545 lines
18 KiB
C
545 lines
18 KiB
C
|
/*
|
||
|
** 2004 April 13
|
||
|
**
|
||
|
** The author disclaims copyright to this source code. In place of
|
||
|
** a legal notice, here is a blessing:
|
||
|
**
|
||
|
** May you do good and not evil.
|
||
|
** May you find forgiveness for yourself and forgive others.
|
||
|
** May you share freely, never taking more than you give.
|
||
|
**
|
||
|
*************************************************************************
|
||
|
** This file contains routines used to translate between UTF-8,
|
||
|
** UTF-16, UTF-16BE, and UTF-16LE.
|
||
|
**
|
||
|
** $Id$
|
||
|
**
|
||
|
** Notes on UTF-8:
|
||
|
**
|
||
|
** Byte-0 Byte-1 Byte-2 Byte-3 Value
|
||
|
** 0xxxxxxx 00000000 00000000 0xxxxxxx
|
||
|
** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx
|
||
|
** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx
|
||
|
** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx
|
||
|
**
|
||
|
**
|
||
|
** Notes on UTF-16: (with wwww+1==uuuuu)
|
||
|
**
|
||
|
** Word-0 Word-1 Value
|
||
|
** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx
|
||
|
** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx
|
||
|
**
|
||
|
**
|
||
|
** BOM or Byte Order Mark:
|
||
|
** 0xff 0xfe little-endian utf-16 follows
|
||
|
** 0xfe 0xff big-endian utf-16 follows
|
||
|
**
|
||
|
*/
|
||
|
#include "sqliteInt.h"
|
||
|
#include <assert.h>
|
||
|
#include "vdbeInt.h"
|
||
|
|
||
|
/*
|
||
|
** The following constant value is used by the SQLITE_BIGENDIAN and
|
||
|
** SQLITE_LITTLEENDIAN macros.
|
||
|
*/
|
||
|
const int sqlite3one = 1;
|
||
|
|
||
|
/*
|
||
|
** This lookup table is used to help decode the first byte of
|
||
|
** a multi-byte UTF8 character.
|
||
|
*/
|
||
|
const unsigned char sqlite3UtfTrans1[] = {
|
||
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||
|
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
||
|
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
||
|
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
|
||
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||
|
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
||
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||
|
0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
|
||
|
};
|
||
|
|
||
|
#define WRITE_UTF8(zOut, c) { \
|
||
|
if( c<0x00080 ){ \
|
||
|
*zOut++ = (c&0xFF); \
|
||
|
} \
|
||
|
else if( c<0x00800 ){ \
|
||
|
*zOut++ = 0xC0 + ((c>>6)&0x1F); \
|
||
|
*zOut++ = 0x80 + (c & 0x3F); \
|
||
|
} \
|
||
|
else if( c<0x10000 ){ \
|
||
|
*zOut++ = 0xE0 + ((c>>12)&0x0F); \
|
||
|
*zOut++ = 0x80 + ((c>>6) & 0x3F); \
|
||
|
*zOut++ = 0x80 + (c & 0x3F); \
|
||
|
}else{ \
|
||
|
*zOut++ = 0xF0 + ((c>>18) & 0x07); \
|
||
|
*zOut++ = 0x80 + ((c>>12) & 0x3F); \
|
||
|
*zOut++ = 0x80 + ((c>>6) & 0x3F); \
|
||
|
*zOut++ = 0x80 + (c & 0x3F); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#define WRITE_UTF16LE(zOut, c) { \
|
||
|
if( c<=0xFFFF ){ \
|
||
|
*zOut++ = (c&0x00FF); \
|
||
|
*zOut++ = ((c>>8)&0x00FF); \
|
||
|
}else{ \
|
||
|
*zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
|
||
|
*zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
|
||
|
*zOut++ = (c&0x00FF); \
|
||
|
*zOut++ = (0x00DC + ((c>>8)&0x03)); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#define WRITE_UTF16BE(zOut, c) { \
|
||
|
if( c<=0xFFFF ){ \
|
||
|
*zOut++ = ((c>>8)&0x00FF); \
|
||
|
*zOut++ = (c&0x00FF); \
|
||
|
}else{ \
|
||
|
*zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
|
||
|
*zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
|
||
|
*zOut++ = (0x00DC + ((c>>8)&0x03)); \
|
||
|
*zOut++ = (c&0x00FF); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#define READ_UTF16LE(zIn, c){ \
|
||
|
c = (*zIn++); \
|
||
|
c += ((*zIn++)<<8); \
|
||
|
if( c>=0xD800 && c<0xE000 ){ \
|
||
|
int c2 = (*zIn++); \
|
||
|
c2 += ((*zIn++)<<8); \
|
||
|
c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
|
||
|
if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#define READ_UTF16BE(zIn, c){ \
|
||
|
c = ((*zIn++)<<8); \
|
||
|
c += (*zIn++); \
|
||
|
if( c>=0xD800 && c<0xE000 ){ \
|
||
|
int c2 = ((*zIn++)<<8); \
|
||
|
c2 += (*zIn++); \
|
||
|
c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
|
||
|
if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
|
||
|
** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
|
||
|
*/
|
||
|
/* #define TRANSLATE_TRACE 1 */
|
||
|
|
||
|
#ifndef SQLITE_OMIT_UTF16
|
||
|
/*
|
||
|
** This routine transforms the internal text encoding used by pMem to
|
||
|
** desiredEnc. It is an error if the string is already of the desired
|
||
|
** encoding, or if *pMem does not contain a string value.
|
||
|
*/
|
||
|
int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
|
||
|
unsigned char zShort[NBFS]; /* Temporary short output buffer */
|
||
|
int len; /* Maximum length of output string in bytes */
|
||
|
unsigned char *zOut; /* Output buffer */
|
||
|
unsigned char *zIn; /* Input iterator */
|
||
|
unsigned char *zTerm; /* End of input */
|
||
|
unsigned char *z; /* Output iterator */
|
||
|
unsigned int c;
|
||
|
|
||
|
assert( pMem->flags&MEM_Str );
|
||
|
assert( pMem->enc!=desiredEnc );
|
||
|
assert( pMem->enc!=0 );
|
||
|
assert( pMem->n>=0 );
|
||
|
|
||
|
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
|
||
|
{
|
||
|
char zBuf[100];
|
||
|
sqlite3VdbeMemPrettyPrint(pMem, zBuf);
|
||
|
fprintf(stderr, "INPUT: %s\n", zBuf);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* If the translation is between UTF-16 little and big endian, then
|
||
|
** all that is required is to swap the byte order. This case is handled
|
||
|
** differently from the others.
|
||
|
*/
|
||
|
if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
|
||
|
u8 temp;
|
||
|
int rc;
|
||
|
rc = sqlite3VdbeMemMakeWriteable(pMem);
|
||
|
if( rc!=SQLITE_OK ){
|
||
|
assert( rc==SQLITE_NOMEM );
|
||
|
return SQLITE_NOMEM;
|
||
|
}
|
||
|
zIn = (u8*)pMem->z;
|
||
|
zTerm = &zIn[pMem->n];
|
||
|
while( zIn<zTerm ){
|
||
|
temp = *zIn;
|
||
|
*zIn = *(zIn+1);
|
||
|
zIn++;
|
||
|
*zIn++ = temp;
|
||
|
}
|
||
|
pMem->enc = desiredEnc;
|
||
|
goto translate_out;
|
||
|
}
|
||
|
|
||
|
/* Set len to the maximum number of bytes required in the output buffer. */
|
||
|
if( desiredEnc==SQLITE_UTF8 ){
|
||
|
/* When converting from UTF-16, the maximum growth results from
|
||
|
** translating a 2-byte character to a 4-byte UTF-8 character.
|
||
|
** A single byte is required for the output string
|
||
|
** nul-terminator.
|
||
|
*/
|
||
|
len = pMem->n * 2 + 1;
|
||
|
}else{
|
||
|
/* When converting from UTF-8 to UTF-16 the maximum growth is caused
|
||
|
** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
|
||
|
** character. Two bytes are required in the output buffer for the
|
||
|
** nul-terminator.
|
||
|
*/
|
||
|
len = pMem->n * 2 + 2;
|
||
|
}
|
||
|
|
||
|
/* Set zIn to point at the start of the input buffer and zTerm to point 1
|
||
|
** byte past the end.
|
||
|
**
|
||
|
** Variable zOut is set to point at the output buffer. This may be space
|
||
|
** obtained from malloc(), or Mem.zShort, if it large enough and not in
|
||
|
** use, or the zShort array on the stack (see above).
|
||
|
*/
|
||
|
zIn = (u8*)pMem->z;
|
||
|
zTerm = &zIn[pMem->n];
|
||
|
if( len>NBFS ){
|
||
|
zOut = sqliteMallocRaw(len);
|
||
|
if( !zOut ) return SQLITE_NOMEM;
|
||
|
}else{
|
||
|
zOut = zShort;
|
||
|
}
|
||
|
z = zOut;
|
||
|
|
||
|
if( pMem->enc==SQLITE_UTF8 ){
|
||
|
unsigned int iExtra = 0xD800;
|
||
|
|
||
|
if( 0==(pMem->flags&MEM_Term) && zTerm>zIn && (zTerm[-1]&0x80) ){
|
||
|
/* This UTF8 string is not nul-terminated, and the last byte is
|
||
|
** not a character in the ascii range (codpoints 0..127). This
|
||
|
** means the SQLITE_READ_UTF8() macro might read past the end
|
||
|
** of the allocated buffer.
|
||
|
**
|
||
|
** There are four possibilities:
|
||
|
**
|
||
|
** 1. The last byte is the first byte of a non-ASCII character,
|
||
|
**
|
||
|
** 2. The final N bytes of the input string are continuation bytes
|
||
|
** and immediately preceding them is the first byte of a
|
||
|
** non-ASCII character.
|
||
|
**
|
||
|
** 3. The final N bytes of the input string are continuation bytes
|
||
|
** and immediately preceding them is a byte that encodes a
|
||
|
** character in the ASCII range.
|
||
|
**
|
||
|
** 4. The entire string consists of continuation characters.
|
||
|
**
|
||
|
** Cases (3) and (4) require no special handling. The SQLITE_READ_UTF8()
|
||
|
** macro will not overread the buffer in these cases.
|
||
|
*/
|
||
|
unsigned char *zExtra = &zTerm[-1];
|
||
|
while( zExtra>zIn && (zExtra[0]&0xC0)==0x80 ){
|
||
|
zExtra--;
|
||
|
}
|
||
|
|
||
|
if( (zExtra[0]&0xC0)==0xC0 ){
|
||
|
/* Make a copy of the last character encoding in the input string.
|
||
|
** Then make sure it is nul-terminated and use SQLITE_READ_UTF8()
|
||
|
** to decode the codepoint. Store the codepoint in variable iExtra,
|
||
|
** it will be appended to the output string later.
|
||
|
*/
|
||
|
unsigned char *zFree = 0;
|
||
|
unsigned char zBuf[16];
|
||
|
int nExtra = (pMem->n+zIn-zExtra);
|
||
|
zTerm = zExtra;
|
||
|
if( nExtra>15 ){
|
||
|
zExtra = sqliteMallocRaw(nExtra+1);
|
||
|
if( !zExtra ){
|
||
|
return SQLITE_NOMEM;
|
||
|
}
|
||
|
zFree = zExtra;
|
||
|
}else{
|
||
|
zExtra = zBuf;
|
||
|
}
|
||
|
memcpy(zExtra, zTerm, nExtra);
|
||
|
zExtra[nExtra] = '\0';
|
||
|
SQLITE_READ_UTF8(zExtra, iExtra);
|
||
|
sqliteFree(zFree);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if( desiredEnc==SQLITE_UTF16LE ){
|
||
|
/* UTF-8 -> UTF-16 Little-endian */
|
||
|
while( zIn<zTerm ){
|
||
|
SQLITE_READ_UTF8(zIn, c);
|
||
|
WRITE_UTF16LE(z, c);
|
||
|
}
|
||
|
if( iExtra!=0xD800 ){
|
||
|
WRITE_UTF16LE(z, iExtra);
|
||
|
}
|
||
|
}else{
|
||
|
assert( desiredEnc==SQLITE_UTF16BE );
|
||
|
/* UTF-8 -> UTF-16 Big-endian */
|
||
|
while( zIn<zTerm ){
|
||
|
SQLITE_READ_UTF8(zIn, c);
|
||
|
WRITE_UTF16BE(z, c);
|
||
|
}
|
||
|
if( iExtra!=0xD800 ){
|
||
|
WRITE_UTF16BE(z, iExtra);
|
||
|
}
|
||
|
}
|
||
|
pMem->n = z - zOut;
|
||
|
*z++ = 0;
|
||
|
}else{
|
||
|
assert( desiredEnc==SQLITE_UTF8 );
|
||
|
if( pMem->enc==SQLITE_UTF16LE ){
|
||
|
/* UTF-16 Little-endian -> UTF-8 */
|
||
|
while( zIn<zTerm ){
|
||
|
READ_UTF16LE(zIn, c);
|
||
|
WRITE_UTF8(z, c);
|
||
|
}
|
||
|
}else{
|
||
|
/* UTF-16 Little-endian -> UTF-8 */
|
||
|
while( zIn<zTerm ){
|
||
|
READ_UTF16BE(zIn, c);
|
||
|
WRITE_UTF8(z, c);
|
||
|
}
|
||
|
}
|
||
|
pMem->n = z - zOut;
|
||
|
}
|
||
|
*z = 0;
|
||
|
assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
|
||
|
|
||
|
sqlite3VdbeMemRelease(pMem);
|
||
|
pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
|
||
|
pMem->enc = desiredEnc;
|
||
|
if( zOut==zShort ){
|
||
|
memcpy(pMem->zShort, zOut, len);
|
||
|
zOut = (u8*)pMem->zShort;
|
||
|
pMem->flags |= (MEM_Term|MEM_Short);
|
||
|
}else{
|
||
|
pMem->flags |= (MEM_Term|MEM_Dyn);
|
||
|
}
|
||
|
pMem->z = (char*)zOut;
|
||
|
|
||
|
translate_out:
|
||
|
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
|
||
|
{
|
||
|
char zBuf[100];
|
||
|
sqlite3VdbeMemPrettyPrint(pMem, zBuf);
|
||
|
fprintf(stderr, "OUTPUT: %s\n", zBuf);
|
||
|
}
|
||
|
#endif
|
||
|
return SQLITE_OK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** This routine checks for a byte-order mark at the beginning of the
|
||
|
** UTF-16 string stored in *pMem. If one is present, it is removed and
|
||
|
** the encoding of the Mem adjusted. This routine does not do any
|
||
|
** byte-swapping, it just sets Mem.enc appropriately.
|
||
|
**
|
||
|
** The allocation (static, dynamic etc.) and encoding of the Mem may be
|
||
|
** changed by this function.
|
||
|
*/
|
||
|
int sqlite3VdbeMemHandleBom(Mem *pMem){
|
||
|
int rc = SQLITE_OK;
|
||
|
u8 bom = 0;
|
||
|
|
||
|
if( pMem->n<0 || pMem->n>1 ){
|
||
|
u8 b1 = *(u8 *)pMem->z;
|
||
|
u8 b2 = *(((u8 *)pMem->z) + 1);
|
||
|
if( b1==0xFE && b2==0xFF ){
|
||
|
bom = SQLITE_UTF16BE;
|
||
|
}
|
||
|
if( b1==0xFF && b2==0xFE ){
|
||
|
bom = SQLITE_UTF16LE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if( bom ){
|
||
|
/* This function is called as soon as a string is stored in a Mem*,
|
||
|
** from within sqlite3VdbeMemSetStr(). At that point it is not possible
|
||
|
** for the string to be stored in Mem.zShort, or for it to be stored
|
||
|
** in dynamic memory with no destructor.
|
||
|
*/
|
||
|
assert( !(pMem->flags&MEM_Short) );
|
||
|
assert( !(pMem->flags&MEM_Dyn) || pMem->xDel );
|
||
|
if( pMem->flags & MEM_Dyn ){
|
||
|
void (*xDel)(void*) = pMem->xDel;
|
||
|
char *z = pMem->z;
|
||
|
pMem->z = 0;
|
||
|
pMem->xDel = 0;
|
||
|
rc = sqlite3VdbeMemSetStr(pMem, &z[2], pMem->n-2, bom, SQLITE_TRANSIENT);
|
||
|
xDel(z);
|
||
|
}else{
|
||
|
rc = sqlite3VdbeMemSetStr(pMem, &pMem->z[2], pMem->n-2, bom,
|
||
|
SQLITE_TRANSIENT);
|
||
|
}
|
||
|
}
|
||
|
return rc;
|
||
|
}
|
||
|
#endif /* SQLITE_OMIT_UTF16 */
|
||
|
|
||
|
/*
|
||
|
** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
|
||
|
** return the number of unicode characters in pZ up to (but not including)
|
||
|
** the first 0x00 byte. If nByte is not less than zero, return the
|
||
|
** number of unicode characters in the first nByte of pZ (or up to
|
||
|
** the first 0x00, whichever comes first).
|
||
|
*/
|
||
|
int sqlite3Utf8CharLen(const char *zIn, int nByte){
|
||
|
int r = 0;
|
||
|
const u8 *z = (const u8*)zIn;
|
||
|
const u8 *zTerm;
|
||
|
if( nByte>=0 ){
|
||
|
zTerm = &z[nByte];
|
||
|
}else{
|
||
|
zTerm = (const u8*)(-1);
|
||
|
}
|
||
|
assert( z<=zTerm );
|
||
|
while( *z!=0 && z<zTerm ){
|
||
|
SQLITE_SKIP_UTF8(z);
|
||
|
r++;
|
||
|
}
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
#ifndef SQLITE_OMIT_UTF16
|
||
|
/*
|
||
|
** Convert a UTF-16 string in the native encoding into a UTF-8 string.
|
||
|
** Memory to hold the UTF-8 string is obtained from malloc and must be
|
||
|
** freed by the calling function.
|
||
|
**
|
||
|
** NULL is returned if there is an allocation error.
|
||
|
*/
|
||
|
char *sqlite3Utf16to8(const void *z, int nByte){
|
||
|
Mem m;
|
||
|
memset(&m, 0, sizeof(m));
|
||
|
sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC);
|
||
|
sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
|
||
|
assert( (m.flags & MEM_Term)!=0 || sqlite3MallocFailed() );
|
||
|
assert( (m.flags & MEM_Str)!=0 || sqlite3MallocFailed() );
|
||
|
return (m.flags & MEM_Dyn)!=0 ? m.z : sqliteStrDup(m.z);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,
|
||
|
** return the number of bytes up to (but not including), the first pair
|
||
|
** of consecutive 0x00 bytes in pZ. If nChar is not less than zero,
|
||
|
** then return the number of bytes in the first nChar unicode characters
|
||
|
** in pZ (or up until the first pair of 0x00 bytes, whichever comes first).
|
||
|
*/
|
||
|
int sqlite3Utf16ByteLen(const void *zIn, int nChar){
|
||
|
unsigned int c = 1;
|
||
|
char const *z = zIn;
|
||
|
int n = 0;
|
||
|
if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
|
||
|
/* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here
|
||
|
** and in other parts of this file means that at one branch will
|
||
|
** not be covered by coverage testing on any single host. But coverage
|
||
|
** will be complete if the tests are run on both a little-endian and
|
||
|
** big-endian host. Because both the UTF16NATIVE and SQLITE_UTF16BE
|
||
|
** macros are constant at compile time the compiler can determine
|
||
|
** which branch will be followed. It is therefore assumed that no runtime
|
||
|
** penalty is paid for this "if" statement.
|
||
|
*/
|
||
|
while( c && ((nChar<0) || n<nChar) ){
|
||
|
READ_UTF16BE(z, c);
|
||
|
n++;
|
||
|
}
|
||
|
}else{
|
||
|
while( c && ((nChar<0) || n<nChar) ){
|
||
|
READ_UTF16LE(z, c);
|
||
|
n++;
|
||
|
}
|
||
|
}
|
||
|
return (z-(char const *)zIn)-((c==0)?2:0);
|
||
|
}
|
||
|
|
||
|
#if defined(SQLITE_TEST)
|
||
|
/*
|
||
|
** Translate UTF-8 to UTF-8.
|
||
|
**
|
||
|
** This has the effect of making sure that the string is well-formed
|
||
|
** UTF-8. Miscoded characters are removed.
|
||
|
**
|
||
|
** The translation is done in-place (since it is impossible for the
|
||
|
** correct UTF-8 encoding to be longer than a malformed encoding).
|
||
|
*/
|
||
|
int sqlite3Utf8To8(unsigned char *zIn){
|
||
|
unsigned char *zOut = zIn;
|
||
|
unsigned char *zStart = zIn;
|
||
|
int c;
|
||
|
|
||
|
while(1){
|
||
|
SQLITE_READ_UTF8(zIn, c);
|
||
|
if( c==0 ) break;
|
||
|
if( c!=0xfffd ){
|
||
|
WRITE_UTF8(zOut, c);
|
||
|
}
|
||
|
}
|
||
|
*zOut = 0;
|
||
|
return zOut - zStart;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if defined(SQLITE_TEST)
|
||
|
/*
|
||
|
** This routine is called from the TCL test function "translate_selftest".
|
||
|
** It checks that the primitives for serializing and deserializing
|
||
|
** characters in each encoding are inverses of each other.
|
||
|
*/
|
||
|
void sqlite3UtfSelfTest(){
|
||
|
unsigned int i, t;
|
||
|
unsigned char zBuf[20];
|
||
|
unsigned char *z;
|
||
|
int n;
|
||
|
unsigned int c;
|
||
|
|
||
|
for(i=0; i<0x00110000; i++){
|
||
|
z = zBuf;
|
||
|
WRITE_UTF8(z, i);
|
||
|
n = z-zBuf;
|
||
|
z[0] = 0;
|
||
|
z = zBuf;
|
||
|
SQLITE_READ_UTF8(z, c);
|
||
|
t = i;
|
||
|
if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD;
|
||
|
if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD;
|
||
|
assert( c==t );
|
||
|
assert( (z-zBuf)==n );
|
||
|
}
|
||
|
for(i=0; i<0x00110000; i++){
|
||
|
if( i>=0xD800 && i<0xE000 ) continue;
|
||
|
z = zBuf;
|
||
|
WRITE_UTF16LE(z, i);
|
||
|
n = z-zBuf;
|
||
|
z[0] = 0;
|
||
|
z = zBuf;
|
||
|
READ_UTF16LE(z, c);
|
||
|
assert( c==i );
|
||
|
assert( (z-zBuf)==n );
|
||
|
}
|
||
|
for(i=0; i<0x00110000; i++){
|
||
|
if( i>=0xD800 && i<0xE000 ) continue;
|
||
|
z = zBuf;
|
||
|
WRITE_UTF16BE(z, i);
|
||
|
n = z-zBuf;
|
||
|
z[0] = 0;
|
||
|
z = zBuf;
|
||
|
READ_UTF16BE(z, c);
|
||
|
assert( c==i );
|
||
|
assert( (z-zBuf)==n );
|
||
|
}
|
||
|
}
|
||
|
#endif /* SQLITE_TEST */
|
||
|
#endif /* SQLITE_OMIT_UTF16 */
|