = pTab->pMod->zName;
-#endif
- }else{
- if( !OMIT_TEMPDB && iDb==1 ){
- code = SQLITE_DROP_TEMP_TABLE;
- }else{
- code = SQLITE_DROP_TABLE;
- }
- }
- if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
- goto exit_drop_table;
- }
- if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
- goto exit_drop_table;
- }
- }
-#endif
- if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){
- sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
- goto exit_drop_table;
- }
-
-#ifndef SQLITE_OMIT_VIEW
- /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
- ** on a table.
- */
- if( isView && pTab->pSelect==0 ){
- sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
- goto exit_drop_table;
- }
- if( !isView && pTab->pSelect ){
- sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
- goto exit_drop_table;
- }
-#endif
-
- /* Generate code to remove the table from the master table
- ** on disk.
- */
- v = sqlite3GetVdbe(pParse);
- if( v ){
- Trigger *pTrigger;
- Db *pDb = &db->aDb[iDb];
- sqlite3BeginWriteOperation(pParse, 0, iDb);
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( IsVirtual(pTab) ){
- Vdbe *v = sqlite3GetVdbe(pParse);
- if( v ){
- sqlite3VdbeAddOp(v, OP_VBegin, 0, 0);
- }
- }
-#endif
-
- /* Drop all triggers associated with the table being dropped. Code
- ** is generated to remove entries from sqlite_master and/or
- ** sqlite_temp_master if required.
- */
- pTrigger = pTab->pTrigger;
- while( pTrigger ){
- assert( pTrigger->pSchema==pTab->pSchema ||
- pTrigger->pSchema==db->aDb[1].pSchema );
- sqlite3DropTriggerPtr(pParse, pTrigger);
- pTrigger = pTrigger->pNext;
- }
-
-#ifndef SQLITE_OMIT_AUTOINCREMENT
- /* Remove any entries of the sqlite_sequence table associated with
- ** the table being dropped. This is done before the table is dropped
- ** at the btree level, in case the sqlite_sequence table needs to
- ** move as a result of the drop (can happen in auto-vacuum mode).
- */
- if( pTab->autoInc ){
- sqlite3NestedParse(pParse,
- "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
- pDb->zName, pTab->zName
- );
- }
-#endif
-
- /* Drop all SQLITE_MASTER table and index entries that refer to the
- ** table. The program name loops through the master table and deletes
- ** every row that refers to a table of the same name as the one being
- ** dropped. Triggers are handled seperately because a trigger can be
- ** created in the temp database that refers to a table in another
- ** database.
- */
- sqlite3NestedParse(pParse,
- "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
- pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
- if( !isView && !IsVirtual(pTab) ){
- destroyTable(pParse, pTab);
- }
-
- /* Remove the table entry from SQLite's internal schema and modify
- ** the schema cookie.
- */
- if( IsVirtual(pTab) ){
- sqlite3VdbeOp3(v, OP_VDestroy, iDb, 0, pTab->zName, 0);
- }
- sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0);
- sqlite3ChangeCookie(db, v, iDb);
- }
- sqliteViewResetAll(db, iDb);
-
-exit_drop_table:
- sqlite3SrcListDelete(pName);
-}
-
-/*
-** This routine is called to create a new foreign key on the table
-** currently under construction. pFromCol determines which columns
-** in the current table point to the foreign key. If pFromCol==0 then
-** connect the key to the last column inserted. pTo is the name of
-** the table referred to. pToCol is a list of tables in the other
-** pTo table that the foreign key points to. flags contains all
-** information about the conflict resolution algorithms specified
-** in the ON DELETE, ON UPDATE and ON INSERT clauses.
-**
-** An FKey structure is created and added to the table currently
-** under construction in the pParse->pNewTable field. The new FKey
-** is not linked into db->aFKey at this point - that does not happen
-** until sqlite3EndTable().
-**
-** The foreign key is set for IMMEDIATE processing. A subsequent call
-** to sqlite3DeferForeignKey() might change this to DEFERRED.
-*/
-void sqlite3CreateForeignKey(
- Parse *pParse, /* Parsing context */
- ExprList *pFromCol, /* Columns in this table that point to other table */
- Token *pTo, /* Name of the other table */
- ExprList *pToCol, /* Columns in the other table */
- int flags /* Conflict resolution algorithms. */
-){
-#ifndef SQLITE_OMIT_FOREIGN_KEY
- FKey *pFKey = 0;
- Table *p = pParse->pNewTable;
- int nByte;
- int i;
- int nCol;
- char *z;
-
- assert( pTo!=0 );
- if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end;
- if( pFromCol==0 ){
- int iCol = p->nCol-1;
- if( iCol<0 ) goto fk_end;
- if( pToCol && pToCol->nExpr!=1 ){
- sqlite3ErrorMsg(pParse, "foreign key on %s"
- " should reference only one column of table %T",
- p->aCol[iCol].zName, pTo);
- goto fk_end;
- }
- nCol = 1;
- }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
- sqlite3ErrorMsg(pParse,
- "number of columns in foreign key does not match the number of "
- "columns in the referenced table");
- goto fk_end;
- }else{
- nCol = pFromCol->nExpr;
- }
- nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
- if( pToCol ){
- for(i=0; inExpr; i++){
- nByte += strlen(pToCol->a[i].zName) + 1;
- }
- }
- pFKey = sqlite3DbMallocZero(pParse->db, nByte );
- if( pFKey==0 ){
- goto fk_end;
- }
- pFKey->pFrom = p;
- pFKey->pNextFrom = p->pFKey;
- z = (char*)&pFKey[1];
- pFKey->aCol = (struct sColMap*)z;
- z += sizeof(struct sColMap)*nCol;
- pFKey->zTo = z;
- memcpy(z, pTo->z, pTo->n);
- z[pTo->n] = 0;
- z += pTo->n+1;
- pFKey->pNextTo = 0;
- pFKey->nCol = nCol;
- if( pFromCol==0 ){
- pFKey->aCol[0].iFrom = p->nCol-1;
- }else{
- for(i=0; inCol; j++){
- if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
- pFKey->aCol[i].iFrom = j;
- break;
- }
- }
- if( j>=p->nCol ){
- sqlite3ErrorMsg(pParse,
- "unknown column \"%s\" in foreign key definition",
- pFromCol->a[i].zName);
- goto fk_end;
- }
- }
- }
- if( pToCol ){
- for(i=0; ia[i].zName);
- pFKey->aCol[i].zCol = z;
- memcpy(z, pToCol->a[i].zName, n);
- z[n] = 0;
- z += n+1;
- }
- }
- pFKey->isDeferred = 0;
- pFKey->deleteConf = flags & 0xff;
- pFKey->updateConf = (flags >> 8 ) & 0xff;
- pFKey->insertConf = (flags >> 16 ) & 0xff;
-
- /* Link the foreign key to the table as the last step.
- */
- p->pFKey = pFKey;
- pFKey = 0;
-
-fk_end:
- sqlite3_free(pFKey);
-#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
- sqlite3ExprListDelete(pFromCol);
- sqlite3ExprListDelete(pToCol);
-}
-
-/*
-** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
-** clause is seen as part of a foreign key definition. The isDeferred
-** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
-** The behavior of the most recently created foreign key is adjusted
-** accordingly.
-*/
-void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
-#ifndef SQLITE_OMIT_FOREIGN_KEY
- Table *pTab;
- FKey *pFKey;
- if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
- pFKey->isDeferred = isDeferred;
-#endif
-}
-
-/*
-** Generate code that will erase and refill index *pIdx. This is
-** used to initialize a newly created index or to recompute the
-** content of an index in response to a REINDEX command.
-**
-** if memRootPage is not negative, it means that the index is newly
-** created. The memory cell specified by memRootPage contains the
-** root page number of the index. If memRootPage is negative, then
-** the index already exists and must be cleared before being refilled and
-** the root page number of the index is taken from pIndex->tnum.
-*/
-static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
- Table *pTab = pIndex->pTable; /* The table that is indexed */
- int iTab = pParse->nTab; /* Btree cursor used for pTab */
- int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */
- int addr1; /* Address of top of loop */
- int tnum; /* Root page of index */
- Vdbe *v; /* Generate code into this virtual machine */
- KeyInfo *pKey; /* KeyInfo for index */
- sqlite3 *db = pParse->db; /* The database connection */
- int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
-
-#ifndef SQLITE_OMIT_AUTHORIZATION
- if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
- db->aDb[iDb].zName ) ){
- return;
- }
-#endif
-
- /* Require a write-lock on the table to perform this operation */
- sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
-
- v = sqlite3GetVdbe(pParse);
- if( v==0 ) return;
- if( memRootPage>=0 ){
- sqlite3VdbeAddOp(v, OP_MemLoad, memRootPage, 0);
- tnum = 0;
- }else{
- tnum = pIndex->tnum;
- sqlite3VdbeAddOp(v, OP_Clear, tnum, iDb);
- }
- sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
- pKey = sqlite3IndexKeyinfo(pParse, pIndex);
- sqlite3VdbeOp3(v, OP_OpenWrite, iIdx, tnum, (char *)pKey, P3_KEYINFO_HANDOFF);
- sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
- addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
- sqlite3GenerateIndexKey(v, pIndex, iTab);
- if( pIndex->onError!=OE_None ){
- int curaddr = sqlite3VdbeCurrentAddr(v);
- int addr2 = curaddr+4;
- sqlite3VdbeChangeP2(v, curaddr-1, addr2);
- sqlite3VdbeAddOp(v, OP_Rowid, iTab, 0);
- sqlite3VdbeAddOp(v, OP_AddImm, 1, 0);
- sqlite3VdbeAddOp(v, OP_IsUnique, iIdx, addr2);
- sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort,
- "indexed columns are not unique", P3_STATIC);
- assert( db->mallocFailed || addr2==sqlite3VdbeCurrentAddr(v) );
- }
- sqlite3VdbeAddOp(v, OP_IdxInsert, iIdx, 0);
- sqlite3VdbeAddOp(v, OP_Next, iTab, addr1+1);
- sqlite3VdbeJumpHere(v, addr1);
- sqlite3VdbeAddOp(v, OP_Close, iTab, 0);
- sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
-}
-
-/*
-** Create a new index for an SQL table. pName1.pName2 is the name of the index
-** and pTblList is the name of the table that is to be indexed. Both will
-** be NULL for a primary key or an index that is created to satisfy a
-** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
-** as the table to be indexed. pParse->pNewTable is a table that is
-** currently being constructed by a CREATE TABLE statement.
-**
-** pList is a list of columns to be indexed. pList will be NULL if this
-** is a primary key or unique-constraint on the most recent column added
-** to the table currently under construction.
-*/
-void sqlite3CreateIndex(
- Parse *pParse, /* All information about this parse */
- Token *pName1, /* First part of index name. May be NULL */
- Token *pName2, /* Second part of index name. May be NULL */
- SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
- ExprList *pList, /* A list of columns to be indexed */
- int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
- Token *pStart, /* The CREATE token that begins this statement */
- Token *pEnd, /* The ")" that closes the CREATE INDEX statement */
- int sortOrder, /* Sort order of primary key when pList==NULL */
- int ifNotExist /* Omit error if index already exists */
-){
- Table *pTab = 0; /* Table to be indexed */
- Index *pIndex = 0; /* The index to be created */
- char *zName = 0; /* Name of the index */
- int nName; /* Number of characters in zName */
- int i, j;
- Token nullId; /* Fake token for an empty ID list */
- DbFixer sFix; /* For assigning database names to pTable */
- int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
- sqlite3 *db = pParse->db;
- Db *pDb; /* The specific table containing the indexed database */
- int iDb; /* Index of the database that is being written */
- Token *pName = 0; /* Unqualified name of the index to create */
- struct ExprList_item *pListItem; /* For looping over pList */
- int nCol;
- int nExtra = 0;
- char *zExtra;
-
- if( pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB ){
- goto exit_create_index;
- }
-
- /*
- ** Find the table that is to be indexed. Return early if not found.
- */
- if( pTblName!=0 ){
-
- /* Use the two-part index name to determine the database
- ** to search for the table. 'Fix' the table name to this db
- ** before looking up the table.
- */
- assert( pName1 && pName2 );
- iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
- if( iDb<0 ) goto exit_create_index;
-
-#ifndef SQLITE_OMIT_TEMPDB
- /* If the index name was unqualified, check if the the table
- ** is a temp table. If so, set the database to 1.
- */
- pTab = sqlite3SrcListLookup(pParse, pTblName);
- if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
- iDb = 1;
- }
-#endif
-
- if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
- sqlite3FixSrcList(&sFix, pTblName)
- ){
- /* Because the parser constructs pTblName from a single identifier,
- ** sqlite3FixSrcList can never fail. */
- assert(0);
- }
- pTab = sqlite3LocateTable(pParse, pTblName->a[0].zName,
- pTblName->a[0].zDatabase);
- if( !pTab ) goto exit_create_index;
- assert( db->aDb[iDb].pSchema==pTab->pSchema );
- }else{
- assert( pName==0 );
- pTab = pParse->pNewTable;
- if( !pTab ) goto exit_create_index;
- iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
- }
- pDb = &db->aDb[iDb];
-
- if( pTab==0 || pParse->nErr ) goto exit_create_index;
- if( pTab->readOnly ){
- sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
- goto exit_create_index;
- }
-#ifndef SQLITE_OMIT_VIEW
- if( pTab->pSelect ){
- sqlite3ErrorMsg(pParse, "views may not be indexed");
- goto exit_create_index;
- }
-#endif
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( IsVirtual(pTab) ){
- sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
- goto exit_create_index;
- }
-#endif
-
- /*
- ** Find the name of the index. Make sure there is not already another
- ** index or table with the same name.
- **
- ** Exception: If we are reading the names of permanent indices from the
- ** sqlite_master table (because some other process changed the schema) and
- ** one of the index names collides with the name of a temporary table or
- ** index, then we will continue to process this index.
- **
- ** If pName==0 it means that we are
- ** dealing with a primary key or UNIQUE constraint. We have to invent our
- ** own name.
- */
- if( pName ){
- zName = sqlite3NameFromToken(db, pName);
- if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
- if( zName==0 ) goto exit_create_index;
- if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
- goto exit_create_index;
- }
- if( !db->init.busy ){
- if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
- if( sqlite3FindTable(db, zName, 0)!=0 ){
- sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
- goto exit_create_index;
- }
- }
- if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
- if( !ifNotExist ){
- sqlite3ErrorMsg(pParse, "index %s already exists", zName);
- }
- goto exit_create_index;
- }
- }else{
- char zBuf[30];
- int n;
- Index *pLoop;
- for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
- sqlite3_snprintf(sizeof(zBuf),zBuf,"_%d",n);
- zName = 0;
- sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0);
- if( zName==0 ){
- db->mallocFailed = 1;
- goto exit_create_index;
- }
- }
-
- /* Check for authorization to create an index.
- */
-#ifndef SQLITE_OMIT_AUTHORIZATION
- {
- const char *zDb = pDb->zName;
- if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
- goto exit_create_index;
- }
- i = SQLITE_CREATE_INDEX;
- if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
- if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
- goto exit_create_index;
- }
- }
-#endif
-
- /* If pList==0, it means this routine was called to make a primary
- ** key out of the last column added to the table under construction.
- ** So create a fake list to simulate this.
- */
- if( pList==0 ){
- nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName;
- nullId.n = strlen((char*)nullId.z);
- pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId);
- if( pList==0 ) goto exit_create_index;
- pList->a[0].sortOrder = sortOrder;
- }
-
- /* Figure out how many bytes of space are required to store explicitly
- ** specified collation sequence names.
- */
- for(i=0; inExpr; i++){
- Expr *pExpr = pList->a[i].pExpr;
- if( pExpr ){
- nExtra += (1 + strlen(pExpr->pColl->zName));
- }
- }
-
- /*
- ** Allocate the index structure.
- */
- nName = strlen(zName);
- nCol = pList->nExpr;
- pIndex = sqlite3DbMallocZero(db,
- sizeof(Index) + /* Index structure */
- sizeof(int)*nCol + /* Index.aiColumn */
- sizeof(int)*(nCol+1) + /* Index.aiRowEst */
- sizeof(char *)*nCol + /* Index.azColl */
- sizeof(u8)*nCol + /* Index.aSortOrder */
- nName + 1 + /* Index.zName */
- nExtra /* Collation sequence names */
- );
- if( db->mallocFailed ){
- goto exit_create_index;
- }
- pIndex->azColl = (char**)(&pIndex[1]);
- pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
- pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
- pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
- pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
- zExtra = (char *)(&pIndex->zName[nName+1]);
- memcpy(pIndex->zName, zName, nName+1);
- pIndex->pTable = pTab;
- pIndex->nColumn = pList->nExpr;
- pIndex->onError = onError;
- pIndex->autoIndex = pName==0;
- pIndex->pSchema = db->aDb[iDb].pSchema;
-
- /* Check to see if we should honor DESC requests on index columns
- */
- if( pDb->pSchema->file_format>=4 ){
- sortOrderMask = -1; /* Honor DESC */
- }else{
- sortOrderMask = 0; /* Ignore DESC */
- }
-
- /* Scan the names of the columns of the table to be indexed and
- ** load the column indices into the Index structure. Report an error
- ** if any column is not found.
- */
- for(i=0, pListItem=pList->a; inExpr; i++, pListItem++){
- const char *zColName = pListItem->zName;
- Column *pTabCol;
- int requestedSortOrder;
- char *zColl; /* Collation sequence name */
-
- for(j=0, pTabCol=pTab->aCol; jnCol; j++, pTabCol++){
- if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
- }
- if( j>=pTab->nCol ){
- sqlite3ErrorMsg(pParse, "table %s has no column named %s",
- pTab->zName, zColName);
- goto exit_create_index;
- }
- /* TODO: Add a test to make sure that the same column is not named
- ** more than once within the same index. Only the first instance of
- ** the column will ever be used by the optimizer. Note that using the
- ** same column more than once cannot be an error because that would
- ** break backwards compatibility - it needs to be a warning.
- */
- pIndex->aiColumn[i] = j;
- if( pListItem->pExpr ){
- assert( pListItem->pExpr->pColl );
- zColl = zExtra;
- sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName);
- zExtra += (strlen(zColl) + 1);
- }else{
- zColl = pTab->aCol[j].zColl;
- if( !zColl ){
- zColl = db->pDfltColl->zName;
- }
- }
- if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){
- goto exit_create_index;
- }
- pIndex->azColl[i] = zColl;
- requestedSortOrder = pListItem->sortOrder & sortOrderMask;
- pIndex->aSortOrder[i] = requestedSortOrder;
- }
- sqlite3DefaultRowEst(pIndex);
-
- if( pTab==pParse->pNewTable ){
- /* This routine has been called to create an automatic index as a
- ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
- ** a PRIMARY KEY or UNIQUE clause following the column definitions.
- ** i.e. one of:
- **
- ** CREATE TABLE t(x PRIMARY KEY, y);
- ** CREATE TABLE t(x, y, UNIQUE(x, y));
- **
- ** Either way, check to see if the table already has such an index. If
- ** so, don't bother creating this one. This only applies to
- ** automatically created indices. Users can do as they wish with
- ** explicit indices.
- */
- Index *pIdx;
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- int k;
- assert( pIdx->onError!=OE_None );
- assert( pIdx->autoIndex );
- assert( pIndex->onError!=OE_None );
-
- if( pIdx->nColumn!=pIndex->nColumn ) continue;
- for(k=0; knColumn; k++){
- const char *z1 = pIdx->azColl[k];
- const char *z2 = pIndex->azColl[k];
- if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
- if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break;
- if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
- }
- if( k==pIdx->nColumn ){
- if( pIdx->onError!=pIndex->onError ){
- /* This constraint creates the same index as a previous
- ** constraint specified somewhere in the CREATE TABLE statement.
- ** However the ON CONFLICT clauses are different. If both this
- ** constraint and the previous equivalent constraint have explicit
- ** ON CONFLICT clauses this is an error. Otherwise, use the
- ** explicitly specified behaviour for the index.
- */
- if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
- sqlite3ErrorMsg(pParse,
- "conflicting ON CONFLICT clauses specified", 0);
- }
- if( pIdx->onError==OE_Default ){
- pIdx->onError = pIndex->onError;
- }
- }
- goto exit_create_index;
- }
- }
- }
-
- /* Link the new Index structure to its table and to the other
- ** in-memory database structures.
- */
- if( db->init.busy ){
- Index *p;
- p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
- pIndex->zName, strlen(pIndex->zName)+1, pIndex);
- if( p ){
- assert( p==pIndex ); /* Malloc must have failed */
- db->mallocFailed = 1;
- goto exit_create_index;
- }
- db->flags |= SQLITE_InternChanges;
- if( pTblName!=0 ){
- pIndex->tnum = db->init.newTnum;
- }
- }
-
- /* If the db->init.busy is 0 then create the index on disk. This
- ** involves writing the index into the master table and filling in the
- ** index with the current table contents.
- **
- ** The db->init.busy is 0 when the user first enters a CREATE INDEX
- ** command. db->init.busy is 1 when a database is opened and
- ** CREATE INDEX statements are read out of the master table. In
- ** the latter case the index already exists on disk, which is why
- ** we don't want to recreate it.
- **
- ** If pTblName==0 it means this index is generated as a primary key
- ** or UNIQUE constraint of a CREATE TABLE statement. Since the table
- ** has just been created, it contains no data and the index initialization
- ** step can be skipped.
- */
- else if( db->init.busy==0 ){
- Vdbe *v;
- char *zStmt;
- int iMem = pParse->nMem++;
-
- v = sqlite3GetVdbe(pParse);
- if( v==0 ) goto exit_create_index;
-
-
- /* Create the rootpage for the index
- */
- sqlite3BeginWriteOperation(pParse, 1, iDb);
- sqlite3VdbeAddOp(v, OP_CreateIndex, iDb, 0);
- sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
-
- /* Gather the complete text of the CREATE INDEX statement into
- ** the zStmt variable
- */
- if( pStart && pEnd ){
- /* A named index with an explicit CREATE INDEX statement */
- zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
- onError==OE_None ? "" : " UNIQUE",
- pEnd->z - pName->z + 1,
- pName->z);
- }else{
- /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
- /* zStmt = sqlite3MPrintf(""); */
- zStmt = 0;
- }
-
- /* Add an entry in sqlite_master for this index
- */
- sqlite3NestedParse(pParse,
- "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#0,%Q);",
- db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
- pIndex->zName,
- pTab->zName,
- zStmt
- );
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
- sqlite3_free(zStmt);
-
- /* Fill the index with data and reparse the schema. Code an OP_Expire
- ** to invalidate all pre-compiled statements.
- */
- if( pTblName ){
- sqlite3RefillIndex(pParse, pIndex, iMem);
- sqlite3ChangeCookie(db, v, iDb);
- sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
- sqlite3MPrintf(db, "name='%q'", pIndex->zName), P3_DYNAMIC);
- sqlite3VdbeAddOp(v, OP_Expire, 0, 0);
- }
- }
-
- /* When adding an index to the list of indices for a table, make
- ** sure all indices labeled OE_Replace come after all those labeled
- ** OE_Ignore. This is necessary for the correct operation of UPDATE
- ** and INSERT.
- */
- if( db->init.busy || pTblName==0 ){
- if( onError!=OE_Replace || pTab->pIndex==0
- || pTab->pIndex->onError==OE_Replace){
- pIndex->pNext = pTab->pIndex;
- pTab->pIndex = pIndex;
- }else{
- Index *pOther = pTab->pIndex;
- while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
- pOther = pOther->pNext;
- }
- pIndex->pNext = pOther->pNext;
- pOther->pNext = pIndex;
- }
- pIndex = 0;
- }
-
- /* Clean up before exiting */
-exit_create_index:
- if( pIndex ){
- freeIndex(pIndex);
- }
- sqlite3ExprListDelete(pList);
- sqlite3SrcListDelete(pTblName);
- sqlite3_free(zName);
- return;
-}
-
-/*
-** Generate code to make sure the file format number is at least minFormat.
-** The generated code will increase the file format number if necessary.
-*/
-void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
- Vdbe *v;
- v = sqlite3GetVdbe(pParse);
- if( v ){
- sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1);
- sqlite3VdbeUsesBtree(v, iDb);
- sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0);
- sqlite3VdbeAddOp(v, OP_Ge, 0, sqlite3VdbeCurrentAddr(v)+3);
- sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0);
- sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1);
- }
-}
-
-/*
-** Fill the Index.aiRowEst[] array with default information - information
-** to be used when we have not run the ANALYZE command.
-**
-** aiRowEst[0] is suppose to contain the number of elements in the index.
-** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
-** number of rows in the table that match any particular value of the
-** first column of the index. aiRowEst[2] is an estimate of the number
-** of rows that match any particular combiniation of the first 2 columns
-** of the index. And so forth. It must always be the case that
-*
-** aiRowEst[N]<=aiRowEst[N-1]
-** aiRowEst[N]>=1
-**
-** Apart from that, we have little to go on besides intuition as to
-** how aiRowEst[] should be initialized. The numbers generated here
-** are based on typical values found in actual indices.
-*/
-void sqlite3DefaultRowEst(Index *pIdx){
- unsigned *a = pIdx->aiRowEst;
- int i;
- assert( a!=0 );
- a[0] = 1000000;
- for(i=pIdx->nColumn; i>=5; i--){
- a[i] = 5;
- }
- while( i>=1 ){
- a[i] = 11 - i;
- i--;
- }
- if( pIdx->onError!=OE_None ){
- a[pIdx->nColumn] = 1;
- }
-}
-
-/*
-** This routine will drop an existing named index. This routine
-** implements the DROP INDEX statement.
-*/
-void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
- Index *pIndex;
- Vdbe *v;
- sqlite3 *db = pParse->db;
- int iDb;
-
- if( pParse->nErr || db->mallocFailed ){
- goto exit_drop_index;
- }
- assert( pName->nSrc==1 );
- if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
- goto exit_drop_index;
- }
- pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
- if( pIndex==0 ){
- if( !ifExists ){
- sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
- }
- pParse->checkSchema = 1;
- goto exit_drop_index;
- }
- if( pIndex->autoIndex ){
- sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
- "or PRIMARY KEY constraint cannot be dropped", 0);
- goto exit_drop_index;
- }
- iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
-#ifndef SQLITE_OMIT_AUTHORIZATION
- {
- int code = SQLITE_DROP_INDEX;
- Table *pTab = pIndex->pTable;
- const char *zDb = db->aDb[iDb].zName;
- const char *zTab = SCHEMA_TABLE(iDb);
- if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
- goto exit_drop_index;
- }
- if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
- if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
- goto exit_drop_index;
- }
- }
-#endif
-
- /* Generate code to remove the index and from the master table */
- v = sqlite3GetVdbe(pParse);
- if( v ){
- sqlite3NestedParse(pParse,
- "DELETE FROM %Q.%s WHERE name=%Q",
- db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
- pIndex->zName
- );
- sqlite3ChangeCookie(db, v, iDb);
- destroyRootPage(pParse, pIndex->tnum, iDb);
- sqlite3VdbeOp3(v, OP_DropIndex, iDb, 0, pIndex->zName, 0);
- }
-
-exit_drop_index:
- sqlite3SrcListDelete(pName);
-}
-
-/*
-** pArray is a pointer to an array of objects. Each object in the
-** array is szEntry bytes in size. This routine allocates a new
-** object on the end of the array.
-**
-** *pnEntry is the number of entries already in use. *pnAlloc is
-** the previously allocated size of the array. initSize is the
-** suggested initial array size allocation.
-**
-** The index of the new entry is returned in *pIdx.
-**
-** This routine returns a pointer to the array of objects. This
-** might be the same as the pArray parameter or it might be a different
-** pointer if the array was resized.
-*/
-void *sqlite3ArrayAllocate(
- sqlite3 *db, /* Connection to notify of malloc failures */
- void *pArray, /* Array of objects. Might be reallocated */
- int szEntry, /* Size of each object in the array */
- int initSize, /* Suggested initial allocation, in elements */
- int *pnEntry, /* Number of objects currently in use */
- int *pnAlloc, /* Current size of the allocation, in elements */
- int *pIdx /* Write the index of a new slot here */
-){
- char *z;
- if( *pnEntry >= *pnAlloc ){
- void *pNew;
- int newSize;
- newSize = (*pnAlloc)*2 + initSize;
- pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
- if( pNew==0 ){
- *pIdx = -1;
- return pArray;
- }
- *pnAlloc = newSize;
- pArray = pNew;
- }
- z = (char*)pArray;
- memset(&z[*pnEntry * szEntry], 0, szEntry);
- *pIdx = *pnEntry;
- ++*pnEntry;
- return pArray;
-}
-
-/*
-** Append a new element to the given IdList. Create a new IdList if
-** need be.
-**
-** A new IdList is returned, or NULL if malloc() fails.
-*/
-IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
- int i;
- if( pList==0 ){
- pList = sqlite3DbMallocZero(db, sizeof(IdList) );
- if( pList==0 ) return 0;
- pList->nAlloc = 0;
- }
- pList->a = sqlite3ArrayAllocate(
- db,
- pList->a,
- sizeof(pList->a[0]),
- 5,
- &pList->nId,
- &pList->nAlloc,
- &i
- );
- if( i<0 ){
- sqlite3IdListDelete(pList);
- return 0;
- }
- pList->a[i].zName = sqlite3NameFromToken(db, pToken);
- return pList;
-}
-
-/*
-** Delete an IdList.
-*/
-void sqlite3IdListDelete(IdList *pList){
- int i;
- if( pList==0 ) return;
- for(i=0; inId; i++){
- sqlite3_free(pList->a[i].zName);
- }
- sqlite3_free(pList->a);
- sqlite3_free(pList);
-}
-
-/*
-** Return the index in pList of the identifier named zId. Return -1
-** if not found.
-*/
-int sqlite3IdListIndex(IdList *pList, const char *zName){
- int i;
- if( pList==0 ) return -1;
- for(i=0; inId; i++){
- if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
- }
- return -1;
-}
-
-/*
-** Append a new table name to the given SrcList. Create a new SrcList if
-** need be. A new entry is created in the SrcList even if pToken is NULL.
-**
-** A new SrcList is returned, or NULL if malloc() fails.
-**
-** If pDatabase is not null, it means that the table has an optional
-** database name prefix. Like this: "database.table". The pDatabase
-** points to the table name and the pTable points to the database name.
-** The SrcList.a[].zName field is filled with the table name which might
-** come from pTable (if pDatabase is NULL) or from pDatabase.
-** SrcList.a[].zDatabase is filled with the database name from pTable,
-** or with NULL if no database is specified.
-**
-** In other words, if call like this:
-**
-** sqlite3SrcListAppend(D,A,B,0);
-**
-** Then B is a table name and the database name is unspecified. If called
-** like this:
-**
-** sqlite3SrcListAppend(D,A,B,C);
-**
-** Then C is the table name and B is the database name.
-*/
-SrcList *sqlite3SrcListAppend(
- sqlite3 *db, /* Connection to notify of malloc failures */
- SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
- Token *pTable, /* Table to append */
- Token *pDatabase /* Database of the table */
-){
- struct SrcList_item *pItem;
- if( pList==0 ){
- pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
- if( pList==0 ) return 0;
- pList->nAlloc = 1;
- }
- if( pList->nSrc>=pList->nAlloc ){
- SrcList *pNew;
- pList->nAlloc *= 2;
- pNew = sqlite3DbRealloc(db, pList,
- sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
- if( pNew==0 ){
- sqlite3SrcListDelete(pList);
- return 0;
- }
- pList = pNew;
- }
- pItem = &pList->a[pList->nSrc];
- memset(pItem, 0, sizeof(pList->a[0]));
- if( pDatabase && pDatabase->z==0 ){
- pDatabase = 0;
- }
- if( pDatabase && pTable ){
- Token *pTemp = pDatabase;
- pDatabase = pTable;
- pTable = pTemp;
- }
- pItem->zName = sqlite3NameFromToken(db, pTable);
- pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
- pItem->iCursor = -1;
- pItem->isPopulated = 0;
- pList->nSrc++;
- return pList;
-}
-
-/*
-** Assign cursors to all tables in a SrcList
-*/
-void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
- int i;
- struct SrcList_item *pItem;
- assert(pList || pParse->db->mallocFailed );
- if( pList ){
- for(i=0, pItem=pList->a; inSrc; i++, pItem++){
- if( pItem->iCursor>=0 ) break;
- pItem->iCursor = pParse->nTab++;
- if( pItem->pSelect ){
- sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
- }
- }
- }
-}
-
-/*
-** Delete an entire SrcList including all its substructure.
-*/
-void sqlite3SrcListDelete(SrcList *pList){
- int i;
- struct SrcList_item *pItem;
- if( pList==0 ) return;
- for(pItem=pList->a, i=0; inSrc; i++, pItem++){
- sqlite3_free(pItem->zDatabase);
- sqlite3_free(pItem->zName);
- sqlite3_free(pItem->zAlias);
- sqlite3DeleteTable(pItem->pTab);
- sqlite3SelectDelete(pItem->pSelect);
- sqlite3ExprDelete(pItem->pOn);
- sqlite3IdListDelete(pItem->pUsing);
- }
- sqlite3_free(pList);
-}
-
-/*
-** This routine is called by the parser to add a new term to the
-** end of a growing FROM clause. The "p" parameter is the part of
-** the FROM clause that has already been constructed. "p" is NULL
-** if this is the first term of the FROM clause. pTable and pDatabase
-** are the name of the table and database named in the FROM clause term.
-** pDatabase is NULL if the database name qualifier is missing - the
-** usual case. If the term has a alias, then pAlias points to the
-** alias token. If the term is a subquery, then pSubquery is the
-** SELECT statement that the subquery encodes. The pTable and
-** pDatabase parameters are NULL for subqueries. The pOn and pUsing
-** parameters are the content of the ON and USING clauses.
-**
-** Return a new SrcList which encodes is the FROM with the new
-** term added.
-*/
-SrcList *sqlite3SrcListAppendFromTerm(
- Parse *pParse, /* Parsing context */
- SrcList *p, /* The left part of the FROM clause already seen */
- Token *pTable, /* Name of the table to add to the FROM clause */
- Token *pDatabase, /* Name of the database containing pTable */
- Token *pAlias, /* The right-hand side of the AS subexpression */
- Select *pSubquery, /* A subquery used in place of a table name */
- Expr *pOn, /* The ON clause of a join */
- IdList *pUsing /* The USING clause of a join */
-){
- struct SrcList_item *pItem;
- sqlite3 *db = pParse->db;
- p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
- if( p==0 || p->nSrc==0 ){
- sqlite3ExprDelete(pOn);
- sqlite3IdListDelete(pUsing);
- sqlite3SelectDelete(pSubquery);
- return p;
- }
- pItem = &p->a[p->nSrc-1];
- if( pAlias && pAlias->n ){
- pItem->zAlias = sqlite3NameFromToken(db, pAlias);
- }
- pItem->pSelect = pSubquery;
- pItem->pOn = pOn;
- pItem->pUsing = pUsing;
- return p;
-}
-
-/*
-** When building up a FROM clause in the parser, the join operator
-** is initially attached to the left operand. But the code generator
-** expects the join operator to be on the right operand. This routine
-** Shifts all join operators from left to right for an entire FROM
-** clause.
-**
-** Example: Suppose the join is like this:
-**
-** A natural cross join B
-**
-** The operator is "natural cross join". The A and B operands are stored
-** in p->a[0] and p->a[1], respectively. The parser initially stores the
-** operator with A. This routine shifts that operator over to B.
-*/
-void sqlite3SrcListShiftJoinType(SrcList *p){
- if( p && p->a ){
- int i;
- for(i=p->nSrc-1; i>0; i--){
- p->a[i].jointype = p->a[i-1].jointype;
- }
- p->a[0].jointype = 0;
- }
-}
-
-/*
-** Begin a transaction
-*/
-void sqlite3BeginTransaction(Parse *pParse, int type){
- sqlite3 *db;
- Vdbe *v;
- int i;
-
- if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
- if( pParse->nErr || db->mallocFailed ) return;
- if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
-
- v = sqlite3GetVdbe(pParse);
- if( !v ) return;
- if( type!=TK_DEFERRED ){
- for(i=0; inDb; i++){
- sqlite3VdbeAddOp(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
- sqlite3VdbeUsesBtree(v, i);
- }
- }
- sqlite3VdbeAddOp(v, OP_AutoCommit, 0, 0);
-}
-
-/*
-** Commit a transaction
-*/
-void sqlite3CommitTransaction(Parse *pParse){
- sqlite3 *db;
- Vdbe *v;
-
- if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
- if( pParse->nErr || db->mallocFailed ) return;
- if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
-
- v = sqlite3GetVdbe(pParse);
- if( v ){
- sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 0);
- }
-}
-
-/*
-** Rollback a transaction
-*/
-void sqlite3RollbackTransaction(Parse *pParse){
- sqlite3 *db;
- Vdbe *v;
-
- if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
- if( pParse->nErr || db->mallocFailed ) return;
- if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
-
- v = sqlite3GetVdbe(pParse);
- if( v ){
- sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 1);
- }
-}
-
-/*
-** Make sure the TEMP database is open and available for use. Return
-** the number of errors. Leave any error messages in the pParse structure.
-*/
-int sqlite3OpenTempDatabase(Parse *pParse){
- sqlite3 *db = pParse->db;
- if( db->aDb[1].pBt==0 && !pParse->explain ){
- int rc;
- static const int flags =
- SQLITE_OPEN_READWRITE |
- SQLITE_OPEN_CREATE |
- SQLITE_OPEN_EXCLUSIVE |
- SQLITE_OPEN_DELETEONCLOSE |
- SQLITE_OPEN_TEMP_DB;
-
- rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags,
- &db->aDb[1].pBt);
- if( rc!=SQLITE_OK ){
- sqlite3ErrorMsg(pParse, "unable to open a temporary database "
- "file for storing temporary tables");
- pParse->rc = rc;
- return 1;
- }
- if( db->flags & !db->autoCommit ){
- rc = sqlite3BtreeBeginTrans(db->aDb[1].pBt, 1);
- if( rc!=SQLITE_OK ){
- sqlite3ErrorMsg(pParse, "unable to get a write lock on "
- "the temporary database file");
- pParse->rc = rc;
- return 1;
- }
- }
- assert( db->aDb[1].pSchema );
- }
- return 0;
-}
-
-/*
-** Generate VDBE code that will verify the schema cookie and start
-** a read-transaction for all named database files.
-**
-** It is important that all schema cookies be verified and all
-** read transactions be started before anything else happens in
-** the VDBE program. But this routine can be called after much other
-** code has been generated. So here is what we do:
-**
-** The first time this routine is called, we code an OP_Goto that
-** will jump to a subroutine at the end of the program. Then we
-** record every database that needs its schema verified in the
-** pParse->cookieMask field. Later, after all other code has been
-** generated, the subroutine that does the cookie verifications and
-** starts the transactions will be coded and the OP_Goto P2 value
-** will be made to point to that subroutine. The generation of the
-** cookie verification subroutine code happens in sqlite3FinishCoding().
-**
-** If iDb<0 then code the OP_Goto only - don't set flag to verify the
-** schema on any databases. This can be used to position the OP_Goto
-** early in the code, before we know if any database tables will be used.
-*/
-void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
- sqlite3 *db;
- Vdbe *v;
- int mask;
-
- v = sqlite3GetVdbe(pParse);
- if( v==0 ) return; /* This only happens if there was a prior error */
- db = pParse->db;
- if( pParse->cookieGoto==0 ){
- pParse->cookieGoto = sqlite3VdbeAddOp(v, OP_Goto, 0, 0)+1;
- }
- if( iDb>=0 ){
- assert( iDbnDb );
- assert( db->aDb[iDb].pBt!=0 || iDb==1 );
- assert( iDbcookieMask & mask)==0 ){
- pParse->cookieMask |= mask;
- pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
- if( !OMIT_TEMPDB && iDb==1 ){
- sqlite3OpenTempDatabase(pParse);
- }
- }
- }
-}
-
-/*
-** Generate VDBE code that prepares for doing an operation that
-** might change the database.
-**
-** This routine starts a new transaction if we are not already within
-** a transaction. If we are already within a transaction, then a checkpoint
-** is set if the setStatement parameter is true. A checkpoint should
-** be set for operations that might fail (due to a constraint) part of
-** the way through and which will need to undo some writes without having to
-** rollback the whole transaction. For operations where all constraints
-** can be checked before any changes are made to the database, it is never
-** necessary to undo a write and the checkpoint should not be set.
-**
-** Only database iDb and the temp database are made writable by this call.
-** If iDb==0, then the main and temp databases are made writable. If
-** iDb==1 then only the temp database is made writable. If iDb>1 then the
-** specified auxiliary database and the temp database are made writable.
-*/
-void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
- Vdbe *v = sqlite3GetVdbe(pParse);
- if( v==0 ) return;
- sqlite3CodeVerifySchema(pParse, iDb);
- pParse->writeMask |= 1<nested==0 ){
- sqlite3VdbeAddOp(v, OP_Statement, iDb, 0);
- }
- if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
- sqlite3BeginWriteOperation(pParse, setStatement, 1);
- }
-}
-
-/*
-** Check to see if pIndex uses the collating sequence pColl. Return
-** true if it does and false if it does not.
-*/
-#ifndef SQLITE_OMIT_REINDEX
-static int collationMatch(const char *zColl, Index *pIndex){
- int i;
- for(i=0; inColumn; i++){
- const char *z = pIndex->azColl[i];
- if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){
- return 1;
- }
- }
- return 0;
-}
-#endif
-
-/*
-** Recompute all indices of pTab that use the collating sequence pColl.
-** If pColl==0 then recompute all indices of pTab.
-*/
-#ifndef SQLITE_OMIT_REINDEX
-static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
- Index *pIndex; /* An index associated with pTab */
-
- for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
- if( zColl==0 || collationMatch(zColl, pIndex) ){
- int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
- sqlite3BeginWriteOperation(pParse, 0, iDb);
- sqlite3RefillIndex(pParse, pIndex, -1);
- }
- }
-}
-#endif
-
-/*
-** Recompute all indices of all tables in all databases where the
-** indices use the collating sequence pColl. If pColl==0 then recompute
-** all indices everywhere.
-*/
-#ifndef SQLITE_OMIT_REINDEX
-static void reindexDatabases(Parse *pParse, char const *zColl){
- Db *pDb; /* A single database */
- int iDb; /* The database index number */
- sqlite3 *db = pParse->db; /* The database connection */
- HashElem *k; /* For looping over tables in pDb */
- Table *pTab; /* A table in the database */
-
- for(iDb=0, pDb=db->aDb; iDbnDb; iDb++, pDb++){
- assert( pDb!=0 );
- for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
- pTab = (Table*)sqliteHashData(k);
- reindexTable(pParse, pTab, zColl);
- }
- }
-}
-#endif
-
-/*
-** Generate code for the REINDEX command.
-**
-** REINDEX -- 1
-** REINDEX -- 2
-** REINDEX ?.? -- 3
-** REINDEX ?.? -- 4
-**
-** Form 1 causes all indices in all attached databases to be rebuilt.
-** Form 2 rebuilds all indices in all databases that use the named
-** collating function. Forms 3 and 4 rebuild the named index or all
-** indices associated with the named table.
-*/
-#ifndef SQLITE_OMIT_REINDEX
-void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
- CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
- char *z; /* Name of a table or index */
- const char *zDb; /* Name of the database */
- Table *pTab; /* A table in the database */
- Index *pIndex; /* An index associated with pTab */
- int iDb; /* The database index number */
- sqlite3 *db = pParse->db; /* The database connection */
- Token *pObjName; /* Name of the table or index to be reindexed */
-
- /* Read the database schema. If an error occurs, leave an error message
- ** and code in pParse and return NULL. */
- if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
- return;
- }
-
- if( pName1==0 || pName1->z==0 ){
- reindexDatabases(pParse, 0);
- return;
- }else if( pName2==0 || pName2->z==0 ){
- assert( pName1->z );
- pColl = sqlite3FindCollSeq(db, ENC(db), (char*)pName1->z, pName1->n, 0);
- if( pColl ){
- char *zColl = sqlite3DbStrNDup(db, (const char *)pName1->z, pName1->n);
- if( zColl ){
- reindexDatabases(pParse, zColl);
- sqlite3_free(zColl);
- }
- return;
- }
- }
- iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
- if( iDb<0 ) return;
- z = sqlite3NameFromToken(db, pObjName);
- if( z==0 ) return;
- zDb = db->aDb[iDb].zName;
- pTab = sqlite3FindTable(db, z, zDb);
- if( pTab ){
- reindexTable(pParse, pTab, 0);
- sqlite3_free(z);
- return;
- }
- pIndex = sqlite3FindIndex(db, z, zDb);
- sqlite3_free(z);
- if( pIndex ){
- sqlite3BeginWriteOperation(pParse, 0, iDb);
- sqlite3RefillIndex(pParse, pIndex, -1);
- return;
- }
- sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
-}
-#endif
-
-/*
-** Return a dynamicly allocated KeyInfo structure that can be used
-** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
-**
-** If successful, a pointer to the new structure is returned. In this case
-** the caller is responsible for calling sqlite3_free() on the returned
-** pointer. If an error occurs (out of memory or missing collation
-** sequence), NULL is returned and the state of pParse updated to reflect
-** the error.
-*/
-KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
- int i;
- int nCol = pIdx->nColumn;
- int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
- KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(pParse->db, nBytes);
-
- if( pKey ){
- pKey->db = pParse->db;
- pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
- assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
- for(i=0; iazColl[i];
- assert( zColl );
- pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1);
- pKey->aSortOrder[i] = pIdx->aSortOrder[i];
- }
- pKey->nField = nCol;
- }
-
- if( pParse->nErr ){
- sqlite3_free(pKey);
- pKey = 0;
- }
- return pKey;
-}
diff --git a/extensions/sqlite/sqlite-source/callback.c b/extensions/sqlite/sqlite-source/callback.c
deleted file mode 100644
index e5a41c72..00000000
--- a/extensions/sqlite/sqlite-source/callback.c
+++ /dev/null
@@ -1,378 +0,0 @@
-/*
-** 2005 May 23
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-**
-** This file contains functions used to access the internal hash tables
-** of user defined functions and collation sequences.
-**
-** $Id$
-*/
-
-#include "sqliteInt.h"
-
-/*
-** Invoke the 'collation needed' callback to request a collation sequence
-** in the database text encoding of name zName, length nName.
-** If the collation sequence
-*/
-static void callCollNeeded(sqlite3 *db, const char *zName, int nName){
- assert( !db->xCollNeeded || !db->xCollNeeded16 );
- if( nName<0 ) nName = strlen(zName);
- if( db->xCollNeeded ){
- char *zExternal = sqlite3DbStrNDup(db, zName, nName);
- if( !zExternal ) return;
- db->xCollNeeded(db->pCollNeededArg, db, (int)ENC(db), zExternal);
- sqlite3_free(zExternal);
- }
-#ifndef SQLITE_OMIT_UTF16
- if( db->xCollNeeded16 ){
- char const *zExternal;
- sqlite3_value *pTmp = sqlite3ValueNew(db);
- sqlite3ValueSetStr(pTmp, nName, zName, SQLITE_UTF8, SQLITE_STATIC);
- zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE);
- if( zExternal ){
- db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal);
- }
- sqlite3ValueFree(pTmp);
- }
-#endif
-}
-
-/*
-** This routine is called if the collation factory fails to deliver a
-** collation function in the best encoding but there may be other versions
-** of this collation function (for other text encodings) available. Use one
-** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if
-** possible.
-*/
-static int synthCollSeq(sqlite3 *db, CollSeq *pColl){
- CollSeq *pColl2;
- char *z = pColl->zName;
- int n = strlen(z);
- int i;
- static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 };
- for(i=0; i<3; i++){
- pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, n, 0);
- if( pColl2->xCmp!=0 ){
- memcpy(pColl, pColl2, sizeof(CollSeq));
- pColl->xDel = 0; /* Do not copy the destructor */
- return SQLITE_OK;
- }
- }
- return SQLITE_ERROR;
-}
-
-/*
-** This function is responsible for invoking the collation factory callback
-** or substituting a collation sequence of a different encoding when the
-** requested collation sequence is not available in the database native
-** encoding.
-**
-** If it is not NULL, then pColl must point to the database native encoding
-** collation sequence with name zName, length nName.
-**
-** The return value is either the collation sequence to be used in database
-** db for collation type name zName, length nName, or NULL, if no collation
-** sequence can be found.
-*/
-CollSeq *sqlite3GetCollSeq(
- sqlite3* db,
- CollSeq *pColl,
- const char *zName,
- int nName
-){
- CollSeq *p;
-
- p = pColl;
- if( !p ){
- p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0);
- }
- if( !p || !p->xCmp ){
- /* No collation sequence of this type for this encoding is registered.
- ** Call the collation factory to see if it can supply us with one.
- */
- callCollNeeded(db, zName, nName);
- p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0);
- }
- if( p && !p->xCmp && synthCollSeq(db, p) ){
- p = 0;
- }
- assert( !p || p->xCmp );
- return p;
-}
-
-/*
-** This routine is called on a collation sequence before it is used to
-** check that it is defined. An undefined collation sequence exists when
-** a database is loaded that contains references to collation sequences
-** that have not been defined by sqlite3_create_collation() etc.
-**
-** If required, this routine calls the 'collation needed' callback to
-** request a definition of the collating sequence. If this doesn't work,
-** an equivalent collating sequence that uses a text encoding different
-** from the main database is substituted, if one is available.
-*/
-int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){
- if( pColl ){
- const char *zName = pColl->zName;
- CollSeq *p = sqlite3GetCollSeq(pParse->db, pColl, zName, -1);
- if( !p ){
- if( pParse->nErr==0 ){
- sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
- }
- pParse->nErr++;
- return SQLITE_ERROR;
- }
- assert( p==pColl );
- }
- return SQLITE_OK;
-}
-
-
-
-/*
-** Locate and return an entry from the db.aCollSeq hash table. If the entry
-** specified by zName and nName is not found and parameter 'create' is
-** true, then create a new entry. Otherwise return NULL.
-**
-** Each pointer stored in the sqlite3.aCollSeq hash table contains an
-** array of three CollSeq structures. The first is the collation sequence
-** prefferred for UTF-8, the second UTF-16le, and the third UTF-16be.
-**
-** Stored immediately after the three collation sequences is a copy of
-** the collation sequence name. A pointer to this string is stored in
-** each collation sequence structure.
-*/
-static CollSeq *findCollSeqEntry(
- sqlite3 *db,
- const char *zName,
- int nName,
- int create
-){
- CollSeq *pColl;
- if( nName<0 ) nName = strlen(zName);
- pColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
-
- if( 0==pColl && create ){
- pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName + 1 );
- if( pColl ){
- CollSeq *pDel = 0;
- pColl[0].zName = (char*)&pColl[3];
- pColl[0].enc = SQLITE_UTF8;
- pColl[1].zName = (char*)&pColl[3];
- pColl[1].enc = SQLITE_UTF16LE;
- pColl[2].zName = (char*)&pColl[3];
- pColl[2].enc = SQLITE_UTF16BE;
- memcpy(pColl[0].zName, zName, nName);
- pColl[0].zName[nName] = 0;
- pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, nName, pColl);
-
- /* If a malloc() failure occured in sqlite3HashInsert(), it will
- ** return the pColl pointer to be deleted (because it wasn't added
- ** to the hash table).
- */
- assert( pDel==0 || pDel==pColl );
- if( pDel!=0 ){
- db->mallocFailed = 1;
- sqlite3_free(pDel);
- pColl = 0;
- }
- }
- }
- return pColl;
-}
-
-/*
-** Parameter zName points to a UTF-8 encoded string nName bytes long.
-** Return the CollSeq* pointer for the collation sequence named zName
-** for the encoding 'enc' from the database 'db'.
-**
-** If the entry specified is not found and 'create' is true, then create a
-** new entry. Otherwise return NULL.
-**
-** A separate function sqlite3LocateCollSeq() is a wrapper around
-** this routine. sqlite3LocateCollSeq() invokes the collation factory
-** if necessary and generates an error message if the collating sequence
-** cannot be found.
-*/
-CollSeq *sqlite3FindCollSeq(
- sqlite3 *db,
- u8 enc,
- const char *zName,
- int nName,
- int create
-){
- CollSeq *pColl;
- if( zName ){
- pColl = findCollSeqEntry(db, zName, nName, create);
- }else{
- pColl = db->pDfltColl;
- }
- assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
- assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE );
- if( pColl ) pColl += enc-1;
- return pColl;
-}
-
-/*
-** Locate a user function given a name, a number of arguments and a flag
-** indicating whether the function prefers UTF-16 over UTF-8. Return a
-** pointer to the FuncDef structure that defines that function, or return
-** NULL if the function does not exist.
-**
-** If the createFlag argument is true, then a new (blank) FuncDef
-** structure is created and liked into the "db" structure if a
-** no matching function previously existed. When createFlag is true
-** and the nArg parameter is -1, then only a function that accepts
-** any number of arguments will be returned.
-**
-** If createFlag is false and nArg is -1, then the first valid
-** function found is returned. A function is valid if either xFunc
-** or xStep is non-zero.
-**
-** If createFlag is false, then a function with the required name and
-** number of arguments may be returned even if the eTextRep flag does not
-** match that requested.
-*/
-FuncDef *sqlite3FindFunction(
- sqlite3 *db, /* An open database */
- const char *zName, /* Name of the function. Not null-terminated */
- int nName, /* Number of characters in the name */
- int nArg, /* Number of arguments. -1 means any number */
- u8 enc, /* Preferred text encoding */
- int createFlag /* Create new entry if true and does not otherwise exist */
-){
- FuncDef *p; /* Iterator variable */
- FuncDef *pFirst; /* First function with this name */
- FuncDef *pBest = 0; /* Best match found so far */
- int bestmatch = 0;
-
-
- assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
- if( nArg<-1 ) nArg = -1;
-
- pFirst = (FuncDef*)sqlite3HashFind(&db->aFunc, zName, nName);
- for(p=pFirst; p; p=p->pNext){
- /* During the search for the best function definition, bestmatch is set
- ** as follows to indicate the quality of the match with the definition
- ** pointed to by pBest:
- **
- ** 0: pBest is NULL. No match has been found.
- ** 1: A variable arguments function that prefers UTF-8 when a UTF-16
- ** encoding is requested, or vice versa.
- ** 2: A variable arguments function that uses UTF-16BE when UTF-16LE is
- ** requested, or vice versa.
- ** 3: A variable arguments function using the same text encoding.
- ** 4: A function with the exact number of arguments requested that
- ** prefers UTF-8 when a UTF-16 encoding is requested, or vice versa.
- ** 5: A function with the exact number of arguments requested that
- ** prefers UTF-16LE when UTF-16BE is requested, or vice versa.
- ** 6: An exact match.
- **
- ** A larger value of 'matchqual' indicates a more desirable match.
- */
- if( p->nArg==-1 || p->nArg==nArg || nArg==-1 ){
- int match = 1; /* Quality of this match */
- if( p->nArg==nArg || nArg==-1 ){
- match = 4;
- }
- if( enc==p->iPrefEnc ){
- match += 2;
- }
- else if( (enc==SQLITE_UTF16LE && p->iPrefEnc==SQLITE_UTF16BE) ||
- (enc==SQLITE_UTF16BE && p->iPrefEnc==SQLITE_UTF16LE) ){
- match += 1;
- }
-
- if( match>bestmatch ){
- pBest = p;
- bestmatch = match;
- }
- }
- }
-
- /* If the createFlag parameter is true, and the seach did not reveal an
- ** exact match for the name, number of arguments and encoding, then add a
- ** new entry to the hash table and return it.
- */
- if( createFlag && bestmatch<6 &&
- (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName))!=0 ){
- pBest->nArg = nArg;
- pBest->pNext = pFirst;
- pBest->iPrefEnc = enc;
- memcpy(pBest->zName, zName, nName);
- pBest->zName[nName] = 0;
- if( pBest==sqlite3HashInsert(&db->aFunc,pBest->zName,nName,(void*)pBest) ){
- db->mallocFailed = 1;
- sqlite3_free(pBest);
- return 0;
- }
- }
-
- if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){
- return pBest;
- }
- return 0;
-}
-
-/*
-** Free all resources held by the schema structure. The void* argument points
-** at a Schema struct. This function does not call sqlite3_free() on the
-** pointer itself, it just cleans up subsiduary resources (i.e. the contents
-** of the schema hash tables).
-*/
-void sqlite3SchemaFree(void *p){
- Hash temp1;
- Hash temp2;
- HashElem *pElem;
- Schema *pSchema = (Schema *)p;
-
- temp1 = pSchema->tblHash;
- temp2 = pSchema->trigHash;
- sqlite3HashInit(&pSchema->trigHash, SQLITE_HASH_STRING, 0);
- sqlite3HashClear(&pSchema->aFKey);
- sqlite3HashClear(&pSchema->idxHash);
- for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
- sqlite3DeleteTrigger((Trigger*)sqliteHashData(pElem));
- }
- sqlite3HashClear(&temp2);
- sqlite3HashInit(&pSchema->tblHash, SQLITE_HASH_STRING, 0);
- for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
- Table *pTab = sqliteHashData(pElem);
- sqlite3DeleteTable(pTab);
- }
- sqlite3HashClear(&temp1);
- pSchema->pSeqTab = 0;
- pSchema->flags &= ~DB_SchemaLoaded;
-}
-
-/*
-** Find and return the schema associated with a BTree. Create
-** a new one if necessary.
-*/
-Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){
- Schema * p;
- if( pBt ){
- p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaFree);
- }else{
- p = (Schema *)sqlite3MallocZero(sizeof(Schema));
- }
- if( !p ){
- db->mallocFailed = 1;
- }else if ( 0==p->file_format ){
- sqlite3HashInit(&p->tblHash, SQLITE_HASH_STRING, 0);
- sqlite3HashInit(&p->idxHash, SQLITE_HASH_STRING, 0);
- sqlite3HashInit(&p->trigHash, SQLITE_HASH_STRING, 0);
- sqlite3HashInit(&p->aFKey, SQLITE_HASH_STRING, 1);
- p->enc = SQLITE_UTF8;
- }
- return p;
-}
diff --git a/extensions/sqlite/sqlite-source/complete.c b/extensions/sqlite/sqlite-source/complete.c
deleted file mode 100644
index f35ca864..00000000
--- a/extensions/sqlite/sqlite-source/complete.c
+++ /dev/null
@@ -1,271 +0,0 @@
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** An tokenizer for SQL
-**
-** This file contains C code that implements the sqlite3_complete() API.
-** This code used to be part of the tokenizer.c source file. But by
-** separating it out, the code will be automatically omitted from
-** static links that do not use it.
-**
-** $Id$
-*/
-#include "sqliteInt.h"
-#ifndef SQLITE_OMIT_COMPLETE
-
-/*
-** This is defined in tokenize.c. We just have to import the definition.
-*/
-#ifndef SQLITE_AMALGAMATION
-#ifdef SQLITE_ASCII
-extern const char sqlite3IsAsciiIdChar[];
-#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsAsciiIdChar[c-0x20]))
-#endif
-#ifdef SQLITE_EBCDIC
-extern const char sqlite3IsEbcdicIdChar[];
-#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
-#endif
-#endif /* SQLITE_AMALGAMATION */
-
-
-/*
-** Token types used by the sqlite3_complete() routine. See the header
-** comments on that procedure for additional information.
-*/
-#define tkSEMI 0
-#define tkWS 1
-#define tkOTHER 2
-#define tkEXPLAIN 3
-#define tkCREATE 4
-#define tkTEMP 5
-#define tkTRIGGER 6
-#define tkEND 7
-
-/*
-** Return TRUE if the given SQL string ends in a semicolon.
-**
-** Special handling is require for CREATE TRIGGER statements.
-** Whenever the CREATE TRIGGER keywords are seen, the statement
-** must end with ";END;".
-**
-** This implementation uses a state machine with 7 states:
-**
-** (0) START At the beginning or end of an SQL statement. This routine
-** returns 1 if it ends in the START state and 0 if it ends
-** in any other state.
-**
-** (1) NORMAL We are in the middle of statement which ends with a single
-** semicolon.
-**
-** (2) EXPLAIN The keyword EXPLAIN has been seen at the beginning of
-** a statement.
-**
-** (3) CREATE The keyword CREATE has been seen at the beginning of a
-** statement, possibly preceeded by EXPLAIN and/or followed by
-** TEMP or TEMPORARY
-**
-** (4) TRIGGER We are in the middle of a trigger definition that must be
-** ended by a semicolon, the keyword END, and another semicolon.
-**
-** (5) SEMI We've seen the first semicolon in the ";END;" that occurs at
-** the end of a trigger definition.
-**
-** (6) END We've seen the ";END" of the ";END;" that occurs at the end
-** of a trigger difinition.
-**
-** Transitions between states above are determined by tokens extracted
-** from the input. The following tokens are significant:
-**
-** (0) tkSEMI A semicolon.
-** (1) tkWS Whitespace
-** (2) tkOTHER Any other SQL token.
-** (3) tkEXPLAIN The "explain" keyword.
-** (4) tkCREATE The "create" keyword.
-** (5) tkTEMP The "temp" or "temporary" keyword.
-** (6) tkTRIGGER The "trigger" keyword.
-** (7) tkEND The "end" keyword.
-**
-** Whitespace never causes a state transition and is always ignored.
-**
-** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed
-** to recognize the end of a trigger can be omitted. All we have to do
-** is look for a semicolon that is not part of an string or comment.
-*/
-int sqlite3_complete(const char *zSql){
- u8 state = 0; /* Current state, using numbers defined in header comment */
- u8 token; /* Value of the next token */
-
-#ifndef SQLITE_OMIT_TRIGGER
- /* A complex statement machine used to detect the end of a CREATE TRIGGER
- ** statement. This is the normal case.
- */
- static const u8 trans[7][8] = {
- /* Token: */
- /* State: ** SEMI WS OTHER EXPLAIN CREATE TEMP TRIGGER END */
- /* 0 START: */ { 0, 0, 1, 2, 3, 1, 1, 1, },
- /* 1 NORMAL: */ { 0, 1, 1, 1, 1, 1, 1, 1, },
- /* 2 EXPLAIN: */ { 0, 2, 1, 1, 3, 1, 1, 1, },
- /* 3 CREATE: */ { 0, 3, 1, 1, 1, 3, 4, 1, },
- /* 4 TRIGGER: */ { 5, 4, 4, 4, 4, 4, 4, 4, },
- /* 5 SEMI: */ { 5, 5, 4, 4, 4, 4, 4, 6, },
- /* 6 END: */ { 0, 6, 4, 4, 4, 4, 4, 4, },
- };
-#else
- /* If triggers are not suppored by this compile then the statement machine
- ** used to detect the end of a statement is much simplier
- */
- static const u8 trans[2][3] = {
- /* Token: */
- /* State: ** SEMI WS OTHER */
- /* 0 START: */ { 0, 0, 1, },
- /* 1 NORMAL: */ { 0, 1, 1, },
- };
-#endif /* SQLITE_OMIT_TRIGGER */
-
- while( *zSql ){
- switch( *zSql ){
- case ';': { /* A semicolon */
- token = tkSEMI;
- break;
- }
- case ' ':
- case '\r':
- case '\t':
- case '\n':
- case '\f': { /* White space is ignored */
- token = tkWS;
- break;
- }
- case '/': { /* C-style comments */
- if( zSql[1]!='*' ){
- token = tkOTHER;
- break;
- }
- zSql += 2;
- while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; }
- if( zSql[0]==0 ) return 0;
- zSql++;
- token = tkWS;
- break;
- }
- case '-': { /* SQL-style comments from "--" to end of line */
- if( zSql[1]!='-' ){
- token = tkOTHER;
- break;
- }
- while( *zSql && *zSql!='\n' ){ zSql++; }
- if( *zSql==0 ) return state==0;
- token = tkWS;
- break;
- }
- case '[': { /* Microsoft-style identifiers in [...] */
- zSql++;
- while( *zSql && *zSql!=']' ){ zSql++; }
- if( *zSql==0 ) return 0;
- token = tkOTHER;
- break;
- }
- case '`': /* Grave-accent quoted symbols used by MySQL */
- case '"': /* single- and double-quoted strings */
- case '\'': {
- int c = *zSql;
- zSql++;
- while( *zSql && *zSql!=c ){ zSql++; }
- if( *zSql==0 ) return 0;
- token = tkOTHER;
- break;
- }
- default: {
- int c;
- if( IdChar((u8)*zSql) ){
- /* Keywords and unquoted identifiers */
- int nId;
- for(nId=1; IdChar(zSql[nId]); nId++){}
-#ifdef SQLITE_OMIT_TRIGGER
- token = tkOTHER;
-#else
- switch( *zSql ){
- case 'c': case 'C': {
- if( nId==6 && sqlite3StrNICmp(zSql, "create", 6)==0 ){
- token = tkCREATE;
- }else{
- token = tkOTHER;
- }
- break;
- }
- case 't': case 'T': {
- if( nId==7 && sqlite3StrNICmp(zSql, "trigger", 7)==0 ){
- token = tkTRIGGER;
- }else if( nId==4 && sqlite3StrNICmp(zSql, "temp", 4)==0 ){
- token = tkTEMP;
- }else if( nId==9 && sqlite3StrNICmp(zSql, "temporary", 9)==0 ){
- token = tkTEMP;
- }else{
- token = tkOTHER;
- }
- break;
- }
- case 'e': case 'E': {
- if( nId==3 && sqlite3StrNICmp(zSql, "end", 3)==0 ){
- token = tkEND;
- }else
-#ifndef SQLITE_OMIT_EXPLAIN
- if( nId==7 && sqlite3StrNICmp(zSql, "explain", 7)==0 ){
- token = tkEXPLAIN;
- }else
-#endif
- {
- token = tkOTHER;
- }
- break;
- }
- default: {
- token = tkOTHER;
- break;
- }
- }
-#endif /* SQLITE_OMIT_TRIGGER */
- zSql += nId-1;
- }else{
- /* Operators and special symbols */
- token = tkOTHER;
- }
- break;
- }
- }
- state = trans[state][token];
- zSql++;
- }
- return state==0;
-}
-
-#ifndef SQLITE_OMIT_UTF16
-/*
-** This routine is the same as the sqlite3_complete() routine described
-** above, except that the parameter is required to be UTF-16 encoded, not
-** UTF-8.
-*/
-int sqlite3_complete16(const void *zSql){
- sqlite3_value *pVal;
- char const *zSql8;
- int rc = SQLITE_NOMEM;
-
- pVal = sqlite3ValueNew(0);
- sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC);
- zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8);
- if( zSql8 ){
- rc = sqlite3_complete(zSql8);
- }
- sqlite3ValueFree(pVal);
- return sqlite3ApiExit(0, rc);
-}
-#endif /* SQLITE_OMIT_UTF16 */
-#endif /* SQLITE_OMIT_COMPLETE */
diff --git a/extensions/sqlite/sqlite-source/date.c b/extensions/sqlite/sqlite-source/date.c
deleted file mode 100644
index c440db84..00000000
--- a/extensions/sqlite/sqlite-source/date.c
+++ /dev/null
@@ -1,1045 +0,0 @@
-/*
-** 2003 October 31
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains the C functions that implement date and time
-** functions for SQLite.
-**
-** There is only one exported symbol in this file - the function
-** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
-** All other code has file scope.
-**
-** $Id$
-**
-** SQLite processes all times and dates as Julian Day numbers. The
-** dates and times are stored as the number of days since noon
-** in Greenwich on November 24, 4714 B.C. according to the Gregorian
-** calendar system.
-**
-** 1970-01-01 00:00:00 is JD 2440587.5
-** 2000-01-01 00:00:00 is JD 2451544.5
-**
-** This implemention requires years to be expressed as a 4-digit number
-** which means that only dates between 0000-01-01 and 9999-12-31 can
-** be represented, even though julian day numbers allow a much wider
-** range of dates.
-**
-** The Gregorian calendar system is used for all dates and times,
-** even those that predate the Gregorian calendar. Historians usually
-** use the Julian calendar for dates prior to 1582-10-15 and for some
-** dates afterwards, depending on locale. Beware of this difference.
-**
-** The conversion algorithms are implemented based on descriptions
-** in the following text:
-**
-** Jean Meeus
-** Astronomical Algorithms, 2nd Edition, 1998
-** ISBM 0-943396-61-1
-** Willmann-Bell, Inc
-** Richmond, Virginia (USA)
-*/
-#include "sqliteInt.h"
-#include
-#include
-#include
-#include
-
-#ifndef SQLITE_OMIT_DATETIME_FUNCS
-
-/*
-** A structure for holding a single date and time.
-*/
-typedef struct DateTime DateTime;
-struct DateTime {
- double rJD; /* The julian day number */
- int Y, M, D; /* Year, month, and day */
- int h, m; /* Hour and minutes */
- int tz; /* Timezone offset in minutes */
- double s; /* Seconds */
- char validYMD; /* True if Y,M,D are valid */
- char validHMS; /* True if h,m,s are valid */
- char validJD; /* True if rJD is valid */
- char validTZ; /* True if tz is valid */
-};
-
-
-/*
-** Convert zDate into one or more integers. Additional arguments
-** come in groups of 5 as follows:
-**
-** N number of digits in the integer
-** min minimum allowed value of the integer
-** max maximum allowed value of the integer
-** nextC first character after the integer
-** pVal where to write the integers value.
-**
-** Conversions continue until one with nextC==0 is encountered.
-** The function returns the number of successful conversions.
-*/
-static int getDigits(const char *zDate, ...){
- va_list ap;
- int val;
- int N;
- int min;
- int max;
- int nextC;
- int *pVal;
- int cnt = 0;
- va_start(ap, zDate);
- do{
- N = va_arg(ap, int);
- min = va_arg(ap, int);
- max = va_arg(ap, int);
- nextC = va_arg(ap, int);
- pVal = va_arg(ap, int*);
- val = 0;
- while( N-- ){
- if( !isdigit(*(u8*)zDate) ){
- goto end_getDigits;
- }
- val = val*10 + *zDate - '0';
- zDate++;
- }
- if( valmax || (nextC!=0 && nextC!=*zDate) ){
- goto end_getDigits;
- }
- *pVal = val;
- zDate++;
- cnt++;
- }while( nextC );
-end_getDigits:
- va_end(ap);
- return cnt;
-}
-
-/*
-** Read text from z[] and convert into a floating point number. Return
-** the number of digits converted.
-*/
-#define getValue sqlite3AtoF
-
-/*
-** Parse a timezone extension on the end of a date-time.
-** The extension is of the form:
-**
-** (+/-)HH:MM
-**
-** If the parse is successful, write the number of minutes
-** of change in *pnMin and return 0. If a parser error occurs,
-** return 0.
-**
-** A missing specifier is not considered an error.
-*/
-static int parseTimezone(const char *zDate, DateTime *p){
- int sgn = 0;
- int nHr, nMn;
- while( isspace(*(u8*)zDate) ){ zDate++; }
- p->tz = 0;
- if( *zDate=='-' ){
- sgn = -1;
- }else if( *zDate=='+' ){
- sgn = +1;
- }else{
- return *zDate!=0;
- }
- zDate++;
- if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
- return 1;
- }
- zDate += 5;
- p->tz = sgn*(nMn + nHr*60);
- while( isspace(*(u8*)zDate) ){ zDate++; }
- return *zDate!=0;
-}
-
-/*
-** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
-** The HH, MM, and SS must each be exactly 2 digits. The
-** fractional seconds FFFF can be one or more digits.
-**
-** Return 1 if there is a parsing error and 0 on success.
-*/
-static int parseHhMmSs(const char *zDate, DateTime *p){
- int h, m, s;
- double ms = 0.0;
- if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
- return 1;
- }
- zDate += 5;
- if( *zDate==':' ){
- zDate++;
- if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
- return 1;
- }
- zDate += 2;
- if( *zDate=='.' && isdigit((u8)zDate[1]) ){
- double rScale = 1.0;
- zDate++;
- while( isdigit(*(u8*)zDate) ){
- ms = ms*10.0 + *zDate - '0';
- rScale *= 10.0;
- zDate++;
- }
- ms /= rScale;
- }
- }else{
- s = 0;
- }
- p->validJD = 0;
- p->validHMS = 1;
- p->h = h;
- p->m = m;
- p->s = s + ms;
- if( parseTimezone(zDate, p) ) return 1;
- p->validTZ = p->tz!=0;
- return 0;
-}
-
-/*
-** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
-** that the YYYY-MM-DD is according to the Gregorian calendar.
-**
-** Reference: Meeus page 61
-*/
-static void computeJD(DateTime *p){
- int Y, M, D, A, B, X1, X2;
-
- if( p->validJD ) return;
- if( p->validYMD ){
- Y = p->Y;
- M = p->M;
- D = p->D;
- }else{
- Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
- M = 1;
- D = 1;
- }
- if( M<=2 ){
- Y--;
- M += 12;
- }
- A = Y/100;
- B = 2 - A + (A/4);
- X1 = 365.25*(Y+4716);
- X2 = 30.6001*(M+1);
- p->rJD = X1 + X2 + D + B - 1524.5;
- p->validJD = 1;
- if( p->validHMS ){
- p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
- if( p->validTZ ){
- p->rJD -= p->tz*60/86400.0;
- p->validYMD = 0;
- p->validHMS = 0;
- p->validTZ = 0;
- }
- }
-}
-
-/*
-** Parse dates of the form
-**
-** YYYY-MM-DD HH:MM:SS.FFF
-** YYYY-MM-DD HH:MM:SS
-** YYYY-MM-DD HH:MM
-** YYYY-MM-DD
-**
-** Write the result into the DateTime structure and return 0
-** on success and 1 if the input string is not a well-formed
-** date.
-*/
-static int parseYyyyMmDd(const char *zDate, DateTime *p){
- int Y, M, D, neg;
-
- if( zDate[0]=='-' ){
- zDate++;
- neg = 1;
- }else{
- neg = 0;
- }
- if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
- return 1;
- }
- zDate += 10;
- while( isspace(*(u8*)zDate) || 'T'==*(u8*)zDate ){ zDate++; }
- if( parseHhMmSs(zDate, p)==0 ){
- /* We got the time */
- }else if( *zDate==0 ){
- p->validHMS = 0;
- }else{
- return 1;
- }
- p->validJD = 0;
- p->validYMD = 1;
- p->Y = neg ? -Y : Y;
- p->M = M;
- p->D = D;
- if( p->validTZ ){
- computeJD(p);
- }
- return 0;
-}
-
-/*
-** Attempt to parse the given string into a Julian Day Number. Return
-** the number of errors.
-**
-** The following are acceptable forms for the input string:
-**
-** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
-** DDDD.DD
-** now
-**
-** In the first form, the +/-HH:MM is always optional. The fractional
-** seconds extension (the ".FFF") is optional. The seconds portion
-** (":SS.FFF") is option. The year and date can be omitted as long
-** as there is a time string. The time string can be omitted as long
-** as there is a year and date.
-*/
-static int parseDateOrTime(
- sqlite3_context *context,
- const char *zDate,
- DateTime *p
-){
- memset(p, 0, sizeof(*p));
- if( parseYyyyMmDd(zDate,p)==0 ){
- return 0;
- }else if( parseHhMmSs(zDate, p)==0 ){
- return 0;
- }else if( sqlite3StrICmp(zDate,"now")==0){
- double r;
- sqlite3OsCurrentTime((sqlite3_vfs *)sqlite3_user_data(context), &r);
- p->rJD = r;
- p->validJD = 1;
- return 0;
- }else if( sqlite3IsNumber(zDate, 0, SQLITE_UTF8) ){
- getValue(zDate, &p->rJD);
- p->validJD = 1;
- return 0;
- }
- return 1;
-}
-
-/*
-** Compute the Year, Month, and Day from the julian day number.
-*/
-static void computeYMD(DateTime *p){
- int Z, A, B, C, D, E, X1;
- if( p->validYMD ) return;
- if( !p->validJD ){
- p->Y = 2000;
- p->M = 1;
- p->D = 1;
- }else{
- Z = p->rJD + 0.5;
- A = (Z - 1867216.25)/36524.25;
- A = Z + 1 + A - (A/4);
- B = A + 1524;
- C = (B - 122.1)/365.25;
- D = 365.25*C;
- E = (B-D)/30.6001;
- X1 = 30.6001*E;
- p->D = B - D - X1;
- p->M = E<14 ? E-1 : E-13;
- p->Y = p->M>2 ? C - 4716 : C - 4715;
- }
- p->validYMD = 1;
-}
-
-/*
-** Compute the Hour, Minute, and Seconds from the julian day number.
-*/
-static void computeHMS(DateTime *p){
- int Z, s;
- if( p->validHMS ) return;
- computeJD(p);
- Z = p->rJD + 0.5;
- s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
- p->s = 0.001*s;
- s = p->s;
- p->s -= s;
- p->h = s/3600;
- s -= p->h*3600;
- p->m = s/60;
- p->s += s - p->m*60;
- p->validHMS = 1;
-}
-
-/*
-** Compute both YMD and HMS
-*/
-static void computeYMD_HMS(DateTime *p){
- computeYMD(p);
- computeHMS(p);
-}
-
-/*
-** Clear the YMD and HMS and the TZ
-*/
-static void clearYMD_HMS_TZ(DateTime *p){
- p->validYMD = 0;
- p->validHMS = 0;
- p->validTZ = 0;
-}
-
-/*
-** Compute the difference (in days) between localtime and UTC (a.k.a. GMT)
-** for the time value p where p is in UTC.
-*/
-static double localtimeOffset(DateTime *p){
- DateTime x, y;
- time_t t;
- x = *p;
- computeYMD_HMS(&x);
- if( x.Y<1971 || x.Y>=2038 ){
- x.Y = 2000;
- x.M = 1;
- x.D = 1;
- x.h = 0;
- x.m = 0;
- x.s = 0.0;
- } else {
- int s = x.s + 0.5;
- x.s = s;
- }
- x.tz = 0;
- x.validJD = 0;
- computeJD(&x);
- t = (x.rJD-2440587.5)*86400.0 + 0.5;
-#ifdef HAVE_LOCALTIME_R
- {
- struct tm sLocal;
- localtime_r(&t, &sLocal);
- y.Y = sLocal.tm_year + 1900;
- y.M = sLocal.tm_mon + 1;
- y.D = sLocal.tm_mday;
- y.h = sLocal.tm_hour;
- y.m = sLocal.tm_min;
- y.s = sLocal.tm_sec;
- }
-#else
- {
- struct tm *pTm;
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
- pTm = localtime(&t);
- y.Y = pTm->tm_year + 1900;
- y.M = pTm->tm_mon + 1;
- y.D = pTm->tm_mday;
- y.h = pTm->tm_hour;
- y.m = pTm->tm_min;
- y.s = pTm->tm_sec;
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
- }
-#endif
- y.validYMD = 1;
- y.validHMS = 1;
- y.validJD = 0;
- y.validTZ = 0;
- computeJD(&y);
- return y.rJD - x.rJD;
-}
-
-/*
-** Process a modifier to a date-time stamp. The modifiers are
-** as follows:
-**
-** NNN days
-** NNN hours
-** NNN minutes
-** NNN.NNNN seconds
-** NNN months
-** NNN years
-** start of month
-** start of year
-** start of week
-** start of day
-** weekday N
-** unixepoch
-** localtime
-** utc
-**
-** Return 0 on success and 1 if there is any kind of error.
-*/
-static int parseModifier(const char *zMod, DateTime *p){
- int rc = 1;
- int n;
- double r;
- char *z, zBuf[30];
- z = zBuf;
- for(n=0; nrJD += localtimeOffset(p);
- clearYMD_HMS_TZ(p);
- rc = 0;
- }
- break;
- }
- case 'u': {
- /*
- ** unixepoch
- **
- ** Treat the current value of p->rJD as the number of
- ** seconds since 1970. Convert to a real julian day number.
- */
- if( strcmp(z, "unixepoch")==0 && p->validJD ){
- p->rJD = p->rJD/86400.0 + 2440587.5;
- clearYMD_HMS_TZ(p);
- rc = 0;
- }else if( strcmp(z, "utc")==0 ){
- double c1;
- computeJD(p);
- c1 = localtimeOffset(p);
- p->rJD -= c1;
- clearYMD_HMS_TZ(p);
- p->rJD += c1 - localtimeOffset(p);
- rc = 0;
- }
- break;
- }
- case 'w': {
- /*
- ** weekday N
- **
- ** Move the date to the same time on the next occurrence of
- ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
- ** date is already on the appropriate weekday, this is a no-op.
- */
- if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
- && (n=r)==r && n>=0 && r<7 ){
- int Z;
- computeYMD_HMS(p);
- p->validTZ = 0;
- p->validJD = 0;
- computeJD(p);
- Z = p->rJD + 1.5;
- Z %= 7;
- if( Z>n ) Z -= 7;
- p->rJD += n - Z;
- clearYMD_HMS_TZ(p);
- rc = 0;
- }
- break;
- }
- case 's': {
- /*
- ** start of TTTTT
- **
- ** Move the date backwards to the beginning of the current day,
- ** or month or year.
- */
- if( strncmp(z, "start of ", 9)!=0 ) break;
- z += 9;
- computeYMD(p);
- p->validHMS = 1;
- p->h = p->m = 0;
- p->s = 0.0;
- p->validTZ = 0;
- p->validJD = 0;
- if( strcmp(z,"month")==0 ){
- p->D = 1;
- rc = 0;
- }else if( strcmp(z,"year")==0 ){
- computeYMD(p);
- p->M = 1;
- p->D = 1;
- rc = 0;
- }else if( strcmp(z,"day")==0 ){
- rc = 0;
- }
- break;
- }
- case '+':
- case '-':
- case '0':
- case '1':
- case '2':
- case '3':
- case '4':
- case '5':
- case '6':
- case '7':
- case '8':
- case '9': {
- n = getValue(z, &r);
- assert( n>=1 );
- if( z[n]==':' ){
- /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
- ** specified number of hours, minutes, seconds, and fractional seconds
- ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
- ** omitted.
- */
- const char *z2 = z;
- DateTime tx;
- int day;
- if( !isdigit(*(u8*)z2) ) z2++;
- memset(&tx, 0, sizeof(tx));
- if( parseHhMmSs(z2, &tx) ) break;
- computeJD(&tx);
- tx.rJD -= 0.5;
- day = (int)tx.rJD;
- tx.rJD -= day;
- if( z[0]=='-' ) tx.rJD = -tx.rJD;
- computeJD(p);
- clearYMD_HMS_TZ(p);
- p->rJD += tx.rJD;
- rc = 0;
- break;
- }
- z += n;
- while( isspace(*(u8*)z) ) z++;
- n = strlen(z);
- if( n>10 || n<3 ) break;
- if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
- computeJD(p);
- rc = 0;
- if( n==3 && strcmp(z,"day")==0 ){
- p->rJD += r;
- }else if( n==4 && strcmp(z,"hour")==0 ){
- p->rJD += r/24.0;
- }else if( n==6 && strcmp(z,"minute")==0 ){
- p->rJD += r/(24.0*60.0);
- }else if( n==6 && strcmp(z,"second")==0 ){
- p->rJD += r/(24.0*60.0*60.0);
- }else if( n==5 && strcmp(z,"month")==0 ){
- int x, y;
- computeYMD_HMS(p);
- p->M += r;
- x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
- p->Y += x;
- p->M -= x*12;
- p->validJD = 0;
- computeJD(p);
- y = r;
- if( y!=r ){
- p->rJD += (r - y)*30.0;
- }
- }else if( n==4 && strcmp(z,"year")==0 ){
- computeYMD_HMS(p);
- p->Y += r;
- p->validJD = 0;
- computeJD(p);
- }else{
- rc = 1;
- }
- clearYMD_HMS_TZ(p);
- break;
- }
- default: {
- break;
- }
- }
- return rc;
-}
-
-/*
-** Process time function arguments. argv[0] is a date-time stamp.
-** argv[1] and following are modifiers. Parse them all and write
-** the resulting time into the DateTime structure p. Return 0
-** on success and 1 if there are any errors.
-*/
-static int isDate(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv,
- DateTime *p
-){
- int i;
- const unsigned char *z;
- if( argc==0 ) return 1;
- z = sqlite3_value_text(argv[0]);
- if( !z || parseDateOrTime(context, (char*)z, p) ){
- return 1;
- }
- for(i=1; iSQLITE_MAX_LENGTH ){
- sqlite3_result_error_toobig(context);
- return;
- }else{
- z = sqlite3_malloc( n );
- if( z==0 ) return;
- }
- computeJD(&x);
- computeYMD_HMS(&x);
- for(i=j=0; zFmt[i]; i++){
- if( zFmt[i]!='%' ){
- z[j++] = zFmt[i];
- }else{
- i++;
- switch( zFmt[i] ){
- case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
- case 'f': {
- double s = x.s;
- if( s>59.999 ) s = 59.999;
- sqlite3_snprintf(7, &z[j],"%06.3f", s);
- j += strlen(&z[j]);
- break;
- }
- case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
- case 'W': /* Fall thru */
- case 'j': {
- int nDay; /* Number of days since 1st day of year */
- DateTime y = x;
- y.validJD = 0;
- y.M = 1;
- y.D = 1;
- computeJD(&y);
- nDay = x.rJD - y.rJD + 0.5;
- if( zFmt[i]=='W' ){
- int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
- wd = ((int)(x.rJD+0.5)) % 7;
- sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
- j += 2;
- }else{
- sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
- j += 3;
- }
- break;
- }
- case 'J': {
- sqlite3_snprintf(20, &z[j],"%.16g",x.rJD);
- j+=strlen(&z[j]);
- break;
- }
- case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
- case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
- case 's': {
- sqlite3_snprintf(30,&z[j],"%d",
- (int)((x.rJD-2440587.5)*86400.0 + 0.5));
- j += strlen(&z[j]);
- break;
- }
- case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
- case 'w': z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break;
- case 'Y': sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=strlen(&z[j]);break;
- case '%': z[j++] = '%'; break;
- }
- }
- }
- z[j] = 0;
- sqlite3_result_text(context, z, -1, SQLITE_TRANSIENT);
- if( z!=zBuf ){
- sqlite3_free(z);
- }
-}
-
-/*
-** current_time()
-**
-** This function returns the same value as time('now').
-*/
-static void ctimeFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- sqlite3_value *pVal = sqlite3ValueNew(0);
- if( pVal ){
- sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
- timeFunc(context, 1, &pVal);
- sqlite3ValueFree(pVal);
- }
-}
-
-/*
-** current_date()
-**
-** This function returns the same value as date('now').
-*/
-static void cdateFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- sqlite3_value *pVal = sqlite3ValueNew(0);
- if( pVal ){
- sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
- dateFunc(context, 1, &pVal);
- sqlite3ValueFree(pVal);
- }
-}
-
-/*
-** current_timestamp()
-**
-** This function returns the same value as datetime('now').
-*/
-static void ctimestampFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- sqlite3_value *pVal = sqlite3ValueNew(0);
- if( pVal ){
- sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
- datetimeFunc(context, 1, &pVal);
- sqlite3ValueFree(pVal);
- }
-}
-#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
-
-#ifdef SQLITE_OMIT_DATETIME_FUNCS
-/*
-** If the library is compiled to omit the full-scale date and time
-** handling (to get a smaller binary), the following minimal version
-** of the functions current_time(), current_date() and current_timestamp()
-** are included instead. This is to support column declarations that
-** include "DEFAULT CURRENT_TIME" etc.
-**
-** This function uses the C-library functions time(), gmtime()
-** and strftime(). The format string to pass to strftime() is supplied
-** as the user-data for the function.
-*/
-static void currentTimeFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- time_t t;
- char *zFormat = (char *)sqlite3_user_data(context);
- char zBuf[20];
-
- time(&t);
-#ifdef SQLITE_TEST
- {
- extern int sqlite3_current_time; /* See os_XXX.c */
- if( sqlite3_current_time ){
- t = sqlite3_current_time;
- }
- }
-#endif
-
-#ifdef HAVE_GMTIME_R
- {
- struct tm sNow;
- gmtime_r(&t, &sNow);
- strftime(zBuf, 20, zFormat, &sNow);
- }
-#else
- {
- struct tm *pTm;
- sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
- pTm = gmtime(&t);
- strftime(zBuf, 20, zFormat, pTm);
- sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
- }
-#endif
-
- sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
-}
-#endif
-
-/*
-** This function registered all of the above C functions as SQL
-** functions. This should be the only routine in this file with
-** external linkage.
-*/
-void sqlite3RegisterDateTimeFunctions(sqlite3 *db){
-#ifndef SQLITE_OMIT_DATETIME_FUNCS
- static const struct {
- char *zName;
- int nArg;
- void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
- } aFuncs[] = {
- { "julianday", -1, juliandayFunc },
- { "date", -1, dateFunc },
- { "time", -1, timeFunc },
- { "datetime", -1, datetimeFunc },
- { "strftime", -1, strftimeFunc },
- { "current_time", 0, ctimeFunc },
- { "current_timestamp", 0, ctimestampFunc },
- { "current_date", 0, cdateFunc },
- };
- int i;
-
- for(i=0; ipVfs), aFuncs[i].xFunc, 0, 0);
- }
-#else
- static const struct {
- char *zName;
- char *zFormat;
- } aFuncs[] = {
- { "current_time", "%H:%M:%S" },
- { "current_date", "%Y-%m-%d" },
- { "current_timestamp", "%Y-%m-%d %H:%M:%S" }
- };
- int i;
-
- for(i=0; izErrMsg and return NULL. If all tables
-** are found, return a pointer to the last table.
-*/
-Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){
- Table *pTab = 0;
- int i;
- struct SrcList_item *pItem;
- for(i=0, pItem=pSrc->a; inSrc; i++, pItem++){
- pTab = sqlite3LocateTable(pParse, pItem->zName, pItem->zDatabase);
- sqlite3DeleteTable(pItem->pTab);
- pItem->pTab = pTab;
- if( pTab ){
- pTab->nRef++;
- }
- }
- return pTab;
-}
-
-/*
-** Check to make sure the given table is writable. If it is not
-** writable, generate an error message and return 1. If it is
-** writable return 0;
-*/
-int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){
- if( (pTab->readOnly && (pParse->db->flags & SQLITE_WriteSchema)==0
- && pParse->nested==0)
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- || (pTab->pMod && pTab->pMod->pModule->xUpdate==0)
-#endif
- ){
- sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName);
- return 1;
- }
-#ifndef SQLITE_OMIT_VIEW
- if( !viewOk && pTab->pSelect ){
- sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName);
- return 1;
- }
-#endif
- return 0;
-}
-
-/*
-** Generate code that will open a table for reading.
-*/
-void sqlite3OpenTable(
- Parse *p, /* Generate code into this VDBE */
- int iCur, /* The cursor number of the table */
- int iDb, /* The database index in sqlite3.aDb[] */
- Table *pTab, /* The table to be opened */
- int opcode /* OP_OpenRead or OP_OpenWrite */
-){
- Vdbe *v;
- if( IsVirtual(pTab) ) return;
- v = sqlite3GetVdbe(p);
- assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
- sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite), pTab->zName);
- sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
- VdbeComment((v, "# %s", pTab->zName));
- sqlite3VdbeAddOp(v, opcode, iCur, pTab->tnum);
- sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, pTab->nCol);
-}
-
-
-/*
-** Generate code for a DELETE FROM statement.
-**
-** DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL;
-** \________/ \________________/
-** pTabList pWhere
-*/
-void sqlite3DeleteFrom(
- Parse *pParse, /* The parser context */
- SrcList *pTabList, /* The table from which we should delete things */
- Expr *pWhere /* The WHERE clause. May be null */
-){
- Vdbe *v; /* The virtual database engine */
- Table *pTab; /* The table from which records will be deleted */
- const char *zDb; /* Name of database holding pTab */
- int end, addr = 0; /* A couple addresses of generated code */
- int i; /* Loop counter */
- WhereInfo *pWInfo; /* Information about the WHERE clause */
- Index *pIdx; /* For looping over indices of the table */
- int iCur; /* VDBE Cursor number for pTab */
- sqlite3 *db; /* Main database structure */
- AuthContext sContext; /* Authorization context */
- int oldIdx = -1; /* Cursor for the OLD table of AFTER triggers */
- NameContext sNC; /* Name context to resolve expressions in */
- int iDb; /* Database number */
- int memCnt = 0; /* Memory cell used for change counting */
-
-#ifndef SQLITE_OMIT_TRIGGER
- int isView; /* True if attempting to delete from a view */
- int triggers_exist = 0; /* True if any triggers exist */
-#endif
-
- sContext.pParse = 0;
- db = pParse->db;
- if( pParse->nErr || db->mallocFailed ){
- goto delete_from_cleanup;
- }
- assert( pTabList->nSrc==1 );
-
- /* Locate the table which we want to delete. This table has to be
- ** put in an SrcList structure because some of the subroutines we
- ** will be calling are designed to work with multiple tables and expect
- ** an SrcList* parameter instead of just a Table* parameter.
- */
- pTab = sqlite3SrcListLookup(pParse, pTabList);
- if( pTab==0 ) goto delete_from_cleanup;
-
- /* Figure out if we have any triggers and if the table being
- ** deleted from is a view
- */
-#ifndef SQLITE_OMIT_TRIGGER
- triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0);
- isView = pTab->pSelect!=0;
-#else
-# define triggers_exist 0
-# define isView 0
-#endif
-#ifdef SQLITE_OMIT_VIEW
-# undef isView
-# define isView 0
-#endif
-
- if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
- goto delete_from_cleanup;
- }
- iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
- assert( iDbnDb );
- zDb = db->aDb[iDb].zName;
- if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
- goto delete_from_cleanup;
- }
-
- /* If pTab is really a view, make sure it has been initialized.
- */
- if( sqlite3ViewGetColumnNames(pParse, pTab) ){
- goto delete_from_cleanup;
- }
-
- /* Allocate a cursor used to store the old.* data for a trigger.
- */
- if( triggers_exist ){
- oldIdx = pParse->nTab++;
- }
-
- /* Resolve the column names in the WHERE clause.
- */
- assert( pTabList->nSrc==1 );
- iCur = pTabList->a[0].iCursor = pParse->nTab++;
- memset(&sNC, 0, sizeof(sNC));
- sNC.pParse = pParse;
- sNC.pSrcList = pTabList;
- if( sqlite3ExprResolveNames(&sNC, pWhere) ){
- goto delete_from_cleanup;
- }
-
- /* Start the view context
- */
- if( isView ){
- sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
- }
-
- /* Begin generating code.
- */
- v = sqlite3GetVdbe(pParse);
- if( v==0 ){
- goto delete_from_cleanup;
- }
- if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
- sqlite3BeginWriteOperation(pParse, triggers_exist, iDb);
-
- /* If we are trying to delete from a view, realize that view into
- ** a ephemeral table.
- */
- if( isView ){
- Select *pView = sqlite3SelectDup(db, pTab->pSelect);
- sqlite3Select(pParse, pView, SRT_EphemTab, iCur, 0, 0, 0, 0);
- sqlite3SelectDelete(pView);
- }
-
- /* Initialize the counter of the number of rows deleted, if
- ** we are counting rows.
- */
- if( db->flags & SQLITE_CountRows ){
- memCnt = pParse->nMem++;
- sqlite3VdbeAddOp(v, OP_MemInt, 0, memCnt);
- }
-
- /* Special case: A DELETE without a WHERE clause deletes everything.
- ** It is easier just to erase the whole table. Note, however, that
- ** this means that the row change count will be incorrect.
- */
- if( pWhere==0 && !triggers_exist && !IsVirtual(pTab) ){
- if( db->flags & SQLITE_CountRows ){
- /* If counting rows deleted, just count the total number of
- ** entries in the table. */
- int endOfLoop = sqlite3VdbeMakeLabel(v);
- int addr2;
- if( !isView ){
- sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
- }
- sqlite3VdbeAddOp(v, OP_Rewind, iCur, sqlite3VdbeCurrentAddr(v)+2);
- addr2 = sqlite3VdbeAddOp(v, OP_MemIncr, 1, memCnt);
- sqlite3VdbeAddOp(v, OP_Next, iCur, addr2);
- sqlite3VdbeResolveLabel(v, endOfLoop);
- sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
- }
- if( !isView ){
- sqlite3VdbeAddOp(v, OP_Clear, pTab->tnum, iDb);
- if( !pParse->nested ){
- sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
- }
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- assert( pIdx->pSchema==pTab->pSchema );
- sqlite3VdbeAddOp(v, OP_Clear, pIdx->tnum, iDb);
- }
- }
- }
- /* The usual case: There is a WHERE clause so we have to scan through
- ** the table and pick which records to delete.
- */
- else{
- /* Begin the database scan
- */
- pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
- if( pWInfo==0 ) goto delete_from_cleanup;
-
- /* Remember the rowid of every item to be deleted.
- */
- sqlite3VdbeAddOp(v, IsVirtual(pTab) ? OP_VRowid : OP_Rowid, iCur, 0);
- sqlite3VdbeAddOp(v, OP_FifoWrite, 0, 0);
- if( db->flags & SQLITE_CountRows ){
- sqlite3VdbeAddOp(v, OP_MemIncr, 1, memCnt);
- }
-
- /* End the database scan loop.
- */
- sqlite3WhereEnd(pWInfo);
-
- /* Open the pseudo-table used to store OLD if there are triggers.
- */
- if( triggers_exist ){
- sqlite3VdbeAddOp(v, OP_OpenPseudo, oldIdx, 0);
- sqlite3VdbeAddOp(v, OP_SetNumColumns, oldIdx, pTab->nCol);
- }
-
- /* Delete every item whose key was written to the list during the
- ** database scan. We have to delete items after the scan is complete
- ** because deleting an item can change the scan order.
- */
- end = sqlite3VdbeMakeLabel(v);
-
- /* This is the beginning of the delete loop when there are
- ** row triggers.
- */
- if( triggers_exist ){
- addr = sqlite3VdbeAddOp(v, OP_FifoRead, 0, end);
- if( !isView ){
- sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
- sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
- }
- sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
- sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
- sqlite3VdbeAddOp(v, OP_RowData, iCur, 0);
- sqlite3VdbeAddOp(v, OP_Insert, oldIdx, 0);
- if( !isView ){
- sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
- }
-
- (void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_BEFORE, pTab,
- -1, oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
- addr);
- }
-
- if( !isView ){
- /* Open cursors for the table we are deleting from and all its
- ** indices. If there are row triggers, this happens inside the
- ** OP_FifoRead loop because the cursor have to all be closed
- ** before the trigger fires. If there are no row triggers, the
- ** cursors are opened only once on the outside the loop.
- */
- sqlite3OpenTableAndIndices(pParse, pTab, iCur, OP_OpenWrite);
-
- /* This is the beginning of the delete loop when there are no
- ** row triggers */
- if( !triggers_exist ){
- addr = sqlite3VdbeAddOp(v, OP_FifoRead, 0, end);
- }
-
- /* Delete the row */
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( IsVirtual(pTab) ){
- pParse->pVirtualLock = pTab;
- sqlite3VdbeOp3(v, OP_VUpdate, 0, 1, (const char*)pTab->pVtab, P3_VTAB);
- }else
-#endif
- {
- sqlite3GenerateRowDelete(db, v, pTab, iCur, pParse->nested==0);
- }
- }
-
- /* If there are row triggers, close all cursors then invoke
- ** the AFTER triggers
- */
- if( triggers_exist ){
- if( !isView ){
- for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
- sqlite3VdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum);
- }
- sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
- }
- (void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_AFTER, pTab, -1,
- oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
- addr);
- }
-
- /* End of the delete loop */
- sqlite3VdbeAddOp(v, OP_Goto, 0, addr);
- sqlite3VdbeResolveLabel(v, end);
-
- /* Close the cursors after the loop if there are no row triggers */
- if( !triggers_exist && !IsVirtual(pTab) ){
- for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
- sqlite3VdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum);
- }
- sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
- }
- }
-
- /*
- ** Return the number of rows that were deleted. If this routine is
- ** generating code because of a call to sqlite3NestedParse(), do not
- ** invoke the callback function.
- */
- if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
- sqlite3VdbeAddOp(v, OP_MemLoad, memCnt, 0);
- sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
- sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", P3_STATIC);
- }
-
-delete_from_cleanup:
- sqlite3AuthContextPop(&sContext);
- sqlite3SrcListDelete(pTabList);
- sqlite3ExprDelete(pWhere);
- return;
-}
-
-/*
-** This routine generates VDBE code that causes a single row of a
-** single table to be deleted.
-**
-** The VDBE must be in a particular state when this routine is called.
-** These are the requirements:
-**
-** 1. A read/write cursor pointing to pTab, the table containing the row
-** to be deleted, must be opened as cursor number "base".
-**
-** 2. Read/write cursors for all indices of pTab must be open as
-** cursor number base+i for the i-th index.
-**
-** 3. The record number of the row to be deleted must be on the top
-** of the stack.
-**
-** This routine pops the top of the stack to remove the record number
-** and then generates code to remove both the table record and all index
-** entries that point to that record.
-*/
-void sqlite3GenerateRowDelete(
- sqlite3 *db, /* The database containing the index */
- Vdbe *v, /* Generate code into this VDBE */
- Table *pTab, /* Table containing the row to be deleted */
- int iCur, /* Cursor number for the table */
- int count /* Increment the row change counter */
-){
- int addr;
- addr = sqlite3VdbeAddOp(v, OP_NotExists, iCur, 0);
- sqlite3GenerateRowIndexDelete(v, pTab, iCur, 0);
- sqlite3VdbeAddOp(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0));
- if( count ){
- sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
- }
- sqlite3VdbeJumpHere(v, addr);
-}
-
-/*
-** This routine generates VDBE code that causes the deletion of all
-** index entries associated with a single row of a single table.
-**
-** The VDBE must be in a particular state when this routine is called.
-** These are the requirements:
-**
-** 1. A read/write cursor pointing to pTab, the table containing the row
-** to be deleted, must be opened as cursor number "iCur".
-**
-** 2. Read/write cursors for all indices of pTab must be open as
-** cursor number iCur+i for the i-th index.
-**
-** 3. The "iCur" cursor must be pointing to the row that is to be
-** deleted.
-*/
-void sqlite3GenerateRowIndexDelete(
- Vdbe *v, /* Generate code into this VDBE */
- Table *pTab, /* Table containing the row to be deleted */
- int iCur, /* Cursor number for the table */
- char *aIdxUsed /* Only delete if aIdxUsed!=0 && aIdxUsed[i]!=0 */
-){
- int i;
- Index *pIdx;
-
- for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
- if( aIdxUsed!=0 && aIdxUsed[i-1]==0 ) continue;
- sqlite3GenerateIndexKey(v, pIdx, iCur);
- sqlite3VdbeAddOp(v, OP_IdxDelete, iCur+i, 0);
- }
-}
-
-/*
-** Generate code that will assemble an index key and put it on the top
-** of the tack. The key with be for index pIdx which is an index on pTab.
-** iCur is the index of a cursor open on the pTab table and pointing to
-** the entry that needs indexing.
-*/
-void sqlite3GenerateIndexKey(
- Vdbe *v, /* Generate code into this VDBE */
- Index *pIdx, /* The index for which to generate a key */
- int iCur /* Cursor number for the pIdx->pTable table */
-){
- int j;
- Table *pTab = pIdx->pTable;
-
- sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
- for(j=0; jnColumn; j++){
- int idx = pIdx->aiColumn[j];
- if( idx==pTab->iPKey ){
- sqlite3VdbeAddOp(v, OP_Dup, j, 0);
- }else{
- sqlite3VdbeAddOp(v, OP_Column, iCur, idx);
- sqlite3ColumnDefault(v, pTab, idx);
- }
- }
- sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0);
- sqlite3IndexAffinityStr(v, pIdx);
-}
diff --git a/extensions/sqlite/sqlite-source/expr.c b/extensions/sqlite/sqlite-source/expr.c
deleted file mode 100644
index a18eeb7c..00000000
--- a/extensions/sqlite/sqlite-source/expr.c
+++ /dev/null
@@ -1,2617 +0,0 @@
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains routines used for analyzing expressions and
-** for generating VDBE code that evaluates expressions in SQLite.
-**
-** $Id$
-*/
-#include "sqliteInt.h"
-#include
-
-/*
-** Return the 'affinity' of the expression pExpr if any.
-**
-** If pExpr is a column, a reference to a column via an 'AS' alias,
-** or a sub-select with a column as the return value, then the
-** affinity of that column is returned. Otherwise, 0x00 is returned,
-** indicating no affinity for the expression.
-**
-** i.e. the WHERE clause expresssions in the following statements all
-** have an affinity:
-**
-** CREATE TABLE t1(a);
-** SELECT * FROM t1 WHERE a;
-** SELECT a AS b FROM t1 WHERE b;
-** SELECT * FROM t1 WHERE (select a from t1);
-*/
-char sqlite3ExprAffinity(Expr *pExpr){
- int op = pExpr->op;
- if( op==TK_SELECT ){
- return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
- }
-#ifndef SQLITE_OMIT_CAST
- if( op==TK_CAST ){
- return sqlite3AffinityType(&pExpr->token);
- }
-#endif
- return pExpr->affinity;
-}
-
-/*
-** Set the collating sequence for expression pExpr to be the collating
-** sequence named by pToken. Return a pointer to the revised expression.
-** The collating sequence is marked as "explicit" using the EP_ExpCollate
-** flag. An explicit collating sequence will override implicit
-** collating sequences.
-*/
-Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
- CollSeq *pColl;
- if( pExpr==0 ) return 0;
- pColl = sqlite3LocateCollSeq(pParse, (char*)pName->z, pName->n);
- if( pColl ){
- pExpr->pColl = pColl;
- pExpr->flags |= EP_ExpCollate;
- }
- return pExpr;
-}
-
-/*
-** Return the default collation sequence for the expression pExpr. If
-** there is no default collation type, return 0.
-*/
-CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
- CollSeq *pColl = 0;
- if( pExpr ){
- int op;
- pColl = pExpr->pColl;
- op = pExpr->op;
- if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){
- return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
- }
- }
- if( sqlite3CheckCollSeq(pParse, pColl) ){
- pColl = 0;
- }
- return pColl;
-}
-
-/*
-** pExpr is an operand of a comparison operator. aff2 is the
-** type affinity of the other operand. This routine returns the
-** type affinity that should be used for the comparison operator.
-*/
-char sqlite3CompareAffinity(Expr *pExpr, char aff2){
- char aff1 = sqlite3ExprAffinity(pExpr);
- if( aff1 && aff2 ){
- /* Both sides of the comparison are columns. If one has numeric
- ** affinity, use that. Otherwise use no affinity.
- */
- if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
- return SQLITE_AFF_NUMERIC;
- }else{
- return SQLITE_AFF_NONE;
- }
- }else if( !aff1 && !aff2 ){
- /* Neither side of the comparison is a column. Compare the
- ** results directly.
- */
- return SQLITE_AFF_NONE;
- }else{
- /* One side is a column, the other is not. Use the columns affinity. */
- assert( aff1==0 || aff2==0 );
- return (aff1 + aff2);
- }
-}
-
-/*
-** pExpr is a comparison operator. Return the type affinity that should
-** be applied to both operands prior to doing the comparison.
-*/
-static char comparisonAffinity(Expr *pExpr){
- char aff;
- assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
- pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
- pExpr->op==TK_NE );
- assert( pExpr->pLeft );
- aff = sqlite3ExprAffinity(pExpr->pLeft);
- if( pExpr->pRight ){
- aff = sqlite3CompareAffinity(pExpr->pRight, aff);
- }
- else if( pExpr->pSelect ){
- aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
- }
- else if( !aff ){
- aff = SQLITE_AFF_NONE;
- }
- return aff;
-}
-
-/*
-** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
-** idx_affinity is the affinity of an indexed column. Return true
-** if the index with affinity idx_affinity may be used to implement
-** the comparison in pExpr.
-*/
-int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
- char aff = comparisonAffinity(pExpr);
- switch( aff ){
- case SQLITE_AFF_NONE:
- return 1;
- case SQLITE_AFF_TEXT:
- return idx_affinity==SQLITE_AFF_TEXT;
- default:
- return sqlite3IsNumericAffinity(idx_affinity);
- }
-}
-
-/*
-** Return the P1 value that should be used for a binary comparison
-** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
-** If jumpIfNull is true, then set the low byte of the returned
-** P1 value to tell the opcode to jump if either expression
-** evaluates to NULL.
-*/
-static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
- char aff = sqlite3ExprAffinity(pExpr2);
- return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0);
-}
-
-/*
-** Return a pointer to the collation sequence that should be used by
-** a binary comparison operator comparing pLeft and pRight.
-**
-** If the left hand expression has a collating sequence type, then it is
-** used. Otherwise the collation sequence for the right hand expression
-** is used, or the default (BINARY) if neither expression has a collating
-** type.
-**
-** Argument pRight (but not pLeft) may be a null pointer. In this case,
-** it is not considered.
-*/
-CollSeq *sqlite3BinaryCompareCollSeq(
- Parse *pParse,
- Expr *pLeft,
- Expr *pRight
-){
- CollSeq *pColl;
- assert( pLeft );
- if( pLeft->flags & EP_ExpCollate ){
- assert( pLeft->pColl );
- pColl = pLeft->pColl;
- }else if( pRight && pRight->flags & EP_ExpCollate ){
- assert( pRight->pColl );
- pColl = pRight->pColl;
- }else{
- pColl = sqlite3ExprCollSeq(pParse, pLeft);
- if( !pColl ){
- pColl = sqlite3ExprCollSeq(pParse, pRight);
- }
- }
- return pColl;
-}
-
-/*
-** Generate code for a comparison operator.
-*/
-static int codeCompare(
- Parse *pParse, /* The parsing (and code generating) context */
- Expr *pLeft, /* The left operand */
- Expr *pRight, /* The right operand */
- int opcode, /* The comparison opcode */
- int dest, /* Jump here if true. */
- int jumpIfNull /* If true, jump if either operand is NULL */
-){
- int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull);
- CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
- return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ);
-}
-
-/*
-** Construct a new expression node and return a pointer to it. Memory
-** for this node is obtained from sqlite3_malloc(). The calling function
-** is responsible for making sure the node eventually gets freed.
-*/
-Expr *sqlite3Expr(
- sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
- int op, /* Expression opcode */
- Expr *pLeft, /* Left operand */
- Expr *pRight, /* Right operand */
- const Token *pToken /* Argument token */
-){
- Expr *pNew;
- pNew = sqlite3DbMallocZero(db, sizeof(Expr));
- if( pNew==0 ){
- /* When malloc fails, delete pLeft and pRight. Expressions passed to
- ** this function must always be allocated with sqlite3Expr() for this
- ** reason.
- */
- sqlite3ExprDelete(pLeft);
- sqlite3ExprDelete(pRight);
- return 0;
- }
- pNew->op = op;
- pNew->pLeft = pLeft;
- pNew->pRight = pRight;
- pNew->iAgg = -1;
- if( pToken ){
- assert( pToken->dyn==0 );
- pNew->span = pNew->token = *pToken;
- }else if( pLeft ){
- if( pRight ){
- sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
- if( pRight->flags & EP_ExpCollate ){
- pNew->flags |= EP_ExpCollate;
- pNew->pColl = pRight->pColl;
- }
- }
- if( pLeft->flags & EP_ExpCollate ){
- pNew->flags |= EP_ExpCollate;
- pNew->pColl = pLeft->pColl;
- }
- }
-
- sqlite3ExprSetHeight(pNew);
- return pNew;
-}
-
-/*
-** Works like sqlite3Expr() except that it takes an extra Parse*
-** argument and notifies the associated connection object if malloc fails.
-*/
-Expr *sqlite3PExpr(
- Parse *pParse, /* Parsing context */
- int op, /* Expression opcode */
- Expr *pLeft, /* Left operand */
- Expr *pRight, /* Right operand */
- const Token *pToken /* Argument token */
-){
- return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
-}
-
-/*
-** When doing a nested parse, you can include terms in an expression
-** that look like this: #0 #1 #2 ... These terms refer to elements
-** on the stack. "#0" means the top of the stack.
-** "#1" means the next down on the stack. And so forth.
-**
-** This routine is called by the parser to deal with on of those terms.
-** It immediately generates code to store the value in a memory location.
-** The returns an expression that will code to extract the value from
-** that memory location as needed.
-*/
-Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
- Vdbe *v = pParse->pVdbe;
- Expr *p;
- int depth;
- if( pParse->nested==0 ){
- sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
- return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
- }
- if( v==0 ) return 0;
- p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
- if( p==0 ){
- return 0; /* Malloc failed */
- }
- depth = atoi((char*)&pToken->z[1]);
- p->iTable = pParse->nMem++;
- sqlite3VdbeAddOp(v, OP_Dup, depth, 0);
- sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1);
- return p;
-}
-
-/*
-** Join two expressions using an AND operator. If either expression is
-** NULL, then just return the other expression.
-*/
-Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
- if( pLeft==0 ){
- return pRight;
- }else if( pRight==0 ){
- return pLeft;
- }else{
- return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
- }
-}
-
-/*
-** Set the Expr.span field of the given expression to span all
-** text between the two given tokens.
-*/
-void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
- assert( pRight!=0 );
- assert( pLeft!=0 );
- if( pExpr && pRight->z && pLeft->z ){
- assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 );
- if( pLeft->dyn==0 && pRight->dyn==0 ){
- pExpr->span.z = pLeft->z;
- pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
- }else{
- pExpr->span.z = 0;
- }
- }
-}
-
-/*
-** Construct a new expression node for a function with multiple
-** arguments.
-*/
-Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
- Expr *pNew;
- assert( pToken );
- pNew = sqlite3DbMallocZero(pParse->db, sizeof(Expr) );
- if( pNew==0 ){
- sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */
- return 0;
- }
- pNew->op = TK_FUNCTION;
- pNew->pList = pList;
- assert( pToken->dyn==0 );
- pNew->token = *pToken;
- pNew->span = pNew->token;
-
- sqlite3ExprSetHeight(pNew);
- return pNew;
-}
-
-/*
-** Assign a variable number to an expression that encodes a wildcard
-** in the original SQL statement.
-**
-** Wildcards consisting of a single "?" are assigned the next sequential
-** variable number.
-**
-** Wildcards of the form "?nnn" are assigned the number "nnn". We make
-** sure "nnn" is not too be to avoid a denial of service attack when
-** the SQL statement comes from an external source.
-**
-** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
-** as the previous instance of the same wildcard. Or if this is the first
-** instance of the wildcard, the next sequenial variable number is
-** assigned.
-*/
-void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
- Token *pToken;
- sqlite3 *db = pParse->db;
-
- if( pExpr==0 ) return;
- pToken = &pExpr->token;
- assert( pToken->n>=1 );
- assert( pToken->z!=0 );
- assert( pToken->z[0]!=0 );
- if( pToken->n==1 ){
- /* Wildcard of the form "?". Assign the next variable number */
- pExpr->iTable = ++pParse->nVar;
- }else if( pToken->z[0]=='?' ){
- /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
- ** use it as the variable number */
- int i;
- pExpr->iTable = i = atoi((char*)&pToken->z[1]);
- if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){
- sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
- SQLITE_MAX_VARIABLE_NUMBER);
- }
- if( i>pParse->nVar ){
- pParse->nVar = i;
- }
- }else{
- /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable
- ** number as the prior appearance of the same name, or if the name
- ** has never appeared before, reuse the same variable number
- */
- int i, n;
- n = pToken->n;
- for(i=0; inVarExpr; i++){
- Expr *pE;
- if( (pE = pParse->apVarExpr[i])!=0
- && pE->token.n==n
- && memcmp(pE->token.z, pToken->z, n)==0 ){
- pExpr->iTable = pE->iTable;
- break;
- }
- }
- if( i>=pParse->nVarExpr ){
- pExpr->iTable = ++pParse->nVar;
- if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
- pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
- pParse->apVarExpr =
- sqlite3DbReallocOrFree(
- db,
- pParse->apVarExpr,
- pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
- );
- }
- if( !db->mallocFailed ){
- assert( pParse->apVarExpr!=0 );
- pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
- }
- }
- }
- if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){
- sqlite3ErrorMsg(pParse, "too many SQL variables");
- }
-}
-
-/*
-** Recursively delete an expression tree.
-*/
-void sqlite3ExprDelete(Expr *p){
- if( p==0 ) return;
- if( p->span.dyn ) sqlite3_free((char*)p->span.z);
- if( p->token.dyn ) sqlite3_free((char*)p->token.z);
- sqlite3ExprDelete(p->pLeft);
- sqlite3ExprDelete(p->pRight);
- sqlite3ExprListDelete(p->pList);
- sqlite3SelectDelete(p->pSelect);
- sqlite3_free(p);
-}
-
-/*
-** The Expr.token field might be a string literal that is quoted.
-** If so, remove the quotation marks.
-*/
-void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
- if( ExprHasAnyProperty(p, EP_Dequoted) ){
- return;
- }
- ExprSetProperty(p, EP_Dequoted);
- if( p->token.dyn==0 ){
- sqlite3TokenCopy(db, &p->token, &p->token);
- }
- sqlite3Dequote((char*)p->token.z);
-}
-
-
-/*
-** The following group of routines make deep copies of expressions,
-** expression lists, ID lists, and select statements. The copies can
-** be deleted (by being passed to their respective ...Delete() routines)
-** without effecting the originals.
-**
-** The expression list, ID, and source lists return by sqlite3ExprListDup(),
-** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
-** by subsequent calls to sqlite*ListAppend() routines.
-**
-** Any tables that the SrcList might point to are not duplicated.
-*/
-Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
- Expr *pNew;
- if( p==0 ) return 0;
- pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
- if( pNew==0 ) return 0;
- memcpy(pNew, p, sizeof(*pNew));
- if( p->token.z!=0 ){
- pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
- pNew->token.dyn = 1;
- }else{
- assert( pNew->token.z==0 );
- }
- pNew->span.z = 0;
- pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
- pNew->pRight = sqlite3ExprDup(db, p->pRight);
- pNew->pList = sqlite3ExprListDup(db, p->pList);
- pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
- return pNew;
-}
-void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
- if( pTo->dyn ) sqlite3_free((char*)pTo->z);
- if( pFrom->z ){
- pTo->n = pFrom->n;
- pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
- pTo->dyn = 1;
- }else{
- pTo->z = 0;
- }
-}
-ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
- ExprList *pNew;
- struct ExprList_item *pItem, *pOldItem;
- int i;
- if( p==0 ) return 0;
- pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
- if( pNew==0 ) return 0;
- pNew->iECursor = 0;
- pNew->nExpr = pNew->nAlloc = p->nExpr;
- pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) );
- if( pItem==0 ){
- sqlite3_free(pNew);
- return 0;
- }
- pOldItem = p->a;
- for(i=0; inExpr; i++, pItem++, pOldItem++){
- Expr *pNewExpr, *pOldExpr;
- pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
- if( pOldExpr->span.z!=0 && pNewExpr ){
- /* Always make a copy of the span for top-level expressions in the
- ** expression list. The logic in SELECT processing that determines
- ** the names of columns in the result set needs this information */
- sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
- }
- assert( pNewExpr==0 || pNewExpr->span.z!=0
- || pOldExpr->span.z==0
- || db->mallocFailed );
- pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
- pItem->sortOrder = pOldItem->sortOrder;
- pItem->isAgg = pOldItem->isAgg;
- pItem->done = 0;
- }
- return pNew;
-}
-
-/*
-** If cursors, triggers, views and subqueries are all omitted from
-** the build, then none of the following routines, except for
-** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
-** called with a NULL argument.
-*/
-#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
- || !defined(SQLITE_OMIT_SUBQUERY)
-SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
- SrcList *pNew;
- int i;
- int nByte;
- if( p==0 ) return 0;
- nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
- pNew = sqlite3DbMallocRaw(db, nByte );
- if( pNew==0 ) return 0;
- pNew->nSrc = pNew->nAlloc = p->nSrc;
- for(i=0; inSrc; i++){
- struct SrcList_item *pNewItem = &pNew->a[i];
- struct SrcList_item *pOldItem = &p->a[i];
- Table *pTab;
- pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
- pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
- pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
- pNewItem->jointype = pOldItem->jointype;
- pNewItem->iCursor = pOldItem->iCursor;
- pNewItem->isPopulated = pOldItem->isPopulated;
- pTab = pNewItem->pTab = pOldItem->pTab;
- if( pTab ){
- pTab->nRef++;
- }
- pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
- pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
- pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
- pNewItem->colUsed = pOldItem->colUsed;
- }
- return pNew;
-}
-IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
- IdList *pNew;
- int i;
- if( p==0 ) return 0;
- pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
- if( pNew==0 ) return 0;
- pNew->nId = pNew->nAlloc = p->nId;
- pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
- if( pNew->a==0 ){
- sqlite3_free(pNew);
- return 0;
- }
- for(i=0; inId; i++){
- struct IdList_item *pNewItem = &pNew->a[i];
- struct IdList_item *pOldItem = &p->a[i];
- pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
- pNewItem->idx = pOldItem->idx;
- }
- return pNew;
-}
-Select *sqlite3SelectDup(sqlite3 *db, Select *p){
- Select *pNew;
- if( p==0 ) return 0;
- pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
- if( pNew==0 ) return 0;
- pNew->isDistinct = p->isDistinct;
- pNew->pEList = sqlite3ExprListDup(db, p->pEList);
- pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
- pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
- pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
- pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
- pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
- pNew->op = p->op;
- pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
- pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
- pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
- pNew->iLimit = -1;
- pNew->iOffset = -1;
- pNew->isResolved = p->isResolved;
- pNew->isAgg = p->isAgg;
- pNew->usesEphm = 0;
- pNew->disallowOrderBy = 0;
- pNew->pRightmost = 0;
- pNew->addrOpenEphm[0] = -1;
- pNew->addrOpenEphm[1] = -1;
- pNew->addrOpenEphm[2] = -1;
- return pNew;
-}
-#else
-Select *sqlite3SelectDup(sqlite3 *db, Select *p){
- assert( p==0 );
- return 0;
-}
-#endif
-
-
-/*
-** Add a new element to the end of an expression list. If pList is
-** initially NULL, then create a new expression list.
-*/
-ExprList *sqlite3ExprListAppend(
- Parse *pParse, /* Parsing context */
- ExprList *pList, /* List to which to append. Might be NULL */
- Expr *pExpr, /* Expression to be appended */
- Token *pName /* AS keyword for the expression */
-){
- sqlite3 *db = pParse->db;
- if( pList==0 ){
- pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
- if( pList==0 ){
- goto no_mem;
- }
- assert( pList->nAlloc==0 );
- }
- if( pList->nAlloc<=pList->nExpr ){
- struct ExprList_item *a;
- int n = pList->nAlloc*2 + 4;
- a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
- if( a==0 ){
- goto no_mem;
- }
- pList->a = a;
- pList->nAlloc = n;
- }
- assert( pList->a!=0 );
- if( pExpr || pName ){
- struct ExprList_item *pItem = &pList->a[pList->nExpr++];
- memset(pItem, 0, sizeof(*pItem));
- pItem->zName = sqlite3NameFromToken(db, pName);
- pItem->pExpr = pExpr;
- }
- return pList;
-
-no_mem:
- /* Avoid leaking memory if malloc has failed. */
- sqlite3ExprDelete(pExpr);
- sqlite3ExprListDelete(pList);
- return 0;
-}
-
-/*
-** If the expression list pEList contains more than iLimit elements,
-** leave an error message in pParse.
-*/
-void sqlite3ExprListCheckLength(
- Parse *pParse,
- ExprList *pEList,
- int iLimit,
- const char *zObject
-){
- if( pEList && pEList->nExpr>iLimit ){
- sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
- }
-}
-
-
-#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
-/* The following three functions, heightOfExpr(), heightOfExprList()
-** and heightOfSelect(), are used to determine the maximum height
-** of any expression tree referenced by the structure passed as the
-** first argument.
-**
-** If this maximum height is greater than the current value pointed
-** to by pnHeight, the second parameter, then set *pnHeight to that
-** value.
-*/
-static void heightOfExpr(Expr *p, int *pnHeight){
- if( p ){
- if( p->nHeight>*pnHeight ){
- *pnHeight = p->nHeight;
- }
- }
-}
-static void heightOfExprList(ExprList *p, int *pnHeight){
- if( p ){
- int i;
- for(i=0; inExpr; i++){
- heightOfExpr(p->a[i].pExpr, pnHeight);
- }
- }
-}
-static void heightOfSelect(Select *p, int *pnHeight){
- if( p ){
- heightOfExpr(p->pWhere, pnHeight);
- heightOfExpr(p->pHaving, pnHeight);
- heightOfExpr(p->pLimit, pnHeight);
- heightOfExpr(p->pOffset, pnHeight);
- heightOfExprList(p->pEList, pnHeight);
- heightOfExprList(p->pGroupBy, pnHeight);
- heightOfExprList(p->pOrderBy, pnHeight);
- heightOfSelect(p->pPrior, pnHeight);
- }
-}
-
-/*
-** Set the Expr.nHeight variable in the structure passed as an
-** argument. An expression with no children, Expr.pList or
-** Expr.pSelect member has a height of 1. Any other expression
-** has a height equal to the maximum height of any other
-** referenced Expr plus one.
-*/
-void sqlite3ExprSetHeight(Expr *p){
- int nHeight = 0;
- heightOfExpr(p->pLeft, &nHeight);
- heightOfExpr(p->pRight, &nHeight);
- heightOfExprList(p->pList, &nHeight);
- heightOfSelect(p->pSelect, &nHeight);
- p->nHeight = nHeight + 1;
-}
-
-/*
-** Return the maximum height of any expression tree referenced
-** by the select statement passed as an argument.
-*/
-int sqlite3SelectExprHeight(Select *p){
- int nHeight = 0;
- heightOfSelect(p, &nHeight);
- return nHeight;
-}
-#endif
-
-/*
-** Delete an entire expression list.
-*/
-void sqlite3ExprListDelete(ExprList *pList){
- int i;
- struct ExprList_item *pItem;
- if( pList==0 ) return;
- assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
- assert( pList->nExpr<=pList->nAlloc );
- for(pItem=pList->a, i=0; inExpr; i++, pItem++){
- sqlite3ExprDelete(pItem->pExpr);
- sqlite3_free(pItem->zName);
- }
- sqlite3_free(pList->a);
- sqlite3_free(pList);
-}
-
-/*
-** Walk an expression tree. Call xFunc for each node visited.
-**
-** The return value from xFunc determines whether the tree walk continues.
-** 0 means continue walking the tree. 1 means do not walk children
-** of the current node but continue with siblings. 2 means abandon
-** the tree walk completely.
-**
-** The return value from this routine is 1 to abandon the tree walk
-** and 0 to continue.
-**
-** NOTICE: This routine does *not* descend into subqueries.
-*/
-static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
-static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
- int rc;
- if( pExpr==0 ) return 0;
- rc = (*xFunc)(pArg, pExpr);
- if( rc==0 ){
- if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
- if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
- if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
- }
- return rc>1;
-}
-
-/*
-** Call walkExprTree() for every expression in list p.
-*/
-static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
- int i;
- struct ExprList_item *pItem;
- if( !p ) return 0;
- for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
- if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
- }
- return 0;
-}
-
-/*
-** Call walkExprTree() for every expression in Select p, not including
-** expressions that are part of sub-selects in any FROM clause or the LIMIT
-** or OFFSET expressions..
-*/
-static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
- walkExprList(p->pEList, xFunc, pArg);
- walkExprTree(p->pWhere, xFunc, pArg);
- walkExprList(p->pGroupBy, xFunc, pArg);
- walkExprTree(p->pHaving, xFunc, pArg);
- walkExprList(p->pOrderBy, xFunc, pArg);
- if( p->pPrior ){
- walkSelectExpr(p->pPrior, xFunc, pArg);
- }
- return 0;
-}
-
-
-/*
-** This routine is designed as an xFunc for walkExprTree().
-**
-** pArg is really a pointer to an integer. If we can tell by looking
-** at pExpr that the expression that contains pExpr is not a constant
-** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
-** If pExpr does does not disqualify the expression from being a constant
-** then do nothing.
-**
-** After walking the whole tree, if no nodes are found that disqualify
-** the expression as constant, then we assume the whole expression
-** is constant. See sqlite3ExprIsConstant() for additional information.
-*/
-static int exprNodeIsConstant(void *pArg, Expr *pExpr){
- int *pN = (int*)pArg;
-
- /* If *pArg is 3 then any term of the expression that comes from
- ** the ON or USING clauses of a join disqualifies the expression
- ** from being considered constant. */
- if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
- *pN = 0;
- return 2;
- }
-
- switch( pExpr->op ){
- /* Consider functions to be constant if all their arguments are constant
- ** and *pArg==2 */
- case TK_FUNCTION:
- if( (*pN)==2 ) return 0;
- /* Fall through */
- case TK_ID:
- case TK_COLUMN:
- case TK_DOT:
- case TK_AGG_FUNCTION:
- case TK_AGG_COLUMN:
-#ifndef SQLITE_OMIT_SUBQUERY
- case TK_SELECT:
- case TK_EXISTS:
-#endif
- *pN = 0;
- return 2;
- case TK_IN:
- if( pExpr->pSelect ){
- *pN = 0;
- return 2;
- }
- default:
- return 0;
- }
-}
-
-/*
-** Walk an expression tree. Return 1 if the expression is constant
-** and 0 if it involves variables or function calls.
-**
-** For the purposes of this function, a double-quoted string (ex: "abc")
-** is considered a variable but a single-quoted string (ex: 'abc') is
-** a constant.
-*/
-int sqlite3ExprIsConstant(Expr *p){
- int isConst = 1;
- walkExprTree(p, exprNodeIsConstant, &isConst);
- return isConst;
-}
-
-/*
-** Walk an expression tree. Return 1 if the expression is constant
-** that does no originate from the ON or USING clauses of a join.
-** Return 0 if it involves variables or function calls or terms from
-** an ON or USING clause.
-*/
-int sqlite3ExprIsConstantNotJoin(Expr *p){
- int isConst = 3;
- walkExprTree(p, exprNodeIsConstant, &isConst);
- return isConst!=0;
-}
-
-/*
-** Walk an expression tree. Return 1 if the expression is constant
-** or a function call with constant arguments. Return and 0 if there
-** are any variables.
-**
-** For the purposes of this function, a double-quoted string (ex: "abc")
-** is considered a variable but a single-quoted string (ex: 'abc') is
-** a constant.
-*/
-int sqlite3ExprIsConstantOrFunction(Expr *p){
- int isConst = 2;
- walkExprTree(p, exprNodeIsConstant, &isConst);
- return isConst!=0;
-}
-
-/*
-** If the expression p codes a constant integer that is small enough
-** to fit in a 32-bit integer, return 1 and put the value of the integer
-** in *pValue. If the expression is not an integer or if it is too big
-** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
-*/
-int sqlite3ExprIsInteger(Expr *p, int *pValue){
- switch( p->op ){
- case TK_INTEGER: {
- if( sqlite3GetInt32((char*)p->token.z, pValue) ){
- return 1;
- }
- break;
- }
- case TK_UPLUS: {
- return sqlite3ExprIsInteger(p->pLeft, pValue);
- }
- case TK_UMINUS: {
- int v;
- if( sqlite3ExprIsInteger(p->pLeft, &v) ){
- *pValue = -v;
- return 1;
- }
- break;
- }
- default: break;
- }
- return 0;
-}
-
-/*
-** Return TRUE if the given string is a row-id column name.
-*/
-int sqlite3IsRowid(const char *z){
- if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
- if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
- if( sqlite3StrICmp(z, "OID")==0 ) return 1;
- return 0;
-}
-
-/*
-** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
-** that name in the set of source tables in pSrcList and make the pExpr
-** expression node refer back to that source column. The following changes
-** are made to pExpr:
-**
-** pExpr->iDb Set the index in db->aDb[] of the database holding
-** the table.
-** pExpr->iTable Set to the cursor number for the table obtained
-** from pSrcList.
-** pExpr->iColumn Set to the column number within the table.
-** pExpr->op Set to TK_COLUMN.
-** pExpr->pLeft Any expression this points to is deleted
-** pExpr->pRight Any expression this points to is deleted.
-**
-** The pDbToken is the name of the database (the "X"). This value may be
-** NULL meaning that name is of the form Y.Z or Z. Any available database
-** can be used. The pTableToken is the name of the table (the "Y"). This
-** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it
-** means that the form of the name is Z and that columns from any table
-** can be used.
-**
-** If the name cannot be resolved unambiguously, leave an error message
-** in pParse and return non-zero. Return zero on success.
-*/
-static int lookupName(
- Parse *pParse, /* The parsing context */
- Token *pDbToken, /* Name of the database containing table, or NULL */
- Token *pTableToken, /* Name of table containing column, or NULL */
- Token *pColumnToken, /* Name of the column. */
- NameContext *pNC, /* The name context used to resolve the name */
- Expr *pExpr /* Make this EXPR node point to the selected column */
-){
- char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */
- char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */
- char *zCol = 0; /* Name of the column. The "Z" */
- int i, j; /* Loop counters */
- int cnt = 0; /* Number of matching column names */
- int cntTab = 0; /* Number of matching table names */
- sqlite3 *db = pParse->db; /* The database */
- struct SrcList_item *pItem; /* Use for looping over pSrcList items */
- struct SrcList_item *pMatch = 0; /* The matching pSrcList item */
- NameContext *pTopNC = pNC; /* First namecontext in the list */
- Schema *pSchema = 0; /* Schema of the expression */
-
- assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
- zDb = sqlite3NameFromToken(db, pDbToken);
- zTab = sqlite3NameFromToken(db, pTableToken);
- zCol = sqlite3NameFromToken(db, pColumnToken);
- if( db->mallocFailed ){
- goto lookupname_end;
- }
-
- pExpr->iTable = -1;
- while( pNC && cnt==0 ){
- ExprList *pEList;
- SrcList *pSrcList = pNC->pSrcList;
-
- if( pSrcList ){
- for(i=0, pItem=pSrcList->a; inSrc; i++, pItem++){
- Table *pTab;
- int iDb;
- Column *pCol;
-
- pTab = pItem->pTab;
- assert( pTab!=0 );
- iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
- assert( pTab->nCol>0 );
- if( zTab ){
- if( pItem->zAlias ){
- char *zTabName = pItem->zAlias;
- if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
- }else{
- char *zTabName = pTab->zName;
- if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
- if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
- continue;
- }
- }
- }
- if( 0==(cntTab++) ){
- pExpr->iTable = pItem->iCursor;
- pSchema = pTab->pSchema;
- pMatch = pItem;
- }
- for(j=0, pCol=pTab->aCol; jnCol; j++, pCol++){
- if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
- const char *zColl = pTab->aCol[j].zColl;
- IdList *pUsing;
- cnt++;
- pExpr->iTable = pItem->iCursor;
- pMatch = pItem;
- pSchema = pTab->pSchema;
- /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
- pExpr->iColumn = j==pTab->iPKey ? -1 : j;
- pExpr->affinity = pTab->aCol[j].affinity;
- if( (pExpr->flags & EP_ExpCollate)==0 ){
- pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
- }
- if( inSrc-1 ){
- if( pItem[1].jointype & JT_NATURAL ){
- /* If this match occurred in the left table of a natural join,
- ** then skip the right table to avoid a duplicate match */
- pItem++;
- i++;
- }else if( (pUsing = pItem[1].pUsing)!=0 ){
- /* If this match occurs on a column that is in the USING clause
- ** of a join, skip the search of the right table of the join
- ** to avoid a duplicate match there. */
- int k;
- for(k=0; knId; k++){
- if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
- pItem++;
- i++;
- break;
- }
- }
- }
- }
- break;
- }
- }
- }
- }
-
-#ifndef SQLITE_OMIT_TRIGGER
- /* If we have not already resolved the name, then maybe
- ** it is a new.* or old.* trigger argument reference
- */
- if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
- TriggerStack *pTriggerStack = pParse->trigStack;
- Table *pTab = 0;
- if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
- pExpr->iTable = pTriggerStack->newIdx;
- assert( pTriggerStack->pTab );
- pTab = pTriggerStack->pTab;
- }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
- pExpr->iTable = pTriggerStack->oldIdx;
- assert( pTriggerStack->pTab );
- pTab = pTriggerStack->pTab;
- }
-
- if( pTab ){
- int iCol;
- Column *pCol = pTab->aCol;
-
- pSchema = pTab->pSchema;
- cntTab++;
- for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
- if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
- const char *zColl = pTab->aCol[iCol].zColl;
- cnt++;
- pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
- pExpr->affinity = pTab->aCol[iCol].affinity;
- if( (pExpr->flags & EP_ExpCollate)==0 ){
- pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
- }
- pExpr->pTab = pTab;
- break;
- }
- }
- }
- }
-#endif /* !defined(SQLITE_OMIT_TRIGGER) */
-
- /*
- ** Perhaps the name is a reference to the ROWID
- */
- if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
- cnt = 1;
- pExpr->iColumn = -1;
- pExpr->affinity = SQLITE_AFF_INTEGER;
- }
-
- /*
- ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
- ** might refer to an result-set alias. This happens, for example, when
- ** we are resolving names in the WHERE clause of the following command:
- **
- ** SELECT a+b AS x FROM table WHERE x<10;
- **
- ** In cases like this, replace pExpr with a copy of the expression that
- ** forms the result set entry ("a+b" in the example) and return immediately.
- ** Note that the expression in the result set should have already been
- ** resolved by the time the WHERE clause is resolved.
- */
- if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
- for(j=0; jnExpr; j++){
- char *zAs = pEList->a[j].zName;
- if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
- Expr *pDup, *pOrig;
- assert( pExpr->pLeft==0 && pExpr->pRight==0 );
- assert( pExpr->pList==0 );
- assert( pExpr->pSelect==0 );
- pOrig = pEList->a[j].pExpr;
- if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
- sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
- sqlite3_free(zCol);
- return 2;
- }
- pDup = sqlite3ExprDup(db, pOrig);
- if( pExpr->flags & EP_ExpCollate ){
- pDup->pColl = pExpr->pColl;
- pDup->flags |= EP_ExpCollate;
- }
- if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z);
- if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z);
- memcpy(pExpr, pDup, sizeof(*pExpr));
- sqlite3_free(pDup);
- cnt = 1;
- pMatch = 0;
- assert( zTab==0 && zDb==0 );
- goto lookupname_end_2;
- }
- }
- }
-
- /* Advance to the next name context. The loop will exit when either
- ** we have a match (cnt>0) or when we run out of name contexts.
- */
- if( cnt==0 ){
- pNC = pNC->pNext;
- }
- }
-
- /*
- ** If X and Y are NULL (in other words if only the column name Z is
- ** supplied) and the value of Z is enclosed in double-quotes, then
- ** Z is a string literal if it doesn't match any column names. In that
- ** case, we need to return right away and not make any changes to
- ** pExpr.
- **
- ** Because no reference was made to outer contexts, the pNC->nRef
- ** fields are not changed in any context.
- */
- if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
- sqlite3_free(zCol);
- return 0;
- }
-
- /*
- ** cnt==0 means there was not match. cnt>1 means there were two or
- ** more matches. Either way, we have an error.
- */
- if( cnt!=1 ){
- char *z = 0;
- char *zErr;
- zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s";
- if( zDb ){
- sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0);
- }else if( zTab ){
- sqlite3SetString(&z, zTab, ".", zCol, (char*)0);
- }else{
- z = sqlite3StrDup(zCol);
- }
- if( z ){
- sqlite3ErrorMsg(pParse, zErr, z);
- sqlite3_free(z);
- pTopNC->nErr++;
- }else{
- db->mallocFailed = 1;
- }
- }
-
- /* If a column from a table in pSrcList is referenced, then record
- ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes
- ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the
- ** column number is greater than the number of bits in the bitmask
- ** then set the high-order bit of the bitmask.
- */
- if( pExpr->iColumn>=0 && pMatch!=0 ){
- int n = pExpr->iColumn;
- if( n>=sizeof(Bitmask)*8 ){
- n = sizeof(Bitmask)*8-1;
- }
- assert( pMatch->iCursor==pExpr->iTable );
- pMatch->colUsed |= ((Bitmask)1)<pLeft);
- pExpr->pLeft = 0;
- sqlite3ExprDelete(pExpr->pRight);
- pExpr->pRight = 0;
- pExpr->op = TK_COLUMN;
-lookupname_end_2:
- sqlite3_free(zCol);
- if( cnt==1 ){
- assert( pNC!=0 );
- sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
- if( pMatch && !pMatch->pSelect ){
- pExpr->pTab = pMatch->pTab;
- }
- /* Increment the nRef value on all name contexts from TopNC up to
- ** the point where the name matched. */
- for(;;){
- assert( pTopNC!=0 );
- pTopNC->nRef++;
- if( pTopNC==pNC ) break;
- pTopNC = pTopNC->pNext;
- }
- return 0;
- } else {
- return 1;
- }
-}
-
-/*
-** This routine is designed as an xFunc for walkExprTree().
-**
-** Resolve symbolic names into TK_COLUMN operators for the current
-** node in the expression tree. Return 0 to continue the search down
-** the tree or 2 to abort the tree walk.
-**
-** This routine also does error checking and name resolution for
-** function names. The operator for aggregate functions is changed
-** to TK_AGG_FUNCTION.
-*/
-static int nameResolverStep(void *pArg, Expr *pExpr){
- NameContext *pNC = (NameContext*)pArg;
- Parse *pParse;
-
- if( pExpr==0 ) return 1;
- assert( pNC!=0 );
- pParse = pNC->pParse;
-
- if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
- ExprSetProperty(pExpr, EP_Resolved);
-#ifndef NDEBUG
- if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
- SrcList *pSrcList = pNC->pSrcList;
- int i;
- for(i=0; ipSrcList->nSrc; i++){
- assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursornTab);
- }
- }
-#endif
- switch( pExpr->op ){
- /* Double-quoted strings (ex: "abc") are used as identifiers if
- ** possible. Otherwise they remain as strings. Single-quoted
- ** strings (ex: 'abc') are always string literals.
- */
- case TK_STRING: {
- if( pExpr->token.z[0]=='\'' ) break;
- /* Fall thru into the TK_ID case if this is a double-quoted string */
- }
- /* A lone identifier is the name of a column.
- */
- case TK_ID: {
- lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
- return 1;
- }
-
- /* A table name and column name: ID.ID
- ** Or a database, table and column: ID.ID.ID
- */
- case TK_DOT: {
- Token *pColumn;
- Token *pTable;
- Token *pDb;
- Expr *pRight;
-
- /* if( pSrcList==0 ) break; */
- pRight = pExpr->pRight;
- if( pRight->op==TK_ID ){
- pDb = 0;
- pTable = &pExpr->pLeft->token;
- pColumn = &pRight->token;
- }else{
- assert( pRight->op==TK_DOT );
- pDb = &pExpr->pLeft->token;
- pTable = &pRight->pLeft->token;
- pColumn = &pRight->pRight->token;
- }
- lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
- return 1;
- }
-
- /* Resolve function names
- */
- case TK_CONST_FUNC:
- case TK_FUNCTION: {
- ExprList *pList = pExpr->pList; /* The argument list */
- int n = pList ? pList->nExpr : 0; /* Number of arguments */
- int no_such_func = 0; /* True if no such function exists */
- int wrong_num_args = 0; /* True if wrong number of arguments */
- int is_agg = 0; /* True if is an aggregate function */
- int i;
- int auth; /* Authorization to use the function */
- int nId; /* Number of characters in function name */
- const char *zId; /* The function name. */
- FuncDef *pDef; /* Information about the function */
- int enc = ENC(pParse->db); /* The database encoding */
-
- zId = (char*)pExpr->token.z;
- nId = pExpr->token.n;
- pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
- if( pDef==0 ){
- pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
- if( pDef==0 ){
- no_such_func = 1;
- }else{
- wrong_num_args = 1;
- }
- }else{
- is_agg = pDef->xFunc==0;
- }
-#ifndef SQLITE_OMIT_AUTHORIZATION
- if( pDef ){
- auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
- if( auth!=SQLITE_OK ){
- if( auth==SQLITE_DENY ){
- sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
- pDef->zName);
- pNC->nErr++;
- }
- pExpr->op = TK_NULL;
- return 1;
- }
- }
-#endif
- if( is_agg && !pNC->allowAgg ){
- sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
- pNC->nErr++;
- is_agg = 0;
- }else if( no_such_func ){
- sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
- pNC->nErr++;
- }else if( wrong_num_args ){
- sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
- nId, zId);
- pNC->nErr++;
- }
- if( is_agg ){
- pExpr->op = TK_AGG_FUNCTION;
- pNC->hasAgg = 1;
- }
- if( is_agg ) pNC->allowAgg = 0;
- for(i=0; pNC->nErr==0 && ia[i].pExpr, nameResolverStep, pNC);
- }
- if( is_agg ) pNC->allowAgg = 1;
- /* FIX ME: Compute pExpr->affinity based on the expected return
- ** type of the function
- */
- return is_agg;
- }
-#ifndef SQLITE_OMIT_SUBQUERY
- case TK_SELECT:
- case TK_EXISTS:
-#endif
- case TK_IN: {
- if( pExpr->pSelect ){
- int nRef = pNC->nRef;
-#ifndef SQLITE_OMIT_CHECK
- if( pNC->isCheck ){
- sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
- }
-#endif
- sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
- assert( pNC->nRef>=nRef );
- if( nRef!=pNC->nRef ){
- ExprSetProperty(pExpr, EP_VarSelect);
- }
- }
- break;
- }
-#ifndef SQLITE_OMIT_CHECK
- case TK_VARIABLE: {
- if( pNC->isCheck ){
- sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
- }
- break;
- }
-#endif
- }
- return 0;
-}
-
-/*
-** This routine walks an expression tree and resolves references to
-** table columns. Nodes of the form ID.ID or ID resolve into an
-** index to the table in the table list and a column offset. The
-** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable
-** value is changed to the index of the referenced table in pTabList
-** plus the "base" value. The base value will ultimately become the
-** VDBE cursor number for a cursor that is pointing into the referenced
-** table. The Expr.iColumn value is changed to the index of the column
-** of the referenced table. The Expr.iColumn value for the special
-** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an
-** alias for ROWID.
-**
-** Also resolve function names and check the functions for proper
-** usage. Make sure all function names are recognized and all functions
-** have the correct number of arguments. Leave an error message
-** in pParse->zErrMsg if anything is amiss. Return the number of errors.
-**
-** If the expression contains aggregate functions then set the EP_Agg
-** property on the expression.
-*/
-int sqlite3ExprResolveNames(
- NameContext *pNC, /* Namespace to resolve expressions in. */
- Expr *pExpr /* The expression to be analyzed. */
-){
- int savedHasAgg;
- if( pExpr==0 ) return 0;
-#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
- if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){
- sqlite3ErrorMsg(pNC->pParse,
- "Expression tree is too large (maximum depth %d)",
- SQLITE_MAX_EXPR_DEPTH
- );
- return 1;
- }
- pNC->pParse->nHeight += pExpr->nHeight;
-#endif
- savedHasAgg = pNC->hasAgg;
- pNC->hasAgg = 0;
- walkExprTree(pExpr, nameResolverStep, pNC);
-#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
- pNC->pParse->nHeight -= pExpr->nHeight;
-#endif
- if( pNC->nErr>0 ){
- ExprSetProperty(pExpr, EP_Error);
- }
- if( pNC->hasAgg ){
- ExprSetProperty(pExpr, EP_Agg);
- }else if( savedHasAgg ){
- pNC->hasAgg = 1;
- }
- return ExprHasProperty(pExpr, EP_Error);
-}
-
-/*
-** A pointer instance of this structure is used to pass information
-** through walkExprTree into codeSubqueryStep().
-*/
-typedef struct QueryCoder QueryCoder;
-struct QueryCoder {
- Parse *pParse; /* The parsing context */
- NameContext *pNC; /* Namespace of first enclosing query */
-};
-
-
-/*
-** Generate code for scalar subqueries used as an expression
-** and IN operators. Examples:
-**
-** (SELECT a FROM b) -- subquery
-** EXISTS (SELECT a FROM b) -- EXISTS subquery
-** x IN (4,5,11) -- IN operator with list on right-hand side
-** x IN (SELECT a FROM b) -- IN operator with subquery on the right
-**
-** The pExpr parameter describes the expression that contains the IN
-** operator or subquery.
-*/
-#ifndef SQLITE_OMIT_SUBQUERY
-void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
- int testAddr = 0; /* One-time test address */
- Vdbe *v = sqlite3GetVdbe(pParse);
- if( v==0 ) return;
-
-
- /* This code must be run in its entirety every time it is encountered
- ** if any of the following is true:
- **
- ** * The right-hand side is a correlated subquery
- ** * The right-hand side is an expression list containing variables
- ** * We are inside a trigger
- **
- ** If all of the above are false, then we can run this code just once
- ** save the results, and reuse the same result on subsequent invocations.
- */
- if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
- int mem = pParse->nMem++;
- sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0);
- testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0);
- assert( testAddr>0 || pParse->db->mallocFailed );
- sqlite3VdbeAddOp(v, OP_MemInt, 1, mem);
- }
-
- switch( pExpr->op ){
- case TK_IN: {
- char affinity;
- KeyInfo keyInfo;
- int addr; /* Address of OP_OpenEphemeral instruction */
-
- affinity = sqlite3ExprAffinity(pExpr->pLeft);
-
- /* Whether this is an 'x IN(SELECT...)' or an 'x IN()'
- ** expression it is handled the same way. A virtual table is
- ** filled with single-field index keys representing the results
- ** from the SELECT or the .
- **
- ** If the 'x' expression is a column value, or the SELECT...
- ** statement returns a column value, then the affinity of that
- ** column is used to build the index keys. If both 'x' and the
- ** SELECT... statement are columns, then numeric affinity is used
- ** if either column has NUMERIC or INTEGER affinity. If neither
- ** 'x' nor the SELECT... statement are columns, then numeric affinity
- ** is used.
- */
- pExpr->iTable = pParse->nTab++;
- addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0);
- memset(&keyInfo, 0, sizeof(keyInfo));
- keyInfo.nField = 1;
- sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1);
-
- if( pExpr->pSelect ){
- /* Case 1: expr IN (SELECT ...)
- **
- ** Generate code to write the results of the select into the temporary
- ** table allocated and opened above.
- */
- int iParm = pExpr->iTable + (((int)affinity)<<16);
- ExprList *pEList;
- assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
- if( sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0) ){
- return;
- }
- pEList = pExpr->pSelect->pEList;
- if( pEList && pEList->nExpr>0 ){
- keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
- pEList->a[0].pExpr);
- }
- }else if( pExpr->pList ){
- /* Case 2: expr IN (exprlist)
- **
- ** For each expression, build an index key from the evaluation and
- ** store it in the temporary table. If is a column, then use
- ** that columns affinity when building index keys. If is not
- ** a column, use numeric affinity.
- */
- int i;
- ExprList *pList = pExpr->pList;
- struct ExprList_item *pItem;
-
- if( !affinity ){
- affinity = SQLITE_AFF_NONE;
- }
- keyInfo.aColl[0] = pExpr->pLeft->pColl;
-
- /* Loop through each expression in . */
- for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
- Expr *pE2 = pItem->pExpr;
-
- /* If the expression is not constant then we will need to
- ** disable the test that was generated above that makes sure
- ** this code only executes once. Because for a non-constant
- ** expression we need to rerun this code each time.
- */
- if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){
- sqlite3VdbeChangeToNoop(v, testAddr-1, 3);
- testAddr = 0;
- }
-
- /* Evaluate the expression and insert it into the temp table */
- sqlite3ExprCode(pParse, pE2);
- sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);
- sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0);
- }
- }
- sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO);
- break;
- }
-
- case TK_EXISTS:
- case TK_SELECT: {
- /* This has to be a scalar SELECT. Generate code to put the
- ** value of this select in a memory cell and record the number
- ** of the memory cell in iColumn.
- */
- static const Token one = { (u8*)"1", 0, 1 };
- Select *pSel;
- int iMem;
- int sop;
-
- pExpr->iColumn = iMem = pParse->nMem++;
- pSel = pExpr->pSelect;
- if( pExpr->op==TK_SELECT ){
- sop = SRT_Mem;
- sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0);
- VdbeComment((v, "# Init subquery result"));
- }else{
- sop = SRT_Exists;
- sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem);
- VdbeComment((v, "# Init EXISTS result"));
- }
- sqlite3ExprDelete(pSel->pLimit);
- pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
- if( sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0) ){
- return;
- }
- break;
- }
- }
-
- if( testAddr ){
- sqlite3VdbeJumpHere(v, testAddr);
- }
-
- return;
-}
-#endif /* SQLITE_OMIT_SUBQUERY */
-
-/*
-** Generate an instruction that will put the integer describe by
-** text z[0..n-1] on the stack.
-*/
-static void codeInteger(Vdbe *v, const char *z, int n){
- assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
- if( z ){
- int i;
- if( sqlite3GetInt32(z, &i) ){
- sqlite3VdbeAddOp(v, OP_Integer, i, 0);
- }else if( sqlite3FitsIn64Bits(z) ){
- sqlite3VdbeOp3(v, OP_Int64, 0, 0, z, n);
- }else{
- sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n);
- }
- }
-}
-
-
-/*
-** Generate code that will extract the iColumn-th column from
-** table pTab and push that column value on the stack. There
-** is an open cursor to pTab in iTable. If iColumn<0 then
-** code is generated that extracts the rowid.
-*/
-void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){
- if( iColumn<0 ){
- int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
- sqlite3VdbeAddOp(v, op, iTable, 0);
- }else if( pTab==0 ){
- sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn);
- }else{
- int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
- sqlite3VdbeAddOp(v, op, iTable, iColumn);
- sqlite3ColumnDefault(v, pTab, iColumn);
-#ifndef SQLITE_OMIT_FLOATING_POINT
- if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
- sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0);
- }
-#endif
- }
-}
-
-/*
-** Generate code into the current Vdbe to evaluate the given
-** expression and leave the result on the top of stack.
-**
-** This code depends on the fact that certain token values (ex: TK_EQ)
-** are the same as opcode values (ex: OP_Eq) that implement the corresponding
-** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
-** the make process cause these values to align. Assert()s in the code
-** below verify that the numbers are aligned correctly.
-*/
-void sqlite3ExprCode(Parse *pParse, Expr *pExpr){
- Vdbe *v = pParse->pVdbe;
- int op;
- int stackChng = 1; /* Amount of change to stack depth */
-
- if( v==0 ) return;
- if( pExpr==0 ){
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
- return;
- }
- op = pExpr->op;
- switch( op ){
- case TK_AGG_COLUMN: {
- AggInfo *pAggInfo = pExpr->pAggInfo;
- struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
- if( !pAggInfo->directMode ){
- sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0);
- break;
- }else if( pAggInfo->useSortingIdx ){
- sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx,
- pCol->iSorterColumn);
- break;
- }
- /* Otherwise, fall thru into the TK_COLUMN case */
- }
- case TK_COLUMN: {
- if( pExpr->iTable<0 ){
- /* This only happens when coding check constraints */
- assert( pParse->ckOffset>0 );
- sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1);
- }else{
- sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable);
- }
- break;
- }
- case TK_INTEGER: {
- codeInteger(v, (char*)pExpr->token.z, pExpr->token.n);
- break;
- }
- case TK_FLOAT:
- case TK_STRING: {
- assert( TK_FLOAT==OP_Real );
- assert( TK_STRING==OP_String8 );
- sqlite3DequoteExpr(pParse->db, pExpr);
- sqlite3VdbeOp3(v, op, 0, 0, (char*)pExpr->token.z, pExpr->token.n);
- break;
- }
- case TK_NULL: {
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
- break;
- }
-#ifndef SQLITE_OMIT_BLOB_LITERAL
- case TK_BLOB: {
- int n;
- const char *z;
- assert( TK_BLOB==OP_HexBlob );
- n = pExpr->token.n - 3;
- z = (char*)pExpr->token.z + 2;
- assert( n>=0 );
- if( n==0 ){
- z = "";
- }
- sqlite3VdbeOp3(v, op, 0, 0, z, n);
- break;
- }
-#endif
- case TK_VARIABLE: {
- sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
- if( pExpr->token.n>1 ){
- sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n);
- }
- break;
- }
- case TK_REGISTER: {
- sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0);
- break;
- }
-#ifndef SQLITE_OMIT_CAST
- case TK_CAST: {
- /* Expressions of the form: CAST(pLeft AS token) */
- int aff, to_op;
- sqlite3ExprCode(pParse, pExpr->pLeft);
- aff = sqlite3AffinityType(&pExpr->token);
- to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
- assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT );
- assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE );
- assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
- assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER );
- assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL );
- sqlite3VdbeAddOp(v, to_op, 0, 0);
- stackChng = 0;
- break;
- }
-#endif /* SQLITE_OMIT_CAST */
- case TK_LT:
- case TK_LE:
- case TK_GT:
- case TK_GE:
- case TK_NE:
- case TK_EQ: {
- assert( TK_LT==OP_Lt );
- assert( TK_LE==OP_Le );
- assert( TK_GT==OP_Gt );
- assert( TK_GE==OP_Ge );
- assert( TK_EQ==OP_Eq );
- assert( TK_NE==OP_Ne );
- sqlite3ExprCode(pParse, pExpr->pLeft);
- sqlite3ExprCode(pParse, pExpr->pRight);
- codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0);
- stackChng = -1;
- break;
- }
- case TK_AND:
- case TK_OR:
- case TK_PLUS:
- case TK_STAR:
- case TK_MINUS:
- case TK_REM:
- case TK_BITAND:
- case TK_BITOR:
- case TK_SLASH:
- case TK_LSHIFT:
- case TK_RSHIFT:
- case TK_CONCAT: {
- assert( TK_AND==OP_And );
- assert( TK_OR==OP_Or );
- assert( TK_PLUS==OP_Add );
- assert( TK_MINUS==OP_Subtract );
- assert( TK_REM==OP_Remainder );
- assert( TK_BITAND==OP_BitAnd );
- assert( TK_BITOR==OP_BitOr );
- assert( TK_SLASH==OP_Divide );
- assert( TK_LSHIFT==OP_ShiftLeft );
- assert( TK_RSHIFT==OP_ShiftRight );
- assert( TK_CONCAT==OP_Concat );
- sqlite3ExprCode(pParse, pExpr->pLeft);
- sqlite3ExprCode(pParse, pExpr->pRight);
- sqlite3VdbeAddOp(v, op, 0, 0);
- stackChng = -1;
- break;
- }
- case TK_UMINUS: {
- Expr *pLeft = pExpr->pLeft;
- assert( pLeft );
- if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
- Token *p = &pLeft->token;
- char *z = sqlite3MPrintf(pParse->db, "-%.*s", p->n, p->z);
- if( pLeft->op==TK_FLOAT ){
- sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1);
- }else{
- codeInteger(v, z, p->n+1);
- }
- sqlite3_free(z);
- break;
- }
- /* Fall through into TK_NOT */
- }
- case TK_BITNOT:
- case TK_NOT: {
- assert( TK_BITNOT==OP_BitNot );
- assert( TK_NOT==OP_Not );
- sqlite3ExprCode(pParse, pExpr->pLeft);
- sqlite3VdbeAddOp(v, op, 0, 0);
- stackChng = 0;
- break;
- }
- case TK_ISNULL:
- case TK_NOTNULL: {
- int dest;
- assert( TK_ISNULL==OP_IsNull );
- assert( TK_NOTNULL==OP_NotNull );
- sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
- sqlite3ExprCode(pParse, pExpr->pLeft);
- dest = sqlite3VdbeCurrentAddr(v) + 2;
- sqlite3VdbeAddOp(v, op, 1, dest);
- sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
- stackChng = 0;
- break;
- }
- case TK_AGG_FUNCTION: {
- AggInfo *pInfo = pExpr->pAggInfo;
- if( pInfo==0 ){
- sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
- &pExpr->span);
- }else{
- sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0);
- }
- break;
- }
- case TK_CONST_FUNC:
- case TK_FUNCTION: {
- ExprList *pList = pExpr->pList;
- int nExpr = pList ? pList->nExpr : 0;
- FuncDef *pDef;
- int nId;
- const char *zId;
- int constMask = 0;
- int i;
- sqlite3 *db = pParse->db;
- u8 enc = ENC(db);
- CollSeq *pColl = 0;
-
- zId = (char*)pExpr->token.z;
- nId = pExpr->token.n;
- pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
- assert( pDef!=0 );
- nExpr = sqlite3ExprCodeExprList(pParse, pList);
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- /* Possibly overload the function if the first argument is
- ** a virtual table column.
- **
- ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
- ** second argument, not the first, as the argument to test to
- ** see if it is a column in a virtual table. This is done because
- ** the left operand of infix functions (the operand we want to
- ** control overloading) ends up as the second argument to the
- ** function. The expression "A glob B" is equivalent to
- ** "glob(B,A). We want to use the A in "A glob B" to test
- ** for function overloading. But we use the B term in "glob(B,A)".
- */
- if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
- pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
- }else if( nExpr>0 ){
- pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
- }
-#endif
- for(i=0; ia[i].pExpr) ){
- constMask |= (1<needCollSeq && !pColl ){
- pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
- }
- }
- if( pDef->needCollSeq ){
- if( !pColl ) pColl = pParse->db->pDfltColl;
- sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
- }
- sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF);
- stackChng = 1-nExpr;
- break;
- }
-#ifndef SQLITE_OMIT_SUBQUERY
- case TK_EXISTS:
- case TK_SELECT: {
- if( pExpr->iColumn==0 ){
- sqlite3CodeSubselect(pParse, pExpr);
- }
- sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
- VdbeComment((v, "# load subquery result"));
- break;
- }
- case TK_IN: {
- int addr;
- char affinity;
- int ckOffset = pParse->ckOffset;
- sqlite3CodeSubselect(pParse, pExpr);
-
- /* Figure out the affinity to use to create a key from the results
- ** of the expression. affinityStr stores a static string suitable for
- ** P3 of OP_MakeRecord.
- */
- affinity = comparisonAffinity(pExpr);
-
- sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
- pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0);
-
- /* Code the from " IN (...)". The temporary table
- ** pExpr->iTable contains the values that make up the (...) set.
- */
- sqlite3ExprCode(pParse, pExpr->pLeft);
- addr = sqlite3VdbeCurrentAddr(v);
- sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4); /* addr + 0 */
- sqlite3VdbeAddOp(v, OP_Pop, 2, 0);
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
- sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7);
- sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); /* addr + 4 */
- sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7);
- sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */
-
- break;
- }
-#endif
- case TK_BETWEEN: {
- Expr *pLeft = pExpr->pLeft;
- struct ExprList_item *pLItem = pExpr->pList->a;
- Expr *pRight = pLItem->pExpr;
- sqlite3ExprCode(pParse, pLeft);
- sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
- sqlite3ExprCode(pParse, pRight);
- codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0);
- sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
- pLItem++;
- pRight = pLItem->pExpr;
- sqlite3ExprCode(pParse, pRight);
- codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0);
- sqlite3VdbeAddOp(v, OP_And, 0, 0);
- break;
- }
- case TK_UPLUS: {
- sqlite3ExprCode(pParse, pExpr->pLeft);
- stackChng = 0;
- break;
- }
- case TK_CASE: {
- int expr_end_label;
- int jumpInst;
- int nExpr;
- int i;
- ExprList *pEList;
- struct ExprList_item *aListelem;
-
- assert(pExpr->pList);
- assert((pExpr->pList->nExpr % 2) == 0);
- assert(pExpr->pList->nExpr > 0);
- pEList = pExpr->pList;
- aListelem = pEList->a;
- nExpr = pEList->nExpr;
- expr_end_label = sqlite3VdbeMakeLabel(v);
- if( pExpr->pLeft ){
- sqlite3ExprCode(pParse, pExpr->pLeft);
- }
- for(i=0; ipLeft ){
- sqlite3VdbeAddOp(v, OP_Dup, 1, 1);
- jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr,
- OP_Ne, 0, 1);
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
- }else{
- jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0);
- }
- sqlite3ExprCode(pParse, aListelem[i+1].pExpr);
- sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label);
- sqlite3VdbeJumpHere(v, jumpInst);
- }
- if( pExpr->pLeft ){
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
- }
- if( pExpr->pRight ){
- sqlite3ExprCode(pParse, pExpr->pRight);
- }else{
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
- }
- sqlite3VdbeResolveLabel(v, expr_end_label);
- break;
- }
-#ifndef SQLITE_OMIT_TRIGGER
- case TK_RAISE: {
- if( !pParse->trigStack ){
- sqlite3ErrorMsg(pParse,
- "RAISE() may only be used within a trigger-program");
- return;
- }
- if( pExpr->iColumn!=OE_Ignore ){
- assert( pExpr->iColumn==OE_Rollback ||
- pExpr->iColumn == OE_Abort ||
- pExpr->iColumn == OE_Fail );
- sqlite3DequoteExpr(pParse->db, pExpr);
- sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
- (char*)pExpr->token.z, pExpr->token.n);
- } else {
- assert( pExpr->iColumn == OE_Ignore );
- sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0);
- sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
- VdbeComment((v, "# raise(IGNORE)"));
- }
- stackChng = 0;
- break;
- }
-#endif
- }
-
- if( pParse->ckOffset ){
- pParse->ckOffset += stackChng;
- assert( pParse->ckOffset );
- }
-}
-
-#ifndef SQLITE_OMIT_TRIGGER
-/*
-** Generate code that evalutes the given expression and leaves the result
-** on the stack. See also sqlite3ExprCode().
-**
-** This routine might also cache the result and modify the pExpr tree
-** so that it will make use of the cached result on subsequent evaluations
-** rather than evaluate the whole expression again. Trivial expressions are
-** not cached. If the expression is cached, its result is stored in a
-** memory location.
-*/
-void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){
- Vdbe *v = pParse->pVdbe;
- int iMem;
- int addr1, addr2;
- if( v==0 ) return;
- addr1 = sqlite3VdbeCurrentAddr(v);
- sqlite3ExprCode(pParse, pExpr);
- addr2 = sqlite3VdbeCurrentAddr(v);
- if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){
- iMem = pExpr->iTable = pParse->nMem++;
- sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
- pExpr->op = TK_REGISTER;
- }
-}
-#endif
-
-/*
-** Generate code that pushes the value of every element of the given
-** expression list onto the stack.
-**
-** Return the number of elements pushed onto the stack.
-*/
-int sqlite3ExprCodeExprList(
- Parse *pParse, /* Parsing context */
- ExprList *pList /* The expression list to be coded */
-){
- struct ExprList_item *pItem;
- int i, n;
- if( pList==0 ) return 0;
- n = pList->nExpr;
- for(pItem=pList->a, i=n; i>0; i--, pItem++){
- sqlite3ExprCode(pParse, pItem->pExpr);
- }
- return n;
-}
-
-/*
-** Generate code for a boolean expression such that a jump is made
-** to the label "dest" if the expression is true but execution
-** continues straight thru if the expression is false.
-**
-** If the expression evaluates to NULL (neither true nor false), then
-** take the jump if the jumpIfNull flag is true.
-**
-** This code depends on the fact that certain token values (ex: TK_EQ)
-** are the same as opcode values (ex: OP_Eq) that implement the corresponding
-** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
-** the make process cause these values to align. Assert()s in the code
-** below verify that the numbers are aligned correctly.
-*/
-void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
- Vdbe *v = pParse->pVdbe;
- int op = 0;
- int ckOffset = pParse->ckOffset;
- if( v==0 || pExpr==0 ) return;
- op = pExpr->op;
- switch( op ){
- case TK_AND: {
- int d2 = sqlite3VdbeMakeLabel(v);
- sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
- sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
- sqlite3VdbeResolveLabel(v, d2);
- break;
- }
- case TK_OR: {
- sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
- sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
- break;
- }
- case TK_NOT: {
- sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
- break;
- }
- case TK_LT:
- case TK_LE:
- case TK_GT:
- case TK_GE:
- case TK_NE:
- case TK_EQ: {
- assert( TK_LT==OP_Lt );
- assert( TK_LE==OP_Le );
- assert( TK_GT==OP_Gt );
- assert( TK_GE==OP_Ge );
- assert( TK_EQ==OP_Eq );
- assert( TK_NE==OP_Ne );
- sqlite3ExprCode(pParse, pExpr->pLeft);
- sqlite3ExprCode(pParse, pExpr->pRight);
- codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
- break;
- }
- case TK_ISNULL:
- case TK_NOTNULL: {
- assert( TK_ISNULL==OP_IsNull );
- assert( TK_NOTNULL==OP_NotNull );
- sqlite3ExprCode(pParse, pExpr->pLeft);
- sqlite3VdbeAddOp(v, op, 1, dest);
- break;
- }
- case TK_BETWEEN: {
- /* The expression "x BETWEEN y AND z" is implemented as:
- **
- ** 1 IF (x < y) GOTO 3
- ** 2 IF (x <= z) GOTO
- ** 3 ...
- */
- int addr;
- Expr *pLeft = pExpr->pLeft;
- Expr *pRight = pExpr->pList->a[0].pExpr;
- sqlite3ExprCode(pParse, pLeft);
- sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
- sqlite3ExprCode(pParse, pRight);
- addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull);
-
- pRight = pExpr->pList->a[1].pExpr;
- sqlite3ExprCode(pParse, pRight);
- codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull);
-
- sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
- sqlite3VdbeJumpHere(v, addr);
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
- break;
- }
- default: {
- sqlite3ExprCode(pParse, pExpr);
- sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest);
- break;
- }
- }
- pParse->ckOffset = ckOffset;
-}
-
-/*
-** Generate code for a boolean expression such that a jump is made
-** to the label "dest" if the expression is false but execution
-** continues straight thru if the expression is true.
-**
-** If the expression evaluates to NULL (neither true nor false) then
-** jump if jumpIfNull is true or fall through if jumpIfNull is false.
-*/
-void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
- Vdbe *v = pParse->pVdbe;
- int op = 0;
- int ckOffset = pParse->ckOffset;
- if( v==0 || pExpr==0 ) return;
-
- /* The value of pExpr->op and op are related as follows:
- **
- ** pExpr->op op
- ** --------- ----------
- ** TK_ISNULL OP_NotNull
- ** TK_NOTNULL OP_IsNull
- ** TK_NE OP_Eq
- ** TK_EQ OP_Ne
- ** TK_GT OP_Le
- ** TK_LE OP_Gt
- ** TK_GE OP_Lt
- ** TK_LT OP_Ge
- **
- ** For other values of pExpr->op, op is undefined and unused.
- ** The value of TK_ and OP_ constants are arranged such that we
- ** can compute the mapping above using the following expression.
- ** Assert()s verify that the computation is correct.
- */
- op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
-
- /* Verify correct alignment of TK_ and OP_ constants
- */
- assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
- assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
- assert( pExpr->op!=TK_NE || op==OP_Eq );
- assert( pExpr->op!=TK_EQ || op==OP_Ne );
- assert( pExpr->op!=TK_LT || op==OP_Ge );
- assert( pExpr->op!=TK_LE || op==OP_Gt );
- assert( pExpr->op!=TK_GT || op==OP_Le );
- assert( pExpr->op!=TK_GE || op==OP_Lt );
-
- switch( pExpr->op ){
- case TK_AND: {
- sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
- sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
- break;
- }
- case TK_OR: {
- int d2 = sqlite3VdbeMakeLabel(v);
- sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
- sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
- sqlite3VdbeResolveLabel(v, d2);
- break;
- }
- case TK_NOT: {
- sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
- break;
- }
- case TK_LT:
- case TK_LE:
- case TK_GT:
- case TK_GE:
- case TK_NE:
- case TK_EQ: {
- sqlite3ExprCode(pParse, pExpr->pLeft);
- sqlite3ExprCode(pParse, pExpr->pRight);
- codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
- break;
- }
- case TK_ISNULL:
- case TK_NOTNULL: {
- sqlite3ExprCode(pParse, pExpr->pLeft);
- sqlite3VdbeAddOp(v, op, 1, dest);
- break;
- }
- case TK_BETWEEN: {
- /* The expression is "x BETWEEN y AND z". It is implemented as:
- **
- ** 1 IF (x >= y) GOTO 3
- ** 2 GOTO
- ** 3 IF (x > z) GOTO
- */
- int addr;
- Expr *pLeft = pExpr->pLeft;
- Expr *pRight = pExpr->pList->a[0].pExpr;
- sqlite3ExprCode(pParse, pLeft);
- sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
- sqlite3ExprCode(pParse, pRight);
- addr = sqlite3VdbeCurrentAddr(v);
- codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull);
-
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
- sqlite3VdbeAddOp(v, OP_Goto, 0, dest);
- pRight = pExpr->pList->a[1].pExpr;
- sqlite3ExprCode(pParse, pRight);
- codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull);
- break;
- }
- default: {
- sqlite3ExprCode(pParse, pExpr);
- sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
- break;
- }
- }
- pParse->ckOffset = ckOffset;
-}
-
-/*
-** Do a deep comparison of two expression trees. Return TRUE (non-zero)
-** if they are identical and return FALSE if they differ in any way.
-**
-** Sometimes this routine will return FALSE even if the two expressions
-** really are equivalent. If we cannot prove that the expressions are
-** identical, we return FALSE just to be safe. So if this routine
-** returns false, then you do not really know for certain if the two
-** expressions are the same. But if you get a TRUE return, then you
-** can be sure the expressions are the same. In the places where
-** this routine is used, it does not hurt to get an extra FALSE - that
-** just might result in some slightly slower code. But returning
-** an incorrect TRUE could lead to a malfunction.
-*/
-int sqlite3ExprCompare(Expr *pA, Expr *pB){
- int i;
- if( pA==0||pB==0 ){
- return pB==pA;
- }
- if( pA->op!=pB->op ) return 0;
- if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
- if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
- if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
- if( pA->pList ){
- if( pB->pList==0 ) return 0;
- if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
- for(i=0; ipList->nExpr; i++){
- if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
- return 0;
- }
- }
- }else if( pB->pList ){
- return 0;
- }
- if( pA->pSelect || pB->pSelect ) return 0;
- if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
- if( pA->op!=TK_COLUMN && pA->token.z ){
- if( pB->token.z==0 ) return 0;
- if( pB->token.n!=pA->token.n ) return 0;
- if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
- return 0;
- }
- }
- return 1;
-}
-
-
-/*
-** Add a new element to the pAggInfo->aCol[] array. Return the index of
-** the new element. Return a negative number if malloc fails.
-*/
-static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
- int i;
- pInfo->aCol = sqlite3ArrayAllocate(
- db,
- pInfo->aCol,
- sizeof(pInfo->aCol[0]),
- 3,
- &pInfo->nColumn,
- &pInfo->nColumnAlloc,
- &i
- );
- return i;
-}
-
-/*
-** Add a new element to the pAggInfo->aFunc[] array. Return the index of
-** the new element. Return a negative number if malloc fails.
-*/
-static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
- int i;
- pInfo->aFunc = sqlite3ArrayAllocate(
- db,
- pInfo->aFunc,
- sizeof(pInfo->aFunc[0]),
- 3,
- &pInfo->nFunc,
- &pInfo->nFuncAlloc,
- &i
- );
- return i;
-}
-
-/*
-** This is an xFunc for walkExprTree() used to implement
-** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
-** for additional information.
-**
-** This routine analyzes the aggregate function at pExpr.
-*/
-static int analyzeAggregate(void *pArg, Expr *pExpr){
- int i;
- NameContext *pNC = (NameContext *)pArg;
- Parse *pParse = pNC->pParse;
- SrcList *pSrcList = pNC->pSrcList;
- AggInfo *pAggInfo = pNC->pAggInfo;
-
- switch( pExpr->op ){
- case TK_AGG_COLUMN:
- case TK_COLUMN: {
- /* Check to see if the column is in one of the tables in the FROM
- ** clause of the aggregate query */
- if( pSrcList ){
- struct SrcList_item *pItem = pSrcList->a;
- for(i=0; inSrc; i++, pItem++){
- struct AggInfo_col *pCol;
- if( pExpr->iTable==pItem->iCursor ){
- /* If we reach this point, it means that pExpr refers to a table
- ** that is in the FROM clause of the aggregate query.
- **
- ** Make an entry for the column in pAggInfo->aCol[] if there
- ** is not an entry there already.
- */
- int k;
- pCol = pAggInfo->aCol;
- for(k=0; knColumn; k++, pCol++){
- if( pCol->iTable==pExpr->iTable &&
- pCol->iColumn==pExpr->iColumn ){
- break;
- }
- }
- if( (k>=pAggInfo->nColumn)
- && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
- ){
- pCol = &pAggInfo->aCol[k];
- pCol->pTab = pExpr->pTab;
- pCol->iTable = pExpr->iTable;
- pCol->iColumn = pExpr->iColumn;
- pCol->iMem = pParse->nMem++;
- pCol->iSorterColumn = -1;
- pCol->pExpr = pExpr;
- if( pAggInfo->pGroupBy ){
- int j, n;
- ExprList *pGB = pAggInfo->pGroupBy;
- struct ExprList_item *pTerm = pGB->a;
- n = pGB->nExpr;
- for(j=0; jpExpr;
- if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
- pE->iColumn==pExpr->iColumn ){
- pCol->iSorterColumn = j;
- break;
- }
- }
- }
- if( pCol->iSorterColumn<0 ){
- pCol->iSorterColumn = pAggInfo->nSortingColumn++;
- }
- }
- /* There is now an entry for pExpr in pAggInfo->aCol[] (either
- ** because it was there before or because we just created it).
- ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
- ** pAggInfo->aCol[] entry.
- */
- pExpr->pAggInfo = pAggInfo;
- pExpr->op = TK_AGG_COLUMN;
- pExpr->iAgg = k;
- break;
- } /* endif pExpr->iTable==pItem->iCursor */
- } /* end loop over pSrcList */
- }
- return 1;
- }
- case TK_AGG_FUNCTION: {
- /* The pNC->nDepth==0 test causes aggregate functions in subqueries
- ** to be ignored */
- if( pNC->nDepth==0 ){
- /* Check to see if pExpr is a duplicate of another aggregate
- ** function that is already in the pAggInfo structure
- */
- struct AggInfo_func *pItem = pAggInfo->aFunc;
- for(i=0; inFunc; i++, pItem++){
- if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
- break;
- }
- }
- if( i>=pAggInfo->nFunc ){
- /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
- */
- u8 enc = ENC(pParse->db);
- i = addAggInfoFunc(pParse->db, pAggInfo);
- if( i>=0 ){
- pItem = &pAggInfo->aFunc[i];
- pItem->pExpr = pExpr;
- pItem->iMem = pParse->nMem++;
- pItem->pFunc = sqlite3FindFunction(pParse->db,
- (char*)pExpr->token.z, pExpr->token.n,
- pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
- if( pExpr->flags & EP_Distinct ){
- pItem->iDistinct = pParse->nTab++;
- }else{
- pItem->iDistinct = -1;
- }
- }
- }
- /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
- */
- pExpr->iAgg = i;
- pExpr->pAggInfo = pAggInfo;
- return 1;
- }
- }
- }
-
- /* Recursively walk subqueries looking for TK_COLUMN nodes that need
- ** to be changed to TK_AGG_COLUMN. But increment nDepth so that
- ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
- */
- if( pExpr->pSelect ){
- pNC->nDepth++;
- walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
- pNC->nDepth--;
- }
- return 0;
-}
-
-/*
-** Analyze the given expression looking for aggregate functions and
-** for variables that need to be added to the pParse->aAgg[] array.
-** Make additional entries to the pParse->aAgg[] array as necessary.
-**
-** This routine should only be called after the expression has been
-** analyzed by sqlite3ExprResolveNames().
-**
-** If errors are seen, leave an error message in zErrMsg and return
-** the number of errors.
-*/
-int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
- int nErr = pNC->pParse->nErr;
- walkExprTree(pExpr, analyzeAggregate, pNC);
- return pNC->pParse->nErr - nErr;
-}
-
-/*
-** Call sqlite3ExprAnalyzeAggregates() for every expression in an
-** expression list. Return the number of errors.
-**
-** If an error is found, the analysis is cut short.
-*/
-int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
- struct ExprList_item *pItem;
- int i;
- int nErr = 0;
- if( pList ){
- for(pItem=pList->a, i=0; nErr==0 && inExpr; i++, pItem++){
- nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
- }
- }
- return nErr;
-}
diff --git a/extensions/sqlite/sqlite-source/func.c b/extensions/sqlite/sqlite-source/func.c
deleted file mode 100644
index 82ed2d47..00000000
--- a/extensions/sqlite/sqlite-source/func.c
+++ /dev/null
@@ -1,1509 +0,0 @@
-/*
-** 2002 February 23
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains the C functions that implement various SQL
-** functions of SQLite.
-**
-** There is only one exported symbol in this file - the function
-** sqliteRegisterBuildinFunctions() found at the bottom of the file.
-** All other code has file scope.
-**
-** $Id$
-*/
-#include "sqliteInt.h"
-#include
-#include
-#include
-#include "vdbeInt.h"
-
-
-/*
-** Return the collating function associated with a function.
-*/
-static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
- return context->pColl;
-}
-
-/*
-** Implementation of the non-aggregate min() and max() functions
-*/
-static void minmaxFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- int i;
- int mask; /* 0 for min() or 0xffffffff for max() */
- int iBest;
- CollSeq *pColl;
-
- if( argc==0 ) return;
- mask = sqlite3_user_data(context)==0 ? 0 : -1;
- pColl = sqlite3GetFuncCollSeq(context);
- assert( pColl );
- assert( mask==-1 || mask==0 );
- iBest = 0;
- if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
- for(i=1; i=0 ){
- iBest = i;
- }
- }
- sqlite3_result_value(context, argv[iBest]);
-}
-
-/*
-** Return the type of the argument.
-*/
-static void typeofFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- const char *z = 0;
- switch( sqlite3_value_type(argv[0]) ){
- case SQLITE_NULL: z = "null"; break;
- case SQLITE_INTEGER: z = "integer"; break;
- case SQLITE_TEXT: z = "text"; break;
- case SQLITE_FLOAT: z = "real"; break;
- case SQLITE_BLOB: z = "blob"; break;
- }
- sqlite3_result_text(context, z, -1, SQLITE_STATIC);
-}
-
-
-/*
-** Implementation of the length() function
-*/
-static void lengthFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- int len;
-
- assert( argc==1 );
- switch( sqlite3_value_type(argv[0]) ){
- case SQLITE_BLOB:
- case SQLITE_INTEGER:
- case SQLITE_FLOAT: {
- sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
- break;
- }
- case SQLITE_TEXT: {
- const unsigned char *z = sqlite3_value_text(argv[0]);
- if( z==0 ) return;
- len = 0;
- while( *z ){
- len++;
- SQLITE_SKIP_UTF8(z);
- }
- sqlite3_result_int(context, len);
- break;
- }
- default: {
- sqlite3_result_null(context);
- break;
- }
- }
-}
-
-/*
-** Implementation of the abs() function
-*/
-static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
- assert( argc==1 );
- switch( sqlite3_value_type(argv[0]) ){
- case SQLITE_INTEGER: {
- i64 iVal = sqlite3_value_int64(argv[0]);
- if( iVal<0 ){
- if( (iVal<<1)==0 ){
- sqlite3_result_error(context, "integer overflow", -1);
- return;
- }
- iVal = -iVal;
- }
- sqlite3_result_int64(context, iVal);
- break;
- }
- case SQLITE_NULL: {
- sqlite3_result_null(context);
- break;
- }
- default: {
- double rVal = sqlite3_value_double(argv[0]);
- if( rVal<0 ) rVal = -rVal;
- sqlite3_result_double(context, rVal);
- break;
- }
- }
-}
-
-/*
-** Implementation of the substr() function.
-**
-** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
-** p1 is 1-indexed. So substr(x,1,1) returns the first character
-** of x. If x is text, then we actually count UTF-8 characters.
-** If x is a blob, then we count bytes.
-**
-** If p1 is negative, then we begin abs(p1) from the end of x[].
-*/
-static void substrFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- const unsigned char *z;
- const unsigned char *z2;
- int len;
- int p0type;
- i64 p1, p2;
-
- assert( argc==3 );
- p0type = sqlite3_value_type(argv[0]);
- if( p0type==SQLITE_BLOB ){
- len = sqlite3_value_bytes(argv[0]);
- z = sqlite3_value_blob(argv[0]);
- if( z==0 ) return;
- assert( len==sqlite3_value_bytes(argv[0]) );
- }else{
- z = sqlite3_value_text(argv[0]);
- if( z==0 ) return;
- len = 0;
- for(z2=z; *z2; len++){
- SQLITE_SKIP_UTF8(z2);
- }
- }
- p1 = sqlite3_value_int(argv[1]);
- p2 = sqlite3_value_int(argv[2]);
- if( p1<0 ){
- p1 += len;
- if( p1<0 ){
- p2 += p1;
- p1 = 0;
- }
- }else if( p1>0 ){
- p1--;
- }
- if( p1+p2>len ){
- p2 = len-p1;
- }
- if( p0type!=SQLITE_BLOB ){
- while( *z && p1 ){
- SQLITE_SKIP_UTF8(z);
- p1--;
- }
- for(z2=z; *z2 && p2; p2--){
- SQLITE_SKIP_UTF8(z2);
- }
- sqlite3_result_text(context, (char*)z, z2-z, SQLITE_TRANSIENT);
- }else{
- if( p2<0 ) p2 = 0;
- sqlite3_result_blob(context, (char*)&z[p1], p2, SQLITE_TRANSIENT);
- }
-}
-
-/*
-** Implementation of the round() function
-*/
-static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
- int n = 0;
- double r;
- char zBuf[500]; /* larger than the %f representation of the largest double */
- assert( argc==1 || argc==2 );
- if( argc==2 ){
- if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
- n = sqlite3_value_int(argv[1]);
- if( n>30 ) n = 30;
- if( n<0 ) n = 0;
- }
- if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
- r = sqlite3_value_double(argv[0]);
- sqlite3_snprintf(sizeof(zBuf),zBuf,"%.*f",n,r);
- sqlite3AtoF(zBuf, &r);
- sqlite3_result_double(context, r);
-}
-
-/*
-** Allocate nByte bytes of space using sqlite3_malloc(). If the
-** allocation fails, call sqlite3_result_error_nomem() to notify
-** the database handle that malloc() has failed.
-*/
-static void *contextMalloc(sqlite3_context *context, int nByte){
- char *z = sqlite3_malloc(nByte);
- if( !z && nByte>0 ){
- sqlite3_result_error_nomem(context);
- }
- return z;
-}
-
-/*
-** Implementation of the upper() and lower() SQL functions.
-*/
-static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
- char *z1;
- const char *z2;
- int i, n;
- if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
- z2 = (char*)sqlite3_value_text(argv[0]);
- n = sqlite3_value_bytes(argv[0]);
- /* Verify that the call to _bytes() does not invalidate the _text() pointer */
- assert( z2==(char*)sqlite3_value_text(argv[0]) );
- if( z2 ){
- z1 = contextMalloc(context, n+1);
- if( z1 ){
- memcpy(z1, z2, n+1);
- for(i=0; z1[i]; i++){
- z1[i] = toupper(z1[i]);
- }
- sqlite3_result_text(context, z1, -1, sqlite3_free);
- }
- }
-}
-static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
- char *z1;
- const char *z2;
- int i, n;
- if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
- z2 = (char*)sqlite3_value_text(argv[0]);
- n = sqlite3_value_bytes(argv[0]);
- /* Verify that the call to _bytes() does not invalidate the _text() pointer */
- assert( z2==(char*)sqlite3_value_text(argv[0]) );
- if( z2 ){
- z1 = contextMalloc(context, n+1);
- if( z1 ){
- memcpy(z1, z2, n+1);
- for(i=0; z1[i]; i++){
- z1[i] = tolower(z1[i]);
- }
- sqlite3_result_text(context, z1, -1, sqlite3_free);
- }
- }
-}
-
-/*
-** Implementation of the IFNULL(), NVL(), and COALESCE() functions.
-** All three do the same thing. They return the first non-NULL
-** argument.
-*/
-static void ifnullFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- int i;
- for(i=0; iSQLITE_MAX_LENGTH ){
- sqlite3_result_error_toobig(context);
- return;
- }
- p = contextMalloc(context, n);
- if( p ){
- sqlite3Randomness(n, p);
- sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
- }
-}
-
-/*
-** Implementation of the last_insert_rowid() SQL function. The return
-** value is the same as the sqlite3_last_insert_rowid() API function.
-*/
-static void last_insert_rowid(
- sqlite3_context *context,
- int arg,
- sqlite3_value **argv
-){
- sqlite3 *db = sqlite3_user_data(context);
- sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
-}
-
-/*
-** Implementation of the changes() SQL function. The return value is the
-** same as the sqlite3_changes() API function.
-*/
-static void changes(
- sqlite3_context *context,
- int arg,
- sqlite3_value **argv
-){
- sqlite3 *db = sqlite3_user_data(context);
- sqlite3_result_int(context, sqlite3_changes(db));
-}
-
-/*
-** Implementation of the total_changes() SQL function. The return value is
-** the same as the sqlite3_total_changes() API function.
-*/
-static void total_changes(
- sqlite3_context *context,
- int arg,
- sqlite3_value **argv
-){
- sqlite3 *db = sqlite3_user_data(context);
- sqlite3_result_int(context, sqlite3_total_changes(db));
-}
-
-/*
-** A structure defining how to do GLOB-style comparisons.
-*/
-struct compareInfo {
- u8 matchAll;
- u8 matchOne;
- u8 matchSet;
- u8 noCase;
-};
-
-static const struct compareInfo globInfo = { '*', '?', '[', 0 };
-/* The correct SQL-92 behavior is for the LIKE operator to ignore
-** case. Thus 'a' LIKE 'A' would be true. */
-static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
-/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
-** is case sensitive causing 'a' LIKE 'A' to be false */
-static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
-
-/*
-** Compare two UTF-8 strings for equality where the first string can
-** potentially be a "glob" expression. Return true (1) if they
-** are the same and false (0) if they are different.
-**
-** Globbing rules:
-**
-** '*' Matches any sequence of zero or more characters.
-**
-** '?' Matches exactly one character.
-**
-** [...] Matches one character from the enclosed list of
-** characters.
-**
-** [^...] Matches one character not in the enclosed list.
-**
-** With the [...] and [^...] matching, a ']' character can be included
-** in the list by making it the first character after '[' or '^'. A
-** range of characters can be specified using '-'. Example:
-** "[a-z]" matches any single lower-case letter. To match a '-', make
-** it the last character in the list.
-**
-** This routine is usually quick, but can be N**2 in the worst case.
-**
-** Hints: to match '*' or '?', put them in "[]". Like this:
-**
-** abc[*]xyz Matches "abc*xyz" only
-*/
-static int patternCompare(
- const u8 *zPattern, /* The glob pattern */
- const u8 *zString, /* The string to compare against the glob */
- const struct compareInfo *pInfo, /* Information about how to do the compare */
- const int esc /* The escape character */
-){
- int c, c2;
- int invert;
- int seen;
- u8 matchOne = pInfo->matchOne;
- u8 matchAll = pInfo->matchAll;
- u8 matchSet = pInfo->matchSet;
- u8 noCase = pInfo->noCase;
- int prevEscape = 0; /* True if the previous character was 'escape' */
-
- while( (c = sqlite3Utf8Read(zPattern,0,&zPattern))!=0 ){
- if( !prevEscape && c==matchAll ){
- while( (c=sqlite3Utf8Read(zPattern,0,&zPattern)) == matchAll
- || c == matchOne ){
- if( c==matchOne && sqlite3Utf8Read(zString, 0, &zString)==0 ){
- return 0;
- }
- }
- if( c==0 ){
- return 1;
- }else if( c==esc ){
- c = sqlite3Utf8Read(zPattern, 0, &zPattern);
- if( c==0 ){
- return 0;
- }
- }else if( c==matchSet ){
- assert( esc==0 ); /* This is GLOB, not LIKE */
- assert( matchSet<0x80 ); /* '[' is a single-byte character */
- while( *zString && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){
- SQLITE_SKIP_UTF8(zString);
- }
- return *zString!=0;
- }
- while( (c2 = sqlite3Utf8Read(zString,0,&zString))!=0 ){
- if( noCase ){
- c2 = c2<0x80 ? sqlite3UpperToLower[c2] : c2;
- c = c<0x80 ? sqlite3UpperToLower[c] : c;
- while( c2 != 0 && c2 != c ){
- c2 = sqlite3Utf8Read(zString, 0, &zString);
- if( c2<0x80 ) c2 = sqlite3UpperToLower[c2];
- }
- }else{
- while( c2 != 0 && c2 != c ){
- c2 = sqlite3Utf8Read(zString, 0, &zString);
- }
- }
- if( c2==0 ) return 0;
- if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
- }
- return 0;
- }else if( !prevEscape && c==matchOne ){
- if( sqlite3Utf8Read(zString, 0, &zString)==0 ){
- return 0;
- }
- }else if( c==matchSet ){
- int prior_c = 0;
- assert( esc==0 ); /* This only occurs for GLOB, not LIKE */
- seen = 0;
- invert = 0;
- c = sqlite3Utf8Read(zString, 0, &zString);
- if( c==0 ) return 0;
- c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
- if( c2=='^' ){
- invert = 1;
- c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
- }
- if( c2==']' ){
- if( c==']' ) seen = 1;
- c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
- }
- while( c2 && c2!=']' ){
- if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
- c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
- if( c>=prior_c && c<=c2 ) seen = 1;
- prior_c = 0;
- }else{
- if( c==c2 ){
- seen = 1;
- }
- prior_c = c2;
- }
- c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
- }
- if( c2==0 || (seen ^ invert)==0 ){
- return 0;
- }
- }else if( esc==c && !prevEscape ){
- prevEscape = 1;
- }else{
- c2 = sqlite3Utf8Read(zString, 0, &zString);
- if( noCase ){
- c = c<0x80 ? sqlite3UpperToLower[c] : c;
- c2 = c2<0x80 ? sqlite3UpperToLower[c2] : c2;
- }
- if( c!=c2 ){
- return 0;
- }
- prevEscape = 0;
- }
- }
- return *zString==0;
-}
-
-/*
-** Count the number of times that the LIKE operator (or GLOB which is
-** just a variation of LIKE) gets called. This is used for testing
-** only.
-*/
-#ifdef SQLITE_TEST
-int sqlite3_like_count = 0;
-#endif
-
-
-/*
-** Implementation of the like() SQL function. This function implements
-** the build-in LIKE operator. The first argument to the function is the
-** pattern and the second argument is the string. So, the SQL statements:
-**
-** A LIKE B
-**
-** is implemented as like(B,A).
-**
-** This same function (with a different compareInfo structure) computes
-** the GLOB operator.
-*/
-static void likeFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- const unsigned char *zA, *zB;
- int escape = 0;
-
- zB = sqlite3_value_text(argv[0]);
- zA = sqlite3_value_text(argv[1]);
-
- /* Limit the length of the LIKE or GLOB pattern to avoid problems
- ** of deep recursion and N*N behavior in patternCompare().
- */
- if( sqlite3_value_bytes(argv[0])>SQLITE_MAX_LIKE_PATTERN_LENGTH ){
- sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
- return;
- }
- assert( zB==sqlite3_value_text(argv[0]) ); /* Encoding did not change */
-
- if( argc==3 ){
- /* The escape character string must consist of a single UTF-8 character.
- ** Otherwise, return an error.
- */
- const unsigned char *zEsc = sqlite3_value_text(argv[2]);
- if( zEsc==0 ) return;
- if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
- sqlite3_result_error(context,
- "ESCAPE expression must be a single character", -1);
- return;
- }
- escape = sqlite3Utf8Read(zEsc, 0, &zEsc);
- }
- if( zA && zB ){
- struct compareInfo *pInfo = sqlite3_user_data(context);
-#ifdef SQLITE_TEST
- sqlite3_like_count++;
-#endif
-
- sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
- }
-}
-
-/*
-** Implementation of the NULLIF(x,y) function. The result is the first
-** argument if the arguments are different. The result is NULL if the
-** arguments are equal to each other.
-*/
-static void nullifFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- CollSeq *pColl = sqlite3GetFuncCollSeq(context);
- if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
- sqlite3_result_value(context, argv[0]);
- }
-}
-
-/*
-** Implementation of the VERSION(*) function. The result is the version
-** of the SQLite library that is running.
-*/
-static void versionFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- sqlite3_result_text(context, sqlite3_version, -1, SQLITE_STATIC);
-}
-
-/* Array for converting from half-bytes (nybbles) into ASCII hex
-** digits. */
-static const char hexdigits[] = {
- '0', '1', '2', '3', '4', '5', '6', '7',
- '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
-};
-
-/*
-** EXPERIMENTAL - This is not an official function. The interface may
-** change. This function may disappear. Do not write code that depends
-** on this function.
-**
-** Implementation of the QUOTE() function. This function takes a single
-** argument. If the argument is numeric, the return value is the same as
-** the argument. If the argument is NULL, the return value is the string
-** "NULL". Otherwise, the argument is enclosed in single quotes with
-** single-quote escapes.
-*/
-static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
- if( argc<1 ) return;
- switch( sqlite3_value_type(argv[0]) ){
- case SQLITE_NULL: {
- sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
- break;
- }
- case SQLITE_INTEGER:
- case SQLITE_FLOAT: {
- sqlite3_result_value(context, argv[0]);
- break;
- }
- case SQLITE_BLOB: {
- char *zText = 0;
- char const *zBlob = sqlite3_value_blob(argv[0]);
- int nBlob = sqlite3_value_bytes(argv[0]);
- assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
-
- if( 2*nBlob+4>SQLITE_MAX_LENGTH ){
- sqlite3_result_error_toobig(context);
- return;
- }
- zText = (char *)contextMalloc(context, (2*nBlob)+4);
- if( zText ){
- int i;
- for(i=0; i>4)&0x0F];
- zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
- }
- zText[(nBlob*2)+2] = '\'';
- zText[(nBlob*2)+3] = '\0';
- zText[0] = 'X';
- zText[1] = '\'';
- sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
- sqlite3_free(zText);
- }
- break;
- }
- case SQLITE_TEXT: {
- int i,j;
- u64 n;
- const unsigned char *zArg = sqlite3_value_text(argv[0]);
- char *z;
-
- if( zArg==0 ) return;
- for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
- if( i+n+3>SQLITE_MAX_LENGTH ){
- sqlite3_result_error_toobig(context);
- return;
- }
- z = contextMalloc(context, i+n+3);
- if( z ){
- z[0] = '\'';
- for(i=0, j=1; zArg[i]; i++){
- z[j++] = zArg[i];
- if( zArg[i]=='\'' ){
- z[j++] = '\'';
- }
- }
- z[j++] = '\'';
- z[j] = 0;
- sqlite3_result_text(context, z, j, sqlite3_free);
- }
- }
- }
-}
-
-/*
-** The hex() function. Interpret the argument as a blob. Return
-** a hexadecimal rendering as text.
-*/
-static void hexFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- int i, n;
- const unsigned char *pBlob;
- char *zHex, *z;
- assert( argc==1 );
- pBlob = sqlite3_value_blob(argv[0]);
- n = sqlite3_value_bytes(argv[0]);
- if( n*2+1>SQLITE_MAX_LENGTH ){
- sqlite3_result_error_toobig(context);
- return;
- }
- assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
- z = zHex = contextMalloc(context, n*2 + 1);
- if( zHex ){
- for(i=0; i>4)&0xf];
- *(z++) = hexdigits[c&0xf];
- }
- *z = 0;
- sqlite3_result_text(context, zHex, n*2, sqlite3_free);
- }
-}
-
-/*
-** The zeroblob(N) function returns a zero-filled blob of size N bytes.
-*/
-static void zeroblobFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- i64 n;
- assert( argc==1 );
- n = sqlite3_value_int64(argv[0]);
- if( n>SQLITE_MAX_LENGTH ){
- sqlite3_result_error_toobig(context);
- }else{
- sqlite3_result_zeroblob(context, n);
- }
-}
-
-/*
-** The replace() function. Three arguments are all strings: call
-** them A, B, and C. The result is also a string which is derived
-** from A by replacing every occurance of B with C. The match
-** must be exact. Collating sequences are not used.
-*/
-static void replaceFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- const unsigned char *zStr; /* The input string A */
- const unsigned char *zPattern; /* The pattern string B */
- const unsigned char *zRep; /* The replacement string C */
- unsigned char *zOut; /* The output */
- int nStr; /* Size of zStr */
- int nPattern; /* Size of zPattern */
- int nRep; /* Size of zRep */
- i64 nOut; /* Maximum size of zOut */
- int loopLimit; /* Last zStr[] that might match zPattern[] */
- int i, j; /* Loop counters */
-
- assert( argc==3 );
- zStr = sqlite3_value_text(argv[0]);
- if( zStr==0 ) return;
- nStr = sqlite3_value_bytes(argv[0]);
- assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
- zPattern = sqlite3_value_text(argv[1]);
- if( zPattern==0 || zPattern[0]==0 ) return;
- nPattern = sqlite3_value_bytes(argv[1]);
- assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
- zRep = sqlite3_value_text(argv[2]);
- if( zRep==0 ) return;
- nRep = sqlite3_value_bytes(argv[2]);
- assert( zRep==sqlite3_value_text(argv[2]) );
- nOut = nStr + 1;
- assert( nOut=SQLITE_MAX_LENGTH ){
- sqlite3_result_error_toobig(context);
- sqlite3_free(zOut);
- return;
- }
- zOld = zOut;
- zOut = sqlite3_realloc(zOut, (int)nOut);
- if( zOut==0 ){
- sqlite3_result_error_nomem(context);
- sqlite3_free(zOld);
- return;
- }
- memcpy(&zOut[j], zRep, nRep);
- j += nRep;
- i += nPattern-1;
- }
- }
- assert( j+nStr-i+1==nOut );
- memcpy(&zOut[j], &zStr[i], nStr-i);
- j += nStr - i;
- assert( j<=nOut );
- zOut[j] = 0;
- sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
-}
-
-/*
-** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
-** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
-*/
-static void trimFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- const unsigned char *zIn; /* Input string */
- const unsigned char *zCharSet; /* Set of characters to trim */
- int nIn; /* Number of bytes in input */
- int flags; /* 1: trimleft 2: trimright 3: trim */
- int i; /* Loop counter */
- unsigned char *aLen; /* Length of each character in zCharSet */
- const unsigned char **azChar; /* Individual characters in zCharSet */
- int nChar; /* Number of characters in zCharSet */
-
- if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
- return;
- }
- zIn = sqlite3_value_text(argv[0]);
- if( zIn==0 ) return;
- nIn = sqlite3_value_bytes(argv[0]);
- assert( zIn==sqlite3_value_text(argv[0]) );
- if( argc==1 ){
- static const unsigned char lenOne[] = { 1 };
- static const unsigned char *azOne[] = { (u8*)" " };
- nChar = 1;
- aLen = (u8*)lenOne;
- azChar = azOne;
- zCharSet = 0;
- }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
- return;
- }else{
- const unsigned char *z;
- for(z=zCharSet, nChar=0; *z; nChar++){
- SQLITE_SKIP_UTF8(z);
- }
- if( nChar>0 ){
- azChar = contextMalloc(context, nChar*(sizeof(char*)+1));
- if( azChar==0 ){
- return;
- }
- aLen = (unsigned char*)&azChar[nChar];
- for(z=zCharSet, nChar=0; *z; nChar++){
- azChar[nChar] = z;
- SQLITE_SKIP_UTF8(z);
- aLen[nChar] = z - azChar[nChar];
- }
- }
- }
- if( nChar>0 ){
- flags = (int)sqlite3_user_data(context);
- if( flags & 1 ){
- while( nIn>0 ){
- int len;
- for(i=0; i=nChar ) break;
- zIn += len;
- nIn -= len;
- }
- }
- if( flags & 2 ){
- while( nIn>0 ){
- int len;
- for(i=0; i=nChar ) break;
- nIn -= len;
- }
- }
- if( zCharSet ){
- sqlite3_free(azChar);
- }
- }
- sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
-}
-
-#ifdef SQLITE_SOUNDEX
-/*
-** Compute the soundex encoding of a word.
-*/
-static void soundexFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- char zResult[8];
- const u8 *zIn;
- int i, j;
- static const unsigned char iCode[] = {
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
- 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
- 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
- 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
- };
- assert( argc==1 );
- zIn = (u8*)sqlite3_value_text(argv[0]);
- if( zIn==0 ) zIn = (u8*)"";
- for(i=0; zIn[i] && !isalpha(zIn[i]); i++){}
- if( zIn[i] ){
- u8 prevcode = iCode[zIn[i]&0x7f];
- zResult[0] = toupper(zIn[i]);
- for(j=1; j<4 && zIn[i]; i++){
- int code = iCode[zIn[i]&0x7f];
- if( code>0 ){
- if( code!=prevcode ){
- prevcode = code;
- zResult[j++] = code + '0';
- }
- }else{
- prevcode = 0;
- }
- }
- while( j<4 ){
- zResult[j++] = '0';
- }
- zResult[j] = 0;
- sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
- }else{
- sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
- }
-}
-#endif
-
-#ifndef SQLITE_OMIT_LOAD_EXTENSION
-/*
-** A function that loads a shared-library extension then returns NULL.
-*/
-static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
- const char *zFile = (const char *)sqlite3_value_text(argv[0]);
- const char *zProc;
- sqlite3 *db = sqlite3_user_data(context);
- char *zErrMsg = 0;
-
- if( argc==2 ){
- zProc = (const char *)sqlite3_value_text(argv[1]);
- }else{
- zProc = 0;
- }
- if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
- sqlite3_result_error(context, zErrMsg, -1);
- sqlite3_free(zErrMsg);
- }
-}
-#endif
-
-#ifdef SQLITE_TEST
-/*
-** This function generates a string of random characters. Used for
-** generating test data.
-*/
-static void randStr(sqlite3_context *context, int argc, sqlite3_value **argv){
- static const unsigned char zSrc[] =
- "abcdefghijklmnopqrstuvwxyz"
- "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
- "0123456789"
- ".-!,:*^+=_|?/<> ";
- int iMin, iMax, n, r, i;
- unsigned char zBuf[1000];
-
- /* It used to be possible to call randstr() with any number of arguments,
- ** but now it is registered with SQLite as requiring exactly 2.
- */
- assert(argc==2);
-
- iMin = sqlite3_value_int(argv[0]);
- if( iMin<0 ) iMin = 0;
- if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1;
- iMax = sqlite3_value_int(argv[1]);
- if( iMax=sizeof(zBuf) ) iMax = sizeof(zBuf)-1;
- n = iMin;
- if( iMax>iMin ){
- sqlite3Randomness(sizeof(r), &r);
- r &= 0x7fffffff;
- n += r%(iMax + 1 - iMin);
- }
- assert( ncnt++;
- if( type==SQLITE_INTEGER ){
- i64 v = sqlite3_value_int64(argv[0]);
- p->rSum += v;
- if( (p->approx|p->overflow)==0 ){
- i64 iNewSum = p->iSum + v;
- int s1 = p->iSum >> (sizeof(i64)*8-1);
- int s2 = v >> (sizeof(i64)*8-1);
- int s3 = iNewSum >> (sizeof(i64)*8-1);
- p->overflow = (s1&s2&~s3) | (~s1&~s2&s3);
- p->iSum = iNewSum;
- }
- }else{
- p->rSum += sqlite3_value_double(argv[0]);
- p->approx = 1;
- }
- }
-}
-static void sumFinalize(sqlite3_context *context){
- SumCtx *p;
- p = sqlite3_aggregate_context(context, 0);
- if( p && p->cnt>0 ){
- if( p->overflow ){
- sqlite3_result_error(context,"integer overflow",-1);
- }else if( p->approx ){
- sqlite3_result_double(context, p->rSum);
- }else{
- sqlite3_result_int64(context, p->iSum);
- }
- }
-}
-static void avgFinalize(sqlite3_context *context){
- SumCtx *p;
- p = sqlite3_aggregate_context(context, 0);
- if( p && p->cnt>0 ){
- sqlite3_result_double(context, p->rSum/(double)p->cnt);
- }
-}
-static void totalFinalize(sqlite3_context *context){
- SumCtx *p;
- p = sqlite3_aggregate_context(context, 0);
- sqlite3_result_double(context, p ? p->rSum : 0.0);
-}
-
-/*
-** The following structure keeps track of state information for the
-** count() aggregate function.
-*/
-typedef struct CountCtx CountCtx;
-struct CountCtx {
- i64 n;
-};
-
-/*
-** Routines to implement the count() aggregate function.
-*/
-static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
- CountCtx *p;
- p = sqlite3_aggregate_context(context, sizeof(*p));
- if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
- p->n++;
- }
-}
-static void countFinalize(sqlite3_context *context){
- CountCtx *p;
- p = sqlite3_aggregate_context(context, 0);
- sqlite3_result_int64(context, p ? p->n : 0);
-}
-
-/*
-** Routines to implement min() and max() aggregate functions.
-*/
-static void minmaxStep(sqlite3_context *context, int argc, sqlite3_value **argv){
- Mem *pArg = (Mem *)argv[0];
- Mem *pBest;
-
- if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
- pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
- if( !pBest ) return;
-
- if( pBest->flags ){
- int max;
- int cmp;
- CollSeq *pColl = sqlite3GetFuncCollSeq(context);
- /* This step function is used for both the min() and max() aggregates,
- ** the only difference between the two being that the sense of the
- ** comparison is inverted. For the max() aggregate, the
- ** sqlite3_user_data() function returns (void *)-1. For min() it
- ** returns (void *)db, where db is the sqlite3* database pointer.
- ** Therefore the next statement sets variable 'max' to 1 for the max()
- ** aggregate, or 0 for min().
- */
- max = sqlite3_user_data(context)!=0;
- cmp = sqlite3MemCompare(pBest, pArg, pColl);
- if( (max && cmp<0) || (!max && cmp>0) ){
- sqlite3VdbeMemCopy(pBest, pArg);
- }
- }else{
- sqlite3VdbeMemCopy(pBest, pArg);
- }
-}
-static void minMaxFinalize(sqlite3_context *context){
- sqlite3_value *pRes;
- pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
- if( pRes ){
- if( pRes->flags ){
- sqlite3_result_value(context, pRes);
- }
- sqlite3VdbeMemRelease(pRes);
- }
-}
-
-
-/*
-** This function registered all of the above C functions as SQL
-** functions. This should be the only routine in this file with
-** external linkage.
-*/
-void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
- static const struct {
- char *zName;
- signed char nArg;
- u8 argType; /* ff: db 1: 0, 2: 1, 3: 2,... N: N-1. */
- u8 eTextRep; /* 1: UTF-16. 0: UTF-8 */
- u8 needCollSeq;
- void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
- } aFuncs[] = {
- { "min", -1, 0, SQLITE_UTF8, 1, minmaxFunc },
- { "min", 0, 0, SQLITE_UTF8, 1, 0 },
- { "max", -1, 1, SQLITE_UTF8, 1, minmaxFunc },
- { "max", 0, 1, SQLITE_UTF8, 1, 0 },
- { "typeof", 1, 0, SQLITE_UTF8, 0, typeofFunc },
- { "length", 1, 0, SQLITE_UTF8, 0, lengthFunc },
- { "substr", 3, 0, SQLITE_UTF8, 0, substrFunc },
- { "abs", 1, 0, SQLITE_UTF8, 0, absFunc },
- { "round", 1, 0, SQLITE_UTF8, 0, roundFunc },
- { "round", 2, 0, SQLITE_UTF8, 0, roundFunc },
- { "upper", 1, 0, SQLITE_UTF8, 0, upperFunc },
- { "lower", 1, 0, SQLITE_UTF8, 0, lowerFunc },
- { "coalesce", -1, 0, SQLITE_UTF8, 0, ifnullFunc },
- { "coalesce", 0, 0, SQLITE_UTF8, 0, 0 },
- { "coalesce", 1, 0, SQLITE_UTF8, 0, 0 },
- { "hex", 1, 0, SQLITE_UTF8, 0, hexFunc },
- { "ifnull", 2, 0, SQLITE_UTF8, 1, ifnullFunc },
- { "random", -1, 0, SQLITE_UTF8, 0, randomFunc },
- { "randomblob", 1, 0, SQLITE_UTF8, 0, randomBlob },
- { "nullif", 2, 0, SQLITE_UTF8, 1, nullifFunc },
- { "sqlite_version", 0, 0, SQLITE_UTF8, 0, versionFunc},
- { "quote", 1, 0, SQLITE_UTF8, 0, quoteFunc },
- { "last_insert_rowid", 0, 0xff, SQLITE_UTF8, 0, last_insert_rowid },
- { "changes", 0, 0xff, SQLITE_UTF8, 0, changes },
- { "total_changes", 0, 0xff, SQLITE_UTF8, 0, total_changes },
- { "replace", 3, 0, SQLITE_UTF8, 0, replaceFunc },
- { "ltrim", 1, 1, SQLITE_UTF8, 0, trimFunc },
- { "ltrim", 2, 1, SQLITE_UTF8, 0, trimFunc },
- { "rtrim", 1, 2, SQLITE_UTF8, 0, trimFunc },
- { "rtrim", 2, 2, SQLITE_UTF8, 0, trimFunc },
- { "trim", 1, 3, SQLITE_UTF8, 0, trimFunc },
- { "trim", 2, 3, SQLITE_UTF8, 0, trimFunc },
- { "zeroblob", 1, 0, SQLITE_UTF8, 0, zeroblobFunc },
-#ifdef SQLITE_SOUNDEX
- { "soundex", 1, 0, SQLITE_UTF8, 0, soundexFunc},
-#endif
-#ifndef SQLITE_OMIT_LOAD_EXTENSION
- { "load_extension", 1, 0xff, SQLITE_UTF8, 0, loadExt },
- { "load_extension", 2, 0xff, SQLITE_UTF8, 0, loadExt },
-#endif
-#ifdef SQLITE_TEST
- { "randstr", 2, 0, SQLITE_UTF8, 0, randStr },
- { "test_destructor", 1, 0xff, SQLITE_UTF8, 0, test_destructor},
- { "test_destructor_count", 0, 0, SQLITE_UTF8, 0, test_destructor_count},
- { "test_auxdata", -1, 0, SQLITE_UTF8, 0, test_auxdata},
- { "test_error", 1, 0, SQLITE_UTF8, 0, test_error},
-#endif
- };
- static const struct {
- char *zName;
- signed char nArg;
- u8 argType;
- u8 needCollSeq;
- void (*xStep)(sqlite3_context*,int,sqlite3_value**);
- void (*xFinalize)(sqlite3_context*);
- } aAggs[] = {
- { "min", 1, 0, 1, minmaxStep, minMaxFinalize },
- { "max", 1, 1, 1, minmaxStep, minMaxFinalize },
- { "sum", 1, 0, 0, sumStep, sumFinalize },
- { "total", 1, 0, 0, sumStep, totalFinalize },
- { "avg", 1, 0, 0, sumStep, avgFinalize },
- { "count", 0, 0, 0, countStep, countFinalize },
- { "count", 1, 0, 0, countStep, countFinalize },
- };
- int i;
-
- for(i=0; ineedCollSeq = 1;
- }
- }
- }
-#ifndef SQLITE_OMIT_ALTERTABLE
- sqlite3AlterFunctions(db);
-#endif
-#ifndef SQLITE_OMIT_PARSER
- sqlite3AttachFunctions(db);
-#endif
- for(i=0; ineedCollSeq = 1;
- }
- }
- }
- sqlite3RegisterDateTimeFunctions(db);
- if( !db->mallocFailed ){
- int rc = sqlite3_overload_function(db, "MATCH", 2);
- assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
- if( rc==SQLITE_NOMEM ){
- db->mallocFailed = 1;
- }
- }
-#ifdef SQLITE_SSE
- (void)sqlite3SseFunctions(db);
-#endif
-#ifdef SQLITE_CASE_SENSITIVE_LIKE
- sqlite3RegisterLikeFunctions(db, 1);
-#else
- sqlite3RegisterLikeFunctions(db, 0);
-#endif
-}
-
-/*
-** Set the LIKEOPT flag on the 2-argument function with the given name.
-*/
-static void setLikeOptFlag(sqlite3 *db, const char *zName, int flagVal){
- FuncDef *pDef;
- pDef = sqlite3FindFunction(db, zName, strlen(zName), 2, SQLITE_UTF8, 0);
- if( pDef ){
- pDef->flags = flagVal;
- }
-}
-
-/*
-** Register the built-in LIKE and GLOB functions. The caseSensitive
-** parameter determines whether or not the LIKE operator is case
-** sensitive. GLOB is always case sensitive.
-*/
-void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
- struct compareInfo *pInfo;
- if( caseSensitive ){
- pInfo = (struct compareInfo*)&likeInfoAlt;
- }else{
- pInfo = (struct compareInfo*)&likeInfoNorm;
- }
- sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
- sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
- sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8,
- (struct compareInfo*)&globInfo, likeFunc, 0,0);
- setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
- setLikeOptFlag(db, "like",
- caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
-}
-
-/*
-** pExpr points to an expression which implements a function. If
-** it is appropriate to apply the LIKE optimization to that function
-** then set aWc[0] through aWc[2] to the wildcard characters and
-** return TRUE. If the function is not a LIKE-style function then
-** return FALSE.
-*/
-int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
- FuncDef *pDef;
- if( pExpr->op!=TK_FUNCTION || !pExpr->pList ){
- return 0;
- }
- if( pExpr->pList->nExpr!=2 ){
- return 0;
- }
- pDef = sqlite3FindFunction(db, (char*)pExpr->token.z, pExpr->token.n, 2,
- SQLITE_UTF8, 0);
- if( pDef==0 || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){
- return 0;
- }
-
- /* The memcpy() statement assumes that the wildcard characters are
- ** the first three statements in the compareInfo structure. The
- ** asserts() that follow verify that assumption
- */
- memcpy(aWc, pDef->pUserData, 3);
- assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
- assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
- assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
- *pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0;
- return 1;
-}
diff --git a/extensions/sqlite/sqlite-source/hash.c b/extensions/sqlite/sqlite-source/hash.c
deleted file mode 100644
index a6bcdc32..00000000
--- a/extensions/sqlite/sqlite-source/hash.c
+++ /dev/null
@@ -1,418 +0,0 @@
-/*
-** 2001 September 22
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This is the implementation of generic hash-tables
-** used in SQLite.
-**
-** $Id$
-*/
-#include "sqliteInt.h"
-#include
-
-/* Turn bulk memory into a hash table object by initializing the
-** fields of the Hash structure.
-**
-** "pNew" is a pointer to the hash table that is to be initialized.
-** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER,
-** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING. The value of keyClass
-** determines what kind of key the hash table will use. "copyKey" is
-** true if the hash table should make its own private copy of keys and
-** false if it should just use the supplied pointer. CopyKey only makes
-** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored
-** for other key classes.
-*/
-void sqlite3HashInit(Hash *pNew, int keyClass, int copyKey){
- assert( pNew!=0 );
- assert( keyClass>=SQLITE_HASH_STRING && keyClass<=SQLITE_HASH_BINARY );
- pNew->keyClass = keyClass;
-#if 0
- if( keyClass==SQLITE_HASH_POINTER || keyClass==SQLITE_HASH_INT ) copyKey = 0;
-#endif
- pNew->copyKey = copyKey;
- pNew->first = 0;
- pNew->count = 0;
- pNew->htsize = 0;
- pNew->ht = 0;
-}
-
-/* Remove all entries from a hash table. Reclaim all memory.
-** Call this routine to delete a hash table or to reset a hash table
-** to the empty state.
-*/
-void sqlite3HashClear(Hash *pH){
- HashElem *elem; /* For looping over all elements of the table */
-
- assert( pH!=0 );
- elem = pH->first;
- pH->first = 0;
- if( pH->ht ) sqlite3_free(pH->ht);
- pH->ht = 0;
- pH->htsize = 0;
- while( elem ){
- HashElem *next_elem = elem->next;
- if( pH->copyKey && elem->pKey ){
- sqlite3_free(elem->pKey);
- }
- sqlite3_free(elem);
- elem = next_elem;
- }
- pH->count = 0;
-}
-
-#if 0 /* NOT USED */
-/*
-** Hash and comparison functions when the mode is SQLITE_HASH_INT
-*/
-static int intHash(const void *pKey, int nKey){
- return nKey ^ (nKey<<8) ^ (nKey>>8);
-}
-static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){
- return n2 - n1;
-}
-#endif
-
-#if 0 /* NOT USED */
-/*
-** Hash and comparison functions when the mode is SQLITE_HASH_POINTER
-*/
-static int ptrHash(const void *pKey, int nKey){
- uptr x = Addr(pKey);
- return x ^ (x<<8) ^ (x>>8);
-}
-static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
- if( pKey1==pKey2 ) return 0;
- if( pKey1 0 ){
- h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++];
- nKey--;
- }
- return h & 0x7fffffff;
-}
-static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
- if( n1!=n2 ) return 1;
- return sqlite3StrNICmp((const char*)pKey1,(const char*)pKey2,n1);
-}
-
-/*
-** Hash and comparison functions when the mode is SQLITE_HASH_BINARY
-*/
-static int binHash(const void *pKey, int nKey){
- int h = 0;
- const char *z = (const char *)pKey;
- while( nKey-- > 0 ){
- h = (h<<3) ^ h ^ *(z++);
- }
- return h & 0x7fffffff;
-}
-static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
- if( n1!=n2 ) return 1;
- return memcmp(pKey1,pKey2,n1);
-}
-
-/*
-** Return a pointer to the appropriate hash function given the key class.
-**
-** The C syntax in this function definition may be unfamilar to some
-** programmers, so we provide the following additional explanation:
-**
-** The name of the function is "hashFunction". The function takes a
-** single parameter "keyClass". The return value of hashFunction()
-** is a pointer to another function. Specifically, the return value
-** of hashFunction() is a pointer to a function that takes two parameters
-** with types "const void*" and "int" and returns an "int".
-*/
-static int (*hashFunction(int keyClass))(const void*,int){
-#if 0 /* HASH_INT and HASH_POINTER are never used */
- switch( keyClass ){
- case SQLITE_HASH_INT: return &intHash;
- case SQLITE_HASH_POINTER: return &ptrHash;
- case SQLITE_HASH_STRING: return &strHash;
- case SQLITE_HASH_BINARY: return &binHash;;
- default: break;
- }
- return 0;
-#else
- if( keyClass==SQLITE_HASH_STRING ){
- return &strHash;
- }else{
- assert( keyClass==SQLITE_HASH_BINARY );
- return &binHash;
- }
-#endif
-}
-
-/*
-** Return a pointer to the appropriate hash function given the key class.
-**
-** For help in interpreted the obscure C code in the function definition,
-** see the header comment on the previous function.
-*/
-static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
-#if 0 /* HASH_INT and HASH_POINTER are never used */
- switch( keyClass ){
- case SQLITE_HASH_INT: return &intCompare;
- case SQLITE_HASH_POINTER: return &ptrCompare;
- case SQLITE_HASH_STRING: return &strCompare;
- case SQLITE_HASH_BINARY: return &binCompare;
- default: break;
- }
- return 0;
-#else
- if( keyClass==SQLITE_HASH_STRING ){
- return &strCompare;
- }else{
- assert( keyClass==SQLITE_HASH_BINARY );
- return &binCompare;
- }
-#endif
-}
-
-/* Link an element into the hash table
-*/
-static void insertElement(
- Hash *pH, /* The complete hash table */
- struct _ht *pEntry, /* The entry into which pNew is inserted */
- HashElem *pNew /* The element to be inserted */
-){
- HashElem *pHead; /* First element already in pEntry */
- pHead = pEntry->chain;
- if( pHead ){
- pNew->next = pHead;
- pNew->prev = pHead->prev;
- if( pHead->prev ){ pHead->prev->next = pNew; }
- else { pH->first = pNew; }
- pHead->prev = pNew;
- }else{
- pNew->next = pH->first;
- if( pH->first ){ pH->first->prev = pNew; }
- pNew->prev = 0;
- pH->first = pNew;
- }
- pEntry->count++;
- pEntry->chain = pNew;
-}
-
-
-/* Resize the hash table so that it cantains "new_size" buckets.
-** "new_size" must be a power of 2. The hash table might fail
-** to resize if sqlite3_malloc() fails.
-*/
-static void rehash(Hash *pH, int new_size){
- struct _ht *new_ht; /* The new hash table */
- HashElem *elem, *next_elem; /* For looping over existing elements */
- int (*xHash)(const void*,int); /* The hash function */
-
- assert( (new_size & (new_size-1))==0 );
-
- /* There is a call to sqlite3_malloc() inside rehash(). If there is
- ** already an allocation at pH->ht, then if this malloc() fails it
- ** is benign (since failing to resize a hash table is a performance
- ** hit only, not a fatal error).
- */
- sqlite3MallocBenignFailure(pH->htsize>0);
-
- new_ht = (struct _ht *)sqlite3MallocZero( new_size*sizeof(struct _ht) );
- if( new_ht==0 ) return;
- if( pH->ht ) sqlite3_free(pH->ht);
- pH->ht = new_ht;
- pH->htsize = new_size;
- xHash = hashFunction(pH->keyClass);
- for(elem=pH->first, pH->first=0; elem; elem = next_elem){
- int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
- next_elem = elem->next;
- insertElement(pH, &new_ht[h], elem);
- }
-}
-
-/* This function (for internal use only) locates an element in an
-** hash table that matches the given key. The hash for this key has
-** already been computed and is passed as the 4th parameter.
-*/
-static HashElem *findElementGivenHash(
- const Hash *pH, /* The pH to be searched */
- const void *pKey, /* The key we are searching for */
- int nKey,
- int h /* The hash for this key. */
-){
- HashElem *elem; /* Used to loop thru the element list */
- int count; /* Number of elements left to test */
- int (*xCompare)(const void*,int,const void*,int); /* comparison function */
-
- if( pH->ht ){
- struct _ht *pEntry = &pH->ht[h];
- elem = pEntry->chain;
- count = pEntry->count;
- xCompare = compareFunction(pH->keyClass);
- while( count-- && elem ){
- if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
- return elem;
- }
- elem = elem->next;
- }
- }
- return 0;
-}
-
-/* Remove a single entry from the hash table given a pointer to that
-** element and a hash on the element's key.
-*/
-static void removeElementGivenHash(
- Hash *pH, /* The pH containing "elem" */
- HashElem* elem, /* The element to be removed from the pH */
- int h /* Hash value for the element */
-){
- struct _ht *pEntry;
- if( elem->prev ){
- elem->prev->next = elem->next;
- }else{
- pH->first = elem->next;
- }
- if( elem->next ){
- elem->next->prev = elem->prev;
- }
- pEntry = &pH->ht[h];
- if( pEntry->chain==elem ){
- pEntry->chain = elem->next;
- }
- pEntry->count--;
- if( pEntry->count<=0 ){
- pEntry->chain = 0;
- }
- if( pH->copyKey ){
- sqlite3_free(elem->pKey);
- }
- sqlite3_free( elem );
- pH->count--;
- if( pH->count<=0 ){
- assert( pH->first==0 );
- assert( pH->count==0 );
- sqlite3HashClear(pH);
- }
-}
-
-/* Attempt to locate an element of the hash table pH with a key
-** that matches pKey,nKey. Return a pointer to the corresponding
-** HashElem structure for this element if it is found, or NULL
-** otherwise.
-*/
-HashElem *sqlite3HashFindElem(const Hash *pH, const void *pKey, int nKey){
- int h; /* A hash on key */
- HashElem *elem; /* The element that matches key */
- int (*xHash)(const void*,int); /* The hash function */
-
- if( pH==0 || pH->ht==0 ) return 0;
- xHash = hashFunction(pH->keyClass);
- assert( xHash!=0 );
- h = (*xHash)(pKey,nKey);
- assert( (pH->htsize & (pH->htsize-1))==0 );
- elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
- return elem;
-}
-
-/* Attempt to locate an element of the hash table pH with a key
-** that matches pKey,nKey. Return the data for this element if it is
-** found, or NULL if there is no match.
-*/
-void *sqlite3HashFind(const Hash *pH, const void *pKey, int nKey){
- HashElem *elem; /* The element that matches key */
- elem = sqlite3HashFindElem(pH, pKey, nKey);
- return elem ? elem->data : 0;
-}
-
-/* Insert an element into the hash table pH. The key is pKey,nKey
-** and the data is "data".
-**
-** If no element exists with a matching key, then a new
-** element is created. A copy of the key is made if the copyKey
-** flag is set. NULL is returned.
-**
-** If another element already exists with the same key, then the
-** new data replaces the old data and the old data is returned.
-** The key is not copied in this instance. If a malloc fails, then
-** the new data is returned and the hash table is unchanged.
-**
-** If the "data" parameter to this function is NULL, then the
-** element corresponding to "key" is removed from the hash table.
-*/
-void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){
- int hraw; /* Raw hash value of the key */
- int h; /* the hash of the key modulo hash table size */
- HashElem *elem; /* Used to loop thru the element list */
- HashElem *new_elem; /* New element added to the pH */
- int (*xHash)(const void*,int); /* The hash function */
-
- assert( pH!=0 );
- xHash = hashFunction(pH->keyClass);
- assert( xHash!=0 );
- hraw = (*xHash)(pKey, nKey);
- assert( (pH->htsize & (pH->htsize-1))==0 );
- h = hraw & (pH->htsize-1);
- elem = findElementGivenHash(pH,pKey,nKey,h);
- if( elem ){
- void *old_data = elem->data;
- if( data==0 ){
- removeElementGivenHash(pH,elem,h);
- }else{
- elem->data = data;
- if( !pH->copyKey ){
- elem->pKey = (void *)pKey;
- }
- assert(nKey==elem->nKey);
- }
- return old_data;
- }
- if( data==0 ) return 0;
- new_elem = (HashElem*)sqlite3_malloc( sizeof(HashElem) );
- if( new_elem==0 ) return data;
- if( pH->copyKey && pKey!=0 ){
- new_elem->pKey = sqlite3_malloc( nKey );
- if( new_elem->pKey==0 ){
- sqlite3_free(new_elem);
- return data;
- }
- memcpy((void*)new_elem->pKey, pKey, nKey);
- }else{
- new_elem->pKey = (void*)pKey;
- }
- new_elem->nKey = nKey;
- pH->count++;
- if( pH->htsize==0 ){
- rehash(pH,8);
- if( pH->htsize==0 ){
- pH->count = 0;
- if( pH->copyKey ){
- sqlite3_free(new_elem->pKey);
- }
- sqlite3_free(new_elem);
- return data;
- }
- }
- if( pH->count > pH->htsize ){
- rehash(pH,pH->htsize*2);
- }
- assert( pH->htsize>0 );
- assert( (pH->htsize & (pH->htsize-1))==0 );
- h = hraw & (pH->htsize-1);
- insertElement(pH, &pH->ht[h], new_elem);
- new_elem->data = data;
- return 0;
-}
diff --git a/extensions/sqlite/sqlite-source/hash.h b/extensions/sqlite/sqlite-source/hash.h
deleted file mode 100644
index 84a45270..00000000
--- a/extensions/sqlite/sqlite-source/hash.h
+++ /dev/null
@@ -1,110 +0,0 @@
-/*
-** 2001 September 22
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This is the header file for the generic hash-table implemenation
-** used in SQLite.
-**
-** $Id$
-*/
-#ifndef _SQLITE_HASH_H_
-#define _SQLITE_HASH_H_
-
-/* Forward declarations of structures. */
-typedef struct Hash Hash;
-typedef struct HashElem HashElem;
-
-/* A complete hash table is an instance of the following structure.
-** The internals of this structure are intended to be opaque -- client
-** code should not attempt to access or modify the fields of this structure
-** directly. Change this structure only by using the routines below.
-** However, many of the "procedures" and "functions" for modifying and
-** accessing this structure are really macros, so we can't really make
-** this structure opaque.
-*/
-struct Hash {
- char keyClass; /* SQLITE_HASH_INT, _POINTER, _STRING, _BINARY */
- char copyKey; /* True if copy of key made on insert */
- int count; /* Number of entries in this table */
- int htsize; /* Number of buckets in the hash table */
- HashElem *first; /* The first element of the array */
- struct _ht { /* the hash table */
- int count; /* Number of entries with this hash */
- HashElem *chain; /* Pointer to first entry with this hash */
- } *ht;
-};
-
-/* Each element in the hash table is an instance of the following
-** structure. All elements are stored on a single doubly-linked list.
-**
-** Again, this structure is intended to be opaque, but it can't really
-** be opaque because it is used by macros.
-*/
-struct HashElem {
- HashElem *next, *prev; /* Next and previous elements in the table */
- void *data; /* Data associated with this element */
- void *pKey; int nKey; /* Key associated with this element */
-};
-
-/*
-** There are 4 different modes of operation for a hash table:
-**
-** SQLITE_HASH_INT nKey is used as the key and pKey is ignored.
-**
-** SQLITE_HASH_POINTER pKey is used as the key and nKey is ignored.
-**
-** SQLITE_HASH_STRING pKey points to a string that is nKey bytes long
-** (including the null-terminator, if any). Case
-** is ignored in comparisons.
-**
-** SQLITE_HASH_BINARY pKey points to binary data nKey bytes long.
-** memcmp() is used to compare keys.
-**
-** A copy of the key is made for SQLITE_HASH_STRING and SQLITE_HASH_BINARY
-** if the copyKey parameter to HashInit is 1.
-*/
-/* #define SQLITE_HASH_INT 1 // NOT USED */
-/* #define SQLITE_HASH_POINTER 2 // NOT USED */
-#define SQLITE_HASH_STRING 3
-#define SQLITE_HASH_BINARY 4
-
-/*
-** Access routines. To delete, insert a NULL pointer.
-*/
-void sqlite3HashInit(Hash*, int keytype, int copyKey);
-void *sqlite3HashInsert(Hash*, const void *pKey, int nKey, void *pData);
-void *sqlite3HashFind(const Hash*, const void *pKey, int nKey);
-HashElem *sqlite3HashFindElem(const Hash*, const void *pKey, int nKey);
-void sqlite3HashClear(Hash*);
-
-/*
-** Macros for looping over all elements of a hash table. The idiom is
-** like this:
-**
-** Hash h;
-** HashElem *p;
-** ...
-** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){
-** SomeStructure *pData = sqliteHashData(p);
-** // do something with pData
-** }
-*/
-#define sqliteHashFirst(H) ((H)->first)
-#define sqliteHashNext(E) ((E)->next)
-#define sqliteHashData(E) ((E)->data)
-#define sqliteHashKey(E) ((E)->pKey)
-#define sqliteHashKeysize(E) ((E)->nKey)
-
-/*
-** Number of entries in a hash table
-*/
-#define sqliteHashCount(H) ((H)->count)
-
-#endif /* _SQLITE_HASH_H_ */
diff --git a/extensions/sqlite/sqlite-source/insert.c b/extensions/sqlite/sqlite-source/insert.c
deleted file mode 100644
index 18fc30b4..00000000
--- a/extensions/sqlite/sqlite-source/insert.c
+++ /dev/null
@@ -1,1605 +0,0 @@
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file contains C code routines that are called by the parser
-** to handle INSERT statements in SQLite.
-**
-** $Id$
-*/
-#include "sqliteInt.h"
-
-/*
-** Set P3 of the most recently inserted opcode to a column affinity
-** string for index pIdx. A column affinity string has one character
-** for each column in the table, according to the affinity of the column:
-**
-** Character Column affinity
-** ------------------------------
-** 'a' TEXT
-** 'b' NONE
-** 'c' NUMERIC
-** 'd' INTEGER
-** 'e' REAL
-*/
-void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
- if( !pIdx->zColAff ){
- /* The first time a column affinity string for a particular index is
- ** required, it is allocated and populated here. It is then stored as
- ** a member of the Index structure for subsequent use.
- **
- ** The column affinity string will eventually be deleted by
- ** sqliteDeleteIndex() when the Index structure itself is cleaned
- ** up.
- */
- int n;
- Table *pTab = pIdx->pTable;
- sqlite3 *db = sqlite3VdbeDb(v);
- pIdx->zColAff = (char *)sqlite3DbMallocZero(db, pIdx->nColumn+1);
- if( !pIdx->zColAff ){
- return;
- }
- for(n=0; nnColumn; n++){
- pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
- }
- pIdx->zColAff[pIdx->nColumn] = '\0';
- }
-
- sqlite3VdbeChangeP3(v, -1, pIdx->zColAff, 0);
-}
-
-/*
-** Set P3 of the most recently inserted opcode to a column affinity
-** string for table pTab. A column affinity string has one character
-** for each column indexed by the index, according to the affinity of the
-** column:
-**
-** Character Column affinity
-** ------------------------------
-** 'a' TEXT
-** 'b' NONE
-** 'c' NUMERIC
-** 'd' INTEGER
-** 'e' REAL
-*/
-void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
- /* The first time a column affinity string for a particular table
- ** is required, it is allocated and populated here. It is then
- ** stored as a member of the Table structure for subsequent use.
- **
- ** The column affinity string will eventually be deleted by
- ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
- */
- if( !pTab->zColAff ){
- char *zColAff;
- int i;
- sqlite3 *db = sqlite3VdbeDb(v);
-
- zColAff = (char *)sqlite3DbMallocZero(db, pTab->nCol+1);
- if( !zColAff ){
- return;
- }
-
- for(i=0; inCol; i++){
- zColAff[i] = pTab->aCol[i].affinity;
- }
- zColAff[pTab->nCol] = '\0';
-
- pTab->zColAff = zColAff;
- }
-
- sqlite3VdbeChangeP3(v, -1, pTab->zColAff, 0);
-}
-
-/*
-** Return non-zero if SELECT statement p opens the table with rootpage
-** iTab in database iDb. This is used to see if a statement of the form
-** "INSERT INTO SELECT ..." can run without using temporary
-** table for the results of the SELECT.
-**
-** No checking is done for sub-selects that are part of expressions.
-*/
-static int selectReadsTable(Select *p, Schema *pSchema, int iTab){
- int i;
- struct SrcList_item *pItem;
- if( p->pSrc==0 ) return 0;
- for(i=0, pItem=p->pSrc->a; ipSrc->nSrc; i++, pItem++){
- if( pItem->pSelect ){
- if( selectReadsTable(pItem->pSelect, pSchema, iTab) ) return 1;
- }else{
- if( pItem->pTab->pSchema==pSchema && pItem->pTab->tnum==iTab ) return 1;
- }
- }
- return 0;
-}
-
-#ifndef SQLITE_OMIT_AUTOINCREMENT
-/*
-** Write out code to initialize the autoincrement logic. This code
-** looks up the current autoincrement value in the sqlite_sequence
-** table and stores that value in a memory cell. Code generated by
-** autoIncStep() will keep that memory cell holding the largest
-** rowid value. Code generated by autoIncEnd() will write the new
-** largest value of the counter back into the sqlite_sequence table.
-**
-** This routine returns the index of the mem[] cell that contains
-** the maximum rowid counter.
-**
-** Two memory cells are allocated. The next memory cell after the
-** one returned holds the rowid in sqlite_sequence where we will
-** write back the revised maximum rowid.
-*/
-static int autoIncBegin(
- Parse *pParse, /* Parsing context */
- int iDb, /* Index of the database holding pTab */
- Table *pTab /* The table we are writing to */
-){
- int memId = 0;
- if( pTab->autoInc ){
- Vdbe *v = pParse->pVdbe;
- Db *pDb = &pParse->db->aDb[iDb];
- int iCur = pParse->nTab;
- int addr;
- assert( v );
- addr = sqlite3VdbeCurrentAddr(v);
- memId = pParse->nMem+1;
- pParse->nMem += 2;
- sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
- sqlite3VdbeAddOp(v, OP_Rewind, iCur, addr+13);
- sqlite3VdbeAddOp(v, OP_Column, iCur, 0);
- sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
- sqlite3VdbeAddOp(v, OP_Ne, 0x100, addr+12);
- sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
- sqlite3VdbeAddOp(v, OP_MemStore, memId-1, 1);
- sqlite3VdbeAddOp(v, OP_Column, iCur, 1);
- sqlite3VdbeAddOp(v, OP_MemStore, memId, 1);
- sqlite3VdbeAddOp(v, OP_Goto, 0, addr+13);
- sqlite3VdbeAddOp(v, OP_Next, iCur, addr+4);
- sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
- }
- return memId;
-}
-
-/*
-** Update the maximum rowid for an autoincrement calculation.
-**
-** This routine should be called when the top of the stack holds a
-** new rowid that is about to be inserted. If that new rowid is
-** larger than the maximum rowid in the memId memory cell, then the
-** memory cell is updated. The stack is unchanged.
-*/
-static void autoIncStep(Parse *pParse, int memId){
- if( memId>0 ){
- sqlite3VdbeAddOp(pParse->pVdbe, OP_MemMax, memId, 0);
- }
-}
-
-/*
-** After doing one or more inserts, the maximum rowid is stored
-** in mem[memId]. Generate code to write this value back into the
-** the sqlite_sequence table.
-*/
-static void autoIncEnd(
- Parse *pParse, /* The parsing context */
- int iDb, /* Index of the database holding pTab */
- Table *pTab, /* Table we are inserting into */
- int memId /* Memory cell holding the maximum rowid */
-){
- if( pTab->autoInc ){
- int iCur = pParse->nTab;
- Vdbe *v = pParse->pVdbe;
- Db *pDb = &pParse->db->aDb[iDb];
- int addr;
- assert( v );
- addr = sqlite3VdbeCurrentAddr(v);
- sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
- sqlite3VdbeAddOp(v, OP_MemLoad, memId-1, 0);
- sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+7);
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
- sqlite3VdbeAddOp(v, OP_NewRowid, iCur, 0);
- sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
- sqlite3VdbeAddOp(v, OP_MemLoad, memId, 0);
- sqlite3VdbeAddOp(v, OP_MakeRecord, 2, 0);
- sqlite3VdbeAddOp(v, OP_Insert, iCur, OPFLAG_APPEND);
- sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
- }
-}
-#else
-/*
-** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
-** above are all no-ops
-*/
-# define autoIncBegin(A,B,C) (0)
-# define autoIncStep(A,B)
-# define autoIncEnd(A,B,C,D)
-#endif /* SQLITE_OMIT_AUTOINCREMENT */
-
-
-/* Forward declaration */
-static int xferOptimization(
- Parse *pParse, /* Parser context */
- Table *pDest, /* The table we are inserting into */
- Select *pSelect, /* A SELECT statement to use as the data source */
- int onError, /* How to handle constraint errors */
- int iDbDest /* The database of pDest */
-);
-
-/*
-** This routine is call to handle SQL of the following forms:
-**
-** insert into TABLE (IDLIST) values(EXPRLIST)
-** insert into TABLE (IDLIST) select
-**
-** The IDLIST following the table name is always optional. If omitted,
-** then a list of all columns for the table is substituted. The IDLIST
-** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
-**
-** The pList parameter holds EXPRLIST in the first form of the INSERT
-** statement above, and pSelect is NULL. For the second form, pList is
-** NULL and pSelect is a pointer to the select statement used to generate
-** data for the insert.
-**
-** The code generated follows one of four templates. For a simple
-** select with data coming from a VALUES clause, the code executes
-** once straight down through. The template looks like this:
-**
-** open write cursor to and its indices
-** puts VALUES clause expressions onto the stack
-** write the resulting record into
-** cleanup
-**
-** The three remaining templates assume the statement is of the form
-**
-** INSERT INTO SELECT ...
-**
-** If the SELECT clause is of the restricted form "SELECT * FROM " -
-** in other words if the SELECT pulls all columns from a single table
-** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
-** if and are distinct tables but have identical
-** schemas, including all the same indices, then a special optimization
-** is invoked that copies raw records from over to .
-** See the xferOptimization() function for the implementation of this
-** template. This is the second template.
-**
-** open a write cursor to
-** open read cursor on
-** transfer all records in over to
-** close cursors
-** foreach index on
-** open a write cursor on the index
-** open a read cursor on the corresponding index
-** transfer all records from the read to the write cursors
-** close cursors
-** end foreach
-**
-** The third template is for when the second template does not apply
-** and the SELECT clause does not read from at any time.
-** The generated code follows this template:
-**
-** goto B
-** A: setup for the SELECT
-** loop over the rows in the SELECT
-** gosub C
-** end loop
-** cleanup after the SELECT
-** goto D
-** B: open write cursor to and its indices
-** goto A
-** C: insert the select result into
-** return
-** D: cleanup
-**
-** The fourth template is used if the insert statement takes its
-** values from a SELECT but the data is being inserted into a table
-** that is also read as part of the SELECT. In the third form,
-** we have to use a intermediate table to store the results of
-** the select. The template is like this:
-**
-** goto B
-** A: setup for the SELECT
-** loop over the tables in the SELECT
-** gosub C
-** end loop
-** cleanup after the SELECT
-** goto D
-** C: insert the select result into the intermediate table
-** return
-** B: open a cursor to an intermediate table
-** goto A
-** D: open write cursor to and its indices
-** loop over the intermediate table
-** transfer values form intermediate table into
-** end the loop
-** cleanup
-*/
-void sqlite3Insert(
- Parse *pParse, /* Parser context */
- SrcList *pTabList, /* Name of table into which we are inserting */
- ExprList *pList, /* List of values to be inserted */
- Select *pSelect, /* A SELECT statement to use as the data source */
- IdList *pColumn, /* Column names corresponding to IDLIST. */
- int onError /* How to handle constraint errors */
-){
- Table *pTab; /* The table to insert into */
- char *zTab; /* Name of the table into which we are inserting */
- const char *zDb; /* Name of the database holding this table */
- int i, j, idx; /* Loop counters */
- Vdbe *v; /* Generate code into this virtual machine */
- Index *pIdx; /* For looping over indices of the table */
- int nColumn; /* Number of columns in the data */
- int base = 0; /* VDBE Cursor number for pTab */
- int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */
- sqlite3 *db; /* The main database structure */
- int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
- int endOfLoop; /* Label for the end of the insertion loop */
- int useTempTable = 0; /* Store SELECT results in intermediate table */
- int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
- int iSelectLoop = 0; /* Address of code that implements the SELECT */
- int iCleanup = 0; /* Address of the cleanup code */
- int iInsertBlock = 0; /* Address of the subroutine used to insert data */
- int iCntMem = 0; /* Memory cell used for the row counter */
- int newIdx = -1; /* Cursor for the NEW table */
- Db *pDb; /* The database containing table being inserted into */
- int counterMem = 0; /* Memory cell holding AUTOINCREMENT counter */
- int appendFlag = 0; /* True if the insert is likely to be an append */
- int iDb;
-
- int nHidden = 0;
-
-#ifndef SQLITE_OMIT_TRIGGER
- int isView; /* True if attempting to insert into a view */
- int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */
-#endif
-
- db = pParse->db;
- if( pParse->nErr || db->mallocFailed ){
- goto insert_cleanup;
- }
-
- /* Locate the table into which we will be inserting new information.
- */
- assert( pTabList->nSrc==1 );
- zTab = pTabList->a[0].zName;
- if( zTab==0 ) goto insert_cleanup;
- pTab = sqlite3SrcListLookup(pParse, pTabList);
- if( pTab==0 ){
- goto insert_cleanup;
- }
- iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
- assert( iDbnDb );
- pDb = &db->aDb[iDb];
- zDb = pDb->zName;
- if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
- goto insert_cleanup;
- }
-
- /* Figure out if we have any triggers and if the table being
- ** inserted into is a view
- */
-#ifndef SQLITE_OMIT_TRIGGER
- triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
- isView = pTab->pSelect!=0;
-#else
-# define triggers_exist 0
-# define isView 0
-#endif
-#ifdef SQLITE_OMIT_VIEW
-# undef isView
-# define isView 0
-#endif
-
- /* Ensure that:
- * (a) the table is not read-only,
- * (b) that if it is a view then ON INSERT triggers exist
- */
- if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
- goto insert_cleanup;
- }
- assert( pTab!=0 );
-
- /* If pTab is really a view, make sure it has been initialized.
- ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual
- ** module table).
- */
- if( sqlite3ViewGetColumnNames(pParse, pTab) ){
- goto insert_cleanup;
- }
-
- /* Allocate a VDBE
- */
- v = sqlite3GetVdbe(pParse);
- if( v==0 ) goto insert_cleanup;
- if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
- sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
-
- /* if there are row triggers, allocate a temp table for new.* references. */
- if( triggers_exist ){
- newIdx = pParse->nTab++;
- }
-
-#ifndef SQLITE_OMIT_XFER_OPT
- /* If the statement is of the form
- **
- ** INSERT INTO SELECT * FROM ;
- **
- ** Then special optimizations can be applied that make the transfer
- ** very fast and which reduce fragmentation of indices.
- */
- if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
- assert( !triggers_exist );
- assert( pList==0 );
- goto insert_cleanup;
- }
-#endif /* SQLITE_OMIT_XFER_OPT */
-
- /* If this is an AUTOINCREMENT table, look up the sequence number in the
- ** sqlite_sequence table and store it in memory cell counterMem. Also
- ** remember the rowid of the sqlite_sequence table entry in memory cell
- ** counterRowid.
- */
- counterMem = autoIncBegin(pParse, iDb, pTab);
-
- /* Figure out how many columns of data are supplied. If the data
- ** is coming from a SELECT statement, then this step also generates
- ** all the code to implement the SELECT statement and invoke a subroutine
- ** to process each row of the result. (Template 2.) If the SELECT
- ** statement uses the the table that is being inserted into, then the
- ** subroutine is also coded here. That subroutine stores the SELECT
- ** results in a temporary table. (Template 3.)
- */
- if( pSelect ){
- /* Data is coming from a SELECT. Generate code to implement that SELECT
- */
- int rc, iInitCode;
- iInitCode = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
- iSelectLoop = sqlite3VdbeCurrentAddr(v);
- iInsertBlock = sqlite3VdbeMakeLabel(v);
-
- /* Resolve the expressions in the SELECT statement and execute it. */
- rc = sqlite3Select(pParse, pSelect, SRT_Subroutine, iInsertBlock,0,0,0,0);
- if( rc || pParse->nErr || db->mallocFailed ){
- goto insert_cleanup;
- }
-
- iCleanup = sqlite3VdbeMakeLabel(v);
- sqlite3VdbeAddOp(v, OP_Goto, 0, iCleanup);
- assert( pSelect->pEList );
- nColumn = pSelect->pEList->nExpr;
-
- /* Set useTempTable to TRUE if the result of the SELECT statement
- ** should be written into a temporary table. Set to FALSE if each
- ** row of the SELECT can be written directly into the result table.
- **
- ** A temp table must be used if the table being updated is also one
- ** of the tables being read by the SELECT statement. Also use a
- ** temp table in the case of row triggers.
- */
- if( triggers_exist || selectReadsTable(pSelect,pTab->pSchema,pTab->tnum) ){
- useTempTable = 1;
- }
-
- if( useTempTable ){
- /* Generate the subroutine that SELECT calls to process each row of
- ** the result. Store the result in a temporary table
- */
- srcTab = pParse->nTab++;
- sqlite3VdbeResolveLabel(v, iInsertBlock);
- sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
- sqlite3VdbeAddOp(v, OP_NewRowid, srcTab, 0);
- sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
- sqlite3VdbeAddOp(v, OP_Insert, srcTab, OPFLAG_APPEND);
- sqlite3VdbeAddOp(v, OP_Return, 0, 0);
-
- /* The following code runs first because the GOTO at the very top
- ** of the program jumps to it. Create the temporary table, then jump
- ** back up and execute the SELECT code above.
- */
- sqlite3VdbeJumpHere(v, iInitCode);
- sqlite3VdbeAddOp(v, OP_OpenEphemeral, srcTab, 0);
- sqlite3VdbeAddOp(v, OP_SetNumColumns, srcTab, nColumn);
- sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop);
- sqlite3VdbeResolveLabel(v, iCleanup);
- }else{
- sqlite3VdbeJumpHere(v, iInitCode);
- }
- }else{
- /* This is the case if the data for the INSERT is coming from a VALUES
- ** clause
- */
- NameContext sNC;
- memset(&sNC, 0, sizeof(sNC));
- sNC.pParse = pParse;
- srcTab = -1;
- useTempTable = 0;
- nColumn = pList ? pList->nExpr : 0;
- for(i=0; ia[i].pExpr) ){
- goto insert_cleanup;
- }
- }
- }
-
- /* Make sure the number of columns in the source data matches the number
- ** of columns to be inserted into the table.
- */
- if( IsVirtual(pTab) ){
- for(i=0; inCol; i++){
- nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
- }
- }
- if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
- sqlite3ErrorMsg(pParse,
- "table %S has %d columns but %d values were supplied",
- pTabList, 0, pTab->nCol, nColumn);
- goto insert_cleanup;
- }
- if( pColumn!=0 && nColumn!=pColumn->nId ){
- sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
- goto insert_cleanup;
- }
-
- /* If the INSERT statement included an IDLIST term, then make sure
- ** all elements of the IDLIST really are columns of the table and
- ** remember the column indices.
- **
- ** If the table has an INTEGER PRIMARY KEY column and that column
- ** is named in the IDLIST, then record in the keyColumn variable
- ** the index into IDLIST of the primary key column. keyColumn is
- ** the index of the primary key as it appears in IDLIST, not as
- ** is appears in the original table. (The index of the primary
- ** key in the original table is pTab->iPKey.)
- */
- if( pColumn ){
- for(i=0; inId; i++){
- pColumn->a[i].idx = -1;
- }
- for(i=0; inId; i++){
- for(j=0; jnCol; j++){
- if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
- pColumn->a[i].idx = j;
- if( j==pTab->iPKey ){
- keyColumn = i;
- }
- break;
- }
- }
- if( j>=pTab->nCol ){
- if( sqlite3IsRowid(pColumn->a[i].zName) ){
- keyColumn = i;
- }else{
- sqlite3ErrorMsg(pParse, "table %S has no column named %s",
- pTabList, 0, pColumn->a[i].zName);
- pParse->nErr++;
- goto insert_cleanup;
- }
- }
- }
- }
-
- /* If there is no IDLIST term but the table has an integer primary
- ** key, the set the keyColumn variable to the primary key column index
- ** in the original table definition.
- */
- if( pColumn==0 && nColumn>0 ){
- keyColumn = pTab->iPKey;
- }
-
- /* Open the temp table for FOR EACH ROW triggers
- */
- if( triggers_exist ){
- sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
- sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol);
- }
-
- /* Initialize the count of rows to be inserted
- */
- if( db->flags & SQLITE_CountRows ){
- iCntMem = pParse->nMem++;
- sqlite3VdbeAddOp(v, OP_MemInt, 0, iCntMem);
- }
-
- /* Open tables and indices if there are no row triggers */
- if( !triggers_exist ){
- base = pParse->nTab;
- sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
- }
-
- /* If the data source is a temporary table, then we have to create
- ** a loop because there might be multiple rows of data. If the data
- ** source is a subroutine call from the SELECT statement, then we need
- ** to launch the SELECT statement processing.
- */
- if( useTempTable ){
- iBreak = sqlite3VdbeMakeLabel(v);
- sqlite3VdbeAddOp(v, OP_Rewind, srcTab, iBreak);
- iCont = sqlite3VdbeCurrentAddr(v);
- }else if( pSelect ){
- sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop);
- sqlite3VdbeResolveLabel(v, iInsertBlock);
- }
-
- /* Run the BEFORE and INSTEAD OF triggers, if there are any
- */
- endOfLoop = sqlite3VdbeMakeLabel(v);
- if( triggers_exist & TRIGGER_BEFORE ){
-
- /* build the NEW.* reference row. Note that if there is an INTEGER
- ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
- ** translated into a unique ID for the row. But on a BEFORE trigger,
- ** we do not know what the unique ID will be (because the insert has
- ** not happened yet) so we substitute a rowid of -1
- */
- if( keyColumn<0 ){
- sqlite3VdbeAddOp(v, OP_Integer, -1, 0);
- }else if( useTempTable ){
- sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn);
- }else{
- assert( pSelect==0 ); /* Otherwise useTempTable is true */
- sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
- sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
- sqlite3VdbeAddOp(v, OP_Integer, -1, 0);
- sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
- }
-
- /* Cannot have triggers on a virtual table. If it were possible,
- ** this block would have to account for hidden column.
- */
- assert(!IsVirtual(pTab));
-
- /* Create the new column data
- */
- for(i=0; inCol; i++){
- if( pColumn==0 ){
- j = i;
- }else{
- for(j=0; jnId; j++){
- if( pColumn->a[j].idx==i ) break;
- }
- }
- if( pColumn && j>=pColumn->nId ){
- sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
- }else if( useTempTable ){
- sqlite3VdbeAddOp(v, OP_Column, srcTab, j);
- }else{
- assert( pSelect==0 ); /* Otherwise useTempTable is true */
- sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr);
- }
- }
- sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
-
- /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
- ** do not attempt any conversions before assembling the record.
- ** If this is a real table, attempt conversions as required by the
- ** table column affinities.
- */
- if( !isView ){
- sqlite3TableAffinityStr(v, pTab);
- }
- sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
-
- /* Fire BEFORE or INSTEAD OF triggers */
- if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab,
- newIdx, -1, onError, endOfLoop) ){
- goto insert_cleanup;
- }
- }
-
- /* If any triggers exists, the opening of tables and indices is deferred
- ** until now.
- */
- if( triggers_exist && !isView ){
- base = pParse->nTab;
- sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
- }
-
- /* Push the record number for the new entry onto the stack. The
- ** record number is a randomly generate integer created by NewRowid
- ** except when the table has an INTEGER PRIMARY KEY column, in which
- ** case the record number is the same as that column.
- */
- if( !isView ){
- if( IsVirtual(pTab) ){
- /* The row that the VUpdate opcode will delete: none */
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
- }
- if( keyColumn>=0 ){
- if( useTempTable ){
- sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn);
- }else if( pSelect ){
- sqlite3VdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
- }else{
- VdbeOp *pOp;
- sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
- pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
- if( pOp && pOp->opcode==OP_Null ){
- appendFlag = 1;
- pOp->opcode = OP_NewRowid;
- pOp->p1 = base;
- pOp->p2 = counterMem;
- }
- }
- /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
- ** to generate a unique primary key value.
- */
- if( !appendFlag ){
- sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
- sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem);
- sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
- }
- }else if( IsVirtual(pTab) ){
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
- }else{
- sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem);
- appendFlag = 1;
- }
- autoIncStep(pParse, counterMem);
-
- /* Push onto the stack, data for all columns of the new entry, beginning
- ** with the first column.
- */
- nHidden = 0;
- for(i=0; inCol; i++){
- if( i==pTab->iPKey ){
- /* The value of the INTEGER PRIMARY KEY column is always a NULL.
- ** Whenever this column is read, the record number will be substituted
- ** in its place. So will fill this column with a NULL to avoid
- ** taking up data space with information that will never be used. */
- sqlite3VdbeAddOp(v, OP_Null, 0, 0);
- continue;
- }
- if( pColumn==0 ){
- if( IsHiddenColumn(&pTab->aCol[i]) ){
- assert( IsVirtual(pTab) );
- j = -1;
- nHidden++;
- }else{
- j = i - nHidden;
- }
- }else{
- for(j=0; jnId; j++){
- if( pColumn->a[j].idx==i ) break;
- }
- }
- if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
- sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
- }else if( useTempTable ){
- sqlite3VdbeAddOp(v, OP_Column, srcTab, j);
- }else if( pSelect ){
- sqlite3VdbeAddOp(v, OP_Dup, i+nColumn-j+IsVirtual(pTab), 1);
- }else{
- sqlite3ExprCode(pParse, pList->a[j].pExpr);
- }
- }
-
- /* Generate code to check constraints and generate index keys and
- ** do the insertion.
- */
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( IsVirtual(pTab) ){
- pParse->pVirtualLock = pTab;
- sqlite3VdbeOp3(v, OP_VUpdate, 1, pTab->nCol+2,
- (const char*)pTab->pVtab, P3_VTAB);
- }else
-#endif
- {
- sqlite3GenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0,
- 0, onError, endOfLoop);
- sqlite3CompleteInsertion(pParse, pTab, base, 0,0,0,
- (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
- appendFlag);
- }
- }
-
- /* Update the count of rows that are inserted
- */
- if( (db->flags & SQLITE_CountRows)!=0 ){
- sqlite3VdbeAddOp(v, OP_MemIncr, 1, iCntMem);
- }
-
- if( triggers_exist ){
- /* Close all tables opened */
- if( !isView ){
- sqlite3VdbeAddOp(v, OP_Close, base, 0);
- for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
- sqlite3VdbeAddOp(v, OP_Close, idx+base, 0);
- }
- }
-
- /* Code AFTER triggers */
- if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
- newIdx, -1, onError, endOfLoop) ){
- goto insert_cleanup;
- }
- }
-
- /* The bottom of the loop, if the data source is a SELECT statement
- */
- sqlite3VdbeResolveLabel(v, endOfLoop);
- if( useTempTable ){
- sqlite3VdbeAddOp(v, OP_Next, srcTab, iCont);
- sqlite3VdbeResolveLabel(v, iBreak);
- sqlite3VdbeAddOp(v, OP_Close, srcTab, 0);
- }else if( pSelect ){
- sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
- sqlite3VdbeAddOp(v, OP_Return, 0, 0);
- sqlite3VdbeResolveLabel(v, iCleanup);
- }
-
- if( !triggers_exist && !IsVirtual(pTab) ){
- /* Close all tables opened */
- sqlite3VdbeAddOp(v, OP_Close, base, 0);
- for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
- sqlite3VdbeAddOp(v, OP_Close, idx+base, 0);
- }
- }
-
- /* Update the sqlite_sequence table by storing the content of the
- ** counter value in memory counterMem back into the sqlite_sequence
- ** table.
- */
- autoIncEnd(pParse, iDb, pTab, counterMem);
-
- /*
- ** Return the number of rows inserted. If this routine is
- ** generating code because of a call to sqlite3NestedParse(), do not
- ** invoke the callback function.
- */
- if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
- sqlite3VdbeAddOp(v, OP_MemLoad, iCntMem, 0);
- sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
- sqlite3VdbeSetNumCols(v, 1);
- sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P3_STATIC);
- }
-
-insert_cleanup:
- sqlite3SrcListDelete(pTabList);
- sqlite3ExprListDelete(pList);
- sqlite3SelectDelete(pSelect);
- sqlite3IdListDelete(pColumn);
-}
-
-/*
-** Generate code to do a constraint check prior to an INSERT or an UPDATE.
-**
-** When this routine is called, the stack contains (from bottom to top)
-** the following values:
-**
-** 1. The rowid of the row to be updated before the update. This
-** value is omitted unless we are doing an UPDATE that involves a
-** change to the record number.
-**
-** 2. The rowid of the row after the update.
-**
-** 3. The data in the first column of the entry after the update.
-**
-** i. Data from middle columns...
-**
-** N. The data in the last column of the entry after the update.
-**
-** The old rowid shown as entry (1) above is omitted unless both isUpdate
-** and rowidChng are 1. isUpdate is true for UPDATEs and false for
-** INSERTs and rowidChng is true if the record number is being changed.
-**
-** The code generated by this routine pushes additional entries onto
-** the stack which are the keys for new index entries for the new record.
-** The order of index keys is the same as the order of the indices on
-** the pTable->pIndex list. A key is only created for index i if
-** aIdxUsed!=0 and aIdxUsed[i]!=0.
-**
-** This routine also generates code to check constraints. NOT NULL,
-** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
-** then the appropriate action is performed. There are five possible
-** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
-**
-** Constraint type Action What Happens
-** --------------- ---------- ----------------------------------------
-** any ROLLBACK The current transaction is rolled back and
-** sqlite3_exec() returns immediately with a
-** return code of SQLITE_CONSTRAINT.
-**
-** any ABORT Back out changes from the current command
-** only (do not do a complete rollback) then
-** cause sqlite3_exec() to return immediately
-** with SQLITE_CONSTRAINT.
-**
-** any FAIL Sqlite_exec() returns immediately with a
-** return code of SQLITE_CONSTRAINT. The
-** transaction is not rolled back and any
-** prior changes are retained.
-**
-** any IGNORE The record number and data is popped from
-** the stack and there is an immediate jump
-** to label ignoreDest.
-**
-** NOT NULL REPLACE The NULL value is replace by the default
-** value for that column. If the default value
-** is NULL, the action is the same as ABORT.
-**
-** UNIQUE REPLACE The other row that conflicts with the row
-** being inserted is removed.
-**
-** CHECK REPLACE Illegal. The results in an exception.
-**
-** Which action to take is determined by the overrideError parameter.
-** Or if overrideError==OE_Default, then the pParse->onError parameter
-** is used. Or if pParse->onError==OE_Default then the onError value
-** for the constraint is used.
-**
-** The calling routine must open a read/write cursor for pTab with
-** cursor number "base". All indices of pTab must also have open
-** read/write cursors with cursor number base+i for the i-th cursor.
-** Except, if there is no possibility of a REPLACE action then
-** cursors do not need to be open for indices where aIdxUsed[i]==0.
-**
-** If the isUpdate flag is true, it means that the "base" cursor is
-** initially pointing to an entry that is being updated. The isUpdate
-** flag causes extra code to be generated so that the "base" cursor
-** is still pointing at the same entry after the routine returns.
-** Without the isUpdate flag, the "base" cursor might be moved.
-*/
-void sqlite3GenerateConstraintChecks(
- Parse *pParse, /* The parser context */
- Table *pTab, /* the table into which we are inserting */
- int base, /* Index of a read/write cursor pointing at pTab */
- char *aIdxUsed, /* Which indices are used. NULL means all are used */
- int rowidChng, /* True if the record number will change */
- int isUpdate, /* True for UPDATE, False for INSERT */
- int overrideError, /* Override onError to this if not OE_Default */
- int ignoreDest /* Jump to this label on an OE_Ignore resolution */
-){
- int i;
- Vdbe *v;
- int nCol;
- int onError;
- int addr;
- int extra;
- int iCur;
- Index *pIdx;
- int seenReplace = 0;
- int jumpInst1=0, jumpInst2;
- int hasTwoRowids = (isUpdate && rowidChng);
-
- v = sqlite3GetVdbe(pParse);
- assert( v!=0 );
- assert( pTab->pSelect==0 ); /* This table is not a VIEW */
- nCol = pTab->nCol;
-
- /* Test all NOT NULL constraints.
- */
- for(i=0; iiPKey ){
- continue;
- }
- onError = pTab->aCol[i].notNull;
- if( onError==OE_None ) continue;
- if( overrideError!=OE_Default ){
- onError = overrideError;
- }else if( onError==OE_Default ){
- onError = OE_Abort;
- }
- if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
- onError = OE_Abort;
- }
- sqlite3VdbeAddOp(v, OP_Dup, nCol-1-i, 1);
- addr = sqlite3VdbeAddOp(v, OP_NotNull, 1, 0);
- assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
- || onError==OE_Ignore || onError==OE_Replace );
- switch( onError ){
- case OE_Rollback:
- case OE_Abort:
- case OE_Fail: {
- char *zMsg = 0;
- sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
- sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
- " may not be NULL", (char*)0);
- sqlite3VdbeChangeP3(v, -1, zMsg, P3_DYNAMIC);
- break;
- }
- case OE_Ignore: {
- sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
- sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
- break;
- }
- case OE_Replace: {
- sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
- sqlite3VdbeAddOp(v, OP_Push, nCol-i, 0);
- break;
- }
- }
- sqlite3VdbeJumpHere(v, addr);
- }
-
- /* Test all CHECK constraints
- */
-#ifndef SQLITE_OMIT_CHECK
- if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
- int allOk = sqlite3VdbeMakeLabel(v);
- assert( pParse->ckOffset==0 );
- pParse->ckOffset = nCol;
- sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, 1);
- assert( pParse->ckOffset==nCol );
- pParse->ckOffset = 0;
- onError = overrideError!=OE_Default ? overrideError : OE_Abort;
- if( onError==OE_Ignore ){
- sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
- sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
- }else{
- sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
- }
- sqlite3VdbeResolveLabel(v, allOk);
- }
-#endif /* !defined(SQLITE_OMIT_CHECK) */
-
- /* If we have an INTEGER PRIMARY KEY, make sure the primary key
- ** of the new record does not previously exist. Except, if this
- ** is an UPDATE and the primary key is not changing, that is OK.
- */
- if( rowidChng ){
- onError = pTab->keyConf;
- if( overrideError!=OE_Default ){
- onError = overrideError;
- }else if( onError==OE_Default ){
- onError = OE_Abort;
- }
-
- if( isUpdate ){
- sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
- sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
- jumpInst1 = sqlite3VdbeAddOp(v, OP_Eq, 0, 0);
- }
- sqlite3VdbeAddOp(v, OP_Dup, nCol, 1);
- jumpInst2 = sqlite3VdbeAddOp(v, OP_NotExists, base, 0);
- switch( onError ){
- default: {
- onError = OE_Abort;
- /* Fall thru into the next case */
- }
- case OE_Rollback:
- case OE_Abort:
- case OE_Fail: {
- sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
- "PRIMARY KEY must be unique", P3_STATIC);
- break;
- }
- case OE_Replace: {
- sqlite3GenerateRowIndexDelete(v, pTab, base, 0);
- if( isUpdate ){
- sqlite3VdbeAddOp(v, OP_Dup, nCol+hasTwoRowids, 1);
- sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
- }
- seenReplace = 1;
- break;
- }
- case OE_Ignore: {
- assert( seenReplace==0 );
- sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
- sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
- break;
- }
- }
- sqlite3VdbeJumpHere(v, jumpInst2);
- if( isUpdate ){
- sqlite3VdbeJumpHere(v, jumpInst1);
- sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
- sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
- }
- }
-
- /* Test all UNIQUE constraints by creating entries for each UNIQUE
- ** index and making sure that duplicate entries do not already exist.
- ** Add the new records to the indices as we go.
- */
- extra = -1;
- for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
- if( aIdxUsed && aIdxUsed[iCur]==0 ) continue; /* Skip unused indices */
- extra++;
-
- /* Create a key for accessing the index entry */
- sqlite3VdbeAddOp(v, OP_Dup, nCol+extra, 1);
- for(i=0; inColumn; i++){
- int idx = pIdx->aiColumn[i];
- if( idx==pTab->iPKey ){
- sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1);
- }else{
- sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1);
- }
- }
- jumpInst1 = sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0);
- sqlite3IndexAffinityStr(v, pIdx);
-
- /* Find out what action to take in case there is an indexing conflict */
- onError = pIdx->onError;
- if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */
- if( overrideError!=OE_Default ){
- onError = overrideError;
- }else if( onError==OE_Default ){
- onError = OE_Abort;
- }
- if( seenReplace ){
- if( onError==OE_Ignore ) onError = OE_Replace;
- else if( onError==OE_Fail ) onError = OE_Abort;
- }
-
-
- /* Check to see if the new index entry will be unique */
- sqlite3VdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRowids, 1);
- jumpInst2 = sqlite3VdbeAddOp(v, OP_IsUnique, base+iCur+1, 0);
-
- /* Generate code that executes if the new index entry is not unique */
- assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
- || onError==OE_Ignore || onError==OE_Replace );
- switch( onError ){
- case OE_Rollback:
- case OE_Abort:
- case OE_Fail: {
- int j, n1, n2;
- char zErrMsg[200];
- sqlite3_snprintf(sizeof(zErrMsg), zErrMsg,
- pIdx->nColumn>1 ? "columns " : "column ");
- n1 = strlen(zErrMsg);
- for(j=0; jnColumn && n1aCol[pIdx->aiColumn[j]].zName;
- n2 = strlen(zCol);
- if( j>0 ){
- sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", ");
- n1 += 2;
- }
- if( n1+n2>sizeof(zErrMsg)-30 ){
- sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "...");
- n1 += 3;
- break;
- }else{
- sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
- n1 += n2;
- }
- }
- sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1],
- pIdx->nColumn>1 ? " are not unique" : " is not unique");
- sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0);
- break;
- }
- case OE_Ignore: {
- assert( seenReplace==0 );
- sqlite3VdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRowids, 0);
- sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
- break;
- }
- case OE_Replace: {
- sqlite3GenerateRowDelete(pParse->db, v, pTab, base, 0);
- if( isUpdate ){
- sqlite3VdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRowids, 1);
- sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
- }
- seenReplace = 1;
- break;
- }
- }
-#if NULL_DISTINCT_FOR_UNIQUE
- sqlite3VdbeJumpHere(v, jumpInst1);
-#endif
- sqlite3VdbeJumpHere(v, jumpInst2);
- }
-}
-
-/*
-** This routine generates code to finish the INSERT or UPDATE operation
-** that was started by a prior call to sqlite3GenerateConstraintChecks.
-** The stack must contain keys for all active indices followed by data
-** and the rowid for the new entry. This routine creates the new
-** entries in all indices and in the main table.
-**
-** The arguments to this routine should be the same as the first six
-** arguments to sqlite3GenerateConstraintChecks.
-*/
-void sqlite3CompleteInsertion(
- Parse *pParse, /* The parser context */
- Table *pTab, /* the table into which we are inserting */
- int base, /* Index of a read/write cursor pointing at pTab */
- char *aIdxUsed, /* Which indices are used. NULL means all are used */
- int rowidChng, /* True if the record number will change */
- int isUpdate, /* True for UPDATE, False for INSERT */
- int newIdx, /* Index of NEW table for triggers. -1 if none */
- int appendBias /* True if this is likely to be an append */
-){
- int i;
- Vdbe *v;
- int nIdx;
- Index *pIdx;
- int pik_flags;
-
- v = sqlite3GetVdbe(pParse);
- assert( v!=0 );
- assert( pTab->pSelect==0 ); /* This table is not a VIEW */
- for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
- for(i=nIdx-1; i>=0; i--){
- if( aIdxUsed && aIdxUsed[i]==0 ) continue;
- sqlite3VdbeAddOp(v, OP_IdxInsert, base+i+1, 0);
- }
- sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
- sqlite3TableAffinityStr(v, pTab);
-#ifndef SQLITE_OMIT_TRIGGER
- if( newIdx>=0 ){
- sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
- sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
- sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
- }
-#endif
- if( pParse->nested ){
- pik_flags = 0;
- }else{
- pik_flags = OPFLAG_NCHANGE;
- pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
- }
- if( appendBias ){
- pik_flags |= OPFLAG_APPEND;
- }
- sqlite3VdbeAddOp(v, OP_Insert, base, pik_flags);
- if( !pParse->nested ){
- sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
- }
-
- if( isUpdate && rowidChng ){
- sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
- }
-}
-
-/*
-** Generate code that will open cursors for a table and for all
-** indices of that table. The "base" parameter is the cursor number used
-** for the table. Indices are opened on subsequent cursors.
-*/
-void sqlite3OpenTableAndIndices(
- Parse *pParse, /* Parsing context */
- Table *pTab, /* Table to be opened */
- int base, /* Cursor number assigned to the table */
- int op /* OP_OpenRead or OP_OpenWrite */
-){
- int i;
- int iDb;
- Index *pIdx;
- Vdbe *v;
-
- if( IsVirtual(pTab) ) return;
- iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
- v = sqlite3GetVdbe(pParse);
- assert( v!=0 );
- sqlite3OpenTable(pParse, base, iDb, pTab, op);
- for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
- KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
- assert( pIdx->pSchema==pTab->pSchema );
- sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
- VdbeComment((v, "# %s", pIdx->zName));
- sqlite3VdbeOp3(v, op, i+base, pIdx->tnum, (char*)pKey, P3_KEYINFO_HANDOFF);
- }
- if( pParse->nTab<=base+i ){
- pParse->nTab = base+i;
- }
-}
-
-
-#ifdef SQLITE_TEST
-/*
-** The following global variable is incremented whenever the
-** transfer optimization is used. This is used for testing
-** purposes only - to make sure the transfer optimization really
-** is happening when it is suppose to.
-*/
-int sqlite3_xferopt_count;
-#endif /* SQLITE_TEST */
-
-
-#ifndef SQLITE_OMIT_XFER_OPT
-/*
-** Check to collation names to see if they are compatible.
-*/
-static int xferCompatibleCollation(const char *z1, const char *z2){
- if( z1==0 ){
- return z2==0;
- }
- if( z2==0 ){
- return 0;
- }
- return sqlite3StrICmp(z1, z2)==0;
-}
-
-
-/*
-** Check to see if index pSrc is compatible as a source of data
-** for index pDest in an insert transfer optimization. The rules
-** for a compatible index:
-**
-** * The index is over the same set of columns
-** * The same DESC and ASC markings occurs on all columns
-** * The same onError processing (OE_Abort, OE_Ignore, etc)
-** * The same collating sequence on each column
-*/
-static int xferCompatibleIndex(Index *pDest, Index *pSrc){
- int i;
- assert( pDest && pSrc );
- assert( pDest->pTable!=pSrc->pTable );
- if( pDest->nColumn!=pSrc->nColumn ){
- return 0; /* Different number of columns */
- }
- if( pDest->onError!=pSrc->onError ){
- return 0; /* Different conflict resolution strategies */
- }
- for(i=0; inColumn; i++){
- if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
- return 0; /* Different columns indexed */
- }
- if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
- return 0; /* Different sort orders */
- }
- if( pSrc->azColl[i]!=pDest->azColl[i] ){
- return 0; /* Different sort orders */
- }
- }
-
- /* If no test above fails then the indices must be compatible */
- return 1;
-}
-
-/*
-** Attempt the transfer optimization on INSERTs of the form
-**
-** INSERT INTO tab1 SELECT * FROM tab2;
-**
-** This optimization is only attempted if
-**
-** (1) tab1 and tab2 have identical schemas including all the
-** same indices and constraints
-**
-** (2) tab1 and tab2 are different tables
-**
-** (3) There must be no triggers on tab1
-**
-** (4) The result set of the SELECT statement is "*"
-**
-** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
-** or LIMIT clause.
-**
-** (6) The SELECT statement is a simple (not a compound) select that
-** contains only tab2 in its FROM clause
-**
-** This method for implementing the INSERT transfers raw records from
-** tab2 over to tab1. The columns are not decoded. Raw records from
-** the indices of tab2 are transfered to tab1 as well. In so doing,
-** the resulting tab1 has much less fragmentation.
-**
-** This routine returns TRUE if the optimization is attempted. If any
-** of the conditions above fail so that the optimization should not
-** be attempted, then this routine returns FALSE.
-*/
-static int xferOptimization(
- Parse *pParse, /* Parser context */
- Table *pDest, /* The table we are inserting into */
- Select *pSelect, /* A SELECT statement to use as the data source */
- int onError, /* How to handle constraint errors */
- int iDbDest /* The database of pDest */
-){
- ExprList *pEList; /* The result set of the SELECT */
- Table *pSrc; /* The table in the FROM clause of SELECT */
- Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
- struct SrcList_item *pItem; /* An element of pSelect->pSrc */
- int i; /* Loop counter */
- int iDbSrc; /* The database of pSrc */
- int iSrc, iDest; /* Cursors from source and destination */
- int addr1, addr2; /* Loop addresses */
- int emptyDestTest; /* Address of test for empty pDest */
- int emptySrcTest; /* Address of test for empty pSrc */
- Vdbe *v; /* The VDBE we are building */
- KeyInfo *pKey; /* Key information for an index */
- int counterMem; /* Memory register used by AUTOINC */
- int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
-
- if( pSelect==0 ){
- return 0; /* Must be of the form INSERT INTO ... SELECT ... */
- }
- if( pDest->pTrigger ){
- return 0; /* tab1 must not have triggers */
- }
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( pDest->isVirtual ){
- return 0; /* tab1 must not be a virtual table */
- }
-#endif
- if( onError==OE_Default ){
- onError = OE_Abort;
- }
- if( onError!=OE_Abort && onError!=OE_Rollback ){
- return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
- }
- assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
- if( pSelect->pSrc->nSrc!=1 ){
- return 0; /* FROM clause must have exactly one term */
- }
- if( pSelect->pSrc->a[0].pSelect ){
- return 0; /* FROM clause cannot contain a subquery */
- }
- if( pSelect->pWhere ){
- return 0; /* SELECT may not have a WHERE clause */
- }
- if( pSelect->pOrderBy ){
- return 0; /* SELECT may not have an ORDER BY clause */
- }
- /* Do not need to test for a HAVING clause. If HAVING is present but
- ** there is no ORDER BY, we will get an error. */
- if( pSelect->pGroupBy ){
- return 0; /* SELECT may not have a GROUP BY clause */
- }
- if( pSelect->pLimit ){
- return 0; /* SELECT may not have a LIMIT clause */
- }
- assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */
- if( pSelect->pPrior ){
- return 0; /* SELECT may not be a compound query */
- }
- if( pSelect->isDistinct ){
- return 0; /* SELECT may not be DISTINCT */
- }
- pEList = pSelect->pEList;
- assert( pEList!=0 );
- if( pEList->nExpr!=1 ){
- return 0; /* The result set must have exactly one column */
- }
- assert( pEList->a[0].pExpr );
- if( pEList->a[0].pExpr->op!=TK_ALL ){
- return 0; /* The result set must be the special operator "*" */
- }
-
- /* At this point we have established that the statement is of the
- ** correct syntactic form to participate in this optimization. Now
- ** we have to check the semantics.
- */
- pItem = pSelect->pSrc->a;
- pSrc = sqlite3LocateTable(pParse, pItem->zName, pItem->zDatabase);
- if( pSrc==0 ){
- return 0; /* FROM clause does not contain a real table */
- }
- if( pSrc==pDest ){
- return 0; /* tab1 and tab2 may not be the same table */
- }
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- if( pSrc->isVirtual ){
- return 0; /* tab2 must not be a virtual table */
- }
-#endif
- if( pSrc->pSelect ){
- return 0; /* tab2 may not be a view */
- }
- if( pDest->nCol!=pSrc->nCol ){
- return 0; /* Number of columns must be the same in tab1 and tab2 */
- }
- if( pDest->iPKey!=pSrc->iPKey ){
- return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
- }
- for(i=0; inCol; i++){
- if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
- return 0; /* Affinity must be the same on all columns */
- }
- if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
- return 0; /* Collating sequence must be the same on all columns */
- }
- if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
- return 0; /* tab2 must be NOT NULL if tab1 is */
- }
- }
- for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
- if( pDestIdx->onError!=OE_None ){
- destHasUniqueIdx = 1;
- }
- for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
- if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
- }
- if( pSrcIdx==0 ){
- return 0; /* pDestIdx has no corresponding index in pSrc */
- }
- }
-#ifndef SQLITE_OMIT_CHECK
- if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
- return 0; /* Tables have different CHECK constraints. Ticket #2252 */
- }
-#endif
-
- /* If we get this far, it means either:
- **
- ** * We can always do the transfer if the table contains an
- ** an integer primary key
- **
- ** * We can conditionally do the transfer if the destination
- ** table is empty.
- */
-#ifdef SQLITE_TEST
- sqlite3_xferopt_count++;
-#endif
- iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
- v = sqlite3GetVdbe(pParse);
- sqlite3CodeVerifySchema(pParse, iDbSrc);
- iSrc = pParse->nTab++;
- iDest = pParse->nTab++;
- counterMem = autoIncBegin(pParse, iDbDest, pDest);
- sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
- if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
- /* If tables do not have an INTEGER PRIMARY KEY and there
- ** are indices to be copied and the destination is not empty,
- ** we have to disallow the transfer optimization because the
- ** the rowids might change which will mess up indexing.
- **
- ** Or if the destination has a UNIQUE index and is not empty,
- ** we also disallow the transfer optimization because we cannot
- ** insure that all entries in the union of DEST and SRC will be
- ** unique.
- */
- addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iDest, 0);
- emptyDestTest = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
- sqlite3VdbeJumpHere(v, addr1);
- }else{
- emptyDestTest = 0;
- }
- sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
- emptySrcTest = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0);
- if( pDest->iPKey>=0 ){
- addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0);
- sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
- addr2 = sqlite3VdbeAddOp(v, OP_NotExists, iDest, 0);
- sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
- "PRIMARY KEY must be unique", P3_STATIC);
- sqlite3VdbeJumpHere(v, addr2);
- autoIncStep(pParse, counterMem);
- }else if( pDest->pIndex==0 ){
- addr1 = sqlite3VdbeAddOp(v, OP_NewRowid, iDest, 0);
- }else{
- addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0);
- assert( pDest->autoInc==0 );
- }
- sqlite3VdbeAddOp(v, OP_RowData, iSrc, 0);
- sqlite3VdbeOp3(v, OP_Insert, iDest,
- OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND,
- pDest->zName, 0);
- sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1);
- autoIncEnd(pParse, iDbDest, pDest, counterMem);
- for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
- for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
- if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
- }
- assert( pSrcIdx );
- sqlite3VdbeAddOp(v, OP_Close, iSrc, 0);
- sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
- sqlite3VdbeAddOp(v, OP_Integer, iDbSrc, 0);
- pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
- VdbeComment((v, "# %s", pSrcIdx->zName));
- sqlite3VdbeOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum,
- (char*)pKey, P3_KEYINFO_HANDOFF);
- sqlite3VdbeAddOp(v, OP_Integer, iDbDest, 0);
- pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
- VdbeComment((v, "# %s", pDestIdx->zName));
- sqlite3VdbeOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum,
- (char*)pKey, P3_KEYINFO_HANDOFF);
- addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0);
- sqlite3VdbeAddOp(v, OP_RowKey, iSrc, 0);
- sqlite3VdbeAddOp(v, OP_IdxInsert, iDest, 1);
- sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1+1);
- sqlite3VdbeJumpHere(v, addr1);
- }
- sqlite3VdbeJumpHere(v, emptySrcTest);
- sqlite3VdbeAddOp(v, OP_Close, iSrc, 0);
- sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
- if( emptyDestTest ){
- sqlite3VdbeAddOp(v, OP_Halt, SQLITE_OK, 0);
- sqlite3VdbeJumpHere(v, emptyDestTest);
- sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
- return 0;
- }else{
- return 1;
- }
-}
-#endif /* SQLITE_OMIT_XFER_OPT */
diff --git a/extensions/sqlite/sqlite-source/journal.c b/extensions/sqlite/sqlite-source/journal.c
deleted file mode 100644
index 9e2b3b8e..00000000
--- a/extensions/sqlite/sqlite-source/journal.c
+++ /dev/null
@@ -1,238 +0,0 @@
-/*
-** 2007 August 22
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-**
-** @(#) $Id$
-*/
-
-#ifdef SQLITE_ENABLE_ATOMIC_WRITE
-
-/*
-** This file implements a special kind of sqlite3_file object used
-** by SQLite to create journal files if the atomic-write optimization
-** is enabled.
-**
-** The distinctive characteristic of this sqlite3_file is that the
-** actual on disk file is created lazily. When the file is created,
-** the caller specifies a buffer size for an in-memory buffer to
-** be used to service read() and write() requests. The actual file
-** on disk is not created or populated until either:
-**
-** 1) The in-memory representation grows too large for the allocated
-** buffer, or
-** 2) The xSync() method is called.
-*/
-
-#include "sqliteInt.h"
-
-
-/*
-** A JournalFile object is a subclass of sqlite3_file used by
-** as an open file handle for journal files.
-*/
-struct JournalFile {
- sqlite3_io_methods *pMethod; /* I/O methods on journal files */
- int nBuf; /* Size of zBuf[] in bytes */
- char *zBuf; /* Space to buffer journal writes */
- int iSize; /* Amount of zBuf[] currently used */
- int flags; /* xOpen flags */
- sqlite3_vfs *pVfs; /* The "real" underlying VFS */
- sqlite3_file *pReal; /* The "real" underlying file descriptor */
- const char *zJournal; /* Name of the journal file */
-};
-typedef struct JournalFile JournalFile;
-
-/*
-** If it does not already exists, create and populate the on-disk file
-** for JournalFile p.
-*/
-static int createFile(JournalFile *p){
- int rc = SQLITE_OK;
- if( !p->pReal ){
- sqlite3_file *pReal = (sqlite3_file *)&p[1];
- rc = sqlite3OsOpen(p->pVfs, p->zJournal, pReal, p->flags, 0);
- if( rc==SQLITE_OK ){
- p->pReal = pReal;
- if( p->iSize>0 ){
- assert(p->iSize<=p->nBuf);
- rc = sqlite3OsWrite(p->pReal, p->zBuf, p->iSize, 0);
- }
- }
- }
- return rc;
-}
-
-/*
-** Close the file.
-*/
-static int jrnlClose(sqlite3_file *pJfd){
- JournalFile *p = (JournalFile *)pJfd;
- if( p->pReal ){
- sqlite3OsClose(p->pReal);
- }
- sqlite3_free(p->zBuf);
- return SQLITE_OK;
-}
-
-/*
-** Read data from the file.
-*/
-static int jrnlRead(
- sqlite3_file *pJfd, /* The journal file from which to read */
- void *zBuf, /* Put the results here */
- int iAmt, /* Number of bytes to read */
- sqlite_int64 iOfst /* Begin reading at this offset */
-){
- int rc = SQLITE_OK;
- JournalFile *p = (JournalFile *)pJfd;
- if( p->pReal ){
- rc = sqlite3OsRead(p->pReal, zBuf, iAmt, iOfst);
- }else{
- assert( iAmt+iOfst<=p->iSize );
- memcpy(zBuf, &p->zBuf[iOfst], iAmt);
- }
- return rc;
-}
-
-/*
-** Write data to the file.
-*/
-static int jrnlWrite(
- sqlite3_file *pJfd, /* The journal file into which to write */
- const void *zBuf, /* Take data to be written from here */
- int iAmt, /* Number of bytes to write */
- sqlite_int64 iOfst /* Begin writing at this offset into the file */
-){
- int rc = SQLITE_OK;
- JournalFile *p = (JournalFile *)pJfd;
- if( !p->pReal && (iOfst+iAmt)>p->nBuf ){
- rc = createFile(p);
- }
- if( rc==SQLITE_OK ){
- if( p->pReal ){
- rc = sqlite3OsWrite(p->pReal, zBuf, iAmt, iOfst);
- }else{
- memcpy(&p->zBuf[iOfst], zBuf, iAmt);
- if( p->iSize<(iOfst+iAmt) ){
- p->iSize = (iOfst+iAmt);
- }
- }
- }
- return rc;
-}
-
-/*
-** Truncate the file.
-*/
-static int jrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){
- int rc = SQLITE_OK;
- JournalFile *p = (JournalFile *)pJfd;
- if( p->pReal ){
- rc = sqlite3OsTruncate(p->pReal, size);
- }else if( sizeiSize ){
- p->iSize = size;
- }
- return rc;
-}
-
-/*
-** Sync the file.
-*/
-static int jrnlSync(sqlite3_file *pJfd, int flags){
- int rc;
- JournalFile *p = (JournalFile *)pJfd;
- rc = createFile(p);
- if( rc==SQLITE_OK ){
- rc = sqlite3OsSync(p->pReal, flags);
- }
- return rc;
-}
-
-/*
-** Query the size of the file in bytes.
-*/
-static int jrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){
- int rc = SQLITE_OK;
- JournalFile *p = (JournalFile *)pJfd;
- if( p->pReal ){
- rc = sqlite3OsFileSize(p->pReal, pSize);
- }else{
- *pSize = (sqlite_int64) p->iSize;
- }
- return rc;
-}
-
-/*
-** Table of methods for JournalFile sqlite3_file object.
-*/
-static struct sqlite3_io_methods JournalFileMethods = {
- 1, /* iVersion */
- jrnlClose, /* xClose */
- jrnlRead, /* xRead */
- jrnlWrite, /* xWrite */
- jrnlTruncate, /* xTruncate */
- jrnlSync, /* xSync */
- jrnlFileSize, /* xFileSize */
- 0, /* xLock */
- 0, /* xUnlock */
- 0, /* xCheckReservedLock */
- 0, /* xFileControl */
- 0, /* xSectorSize */
- 0 /* xDeviceCharacteristics */
-};
-
-/*
-** Open a journal file.
-*/
-int sqlite3JournalOpen(
- sqlite3_vfs *pVfs, /* The VFS to use for actual file I/O */
- const char *zName, /* Name of the journal file */
- sqlite3_file *pJfd, /* Preallocated, blank file handle */
- int flags, /* Opening flags */
- int nBuf /* Bytes buffered before opening the file */
-){
- JournalFile *p = (JournalFile *)pJfd;
- memset(p, 0, sqlite3JournalSize(pVfs));
- if( nBuf>0 ){
- p->zBuf = sqlite3MallocZero(nBuf);
- if( !p->zBuf ){
- return SQLITE_NOMEM;
- }
- }else{
- return sqlite3OsOpen(pVfs, zName, pJfd, flags, 0);
- }
- p->pMethod = &JournalFileMethods;
- p->nBuf = nBuf;
- p->flags = flags;
- p->zJournal = zName;
- p->pVfs = pVfs;
- return SQLITE_OK;
-}
-
-/*
-** If the argument p points to a JournalFile structure, and the underlying
-** file has not yet been created, create it now.
-*/
-int sqlite3JournalCreate(sqlite3_file *p){
- if( p->pMethods!=&JournalFileMethods ){
- return SQLITE_OK;
- }
- return createFile((JournalFile *)p);
-}
-
-/*
-** Return the number of bytes required to store a JournalFile that uses vfs
-** pVfs to create the underlying on-disk files.
-*/
-int sqlite3JournalSize(sqlite3_vfs *pVfs){
- return (pVfs->szOsFile+sizeof(JournalFile));
-}
-#endif
diff --git a/extensions/sqlite/sqlite-source/keywordhash.h b/extensions/sqlite/sqlite-source/keywordhash.h
deleted file mode 100644
index 609ff207..00000000
--- a/extensions/sqlite/sqlite-source/keywordhash.h
+++ /dev/null
@@ -1,112 +0,0 @@
-/***** This file contains automatically generated code ******
-**
-** The code in this file has been automatically generated by
-**
-** $Header: /sqlite/sqlite/tool/mkkeywordhash.c,v 1.31 2007/07/30 18:26:20 rse Exp $
-**
-** The code in this file implements a function that determines whether
-** or not a given identifier is really an SQL keyword. The same thing
-** might be implemented more directly using a hand-written hash table.
-** But by using this automatically generated code, the size of the code
-** is substantially reduced. This is important for embedded applications
-** on platforms with limited memory.
-*/
-/* Hash score: 165 */
-static int keywordCode(const char *z, int n){
- /* zText[] encodes 775 bytes of keywords in 526 bytes */
- static const char zText[526] =
- "BEFOREIGNOREGEXPLAINSTEADDESCAPEACHECKEYCONSTRAINTERSECTABLEFT"
- "HENDATABASELECTRANSACTIONATURALTERAISELSEXCEPTRIGGEREFERENCES"
- "UNIQUERYATTACHAVINGROUPDATEMPORARYBEGINNEREINDEXCLUSIVEXISTSBETWEEN"
- "OTNULLIKECASCADEFERRABLECASECOLLATECREATECURRENT_DATEDELETEDETACH"
- "IMMEDIATEJOINSERTMATCHPLANALYZEPRAGMABORTVALUESVIRTUALIMITWHEN"
- "WHERENAMEAFTEREPLACEANDEFAULTAUTOINCREMENTCASTCOLUMNCOMMITCONFLICT"
- "CROSSCURRENT_TIMESTAMPRIMARYDEFERREDISTINCTDROPFAILFROMFULLGLOB"
- "YIFINTOFFSETISNULLORDERESTRICTOUTERIGHTROLLBACKROWUNIONUSINGVACUUM"
- "VIEWINITIALLY";
- static const unsigned char aHash[127] = {
- 63, 92, 109, 61, 0, 38, 0, 0, 69, 0, 64, 0, 0,
- 102, 4, 65, 7, 0, 108, 72, 103, 99, 0, 22, 0, 0,
- 113, 0, 111, 106, 0, 18, 80, 0, 1, 0, 0, 56, 57,
- 0, 55, 11, 0, 33, 77, 89, 0, 110, 88, 0, 0, 45,
- 0, 90, 54, 0, 20, 0, 114, 34, 19, 0, 10, 97, 28,
- 83, 0, 0, 116, 93, 47, 115, 41, 12, 44, 0, 78, 0,
- 87, 29, 0, 86, 0, 0, 0, 82, 79, 84, 75, 96, 6,
- 14, 95, 0, 68, 0, 21, 76, 98, 27, 0, 112, 67, 104,
- 49, 40, 71, 0, 0, 81, 100, 0, 107, 0, 15, 0, 0,
- 24, 0, 73, 42, 50, 0, 16, 48, 0, 37,
- };
- static const unsigned char aNext[116] = {
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0,
- 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0,
- 17, 0, 0, 0, 36, 39, 0, 0, 25, 0, 0, 31, 0,
- 0, 0, 43, 52, 0, 0, 0, 53, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 51, 0, 0, 0, 0, 26, 0, 8, 46,
- 2, 0, 0, 0, 0, 0, 0, 0, 3, 58, 66, 0, 13,
- 0, 91, 85, 0, 94, 0, 74, 0, 0, 62, 0, 35, 101,
- 0, 0, 105, 23, 30, 60, 70, 0, 0, 59, 0, 0,
- };
- static const unsigned char aLen[116] = {
- 6, 7, 3, 6, 6, 7, 7, 3, 4, 6, 4, 5, 3,
- 10, 9, 5, 4, 4, 3, 8, 2, 6, 11, 2, 7, 5,
- 5, 4, 6, 7, 10, 6, 5, 6, 6, 5, 6, 4, 9,
- 2, 5, 5, 7, 5, 9, 6, 7, 7, 3, 4, 4, 7,
- 3, 10, 4, 7, 6, 12, 6, 6, 9, 4, 6, 5, 4,
- 7, 6, 5, 6, 7, 5, 4, 5, 6, 5, 7, 3, 7,
- 13, 2, 2, 4, 6, 6, 8, 5, 17, 12, 7, 8, 8,
- 2, 4, 4, 4, 4, 4, 2, 2, 4, 6, 2, 3, 6,
- 5, 8, 5, 5, 8, 3, 5, 5, 6, 4, 9, 3,
- };
- static const unsigned short int aOffset[116] = {
- 0, 2, 2, 6, 10, 13, 18, 23, 25, 26, 31, 33, 37,
- 40, 47, 55, 58, 61, 63, 65, 70, 71, 76, 85, 86, 91,
- 95, 99, 102, 107, 113, 123, 126, 131, 136, 141, 144, 148, 148,
- 152, 157, 160, 164, 166, 169, 177, 183, 189, 189, 192, 195, 199,
- 200, 204, 214, 218, 225, 231, 243, 249, 255, 264, 266, 272, 277,
- 279, 286, 291, 296, 302, 308, 313, 317, 320, 326, 330, 337, 339,
- 346, 348, 350, 359, 363, 369, 375, 383, 388, 388, 404, 411, 418,
- 419, 426, 430, 434, 438, 442, 445, 447, 449, 452, 452, 455, 458,
- 464, 468, 476, 480, 485, 493, 496, 501, 506, 512, 516, 521,
- };
- static const unsigned char aCode[116] = {
- TK_BEFORE, TK_FOREIGN, TK_FOR, TK_IGNORE, TK_LIKE_KW,
- TK_EXPLAIN, TK_INSTEAD, TK_ADD, TK_DESC, TK_ESCAPE,
- TK_EACH, TK_CHECK, TK_KEY, TK_CONSTRAINT, TK_INTERSECT,
- TK_TABLE, TK_JOIN_KW, TK_THEN, TK_END, TK_DATABASE,
- TK_AS, TK_SELECT, TK_TRANSACTION,TK_ON, TK_JOIN_KW,
- TK_ALTER, TK_RAISE, TK_ELSE, TK_EXCEPT, TK_TRIGGER,
- TK_REFERENCES, TK_UNIQUE, TK_QUERY, TK_ATTACH, TK_HAVING,
- TK_GROUP, TK_UPDATE, TK_TEMP, TK_TEMP, TK_OR,
- TK_BEGIN, TK_JOIN_KW, TK_REINDEX, TK_INDEX, TK_EXCLUSIVE,
- TK_EXISTS, TK_BETWEEN, TK_NOTNULL, TK_NOT, TK_NULL,
- TK_LIKE_KW, TK_CASCADE, TK_ASC, TK_DEFERRABLE, TK_CASE,
- TK_COLLATE, TK_CREATE, TK_CTIME_KW, TK_DELETE, TK_DETACH,
- TK_IMMEDIATE, TK_JOIN, TK_INSERT, TK_MATCH, TK_PLAN,
- TK_ANALYZE, TK_PRAGMA, TK_ABORT, TK_VALUES, TK_VIRTUAL,
- TK_LIMIT, TK_WHEN, TK_WHERE, TK_RENAME, TK_AFTER,
- TK_REPLACE, TK_AND, TK_DEFAULT, TK_AUTOINCR, TK_TO,
- TK_IN, TK_CAST, TK_COLUMNKW, TK_COMMIT, TK_CONFLICT,
- TK_JOIN_KW, TK_CTIME_KW, TK_CTIME_KW, TK_PRIMARY, TK_DEFERRED,
- TK_DISTINCT, TK_IS, TK_DROP, TK_FAIL, TK_FROM,
- TK_JOIN_KW, TK_LIKE_KW, TK_BY, TK_IF, TK_INTO,
- TK_OFFSET, TK_OF, TK_SET, TK_ISNULL, TK_ORDER,
- TK_RESTRICT, TK_JOIN_KW, TK_JOIN_KW, TK_ROLLBACK, TK_ROW,
- TK_UNION, TK_USING, TK_VACUUM, TK_VIEW, TK_INITIALLY,
- TK_ALL,
- };
- int h, i;
- if( n<2 ) return TK_ID;
- h = ((charMap(z[0])*4) ^
- (charMap(z[n-1])*3) ^
- n) % 127;
- for(i=((int)aHash[h])-1; i>=0; i=((int)aNext[i])-1){
- if( aLen[i]==n && sqlite3StrNICmp(&zText[aOffset[i]],z,n)==0 ){
- return aCode[i];
- }
- }
- return TK_ID;
-}
-int sqlite3KeywordCode(const unsigned char *z, int n){
- return keywordCode((char*)z, n);
-}
diff --git a/extensions/sqlite/sqlite-source/legacy.c b/extensions/sqlite/sqlite-source/legacy.c
deleted file mode 100644
index 4f23ede0..00000000
--- a/extensions/sqlite/sqlite-source/legacy.c
+++ /dev/null
@@ -1,134 +0,0 @@
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** Main file for the SQLite library. The routines in this file
-** implement the programmer interface to the library. Routines in
-** other files are for internal use by SQLite and should not be
-** accessed by users of the library.
-**
-** $Id$
-*/
-
-#include "sqliteInt.h"
-#include
-
-/*
-** Execute SQL code. Return one of the SQLITE_ success/failure
-** codes. Also write an error message into memory obtained from
-** malloc() and make *pzErrMsg point to that message.
-**
-** If the SQL is a query, then for each row in the query result
-** the xCallback() function is called. pArg becomes the first
-** argument to xCallback(). If xCallback=NULL then no callback
-** is invoked, even for queries.
-*/
-int sqlite3_exec(
- sqlite3 *db, /* The database on which the SQL executes */
- const char *zSql, /* The SQL to be executed */
- sqlite3_callback xCallback, /* Invoke this callback routine */
- void *pArg, /* First argument to xCallback() */
- char **pzErrMsg /* Write error messages here */
-){
- int rc = SQLITE_OK;
- const char *zLeftover;
- sqlite3_stmt *pStmt = 0;
- char **azCols = 0;
-
- int nRetry = 0;
- int nCallback;
-
- if( zSql==0 ) return SQLITE_OK;
-
- sqlite3_mutex_enter(db->mutex);
- while( (rc==SQLITE_OK || (rc==SQLITE_SCHEMA && (++nRetry)<2)) && zSql[0] ){
- int nCol;
- char **azVals = 0;
-
- pStmt = 0;
- rc = sqlite3_prepare(db, zSql, -1, &pStmt, &zLeftover);
- assert( rc==SQLITE_OK || pStmt==0 );
- if( rc!=SQLITE_OK ){
- continue;
- }
- if( !pStmt ){
- /* this happens for a comment or white-space */
- zSql = zLeftover;
- continue;
- }
-
- nCallback = 0;
-
- nCol = sqlite3_column_count(pStmt);
- azCols = sqlite3DbMallocZero(db, 2*nCol*sizeof(const char *) + 1);
- if( azCols==0 ){
- goto exec_out;
- }
-
- while( 1 ){
- int i;
- rc = sqlite3_step(pStmt);
-
- /* Invoke the callback function if required */
- if( xCallback && (SQLITE_ROW==rc ||
- (SQLITE_DONE==rc && !nCallback && db->flags&SQLITE_NullCallback)) ){
- if( 0==nCallback ){
- for(i=0; ierrMask)==rc );
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
diff --git a/extensions/sqlite/sqlite-source/main.c b/extensions/sqlite/sqlite-source/main.c
deleted file mode 100644
index b532708f..00000000
--- a/extensions/sqlite/sqlite-source/main.c
+++ /dev/null
@@ -1,1485 +0,0 @@
-/*
-** 2001 September 15
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** Main file for the SQLite library. The routines in this file
-** implement the programmer interface to the library. Routines in
-** other files are for internal use by SQLite and should not be
-** accessed by users of the library.
-**
-** $Id$
-*/
-#include "sqliteInt.h"
-#include
-
-/*
-** The version of the library
-*/
-const char sqlite3_version[] = SQLITE_VERSION;
-const char *sqlite3_libversion(void){ return sqlite3_version; }
-int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }
-int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; }
-
-/*
-** If the following function pointer is not NULL and if
-** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
-** I/O active are written using this function. These messages
-** are intended for debugging activity only.
-*/
-void (*sqlite3_io_trace)(const char*, ...) = 0;
-
-/*
-** If the following global variable points to a string which is the
-** name of a directory, then that directory will be used to store
-** temporary files.
-**
-** See also the "PRAGMA temp_store_directory" SQL command.
-*/
-char *sqlite3_temp_directory = 0;
-
-
-/*
-** This is the default collating function named "BINARY" which is always
-** available.
-*/
-static int binCollFunc(
- void *NotUsed,
- int nKey1, const void *pKey1,
- int nKey2, const void *pKey2
-){
- int rc, n;
- n = nKey1lastRowid;
-}
-
-/*
-** Return the number of changes in the most recent call to sqlite3_exec().
-*/
-int sqlite3_changes(sqlite3 *db){
- return db->nChange;
-}
-
-/*
-** Return the number of changes since the database handle was opened.
-*/
-int sqlite3_total_changes(sqlite3 *db){
- return db->nTotalChange;
-}
-
-/*
-** Close an existing SQLite database
-*/
-int sqlite3_close(sqlite3 *db){
- HashElem *i;
- int j;
-
- if( !db ){
- return SQLITE_OK;
- }
- if( sqlite3SafetyCheck(db) ){
- return SQLITE_MISUSE;
- }
- sqlite3_mutex_enter(db->mutex);
-
-#ifdef SQLITE_SSE
- {
- extern void sqlite3SseCleanup(sqlite3*);
- sqlite3SseCleanup(db);
- }
-#endif
-
- sqlite3ResetInternalSchema(db, 0);
-
- /* If a transaction is open, the ResetInternalSchema() call above
- ** will not have called the xDisconnect() method on any virtual
- ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback()
- ** call will do so. We need to do this before the check for active
- ** SQL statements below, as the v-table implementation may be storing
- ** some prepared statements internally.
- */
- sqlite3VtabRollback(db);
-
- /* If there are any outstanding VMs, return SQLITE_BUSY. */
- if( db->pVdbe ){
- sqlite3Error(db, SQLITE_BUSY,
- "Unable to close due to unfinalised statements");
- sqlite3_mutex_leave(db->mutex);
- return SQLITE_BUSY;
- }
- assert( !sqlite3SafetyCheck(db) );
-
- /* FIX ME: db->magic may be set to SQLITE_MAGIC_CLOSED if the database
- ** cannot be opened for some reason. So this routine needs to run in
- ** that case. But maybe there should be an extra magic value for the
- ** "failed to open" state.
- **
- ** TODO: Coverage tests do not test the case where this condition is
- ** true. It's hard to see how to cause it without messing with threads.
- */
- if( db->magic!=SQLITE_MAGIC_CLOSED && sqlite3SafetyOn(db) ){
- /* printf("DID NOT CLOSE\n"); fflush(stdout); */
- sqlite3_mutex_leave(db->mutex);
- return SQLITE_ERROR;
- }
-
- for(j=0; jnDb; j++){
- struct Db *pDb = &db->aDb[j];
- if( pDb->pBt ){
- sqlite3BtreeClose(pDb->pBt);
- pDb->pBt = 0;
- if( j!=1 ){
- pDb->pSchema = 0;
- }
- }
- }
- sqlite3ResetInternalSchema(db, 0);
- assert( db->nDb<=2 );
- assert( db->aDb==db->aDbStatic );
- for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){
- FuncDef *pFunc, *pNext;
- for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){
- pNext = pFunc->pNext;
- sqlite3_free(pFunc);
- }
- }
-
- for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){
- CollSeq *pColl = (CollSeq *)sqliteHashData(i);
- /* Invoke any destructors registered for collation sequence user data. */
- for(j=0; j<3; j++){
- if( pColl[j].xDel ){
- pColl[j].xDel(pColl[j].pUser);
- }
- }
- sqlite3_free(pColl);
- }
- sqlite3HashClear(&db->aCollSeq);
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){
- Module *pMod = (Module *)sqliteHashData(i);
- if( pMod->xDestroy ){
- pMod->xDestroy(pMod->pAux);
- }
- sqlite3_free(pMod);
- }
- sqlite3HashClear(&db->aModule);
-#endif
-
- sqlite3HashClear(&db->aFunc);
- sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */
- if( db->pErr ){
- sqlite3ValueFree(db->pErr);
- }
- sqlite3CloseExtensions(db);
-
- db->magic = SQLITE_MAGIC_ERROR;
-
- /* The temp-database schema is allocated differently from the other schema
- ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()).
- ** So it needs to be freed here. Todo: Why not roll the temp schema into
- ** the same sqliteMalloc() as the one that allocates the database
- ** structure?
- */
- sqlite3_free(db->aDb[1].pSchema);
- sqlite3_mutex_leave(db->mutex);
- sqlite3_mutex_free(db->mutex);
- sqlite3_free(db);
- return SQLITE_OK;
-}
-
-/*
-** Rollback all database files.
-*/
-void sqlite3RollbackAll(sqlite3 *db){
- int i;
- int inTrans = 0;
- assert( sqlite3_mutex_held(db->mutex) );
- sqlite3MallocEnterBenignBlock(1); /* Enter benign region */
- for(i=0; inDb; i++){
- if( db->aDb[i].pBt ){
- if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){
- inTrans = 1;
- }
- sqlite3BtreeRollback(db->aDb[i].pBt);
- db->aDb[i].inTrans = 0;
- }
- }
- sqlite3VtabRollback(db);
- sqlite3MallocLeaveBenignBlock(); /* Leave benign region */
-
- if( db->flags&SQLITE_InternChanges ){
- sqlite3ExpirePreparedStatements(db);
- sqlite3ResetInternalSchema(db, 0);
- }
-
- /* If one has been configured, invoke the rollback-hook callback */
- if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){
- db->xRollbackCallback(db->pRollbackArg);
- }
-}
-
-/*
-** Return a static string that describes the kind of error specified in the
-** argument.
-*/
-const char *sqlite3ErrStr(int rc){
- const char *z;
- switch( rc & 0xff ){
- case SQLITE_ROW:
- case SQLITE_DONE:
- case SQLITE_OK: z = "not an error"; break;
- case SQLITE_ERROR: z = "SQL logic error or missing database"; break;
- case SQLITE_PERM: z = "access permission denied"; break;
- case SQLITE_ABORT: z = "callback requested query abort"; break;
- case SQLITE_BUSY: z = "database is locked"; break;
- case SQLITE_LOCKED: z = "database table is locked"; break;
- case SQLITE_NOMEM: z = "out of memory"; break;
- case SQLITE_READONLY: z = "attempt to write a readonly database"; break;
- case SQLITE_INTERRUPT: z = "interrupted"; break;
- case SQLITE_IOERR: z = "disk I/O error"; break;
- case SQLITE_CORRUPT: z = "database disk image is malformed"; break;
- case SQLITE_FULL: z = "database or disk is full"; break;
- case SQLITE_CANTOPEN: z = "unable to open database file"; break;
- case SQLITE_EMPTY: z = "table contains no data"; break;
- case SQLITE_SCHEMA: z = "database schema has changed"; break;
- case SQLITE_TOOBIG: z = "String or BLOB exceeded size limit"; break;
- case SQLITE_CONSTRAINT: z = "constraint failed"; break;
- case SQLITE_MISMATCH: z = "datatype mismatch"; break;
- case SQLITE_MISUSE: z = "library routine called out of sequence";break;
- case SQLITE_NOLFS: z = "kernel lacks large file support"; break;
- case SQLITE_AUTH: z = "authorization denied"; break;
- case SQLITE_FORMAT: z = "auxiliary database format error"; break;
- case SQLITE_RANGE: z = "bind or column index out of range"; break;
- case SQLITE_NOTADB: z = "file is encrypted or is not a database";break;
- default: z = "unknown error"; break;
- }
- return z;
-}
-
-/*
-** This routine implements a busy callback that sleeps and tries
-** again until a timeout value is reached. The timeout value is
-** an integer number of milliseconds passed in as the first
-** argument.
-*/
-static int sqliteDefaultBusyCallback(
- void *ptr, /* Database connection */
- int count /* Number of times table has been busy */
-){
-#if OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP)
- static const u8 delays[] =
- { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 };
- static const u8 totals[] =
- { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 };
-# define NDELAY (sizeof(delays)/sizeof(delays[0]))
- sqlite3 *db = (sqlite3 *)ptr;
- int timeout = db->busyTimeout;
- int delay, prior;
-
- assert( count>=0 );
- if( count < NDELAY ){
- delay = delays[count];
- prior = totals[count];
- }else{
- delay = delays[NDELAY-1];
- prior = totals[NDELAY-1] + delay*(count-(NDELAY-1));
- }
- if( prior + delay > timeout ){
- delay = timeout - prior;
- if( delay<=0 ) return 0;
- }
- sqlite3OsSleep(db->pVfs, delay*1000);
- return 1;
-#else
- sqlite3 *db = (sqlite3 *)ptr;
- int timeout = ((sqlite3 *)ptr)->busyTimeout;
- if( (count+1)*1000 > timeout ){
- return 0;
- }
- sqlite3OsSleep(db->pVfs, 1000000);
- return 1;
-#endif
-}
-
-/*
-** Invoke the given busy handler.
-**
-** This routine is called when an operation failed with a lock.
-** If this routine returns non-zero, the lock is retried. If it
-** returns 0, the operation aborts with an SQLITE_BUSY error.
-*/
-int sqlite3InvokeBusyHandler(BusyHandler *p){
- int rc;
- if( p==0 || p->xFunc==0 || p->nBusy<0 ) return 0;
- rc = p->xFunc(p->pArg, p->nBusy);
- if( rc==0 ){
- p->nBusy = -1;
- }else{
- p->nBusy++;
- }
- return rc;
-}
-
-/*
-** This routine sets the busy callback for an Sqlite database to the
-** given callback function with the given argument.
-*/
-int sqlite3_busy_handler(
- sqlite3 *db,
- int (*xBusy)(void*,int),
- void *pArg
-){
- if( sqlite3SafetyCheck(db) ){
- return SQLITE_MISUSE;
- }
- sqlite3_mutex_enter(db->mutex);
- db->busyHandler.xFunc = xBusy;
- db->busyHandler.pArg = pArg;
- db->busyHandler.nBusy = 0;
- sqlite3_mutex_leave(db->mutex);
- return SQLITE_OK;
-}
-
-#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
-/*
-** This routine sets the progress callback for an Sqlite database to the
-** given callback function with the given argument. The progress callback will
-** be invoked every nOps opcodes.
-*/
-void sqlite3_progress_handler(
- sqlite3 *db,
- int nOps,
- int (*xProgress)(void*),
- void *pArg
-){
- if( !sqlite3SafetyCheck(db) ){
- sqlite3_mutex_enter(db->mutex);
- if( nOps>0 ){
- db->xProgress = xProgress;
- db->nProgressOps = nOps;
- db->pProgressArg = pArg;
- }else{
- db->xProgress = 0;
- db->nProgressOps = 0;
- db->pProgressArg = 0;
- }
- sqlite3_mutex_leave(db->mutex);
- }
-}
-#endif
-
-
-/*
-** This routine installs a default busy handler that waits for the
-** specified number of milliseconds before returning 0.
-*/
-int sqlite3_busy_timeout(sqlite3 *db, int ms){
- if( sqlite3SafetyCheck(db) ){
- return SQLITE_MISUSE;
- }
- if( ms>0 ){
- db->busyTimeout = ms;
- sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db);
- }else{
- sqlite3_busy_handler(db, 0, 0);
- }
- return SQLITE_OK;
-}
-
-/*
-** Cause any pending operation to stop at its earliest opportunity.
-*/
-void sqlite3_interrupt(sqlite3 *db){
- if( db && (db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_BUSY) ){
- db->u1.isInterrupted = 1;
- }
-}
-
-
-/*
-** This function is exactly the same as sqlite3_create_function(), except
-** that it is designed to be called by internal code. The difference is
-** that if a malloc() fails in sqlite3_create_function(), an error code
-** is returned and the mallocFailed flag cleared.
-*/
-int sqlite3CreateFunc(
- sqlite3 *db,
- const char *zFunctionName,
- int nArg,
- int enc,
- void *pUserData,
- void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
- void (*xStep)(sqlite3_context*,int,sqlite3_value **),
- void (*xFinal)(sqlite3_context*)
-){
- FuncDef *p;
- int nName;
-
- assert( sqlite3_mutex_held(db->mutex) );
- if( sqlite3SafetyCheck(db) ){
- return SQLITE_MISUSE;
- }
- if( zFunctionName==0 ||
- (xFunc && (xFinal || xStep)) ||
- (!xFunc && (xFinal && !xStep)) ||
- (!xFunc && (!xFinal && xStep)) ||
- (nArg<-1 || nArg>127) ||
- (255<(nName = strlen(zFunctionName))) ){
- sqlite3Error(db, SQLITE_ERROR, "bad parameters");
- return SQLITE_ERROR;
- }
-
-#ifndef SQLITE_OMIT_UTF16
- /* If SQLITE_UTF16 is specified as the encoding type, transform this
- ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
- ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
- **
- ** If SQLITE_ANY is specified, add three versions of the function
- ** to the hash table.
- */
- if( enc==SQLITE_UTF16 ){
- enc = SQLITE_UTF16NATIVE;
- }else if( enc==SQLITE_ANY ){
- int rc;
- rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8,
- pUserData, xFunc, xStep, xFinal);
- if( rc==SQLITE_OK ){
- rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE,
- pUserData, xFunc, xStep, xFinal);
- }
- if( rc!=SQLITE_OK ){
- return rc;
- }
- enc = SQLITE_UTF16BE;
- }
-#else
- enc = SQLITE_UTF8;
-#endif
-
- /* Check if an existing function is being overridden or deleted. If so,
- ** and there are active VMs, then return SQLITE_BUSY. If a function
- ** is being overridden/deleted but there are no active VMs, allow the
- ** operation to continue but invalidate all precompiled statements.
- */
- p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 0);
- if( p && p->iPrefEnc==enc && p->nArg==nArg ){
- if( db->activeVdbeCnt ){
- sqlite3Error(db, SQLITE_BUSY,
- "Unable to delete/modify user-function due to active statements");
- assert( !db->mallocFailed );
- return SQLITE_BUSY;
- }else{
- sqlite3ExpirePreparedStatements(db);
- }
- }
-
- p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 1);
- assert(p || db->mallocFailed);
- if( !p ){
- return SQLITE_NOMEM;
- }
- p->flags = 0;
- p->xFunc = xFunc;
- p->xStep = xStep;
- p->xFinalize = xFinal;
- p->pUserData = pUserData;
- p->nArg = nArg;
- return SQLITE_OK;
-}
-
-/*
-** Create new user functions.
-*/
-int sqlite3_create_function(
- sqlite3 *db,
- const char *zFunctionName,
- int nArg,
- int enc,
- void *p,
- void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
- void (*xStep)(sqlite3_context*,int,sqlite3_value **),
- void (*xFinal)(sqlite3_context*)
-){
- int rc;
- sqlite3_mutex_enter(db->mutex);
- assert( !db->mallocFailed );
- rc = sqlite3CreateFunc(db, zFunctionName, nArg, enc, p, xFunc, xStep, xFinal);
- rc = sqlite3ApiExit(db, rc);
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-
-#ifndef SQLITE_OMIT_UTF16
-int sqlite3_create_function16(
- sqlite3 *db,
- const void *zFunctionName,
- int nArg,
- int eTextRep,
- void *p,
- void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
- void (*xStep)(sqlite3_context*,int,sqlite3_value**),
- void (*xFinal)(sqlite3_context*)
-){
- int rc;
- char *zFunc8;
- sqlite3_mutex_enter(db->mutex);
- assert( !db->mallocFailed );
- zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1);
- rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal);
- sqlite3_free(zFunc8);
- rc = sqlite3ApiExit(db, rc);
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-#endif
-
-
-/*
-** Declare that a function has been overloaded by a virtual table.
-**
-** If the function already exists as a regular global function, then
-** this routine is a no-op. If the function does not exist, then create
-** a new one that always throws a run-time error.
-**
-** When virtual tables intend to provide an overloaded function, they
-** should call this routine to make sure the global function exists.
-** A global function must exist in order for name resolution to work
-** properly.
-*/
-int sqlite3_overload_function(
- sqlite3 *db,
- const char *zName,
- int nArg
-){
- int nName = strlen(zName);
- int rc;
- sqlite3_mutex_enter(db->mutex);
- if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){
- sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8,
- 0, sqlite3InvalidFunction, 0, 0);
- }
- rc = sqlite3ApiExit(db, SQLITE_OK);
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-
-#ifndef SQLITE_OMIT_TRACE
-/*
-** Register a trace function. The pArg from the previously registered trace
-** is returned.
-**
-** A NULL trace function means that no tracing is executes. A non-NULL
-** trace is a pointer to a function that is invoked at the start of each
-** SQL statement.
-*/
-void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){
- void *pOld;
- sqlite3_mutex_enter(db->mutex);
- pOld = db->pTraceArg;
- db->xTrace = xTrace;
- db->pTraceArg = pArg;
- sqlite3_mutex_leave(db->mutex);
- return pOld;
-}
-/*
-** Register a profile function. The pArg from the previously registered
-** profile function is returned.
-**
-** A NULL profile function means that no profiling is executes. A non-NULL
-** profile is a pointer to a function that is invoked at the conclusion of
-** each SQL statement that is run.
-*/
-void *sqlite3_profile(
- sqlite3 *db,
- void (*xProfile)(void*,const char*,sqlite_uint64),
- void *pArg
-){
- void *pOld;
- sqlite3_mutex_enter(db->mutex);
- pOld = db->pProfileArg;
- db->xProfile = xProfile;
- db->pProfileArg = pArg;
- sqlite3_mutex_leave(db->mutex);
- return pOld;
-}
-#endif /* SQLITE_OMIT_TRACE */
-
-/*** EXPERIMENTAL ***
-**
-** Register a function to be invoked when a transaction comments.
-** If the invoked function returns non-zero, then the commit becomes a
-** rollback.
-*/
-void *sqlite3_commit_hook(
- sqlite3 *db, /* Attach the hook to this database */
- int (*xCallback)(void*), /* Function to invoke on each commit */
- void *pArg /* Argument to the function */
-){
- void *pOld;
- sqlite3_mutex_enter(db->mutex);
- pOld = db->pCommitArg;
- db->xCommitCallback = xCallback;
- db->pCommitArg = pArg;
- sqlite3_mutex_leave(db->mutex);
- return pOld;
-}
-
-/*
-** Register a callback to be invoked each time a row is updated,
-** inserted or deleted using this database connection.
-*/
-void *sqlite3_update_hook(
- sqlite3 *db, /* Attach the hook to this database */
- void (*xCallback)(void*,int,char const *,char const *,sqlite_int64),
- void *pArg /* Argument to the function */
-){
- void *pRet;
- sqlite3_mutex_enter(db->mutex);
- pRet = db->pUpdateArg;
- db->xUpdateCallback = xCallback;
- db->pUpdateArg = pArg;
- sqlite3_mutex_leave(db->mutex);
- return pRet;
-}
-
-/*
-** Register a callback to be invoked each time a transaction is rolled
-** back by this database connection.
-*/
-void *sqlite3_rollback_hook(
- sqlite3 *db, /* Attach the hook to this database */
- void (*xCallback)(void*), /* Callback function */
- void *pArg /* Argument to the function */
-){
- void *pRet;
- sqlite3_mutex_enter(db->mutex);
- pRet = db->pRollbackArg;
- db->xRollbackCallback = xCallback;
- db->pRollbackArg = pArg;
- sqlite3_mutex_leave(db->mutex);
- return pRet;
-}
-
-/*
-** This routine is called to create a connection to a database BTree
-** driver. If zFilename is the name of a file, then that file is
-** opened and used. If zFilename is the magic name ":memory:" then
-** the database is stored in memory (and is thus forgotten as soon as
-** the connection is closed.) If zFilename is NULL then the database
-** is a "virtual" database for transient use only and is deleted as
-** soon as the connection is closed.
-**
-** A virtual database can be either a disk file (that is automatically
-** deleted when the file is closed) or it an be held entirely in memory,
-** depending on the values of the TEMP_STORE compile-time macro and the
-** db->temp_store variable, according to the following chart:
-**
-** TEMP_STORE db->temp_store Location of temporary database
-** ---------- -------------- ------------------------------
-** 0 any file
-** 1 1 file
-** 1 2 memory
-** 1 0 file
-** 2 1 file
-** 2 2 memory
-** 2 0 memory
-** 3 any memory
-*/
-int sqlite3BtreeFactory(
- const sqlite3 *db, /* Main database when opening aux otherwise 0 */
- const char *zFilename, /* Name of the file containing the BTree database */
- int omitJournal, /* if TRUE then do not journal this file */
- int nCache, /* How many pages in the page cache */
- int vfsFlags, /* Flags passed through to vfsOpen */
- Btree **ppBtree /* Pointer to new Btree object written here */
-){
- int btFlags = 0;
- int rc;
-
- assert( sqlite3_mutex_held(db->mutex) );
- assert( ppBtree != 0);
- if( omitJournal ){
- btFlags |= BTREE_OMIT_JOURNAL;
- }
- if( db->flags & SQLITE_NoReadlock ){
- btFlags |= BTREE_NO_READLOCK;
- }
- if( zFilename==0 ){
-#if TEMP_STORE==0
- /* Do nothing */
-#endif
-#ifndef SQLITE_OMIT_MEMORYDB
-#if TEMP_STORE==1
- if( db->temp_store==2 ) zFilename = ":memory:";
-#endif
-#if TEMP_STORE==2
- if( db->temp_store!=1 ) zFilename = ":memory:";
-#endif
-#if TEMP_STORE==3
- zFilename = ":memory:";
-#endif
-#endif /* SQLITE_OMIT_MEMORYDB */
- }
-
- if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (zFilename==0 || *zFilename==0) ){
- vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
- }
- rc = sqlite3BtreeOpen(zFilename, (sqlite3 *)db, ppBtree, btFlags, vfsFlags);
- if( rc==SQLITE_OK ){
- sqlite3BtreeSetBusyHandler(*ppBtree, (void*)&db->busyHandler);
- sqlite3BtreeSetCacheSize(*ppBtree, nCache);
- }
- return rc;
-}
-
-/*
-** Return UTF-8 encoded English language explanation of the most recent
-** error.
-*/
-const char *sqlite3_errmsg(sqlite3 *db){
- const char *z;
- if( !db ){
- return sqlite3ErrStr(SQLITE_NOMEM);
- }
- if( sqlite3SafetyCheck(db) || db->errCode==SQLITE_MISUSE ){
- return sqlite3ErrStr(SQLITE_MISUSE);
- }
- sqlite3_mutex_enter(db->mutex);
- assert( !db->mallocFailed );
- z = (char*)sqlite3_value_text(db->pErr);
- if( z==0 ){
- z = sqlite3ErrStr(db->errCode);
- }
- sqlite3_mutex_leave(db->mutex);
- return z;
-}
-
-#ifndef SQLITE_OMIT_UTF16
-/*
-** Return UTF-16 encoded English language explanation of the most recent
-** error.
-*/
-const void *sqlite3_errmsg16(sqlite3 *db){
- /* Because all the characters in the string are in the unicode
- ** range 0x00-0xFF, if we pad the big-endian string with a
- ** zero byte, we can obtain the little-endian string with
- ** &big_endian[1].
- */
- static const char outOfMemBe[] = {
- 0, 'o', 0, 'u', 0, 't', 0, ' ',
- 0, 'o', 0, 'f', 0, ' ',
- 0, 'm', 0, 'e', 0, 'm', 0, 'o', 0, 'r', 0, 'y', 0, 0, 0
- };
- static const char misuseBe [] = {
- 0, 'l', 0, 'i', 0, 'b', 0, 'r', 0, 'a', 0, 'r', 0, 'y', 0, ' ',
- 0, 'r', 0, 'o', 0, 'u', 0, 't', 0, 'i', 0, 'n', 0, 'e', 0, ' ',
- 0, 'c', 0, 'a', 0, 'l', 0, 'l', 0, 'e', 0, 'd', 0, ' ',
- 0, 'o', 0, 'u', 0, 't', 0, ' ',
- 0, 'o', 0, 'f', 0, ' ',
- 0, 's', 0, 'e', 0, 'q', 0, 'u', 0, 'e', 0, 'n', 0, 'c', 0, 'e', 0, 0, 0
- };
-
- const void *z;
- if( !db ){
- return (void *)(&outOfMemBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]);
- }
- if( sqlite3SafetyCheck(db) || db->errCode==SQLITE_MISUSE ){
- return (void *)(&misuseBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]);
- }
- sqlite3_mutex_enter(db->mutex);
- assert( !db->mallocFailed );
- z = sqlite3_value_text16(db->pErr);
- if( z==0 ){
- sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode),
- SQLITE_UTF8, SQLITE_STATIC);
- z = sqlite3_value_text16(db->pErr);
- }
- sqlite3ApiExit(0, 0);
- sqlite3_mutex_leave(db->mutex);
- return z;
-}
-#endif /* SQLITE_OMIT_UTF16 */
-
-/*
-** Return the most recent error code generated by an SQLite routine. If NULL is
-** passed to this function, we assume a malloc() failed during sqlite3_open().
-*/
-int sqlite3_errcode(sqlite3 *db){
- if( !db || db->mallocFailed ){
- return SQLITE_NOMEM;
- }
- if( sqlite3SafetyCheck(db) ){
- return SQLITE_MISUSE;
- }
- return db->errCode & db->errMask;
-}
-
-/*
-** Create a new collating function for database "db". The name is zName
-** and the encoding is enc.
-*/
-static int createCollation(
- sqlite3* db,
- const char *zName,
- int enc,
- void* pCtx,
- int(*xCompare)(void*,int,const void*,int,const void*),
- void(*xDel)(void*)
-){
- CollSeq *pColl;
- int enc2;
-
- if( sqlite3SafetyCheck(db) ){
- return SQLITE_MISUSE;
- }
- assert( sqlite3_mutex_held(db->mutex) );
-
- /* If SQLITE_UTF16 is specified as the encoding type, transform this
- ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
- ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
- */
- enc2 = enc & ~SQLITE_UTF16_ALIGNED;
- if( enc2==SQLITE_UTF16 ){
- enc2 = SQLITE_UTF16NATIVE;
- }
-
- if( (enc2&~3)!=0 ){
- sqlite3Error(db, SQLITE_ERROR, "unknown encoding");
- return SQLITE_ERROR;
- }
-
- /* Check if this call is removing or replacing an existing collation
- ** sequence. If so, and there are active VMs, return busy. If there
- ** are no active VMs, invalidate any pre-compiled statements.
- */
- pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 0);
- if( pColl && pColl->xCmp ){
- if( db->activeVdbeCnt ){
- sqlite3Error(db, SQLITE_BUSY,
- "Unable to delete/modify collation sequence due to active statements");
- return SQLITE_BUSY;
- }
- sqlite3ExpirePreparedStatements(db);
-
- /* If collation sequence pColl was created directly by a call to
- ** sqlite3_create_collation, and not generated by synthCollSeq(),
- ** then any copies made by synthCollSeq() need to be invalidated.
- ** Also, collation destructor - CollSeq.xDel() - function may need
- ** to be called.
- */
- if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){
- CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, strlen(zName));
- int j;
- for(j=0; j<3; j++){
- CollSeq *p = &aColl[j];
- if( p->enc==pColl->enc ){
- if( p->xDel ){
- p->xDel(p->pUser);
- }
- p->xCmp = 0;
- }
- }
- }
- }
-
- pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 1);
- if( pColl ){
- pColl->xCmp = xCompare;
- pColl->pUser = pCtx;
- pColl->xDel = xDel;
- pColl->enc = enc2 | (enc & SQLITE_UTF16_ALIGNED);
- }
- sqlite3Error(db, SQLITE_OK, 0);
- return SQLITE_OK;
-}
-
-
-/*
-** This routine does the work of opening a database on behalf of
-** sqlite3_open() and sqlite3_open16(). The database filename "zFilename"
-** is UTF-8 encoded.
-*/
-static int openDatabase(
- const char *zFilename, /* Database filename UTF-8 encoded */
- sqlite3 **ppDb, /* OUT: Returned database handle */
- unsigned flags, /* Operational flags */
- const char *zVfs /* Name of the VFS to use */
-){
- sqlite3 *db;
- int rc;
- CollSeq *pColl;
-
- /* Allocate the sqlite data structure */
- db = sqlite3MallocZero( sizeof(sqlite3) );
- if( db==0 ) goto opendb_out;
- db->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_RECURSIVE);
- if( db->mutex==0 ){
- sqlite3_free(db);
- db = 0;
- goto opendb_out;
- }
- sqlite3_mutex_enter(db->mutex);
- db->errMask = 0xff;
- db->priorNewRowid = 0;
- db->nDb = 2;
- db->magic = SQLITE_MAGIC_BUSY;
- db->aDb = db->aDbStatic;
- db->autoCommit = 1;
- db->flags |= SQLITE_ShortColNames
-#if SQLITE_DEFAULT_FILE_FORMAT<4
- | SQLITE_LegacyFileFmt
-#endif
-#ifdef SQLITE_ENABLE_LOAD_EXTENSION
- | SQLITE_LoadExtension
-#endif
- ;
- sqlite3HashInit(&db->aFunc, SQLITE_HASH_STRING, 0);
- sqlite3HashInit(&db->aCollSeq, SQLITE_HASH_STRING, 0);
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- sqlite3HashInit(&db->aModule, SQLITE_HASH_STRING, 0);
-#endif
-
- db->pVfs = sqlite3_vfs_find(zVfs);
- if( !db->pVfs ){
- rc = SQLITE_ERROR;
- db->magic = SQLITE_MAGIC_CLOSED;
- sqlite3Error(db, rc, "no such vfs: %s", (zVfs?zVfs:"(null)"));
- goto opendb_out;
- }
-
- /* Add the default collation sequence BINARY. BINARY works for both UTF-8
- ** and UTF-16, so add a version for each to avoid any unnecessary
- ** conversions. The only error that can occur here is a malloc() failure.
- */
- if( createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0) ||
- createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0) ||
- createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0) ||
- (db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0))==0
- ){
- assert( db->mallocFailed );
- db->magic = SQLITE_MAGIC_CLOSED;
- goto opendb_out;
- }
-
- /* Also add a UTF-8 case-insensitive collation sequence. */
- createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);
-
- /* Set flags on the built-in collating sequences */
- db->pDfltColl->type = SQLITE_COLL_BINARY;
- pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "NOCASE", 6, 0);
- if( pColl ){
- pColl->type = SQLITE_COLL_NOCASE;
- }
-
- /* Open the backend database driver */
- db->openFlags = flags;
- rc = sqlite3BtreeFactory(db, zFilename, 0, SQLITE_DEFAULT_CACHE_SIZE,
- flags | SQLITE_OPEN_MAIN_DB,
- &db->aDb[0].pBt);
- if( rc!=SQLITE_OK ){
- sqlite3Error(db, rc, 0);
- db->magic = SQLITE_MAGIC_CLOSED;
- goto opendb_out;
- }
- db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);
- db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);
-
-
- /* The default safety_level for the main database is 'full'; for the temp
- ** database it is 'NONE'. This matches the pager layer defaults.
- */
- db->aDb[0].zName = "main";
- db->aDb[0].safety_level = 3;
-#ifndef SQLITE_OMIT_TEMPDB
- db->aDb[1].zName = "temp";
- db->aDb[1].safety_level = 1;
-#endif
-
- db->magic = SQLITE_MAGIC_OPEN;
- if( db->mallocFailed ){
- goto opendb_out;
- }
-
- /* Register all built-in functions, but do not attempt to read the
- ** database schema yet. This is delayed until the first time the database
- ** is accessed.
- */
- sqlite3Error(db, SQLITE_OK, 0);
- sqlite3RegisterBuiltinFunctions(db);
-
- /* Load automatic extensions - extensions that have been registered
- ** using the sqlite3_automatic_extension() API.
- */
- (void)sqlite3AutoLoadExtensions(db);
- if( sqlite3_errcode(db)!=SQLITE_OK ){
- goto opendb_out;
- }
-
-#ifdef SQLITE_ENABLE_FTS1
- if( !db->mallocFailed ){
- extern int sqlite3Fts1Init(sqlite3*);
- rc = sqlite3Fts1Init(db);
- }
-#endif
-
-#ifdef SQLITE_ENABLE_FTS2
- if( !db->mallocFailed && rc==SQLITE_OK ){
- extern int sqlite3Fts2Init(sqlite3*);
- rc = sqlite3Fts2Init(db);
- }
-#endif
-
-#ifdef SQLITE_ENABLE_FTS3
- if( !db->mallocFailed && rc==SQLITE_OK ){
- extern int sqlite3Fts3Init(sqlite3*);
- rc = sqlite3Fts3Init(db);
- }
-#endif
-
-#ifdef SQLITE_ENABLE_ICU
- if( !db->mallocFailed && rc==SQLITE_OK ){
- extern int sqlite3IcuInit(sqlite3*);
- rc = sqlite3IcuInit(db);
- }
-#endif
- sqlite3Error(db, rc, 0);
-
- /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking
- ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking
- ** mode. Doing nothing at all also makes NORMAL the default.
- */
-#ifdef SQLITE_DEFAULT_LOCKING_MODE
- db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE;
- sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt),
- SQLITE_DEFAULT_LOCKING_MODE);
-#endif
-
-opendb_out:
- if( db && db->mutex ){
- sqlite3_mutex_leave(db->mutex);
- }
- if( SQLITE_NOMEM==(rc = sqlite3_errcode(db)) ){
- sqlite3_close(db);
- db = 0;
- }
- *ppDb = db;
- return sqlite3ApiExit(0, rc);
-}
-
-/*
-** Open a new database handle.
-*/
-int sqlite3_open(
- const char *zFilename,
- sqlite3 **ppDb
-){
- return openDatabase(zFilename, ppDb,
- SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
-}
-int sqlite3_open_v2(
- const char *filename, /* Database filename (UTF-8) */
- sqlite3 **ppDb, /* OUT: SQLite db handle */
- int flags, /* Flags */
- const char *zVfs /* Name of VFS module to use */
-){
- return openDatabase(filename, ppDb, flags, zVfs);
-}
-
-#ifndef SQLITE_OMIT_UTF16
-/*
-** Open a new database handle.
-*/
-int sqlite3_open16(
- const void *zFilename,
- sqlite3 **ppDb
-){
- char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */
- sqlite3_value *pVal;
- int rc = SQLITE_NOMEM;
-
- assert( zFilename );
- assert( ppDb );
- *ppDb = 0;
- pVal = sqlite3ValueNew(0);
- sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
- zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8);
- if( zFilename8 ){
- rc = openDatabase(zFilename8, ppDb,
- SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
- if( rc==SQLITE_OK && *ppDb ){
- rc = sqlite3_exec(*ppDb, "PRAGMA encoding = 'UTF-16'", 0, 0, 0);
- if( rc!=SQLITE_OK ){
- sqlite3_close(*ppDb);
- *ppDb = 0;
- }
- }
- }
- sqlite3ValueFree(pVal);
-
- return sqlite3ApiExit(0, rc);
-}
-#endif /* SQLITE_OMIT_UTF16 */
-
-/*
-** Register a new collation sequence with the database handle db.
-*/
-int sqlite3_create_collation(
- sqlite3* db,
- const char *zName,
- int enc,
- void* pCtx,
- int(*xCompare)(void*,int,const void*,int,const void*)
-){
- int rc;
- sqlite3_mutex_enter(db->mutex);
- assert( !db->mallocFailed );
- rc = createCollation(db, zName, enc, pCtx, xCompare, 0);
- rc = sqlite3ApiExit(db, rc);
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-
-/*
-** Register a new collation sequence with the database handle db.
-*/
-int sqlite3_create_collation_v2(
- sqlite3* db,
- const char *zName,
- int enc,
- void* pCtx,
- int(*xCompare)(void*,int,const void*,int,const void*),
- void(*xDel)(void*)
-){
- int rc;
- sqlite3_mutex_enter(db->mutex);
- assert( !db->mallocFailed );
- rc = createCollation(db, zName, enc, pCtx, xCompare, xDel);
- rc = sqlite3ApiExit(db, rc);
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-
-#ifndef SQLITE_OMIT_UTF16
-/*
-** Register a new collation sequence with the database handle db.
-*/
-int sqlite3_create_collation16(
- sqlite3* db,
- const char *zName,
- int enc,
- void* pCtx,
- int(*xCompare)(void*,int,const void*,int,const void*)
-){
- int rc = SQLITE_OK;
- char *zName8;
- sqlite3_mutex_enter(db->mutex);
- assert( !db->mallocFailed );
- zName8 = sqlite3Utf16to8(db, zName, -1);
- if( zName8 ){
- rc = createCollation(db, zName8, enc, pCtx, xCompare, 0);
- sqlite3_free(zName8);
- }
- rc = sqlite3ApiExit(db, rc);
- sqlite3_mutex_leave(db->mutex);
- return rc;
-}
-#endif /* SQLITE_OMIT_UTF16 */
-
-/*
-** Register a collation sequence factory callback with the database handle
-** db. Replace any previously installed collation sequence factory.
-*/
-int sqlite3_collation_needed(
- sqlite3 *db,
- void *pCollNeededArg,
- void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*)
-){
- if( sqlite3SafetyCheck(db) ){
- return SQLITE_MISUSE;
- }
- sqlite3_mutex_enter(db->mutex);
- db->xCollNeeded = xCollNeeded;
- db->xCollNeeded16 = 0;
- db->pCollNeededArg = pCollNeededArg;
- sqlite3_mutex_leave(db->mutex);
- return SQLITE_OK;
-}
-
-#ifndef SQLITE_OMIT_UTF16
-/*
-** Register a collation sequence factory callback with the database handle
-** db. Replace any previously installed collation sequence factory.
-*/
-int sqlite3_collation_needed16(
- sqlite3 *db,
- void *pCollNeededArg,
- void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*)
-){
- if( sqlite3SafetyCheck(db) ){
- return SQLITE_MISUSE;
- }
- sqlite3_mutex_enter(db->mutex);
- db->xCollNeeded = 0;
- db->xCollNeeded16 = xCollNeeded16;
- db->pCollNeededArg = pCollNeededArg;
- sqlite3_mutex_leave(db->mutex);
- return SQLITE_OK;
-}
-#endif /* SQLITE_OMIT_UTF16 */
-
-#ifndef SQLITE_OMIT_GLOBALRECOVER
-/*
-** This function is now an anachronism. It used to be used to recover from a
-** malloc() failure, but SQLite now does this automatically.
-*/
-int sqlite3_global_recover(){
- return SQLITE_OK;
-}
-#endif
-
-/*
-** Test to see whether or not the database connection is in autocommit
-** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on
-** by default. Autocommit is disabled by a BEGIN statement and reenabled
-** by the next COMMIT or ROLLBACK.
-**
-******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
-*/
-int sqlite3_get_autocommit(sqlite3 *db){
- return db->autoCommit;
-}
-
-#ifdef SQLITE_DEBUG
-/*
-** The following routine is subtituted for constant SQLITE_CORRUPT in
-** debugging builds. This provides a way to set a breakpoint for when
-** corruption is first detected.
-*/
-int sqlite3Corrupt(void){
- return SQLITE_CORRUPT;
-}
-#endif
-
-/*
-** This is a convenience routine that makes sure that all thread-specific
-** data for this thread has been deallocated.
-**
-** SQLite no longer uses thread-specific data so this routine is now a
-** no-op. It is retained for historical compatibility.
-*/
-void sqlite3_thread_cleanup(void){
-}
-
-/*
-** Return meta information about a specific column of a database table.
-** See comment in sqlite3.h (sqlite.h.in) for details.
-*/
-#ifdef SQLITE_ENABLE_COLUMN_METADATA
-int sqlite3_table_column_metadata(
- sqlite3 *db, /* Connection handle */
- const char *zDbName, /* Database name or NULL */
- const char *zTableName, /* Table name */
- const char *zColumnName, /* Column name */
- char const **pzDataType, /* OUTPUT: Declared data type */
- char const **pzCollSeq, /* OUTPUT: Collation sequence name */
- int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
- int *pPrimaryKey, /* OUTPUT: True if column part of PK */
- int *pAutoinc /* OUTPUT: True if colums is auto-increment */
-){
- int rc;
- char *zErrMsg = 0;
- Table *pTab = 0;
- Column *pCol = 0;
- int iCol;
-
- char const *zDataType = 0;
- char const *zCollSeq = 0;
- int notnull = 0;
- int primarykey = 0;
- int autoinc = 0;
-
- /* Ensure the database schema has been loaded */
- if( sqlite3SafetyOn(db) ){
- return SQLITE_MISUSE;
- }
- sqlite3_mutex_enter(db->mutex);
- rc = sqlite3Init(db, &zErrMsg);
- if( SQLITE_OK!=rc ){
- goto error_out;
- }
-
- /* Locate the table in question */
- pTab = sqlite3FindTable(db, zTableName, zDbName);
- if( !pTab || pTab->pSelect ){
- pTab = 0;
- goto error_out;
- }
-
- /* Find the column for which info is requested */
- if( sqlite3IsRowid(zColumnName) ){
- iCol = pTab->iPKey;
- if( iCol>=0 ){
- pCol = &pTab->aCol[iCol];
- }
- }else{
- for(iCol=0; iCol