992 lines
27 KiB
C
992 lines
27 KiB
C
|
/*
|
||
|
** 2004 May 26
|
||
|
**
|
||
|
** The author disclaims copyright to this source code. In place of
|
||
|
** a legal notice, here is a blessing:
|
||
|
**
|
||
|
** May you do good and not evil.
|
||
|
** May you find forgiveness for yourself and forgive others.
|
||
|
** May you share freely, never taking more than you give.
|
||
|
**
|
||
|
*************************************************************************
|
||
|
**
|
||
|
** This file contains code use to manipulate "Mem" structure. A "Mem"
|
||
|
** stores a single value in the VDBE. Mem is an opaque structure visible
|
||
|
** only within the VDBE. Interface routines refer to a Mem using the
|
||
|
** name sqlite_value
|
||
|
*/
|
||
|
#include "sqliteInt.h"
|
||
|
#include "os.h"
|
||
|
#include <math.h>
|
||
|
#include <ctype.h>
|
||
|
#include "vdbeInt.h"
|
||
|
|
||
|
/*
|
||
|
** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
|
||
|
** P if required.
|
||
|
*/
|
||
|
#define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
|
||
|
|
||
|
/*
|
||
|
** If pMem is an object with a valid string representation, this routine
|
||
|
** ensures the internal encoding for the string representation is
|
||
|
** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
|
||
|
**
|
||
|
** If pMem is not a string object, or the encoding of the string
|
||
|
** representation is already stored using the requested encoding, then this
|
||
|
** routine is a no-op.
|
||
|
**
|
||
|
** SQLITE_OK is returned if the conversion is successful (or not required).
|
||
|
** SQLITE_NOMEM may be returned if a malloc() fails during conversion
|
||
|
** between formats.
|
||
|
*/
|
||
|
int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
|
||
|
int rc;
|
||
|
if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
|
||
|
return SQLITE_OK;
|
||
|
}
|
||
|
#ifdef SQLITE_OMIT_UTF16
|
||
|
return SQLITE_ERROR;
|
||
|
#else
|
||
|
|
||
|
|
||
|
/* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
|
||
|
** then the encoding of the value may not have changed.
|
||
|
*/
|
||
|
rc = sqlite3VdbeMemTranslate(pMem, desiredEnc);
|
||
|
assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
|
||
|
assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
|
||
|
assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
|
||
|
return rc;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Make the given Mem object MEM_Dyn.
|
||
|
**
|
||
|
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
|
||
|
*/
|
||
|
int sqlite3VdbeMemDynamicify(Mem *pMem){
|
||
|
int n;
|
||
|
u8 *z;
|
||
|
expandBlob(pMem);
|
||
|
if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){
|
||
|
return SQLITE_OK;
|
||
|
}
|
||
|
assert( (pMem->flags & MEM_Dyn)==0 );
|
||
|
n = pMem->n;
|
||
|
assert( pMem->flags & (MEM_Str|MEM_Blob) );
|
||
|
z = sqliteMallocRaw( n+2 );
|
||
|
if( z==0 ){
|
||
|
return SQLITE_NOMEM;
|
||
|
}
|
||
|
pMem->flags |= MEM_Dyn|MEM_Term;
|
||
|
pMem->xDel = 0;
|
||
|
memcpy(z, pMem->z, n );
|
||
|
z[n] = 0;
|
||
|
z[n+1] = 0;
|
||
|
pMem->z = (char*)z;
|
||
|
pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short);
|
||
|
return SQLITE_OK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** If the given Mem* has a zero-filled tail, turn it into an ordinary
|
||
|
** blob stored in dynamically allocated space.
|
||
|
*/
|
||
|
#ifndef SQLITE_OMIT_INCRBLOB
|
||
|
int sqlite3VdbeMemExpandBlob(Mem *pMem){
|
||
|
if( pMem->flags & MEM_Zero ){
|
||
|
char *pNew;
|
||
|
int nByte;
|
||
|
assert( (pMem->flags & MEM_Blob)!=0 );
|
||
|
nByte = pMem->n + pMem->u.i;
|
||
|
if( nByte<=0 ) nByte = 1;
|
||
|
pNew = sqliteMalloc(nByte);
|
||
|
if( pNew==0 ){
|
||
|
return SQLITE_NOMEM;
|
||
|
}
|
||
|
memcpy(pNew, pMem->z, pMem->n);
|
||
|
memset(&pNew[pMem->n], 0, pMem->u.i);
|
||
|
sqlite3VdbeMemRelease(pMem);
|
||
|
pMem->z = pNew;
|
||
|
pMem->n += pMem->u.i;
|
||
|
pMem->u.i = 0;
|
||
|
pMem->flags &= ~(MEM_Zero|MEM_Static|MEM_Ephem|MEM_Short|MEM_Term);
|
||
|
pMem->flags |= MEM_Dyn;
|
||
|
}
|
||
|
return SQLITE_OK;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes
|
||
|
** of the Mem.z[] array can be modified.
|
||
|
**
|
||
|
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
|
||
|
*/
|
||
|
int sqlite3VdbeMemMakeWriteable(Mem *pMem){
|
||
|
int n;
|
||
|
u8 *z;
|
||
|
expandBlob(pMem);
|
||
|
if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){
|
||
|
return SQLITE_OK;
|
||
|
}
|
||
|
assert( (pMem->flags & MEM_Dyn)==0 );
|
||
|
assert( pMem->flags & (MEM_Str|MEM_Blob) );
|
||
|
if( (n = pMem->n)+2<sizeof(pMem->zShort) ){
|
||
|
z = (u8*)pMem->zShort;
|
||
|
pMem->flags |= MEM_Short|MEM_Term;
|
||
|
}else{
|
||
|
z = sqliteMallocRaw( n+2 );
|
||
|
if( z==0 ){
|
||
|
return SQLITE_NOMEM;
|
||
|
}
|
||
|
pMem->flags |= MEM_Dyn|MEM_Term;
|
||
|
pMem->xDel = 0;
|
||
|
}
|
||
|
memcpy(z, pMem->z, n );
|
||
|
z[n] = 0;
|
||
|
z[n+1] = 0;
|
||
|
pMem->z = (char*)z;
|
||
|
pMem->flags &= ~(MEM_Ephem|MEM_Static);
|
||
|
assert(0==(1&(int)pMem->z));
|
||
|
return SQLITE_OK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Make sure the given Mem is \u0000 terminated.
|
||
|
*/
|
||
|
int sqlite3VdbeMemNulTerminate(Mem *pMem){
|
||
|
if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
|
||
|
return SQLITE_OK; /* Nothing to do */
|
||
|
}
|
||
|
if( pMem->flags & (MEM_Static|MEM_Ephem) ){
|
||
|
return sqlite3VdbeMemMakeWriteable(pMem);
|
||
|
}else{
|
||
|
char *z;
|
||
|
sqlite3VdbeMemExpandBlob(pMem);
|
||
|
z = sqliteMalloc(pMem->n+2);
|
||
|
|
||
|
if( !z ) return SQLITE_NOMEM;
|
||
|
memcpy(z, pMem->z, pMem->n);
|
||
|
z[pMem->n] = 0;
|
||
|
z[pMem->n+1] = 0;
|
||
|
if( pMem->xDel ){
|
||
|
pMem->xDel(pMem->z);
|
||
|
}else{
|
||
|
sqliteFree(pMem->z);
|
||
|
}
|
||
|
pMem->xDel = 0;
|
||
|
pMem->z = z;
|
||
|
pMem->flags |= MEM_Term;
|
||
|
}
|
||
|
return SQLITE_OK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Add MEM_Str to the set of representations for the given Mem. Numbers
|
||
|
** are converted using sqlite3_snprintf(). Converting a BLOB to a string
|
||
|
** is a no-op.
|
||
|
**
|
||
|
** Existing representations MEM_Int and MEM_Real are *not* invalidated.
|
||
|
**
|
||
|
** A MEM_Null value will never be passed to this function. This function is
|
||
|
** used for converting values to text for returning to the user (i.e. via
|
||
|
** sqlite3_value_text()), or for ensuring that values to be used as btree
|
||
|
** keys are strings. In the former case a NULL pointer is returned the
|
||
|
** user and the later is an internal programming error.
|
||
|
*/
|
||
|
int sqlite3VdbeMemStringify(Mem *pMem, int enc){
|
||
|
int rc = SQLITE_OK;
|
||
|
int fg = pMem->flags;
|
||
|
char *z = pMem->zShort;
|
||
|
|
||
|
assert( !(fg&MEM_Zero) );
|
||
|
assert( !(fg&(MEM_Str|MEM_Blob)) );
|
||
|
assert( fg&(MEM_Int|MEM_Real) );
|
||
|
|
||
|
/* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
|
||
|
** string representation of the value. Then, if the required encoding
|
||
|
** is UTF-16le or UTF-16be do a translation.
|
||
|
**
|
||
|
** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
|
||
|
*/
|
||
|
if( fg & MEM_Int ){
|
||
|
sqlite3_snprintf(NBFS, z, "%lld", pMem->u.i);
|
||
|
}else{
|
||
|
assert( fg & MEM_Real );
|
||
|
sqlite3_snprintf(NBFS, z, "%!.15g", pMem->r);
|
||
|
}
|
||
|
pMem->n = strlen(z);
|
||
|
pMem->z = z;
|
||
|
pMem->enc = SQLITE_UTF8;
|
||
|
pMem->flags |= MEM_Str | MEM_Short | MEM_Term;
|
||
|
sqlite3VdbeChangeEncoding(pMem, enc);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Memory cell pMem contains the context of an aggregate function.
|
||
|
** This routine calls the finalize method for that function. The
|
||
|
** result of the aggregate is stored back into pMem.
|
||
|
**
|
||
|
** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
|
||
|
** otherwise.
|
||
|
*/
|
||
|
int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
|
||
|
int rc = SQLITE_OK;
|
||
|
if( pFunc && pFunc->xFinalize ){
|
||
|
sqlite3_context ctx;
|
||
|
assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
|
||
|
ctx.s.flags = MEM_Null;
|
||
|
ctx.s.z = pMem->zShort;
|
||
|
ctx.pMem = pMem;
|
||
|
ctx.pFunc = pFunc;
|
||
|
ctx.isError = 0;
|
||
|
pFunc->xFinalize(&ctx);
|
||
|
if( pMem->z && pMem->z!=pMem->zShort ){
|
||
|
sqliteFree( pMem->z );
|
||
|
}
|
||
|
*pMem = ctx.s;
|
||
|
if( pMem->flags & MEM_Short ){
|
||
|
pMem->z = pMem->zShort;
|
||
|
}
|
||
|
if( ctx.isError ){
|
||
|
rc = SQLITE_ERROR;
|
||
|
}
|
||
|
}
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Release any memory held by the Mem. This may leave the Mem in an
|
||
|
** inconsistent state, for example with (Mem.z==0) and
|
||
|
** (Mem.type==SQLITE_TEXT).
|
||
|
*/
|
||
|
void sqlite3VdbeMemRelease(Mem *p){
|
||
|
if( p->flags & (MEM_Dyn|MEM_Agg) ){
|
||
|
if( p->xDel ){
|
||
|
if( p->flags & MEM_Agg ){
|
||
|
sqlite3VdbeMemFinalize(p, p->u.pDef);
|
||
|
assert( (p->flags & MEM_Agg)==0 );
|
||
|
sqlite3VdbeMemRelease(p);
|
||
|
}else{
|
||
|
p->xDel((void *)p->z);
|
||
|
}
|
||
|
}else{
|
||
|
sqliteFree(p->z);
|
||
|
}
|
||
|
p->z = 0;
|
||
|
p->xDel = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Return some kind of integer value which is the best we can do
|
||
|
** at representing the value that *pMem describes as an integer.
|
||
|
** If pMem is an integer, then the value is exact. If pMem is
|
||
|
** a floating-point then the value returned is the integer part.
|
||
|
** If pMem is a string or blob, then we make an attempt to convert
|
||
|
** it into a integer and return that. If pMem is NULL, return 0.
|
||
|
**
|
||
|
** If pMem is a string, its encoding might be changed.
|
||
|
*/
|
||
|
i64 sqlite3VdbeIntValue(Mem *pMem){
|
||
|
int flags = pMem->flags;
|
||
|
if( flags & MEM_Int ){
|
||
|
return pMem->u.i;
|
||
|
}else if( flags & MEM_Real ){
|
||
|
return (i64)pMem->r;
|
||
|
}else if( flags & (MEM_Str|MEM_Blob) ){
|
||
|
i64 value;
|
||
|
pMem->flags |= MEM_Str;
|
||
|
if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
|
||
|
|| sqlite3VdbeMemNulTerminate(pMem) ){
|
||
|
return 0;
|
||
|
}
|
||
|
assert( pMem->z );
|
||
|
sqlite3Atoi64(pMem->z, &value);
|
||
|
return value;
|
||
|
}else{
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Return the best representation of pMem that we can get into a
|
||
|
** double. If pMem is already a double or an integer, return its
|
||
|
** value. If it is a string or blob, try to convert it to a double.
|
||
|
** If it is a NULL, return 0.0.
|
||
|
*/
|
||
|
double sqlite3VdbeRealValue(Mem *pMem){
|
||
|
if( pMem->flags & MEM_Real ){
|
||
|
return pMem->r;
|
||
|
}else if( pMem->flags & MEM_Int ){
|
||
|
return (double)pMem->u.i;
|
||
|
}else if( pMem->flags & (MEM_Str|MEM_Blob) ){
|
||
|
double val = 0.0;
|
||
|
pMem->flags |= MEM_Str;
|
||
|
if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
|
||
|
|| sqlite3VdbeMemNulTerminate(pMem) ){
|
||
|
return 0.0;
|
||
|
}
|
||
|
assert( pMem->z );
|
||
|
sqlite3AtoF(pMem->z, &val);
|
||
|
return val;
|
||
|
}else{
|
||
|
return 0.0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** The MEM structure is already a MEM_Real. Try to also make it a
|
||
|
** MEM_Int if we can.
|
||
|
*/
|
||
|
void sqlite3VdbeIntegerAffinity(Mem *pMem){
|
||
|
assert( pMem->flags & MEM_Real );
|
||
|
pMem->u.i = pMem->r;
|
||
|
if( ((double)pMem->u.i)==pMem->r ){
|
||
|
pMem->flags |= MEM_Int;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Convert pMem to type integer. Invalidate any prior representations.
|
||
|
*/
|
||
|
int sqlite3VdbeMemIntegerify(Mem *pMem){
|
||
|
pMem->u.i = sqlite3VdbeIntValue(pMem);
|
||
|
sqlite3VdbeMemRelease(pMem);
|
||
|
pMem->flags = MEM_Int;
|
||
|
return SQLITE_OK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Convert pMem so that it is of type MEM_Real.
|
||
|
** Invalidate any prior representations.
|
||
|
*/
|
||
|
int sqlite3VdbeMemRealify(Mem *pMem){
|
||
|
pMem->r = sqlite3VdbeRealValue(pMem);
|
||
|
sqlite3VdbeMemRelease(pMem);
|
||
|
pMem->flags = MEM_Real;
|
||
|
return SQLITE_OK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Convert pMem so that it has types MEM_Real or MEM_Int or both.
|
||
|
** Invalidate any prior representations.
|
||
|
*/
|
||
|
int sqlite3VdbeMemNumerify(Mem *pMem){
|
||
|
double r1, r2;
|
||
|
i64 i;
|
||
|
assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 );
|
||
|
assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
|
||
|
r1 = sqlite3VdbeRealValue(pMem);
|
||
|
i = (i64)r1;
|
||
|
r2 = (double)i;
|
||
|
if( r1==r2 ){
|
||
|
sqlite3VdbeMemIntegerify(pMem);
|
||
|
}else{
|
||
|
pMem->r = r1;
|
||
|
pMem->flags = MEM_Real;
|
||
|
sqlite3VdbeMemRelease(pMem);
|
||
|
}
|
||
|
return SQLITE_OK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Delete any previous value and set the value stored in *pMem to NULL.
|
||
|
*/
|
||
|
void sqlite3VdbeMemSetNull(Mem *pMem){
|
||
|
sqlite3VdbeMemRelease(pMem);
|
||
|
pMem->flags = MEM_Null;
|
||
|
pMem->type = SQLITE_NULL;
|
||
|
pMem->n = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Delete any previous value and set the value to be a BLOB of length
|
||
|
** n containing all zeros.
|
||
|
*/
|
||
|
void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
|
||
|
sqlite3VdbeMemRelease(pMem);
|
||
|
pMem->flags = MEM_Blob|MEM_Zero|MEM_Short;
|
||
|
pMem->type = SQLITE_BLOB;
|
||
|
pMem->n = 0;
|
||
|
if( n<0 ) n = 0;
|
||
|
pMem->u.i = n;
|
||
|
pMem->z = pMem->zShort;
|
||
|
pMem->enc = SQLITE_UTF8;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Delete any previous value and set the value stored in *pMem to val,
|
||
|
** manifest type INTEGER.
|
||
|
*/
|
||
|
void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
|
||
|
sqlite3VdbeMemRelease(pMem);
|
||
|
pMem->u.i = val;
|
||
|
pMem->flags = MEM_Int;
|
||
|
pMem->type = SQLITE_INTEGER;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Delete any previous value and set the value stored in *pMem to val,
|
||
|
** manifest type REAL.
|
||
|
*/
|
||
|
void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
|
||
|
if( sqlite3_isnan(val) ){
|
||
|
sqlite3VdbeMemSetNull(pMem);
|
||
|
}else{
|
||
|
sqlite3VdbeMemRelease(pMem);
|
||
|
pMem->r = val;
|
||
|
pMem->flags = MEM_Real;
|
||
|
pMem->type = SQLITE_FLOAT;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Return true if the Mem object contains a TEXT or BLOB that is
|
||
|
** too large - whose size exceeds SQLITE_MAX_LENGTH.
|
||
|
*/
|
||
|
int sqlite3VdbeMemTooBig(Mem *p){
|
||
|
if( p->flags & (MEM_Str|MEM_Blob) ){
|
||
|
int n = p->n;
|
||
|
if( p->flags & MEM_Zero ){
|
||
|
n += p->u.i;
|
||
|
}
|
||
|
return n>SQLITE_MAX_LENGTH;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Make an shallow copy of pFrom into pTo. Prior contents of
|
||
|
** pTo are overwritten. The pFrom->z field is not duplicated. If
|
||
|
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
|
||
|
** and flags gets srcType (either MEM_Ephem or MEM_Static).
|
||
|
*/
|
||
|
void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
|
||
|
memcpy(pTo, pFrom, sizeof(*pFrom)-sizeof(pFrom->zShort));
|
||
|
pTo->xDel = 0;
|
||
|
if( pTo->flags & (MEM_Str|MEM_Blob) ){
|
||
|
pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short|MEM_Ephem);
|
||
|
assert( srcType==MEM_Ephem || srcType==MEM_Static );
|
||
|
pTo->flags |= srcType;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Make a full copy of pFrom into pTo. Prior contents of pTo are
|
||
|
** freed before the copy is made.
|
||
|
*/
|
||
|
int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
|
||
|
int rc;
|
||
|
if( pTo->flags & MEM_Dyn ){
|
||
|
sqlite3VdbeMemRelease(pTo);
|
||
|
}
|
||
|
sqlite3VdbeMemShallowCopy(pTo, pFrom, MEM_Ephem);
|
||
|
if( pTo->flags & MEM_Ephem ){
|
||
|
rc = sqlite3VdbeMemMakeWriteable(pTo);
|
||
|
}else{
|
||
|
rc = SQLITE_OK;
|
||
|
}
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Transfer the contents of pFrom to pTo. Any existing value in pTo is
|
||
|
** freed. If pFrom contains ephemeral data, a copy is made.
|
||
|
**
|
||
|
** pFrom contains an SQL NULL when this routine returns. SQLITE_NOMEM
|
||
|
** might be returned if pFrom held ephemeral data and we were unable
|
||
|
** to allocate enough space to make a copy.
|
||
|
*/
|
||
|
int sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
|
||
|
int rc;
|
||
|
if( pTo->flags & MEM_Dyn ){
|
||
|
sqlite3VdbeMemRelease(pTo);
|
||
|
}
|
||
|
memcpy(pTo, pFrom, sizeof(Mem));
|
||
|
if( pFrom->flags & MEM_Short ){
|
||
|
pTo->z = pTo->zShort;
|
||
|
}
|
||
|
pFrom->flags = MEM_Null;
|
||
|
pFrom->xDel = 0;
|
||
|
if( pTo->flags & MEM_Ephem ){
|
||
|
rc = sqlite3VdbeMemMakeWriteable(pTo);
|
||
|
}else{
|
||
|
rc = SQLITE_OK;
|
||
|
}
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Change the value of a Mem to be a string or a BLOB.
|
||
|
*/
|
||
|
int sqlite3VdbeMemSetStr(
|
||
|
Mem *pMem, /* Memory cell to set to string value */
|
||
|
const char *z, /* String pointer */
|
||
|
int n, /* Bytes in string, or negative */
|
||
|
u8 enc, /* Encoding of z. 0 for BLOBs */
|
||
|
void (*xDel)(void*) /* Destructor function */
|
||
|
){
|
||
|
sqlite3VdbeMemRelease(pMem);
|
||
|
if( !z ){
|
||
|
pMem->flags = MEM_Null;
|
||
|
pMem->type = SQLITE_NULL;
|
||
|
return SQLITE_OK;
|
||
|
}
|
||
|
|
||
|
pMem->z = (char *)z;
|
||
|
if( xDel==SQLITE_STATIC ){
|
||
|
pMem->flags = MEM_Static;
|
||
|
}else if( xDel==SQLITE_TRANSIENT ){
|
||
|
pMem->flags = MEM_Ephem;
|
||
|
}else{
|
||
|
pMem->flags = MEM_Dyn;
|
||
|
pMem->xDel = xDel;
|
||
|
}
|
||
|
|
||
|
pMem->enc = enc;
|
||
|
pMem->type = enc==0 ? SQLITE_BLOB : SQLITE_TEXT;
|
||
|
pMem->n = n;
|
||
|
|
||
|
assert( enc==0 || enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE
|
||
|
|| enc==SQLITE_UTF16BE );
|
||
|
switch( enc ){
|
||
|
case 0:
|
||
|
pMem->flags |= MEM_Blob;
|
||
|
pMem->enc = SQLITE_UTF8;
|
||
|
break;
|
||
|
|
||
|
case SQLITE_UTF8:
|
||
|
pMem->flags |= MEM_Str;
|
||
|
if( n<0 ){
|
||
|
pMem->n = strlen(z);
|
||
|
pMem->flags |= MEM_Term;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
#ifndef SQLITE_OMIT_UTF16
|
||
|
case SQLITE_UTF16LE:
|
||
|
case SQLITE_UTF16BE:
|
||
|
pMem->flags |= MEM_Str;
|
||
|
if( pMem->n<0 ){
|
||
|
pMem->n = sqlite3Utf16ByteLen(pMem->z,-1);
|
||
|
pMem->flags |= MEM_Term;
|
||
|
}
|
||
|
if( sqlite3VdbeMemHandleBom(pMem) ){
|
||
|
return SQLITE_NOMEM;
|
||
|
}
|
||
|
#endif /* SQLITE_OMIT_UTF16 */
|
||
|
}
|
||
|
if( pMem->flags&MEM_Ephem ){
|
||
|
return sqlite3VdbeMemMakeWriteable(pMem);
|
||
|
}
|
||
|
return SQLITE_OK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Compare the values contained by the two memory cells, returning
|
||
|
** negative, zero or positive if pMem1 is less than, equal to, or greater
|
||
|
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
|
||
|
** and reals) sorted numerically, followed by text ordered by the collating
|
||
|
** sequence pColl and finally blob's ordered by memcmp().
|
||
|
**
|
||
|
** Two NULL values are considered equal by this function.
|
||
|
*/
|
||
|
int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
|
||
|
int rc;
|
||
|
int f1, f2;
|
||
|
int combined_flags;
|
||
|
|
||
|
/* Interchange pMem1 and pMem2 if the collating sequence specifies
|
||
|
** DESC order.
|
||
|
*/
|
||
|
f1 = pMem1->flags;
|
||
|
f2 = pMem2->flags;
|
||
|
combined_flags = f1|f2;
|
||
|
|
||
|
/* If one value is NULL, it is less than the other. If both values
|
||
|
** are NULL, return 0.
|
||
|
*/
|
||
|
if( combined_flags&MEM_Null ){
|
||
|
return (f2&MEM_Null) - (f1&MEM_Null);
|
||
|
}
|
||
|
|
||
|
/* If one value is a number and the other is not, the number is less.
|
||
|
** If both are numbers, compare as reals if one is a real, or as integers
|
||
|
** if both values are integers.
|
||
|
*/
|
||
|
if( combined_flags&(MEM_Int|MEM_Real) ){
|
||
|
if( !(f1&(MEM_Int|MEM_Real)) ){
|
||
|
return 1;
|
||
|
}
|
||
|
if( !(f2&(MEM_Int|MEM_Real)) ){
|
||
|
return -1;
|
||
|
}
|
||
|
if( (f1 & f2 & MEM_Int)==0 ){
|
||
|
double r1, r2;
|
||
|
if( (f1&MEM_Real)==0 ){
|
||
|
r1 = pMem1->u.i;
|
||
|
}else{
|
||
|
r1 = pMem1->r;
|
||
|
}
|
||
|
if( (f2&MEM_Real)==0 ){
|
||
|
r2 = pMem2->u.i;
|
||
|
}else{
|
||
|
r2 = pMem2->r;
|
||
|
}
|
||
|
if( r1<r2 ) return -1;
|
||
|
if( r1>r2 ) return 1;
|
||
|
return 0;
|
||
|
}else{
|
||
|
assert( f1&MEM_Int );
|
||
|
assert( f2&MEM_Int );
|
||
|
if( pMem1->u.i < pMem2->u.i ) return -1;
|
||
|
if( pMem1->u.i > pMem2->u.i ) return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* If one value is a string and the other is a blob, the string is less.
|
||
|
** If both are strings, compare using the collating functions.
|
||
|
*/
|
||
|
if( combined_flags&MEM_Str ){
|
||
|
if( (f1 & MEM_Str)==0 ){
|
||
|
return 1;
|
||
|
}
|
||
|
if( (f2 & MEM_Str)==0 ){
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
assert( pMem1->enc==pMem2->enc );
|
||
|
assert( pMem1->enc==SQLITE_UTF8 ||
|
||
|
pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
|
||
|
|
||
|
/* The collation sequence must be defined at this point, even if
|
||
|
** the user deletes the collation sequence after the vdbe program is
|
||
|
** compiled (this was not always the case).
|
||
|
*/
|
||
|
assert( !pColl || pColl->xCmp );
|
||
|
|
||
|
if( pColl ){
|
||
|
if( pMem1->enc==pColl->enc ){
|
||
|
/* The strings are already in the correct encoding. Call the
|
||
|
** comparison function directly */
|
||
|
return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
|
||
|
}else{
|
||
|
u8 origEnc = pMem1->enc;
|
||
|
const void *v1, *v2;
|
||
|
int n1, n2;
|
||
|
/* Convert the strings into the encoding that the comparison
|
||
|
** function expects */
|
||
|
v1 = sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc);
|
||
|
n1 = v1==0 ? 0 : pMem1->n;
|
||
|
assert( n1==sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc) );
|
||
|
v2 = sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc);
|
||
|
n2 = v2==0 ? 0 : pMem2->n;
|
||
|
assert( n2==sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc) );
|
||
|
/* Do the comparison */
|
||
|
rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
|
||
|
/* Convert the strings back into the database encoding */
|
||
|
sqlite3ValueText((sqlite3_value*)pMem1, origEnc);
|
||
|
sqlite3ValueText((sqlite3_value*)pMem2, origEnc);
|
||
|
return rc;
|
||
|
}
|
||
|
}
|
||
|
/* If a NULL pointer was passed as the collate function, fall through
|
||
|
** to the blob case and use memcmp(). */
|
||
|
}
|
||
|
|
||
|
/* Both values must be blobs. Compare using memcmp(). */
|
||
|
rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
|
||
|
if( rc==0 ){
|
||
|
rc = pMem1->n - pMem2->n;
|
||
|
}
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Move data out of a btree key or data field and into a Mem structure.
|
||
|
** The data or key is taken from the entry that pCur is currently pointing
|
||
|
** to. offset and amt determine what portion of the data or key to retrieve.
|
||
|
** key is true to get the key or false to get data. The result is written
|
||
|
** into the pMem element.
|
||
|
**
|
||
|
** The pMem structure is assumed to be uninitialized. Any prior content
|
||
|
** is overwritten without being freed.
|
||
|
**
|
||
|
** If this routine fails for any reason (malloc returns NULL or unable
|
||
|
** to read from the disk) then the pMem is left in an inconsistent state.
|
||
|
*/
|
||
|
int sqlite3VdbeMemFromBtree(
|
||
|
BtCursor *pCur, /* Cursor pointing at record to retrieve. */
|
||
|
int offset, /* Offset from the start of data to return bytes from. */
|
||
|
int amt, /* Number of bytes to return. */
|
||
|
int key, /* If true, retrieve from the btree key, not data. */
|
||
|
Mem *pMem /* OUT: Return data in this Mem structure. */
|
||
|
){
|
||
|
char *zData; /* Data from the btree layer */
|
||
|
int available = 0; /* Number of bytes available on the local btree page */
|
||
|
|
||
|
if( key ){
|
||
|
zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
|
||
|
}else{
|
||
|
zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
|
||
|
}
|
||
|
assert( zData!=0 );
|
||
|
|
||
|
pMem->n = amt;
|
||
|
if( offset+amt<=available ){
|
||
|
pMem->z = &zData[offset];
|
||
|
pMem->flags = MEM_Blob|MEM_Ephem;
|
||
|
}else{
|
||
|
int rc;
|
||
|
if( amt>NBFS-2 ){
|
||
|
zData = (char *)sqliteMallocRaw(amt+2);
|
||
|
if( !zData ){
|
||
|
return SQLITE_NOMEM;
|
||
|
}
|
||
|
pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
|
||
|
pMem->xDel = 0;
|
||
|
}else{
|
||
|
zData = &(pMem->zShort[0]);
|
||
|
pMem->flags = MEM_Blob|MEM_Short|MEM_Term;
|
||
|
}
|
||
|
pMem->z = zData;
|
||
|
pMem->enc = 0;
|
||
|
pMem->type = SQLITE_BLOB;
|
||
|
|
||
|
if( key ){
|
||
|
rc = sqlite3BtreeKey(pCur, offset, amt, zData);
|
||
|
}else{
|
||
|
rc = sqlite3BtreeData(pCur, offset, amt, zData);
|
||
|
}
|
||
|
zData[amt] = 0;
|
||
|
zData[amt+1] = 0;
|
||
|
if( rc!=SQLITE_OK ){
|
||
|
if( amt>NBFS-2 ){
|
||
|
assert( zData!=pMem->zShort );
|
||
|
assert( pMem->flags & MEM_Dyn );
|
||
|
sqliteFree(zData);
|
||
|
} else {
|
||
|
assert( zData==pMem->zShort );
|
||
|
assert( pMem->flags & MEM_Short );
|
||
|
}
|
||
|
return rc;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return SQLITE_OK;
|
||
|
}
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
/*
|
||
|
** Perform various checks on the memory cell pMem. An assert() will
|
||
|
** fail if pMem is internally inconsistent.
|
||
|
*/
|
||
|
void sqlite3VdbeMemSanity(Mem *pMem){
|
||
|
int flags = pMem->flags;
|
||
|
assert( flags!=0 ); /* Must define some type */
|
||
|
if( flags & (MEM_Str|MEM_Blob) ){
|
||
|
int x = flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
|
||
|
assert( x!=0 ); /* Strings must define a string subtype */
|
||
|
assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */
|
||
|
assert( pMem->z!=0 ); /* Strings must have a value */
|
||
|
/* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
|
||
|
assert( (x & MEM_Short)==0 || pMem->z==pMem->zShort );
|
||
|
assert( (x & MEM_Short)!=0 || pMem->z!=pMem->zShort );
|
||
|
/* No destructor unless there is MEM_Dyn */
|
||
|
assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 );
|
||
|
|
||
|
if( (flags & MEM_Str) ){
|
||
|
assert( pMem->enc==SQLITE_UTF8 ||
|
||
|
pMem->enc==SQLITE_UTF16BE ||
|
||
|
pMem->enc==SQLITE_UTF16LE
|
||
|
);
|
||
|
/* If the string is UTF-8 encoded and nul terminated, then pMem->n
|
||
|
** must be the length of the string. (Later:) If the database file
|
||
|
** has been corrupted, '\000' characters might have been inserted
|
||
|
** into the middle of the string. In that case, the strlen() might
|
||
|
** be less.
|
||
|
*/
|
||
|
if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){
|
||
|
assert( strlen(pMem->z)<=pMem->n );
|
||
|
assert( pMem->z[pMem->n]==0 );
|
||
|
}
|
||
|
}
|
||
|
}else{
|
||
|
/* Cannot define a string subtype for non-string objects */
|
||
|
assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
|
||
|
assert( pMem->xDel==0 );
|
||
|
}
|
||
|
/* MEM_Null excludes all other types */
|
||
|
assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0
|
||
|
|| (pMem->flags&MEM_Null)==0 );
|
||
|
/* If the MEM is both real and integer, the values are equal */
|
||
|
assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real)
|
||
|
|| pMem->r==pMem->u.i );
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* This function is only available internally, it is not part of the
|
||
|
** external API. It works in a similar way to sqlite3_value_text(),
|
||
|
** except the data returned is in the encoding specified by the second
|
||
|
** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
|
||
|
** SQLITE_UTF8.
|
||
|
**
|
||
|
** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
|
||
|
** If that is the case, then the result must be aligned on an even byte
|
||
|
** boundary.
|
||
|
*/
|
||
|
const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
|
||
|
if( !pVal ) return 0;
|
||
|
assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
|
||
|
|
||
|
if( pVal->flags&MEM_Null ){
|
||
|
return 0;
|
||
|
}
|
||
|
assert( (MEM_Blob>>3) == MEM_Str );
|
||
|
pVal->flags |= (pVal->flags & MEM_Blob)>>3;
|
||
|
expandBlob(pVal);
|
||
|
if( pVal->flags&MEM_Str ){
|
||
|
sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
|
||
|
if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&(int)pVal->z) ){
|
||
|
assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
|
||
|
if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
sqlite3VdbeMemNulTerminate(pVal);
|
||
|
}else{
|
||
|
assert( (pVal->flags&MEM_Blob)==0 );
|
||
|
sqlite3VdbeMemStringify(pVal, enc);
|
||
|
assert( 0==(1&(int)pVal->z) );
|
||
|
}
|
||
|
assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || sqlite3MallocFailed() );
|
||
|
if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
|
||
|
return pVal->z;
|
||
|
}else{
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Create a new sqlite3_value object.
|
||
|
*/
|
||
|
sqlite3_value *sqlite3ValueNew(void){
|
||
|
Mem *p = sqliteMalloc(sizeof(*p));
|
||
|
if( p ){
|
||
|
p->flags = MEM_Null;
|
||
|
p->type = SQLITE_NULL;
|
||
|
}
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Create a new sqlite3_value object, containing the value of pExpr.
|
||
|
**
|
||
|
** This only works for very simple expressions that consist of one constant
|
||
|
** token (i.e. "5", "5.1", "NULL", "'a string'"). If the expression can
|
||
|
** be converted directly into a value, then the value is allocated and
|
||
|
** a pointer written to *ppVal. The caller is responsible for deallocating
|
||
|
** the value by passing it to sqlite3ValueFree() later on. If the expression
|
||
|
** cannot be converted to a value, then *ppVal is set to NULL.
|
||
|
*/
|
||
|
int sqlite3ValueFromExpr(
|
||
|
Expr *pExpr,
|
||
|
u8 enc,
|
||
|
u8 affinity,
|
||
|
sqlite3_value **ppVal
|
||
|
){
|
||
|
int op;
|
||
|
char *zVal = 0;
|
||
|
sqlite3_value *pVal = 0;
|
||
|
|
||
|
if( !pExpr ){
|
||
|
*ppVal = 0;
|
||
|
return SQLITE_OK;
|
||
|
}
|
||
|
op = pExpr->op;
|
||
|
|
||
|
if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
|
||
|
zVal = sqliteStrNDup((char*)pExpr->token.z, pExpr->token.n);
|
||
|
pVal = sqlite3ValueNew();
|
||
|
if( !zVal || !pVal ) goto no_mem;
|
||
|
sqlite3Dequote(zVal);
|
||
|
sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3FreeX);
|
||
|
if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
|
||
|
sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc);
|
||
|
}else{
|
||
|
sqlite3ValueApplyAffinity(pVal, affinity, enc);
|
||
|
}
|
||
|
}else if( op==TK_UMINUS ) {
|
||
|
if( SQLITE_OK==sqlite3ValueFromExpr(pExpr->pLeft, enc, affinity, &pVal) ){
|
||
|
pVal->u.i = -1 * pVal->u.i;
|
||
|
pVal->r = -1.0 * pVal->r;
|
||
|
}
|
||
|
}
|
||
|
#ifndef SQLITE_OMIT_BLOB_LITERAL
|
||
|
else if( op==TK_BLOB ){
|
||
|
int nVal;
|
||
|
pVal = sqlite3ValueNew();
|
||
|
zVal = sqliteStrNDup((char*)pExpr->token.z+1, pExpr->token.n-1);
|
||
|
if( !zVal || !pVal ) goto no_mem;
|
||
|
sqlite3Dequote(zVal);
|
||
|
nVal = strlen(zVal)/2;
|
||
|
sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(zVal), nVal, 0, sqlite3FreeX);
|
||
|
sqliteFree(zVal);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
*ppVal = pVal;
|
||
|
return SQLITE_OK;
|
||
|
|
||
|
no_mem:
|
||
|
sqliteFree(zVal);
|
||
|
sqlite3ValueFree(pVal);
|
||
|
*ppVal = 0;
|
||
|
return SQLITE_NOMEM;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Change the string value of an sqlite3_value object
|
||
|
*/
|
||
|
void sqlite3ValueSetStr(
|
||
|
sqlite3_value *v,
|
||
|
int n,
|
||
|
const void *z,
|
||
|
u8 enc,
|
||
|
void (*xDel)(void*)
|
||
|
){
|
||
|
if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Free an sqlite3_value object
|
||
|
*/
|
||
|
void sqlite3ValueFree(sqlite3_value *v){
|
||
|
if( !v ) return;
|
||
|
sqlite3ValueSetStr(v, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
|
||
|
sqliteFree(v);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Return the number of bytes in the sqlite3_value object assuming
|
||
|
** that it uses the encoding "enc"
|
||
|
*/
|
||
|
int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
|
||
|
Mem *p = (Mem*)pVal;
|
||
|
if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
|
||
|
if( p->flags & MEM_Zero ){
|
||
|
return (int)(p->n+p->u.i);
|
||
|
}else{
|
||
|
return p->n;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|