547 lines
15 KiB
C
547 lines
15 KiB
C
|
/*
|
||
|
** 2007 August 15
|
||
|
**
|
||
|
** The author disclaims copyright to this source code. In place of
|
||
|
** a legal notice, here is a blessing:
|
||
|
**
|
||
|
** May you do good and not evil.
|
||
|
** May you find forgiveness for yourself and forgive others.
|
||
|
** May you share freely, never taking more than you give.
|
||
|
**
|
||
|
*************************************************************************
|
||
|
** This file contains the C functions that implement a memory
|
||
|
** allocation subsystem for use by SQLite.
|
||
|
**
|
||
|
** $Id$
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
** This version of the memory allocator is used only if the
|
||
|
** SQLITE_MEMDEBUG macro is defined and SQLITE_OMIT_MEMORY_ALLOCATION
|
||
|
** is not defined.
|
||
|
*/
|
||
|
#if defined(SQLITE_MEMDEBUG) && !defined(SQLITE_OMIT_MEMORY_ALLOCATION)
|
||
|
|
||
|
/*
|
||
|
** We will eventually construct multiple memory allocation subsystems
|
||
|
** suitable for use in various contexts:
|
||
|
**
|
||
|
** * Normal multi-threaded builds
|
||
|
** * Normal single-threaded builds
|
||
|
** * Debugging builds
|
||
|
**
|
||
|
** This version is suitable for use in debugging builds.
|
||
|
**
|
||
|
** Features:
|
||
|
**
|
||
|
** * Every allocate has guards at both ends.
|
||
|
** * New allocations are initialized with randomness
|
||
|
** * Allocations are overwritten with randomness when freed
|
||
|
** * Optional logs of malloc activity generated
|
||
|
** * Summary of outstanding allocations with backtraces to the
|
||
|
** point of allocation.
|
||
|
** * The ability to simulate memory allocation failure
|
||
|
*/
|
||
|
#include "sqliteInt.h"
|
||
|
#include <stdio.h>
|
||
|
|
||
|
/*
|
||
|
** The backtrace functionality is only available with GLIBC
|
||
|
*/
|
||
|
#ifdef __GLIBC__
|
||
|
extern int backtrace(void**,int);
|
||
|
extern void backtrace_symbols_fd(void*const*,int,int);
|
||
|
#else
|
||
|
# define backtrace(A,B) 0
|
||
|
# define backtrace_symbols_fd(A,B,C)
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
** Each memory allocation looks like this:
|
||
|
**
|
||
|
** ------------------------------------------------------------------------
|
||
|
** | Title | backtrace pointers | MemBlockHdr | allocation | EndGuard |
|
||
|
** ------------------------------------------------------------------------
|
||
|
**
|
||
|
** The application code sees only a pointer to the allocation. We have
|
||
|
** to back up from the allocation pointer to find the MemBlockHdr. The
|
||
|
** MemBlockHdr tells us the size of the allocation and the number of
|
||
|
** backtrace pointers. There is also a guard word at the end of the
|
||
|
** MemBlockHdr.
|
||
|
*/
|
||
|
struct MemBlockHdr {
|
||
|
struct MemBlockHdr *pNext, *pPrev; /* Linked list of all unfreed memory */
|
||
|
int iSize; /* Size of this allocation */
|
||
|
char nBacktrace; /* Number of backtraces on this alloc */
|
||
|
char nBacktraceSlots; /* Available backtrace slots */
|
||
|
short nTitle; /* Bytes of title; includes '\0' */
|
||
|
int iForeGuard; /* Guard word for sanity */
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
** Guard words
|
||
|
*/
|
||
|
#define FOREGUARD 0x80F5E153
|
||
|
#define REARGUARD 0xE4676B53
|
||
|
|
||
|
/*
|
||
|
** All of the static variables used by this module are collected
|
||
|
** into a single structure named "mem". This is to keep the
|
||
|
** static variables organized and to reduce namespace pollution
|
||
|
** when this module is combined with other in the amalgamation.
|
||
|
*/
|
||
|
static struct {
|
||
|
/*
|
||
|
** The alarm callback and its arguments. The mem.mutex lock will
|
||
|
** be held while the callback is running. Recursive calls into
|
||
|
** the memory subsystem are allowed, but no new callbacks will be
|
||
|
** issued. The alarmBusy variable is set to prevent recursive
|
||
|
** callbacks.
|
||
|
*/
|
||
|
sqlite3_int64 alarmThreshold;
|
||
|
void (*alarmCallback)(void*, sqlite3_int64, int);
|
||
|
void *alarmArg;
|
||
|
int alarmBusy;
|
||
|
|
||
|
/*
|
||
|
** Mutex to control access to the memory allocation subsystem.
|
||
|
*/
|
||
|
sqlite3_mutex *mutex;
|
||
|
|
||
|
/*
|
||
|
** Current allocation and high-water mark.
|
||
|
*/
|
||
|
sqlite3_int64 nowUsed;
|
||
|
sqlite3_int64 mxUsed;
|
||
|
|
||
|
/*
|
||
|
** Head and tail of a linked list of all outstanding allocations
|
||
|
*/
|
||
|
struct MemBlockHdr *pFirst;
|
||
|
struct MemBlockHdr *pLast;
|
||
|
|
||
|
/*
|
||
|
** The number of levels of backtrace to save in new allocations.
|
||
|
*/
|
||
|
int nBacktrace;
|
||
|
|
||
|
/*
|
||
|
** Title text to insert in front of each block
|
||
|
*/
|
||
|
int nTitle; /* Bytes of zTitle to save. Includes '\0' and padding */
|
||
|
char zTitle[100]; /* The title text */
|
||
|
|
||
|
/*
|
||
|
** These values are used to simulate malloc failures. When
|
||
|
** iFail is 1, simulate a malloc failures and reset the value
|
||
|
** to iReset.
|
||
|
*/
|
||
|
int iFail; /* Decrement and fail malloc when this is 1 */
|
||
|
int iReset; /* When malloc fails set iiFail to this value */
|
||
|
int iFailCnt; /* Number of failures */
|
||
|
int iBenignFailCnt; /* Number of benign failures */
|
||
|
int iNextIsBenign; /* True if the next call to malloc may fail benignly */
|
||
|
int iIsBenign; /* All malloc calls may fail benignly */
|
||
|
|
||
|
/*
|
||
|
** sqlite3MallocDisallow() increments the following counter.
|
||
|
** sqlite3MallocAllow() decrements it.
|
||
|
*/
|
||
|
int disallow; /* Do not allow memory allocation */
|
||
|
|
||
|
|
||
|
} mem;
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
|
||
|
*/
|
||
|
static void enterMem(void){
|
||
|
if( mem.mutex==0 ){
|
||
|
mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
|
||
|
}
|
||
|
sqlite3_mutex_enter(mem.mutex);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Return the amount of memory currently checked out.
|
||
|
*/
|
||
|
sqlite3_int64 sqlite3_memory_used(void){
|
||
|
sqlite3_int64 n;
|
||
|
enterMem();
|
||
|
n = mem.nowUsed;
|
||
|
sqlite3_mutex_leave(mem.mutex);
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Return the maximum amount of memory that has ever been
|
||
|
** checked out since either the beginning of this process
|
||
|
** or since the most recent reset.
|
||
|
*/
|
||
|
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
|
||
|
sqlite3_int64 n;
|
||
|
enterMem();
|
||
|
n = mem.mxUsed;
|
||
|
if( resetFlag ){
|
||
|
mem.mxUsed = mem.nowUsed;
|
||
|
}
|
||
|
sqlite3_mutex_leave(mem.mutex);
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Change the alarm callback
|
||
|
*/
|
||
|
int sqlite3_memory_alarm(
|
||
|
void(*xCallback)(void *pArg, sqlite3_int64 used, int N),
|
||
|
void *pArg,
|
||
|
sqlite3_int64 iThreshold
|
||
|
){
|
||
|
enterMem();
|
||
|
mem.alarmCallback = xCallback;
|
||
|
mem.alarmArg = pArg;
|
||
|
mem.alarmThreshold = iThreshold;
|
||
|
sqlite3_mutex_leave(mem.mutex);
|
||
|
return SQLITE_OK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Trigger the alarm
|
||
|
*/
|
||
|
static void sqlite3MemsysAlarm(int nByte){
|
||
|
void (*xCallback)(void*,sqlite3_int64,int);
|
||
|
sqlite3_int64 nowUsed;
|
||
|
void *pArg;
|
||
|
if( mem.alarmCallback==0 || mem.alarmBusy ) return;
|
||
|
mem.alarmBusy = 1;
|
||
|
xCallback = mem.alarmCallback;
|
||
|
nowUsed = mem.nowUsed;
|
||
|
pArg = mem.alarmArg;
|
||
|
sqlite3_mutex_leave(mem.mutex);
|
||
|
xCallback(pArg, nowUsed, nByte);
|
||
|
sqlite3_mutex_enter(mem.mutex);
|
||
|
mem.alarmBusy = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Given an allocation, find the MemBlockHdr for that allocation.
|
||
|
**
|
||
|
** This routine checks the guards at either end of the allocation and
|
||
|
** if they are incorrect it asserts.
|
||
|
*/
|
||
|
static struct MemBlockHdr *sqlite3MemsysGetHeader(void *pAllocation){
|
||
|
struct MemBlockHdr *p;
|
||
|
int *pInt;
|
||
|
|
||
|
p = (struct MemBlockHdr*)pAllocation;
|
||
|
p--;
|
||
|
assert( p->iForeGuard==FOREGUARD );
|
||
|
assert( (p->iSize & 3)==0 );
|
||
|
pInt = (int*)pAllocation;
|
||
|
assert( pInt[p->iSize/sizeof(int)]==REARGUARD );
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** This routine is called once the first time a simulated memory
|
||
|
** failure occurs. The sole purpose of this routine is to provide
|
||
|
** a convenient place to set a debugger breakpoint when debugging
|
||
|
** errors related to malloc() failures.
|
||
|
*/
|
||
|
static void sqlite3MemsysFailed(void){
|
||
|
mem.iFailCnt = 0;
|
||
|
mem.iBenignFailCnt = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Allocate nByte bytes of memory.
|
||
|
*/
|
||
|
void *sqlite3_malloc(int nByte){
|
||
|
struct MemBlockHdr *pHdr;
|
||
|
void **pBt;
|
||
|
char *z;
|
||
|
int *pInt;
|
||
|
void *p = 0;
|
||
|
int totalSize;
|
||
|
|
||
|
if( nByte>0 ){
|
||
|
enterMem();
|
||
|
assert( mem.disallow==0 );
|
||
|
if( mem.alarmCallback!=0 && mem.nowUsed+nByte>=mem.alarmThreshold ){
|
||
|
sqlite3MemsysAlarm(nByte);
|
||
|
}
|
||
|
nByte = (nByte+3)&~3;
|
||
|
totalSize = nByte + sizeof(*pHdr) + sizeof(int) +
|
||
|
mem.nBacktrace*sizeof(void*) + mem.nTitle;
|
||
|
if( mem.iFail>0 ){
|
||
|
if( mem.iFail==1 ){
|
||
|
p = 0;
|
||
|
mem.iFail = mem.iReset;
|
||
|
if( mem.iFailCnt==0 ){
|
||
|
sqlite3MemsysFailed(); /* A place to set a breakpoint */
|
||
|
}
|
||
|
mem.iFailCnt++;
|
||
|
if( mem.iNextIsBenign || mem.iIsBenign ){
|
||
|
mem.iBenignFailCnt++;
|
||
|
}
|
||
|
}else{
|
||
|
p = malloc(totalSize);
|
||
|
mem.iFail--;
|
||
|
}
|
||
|
}else{
|
||
|
p = malloc(totalSize);
|
||
|
if( p==0 ){
|
||
|
sqlite3MemsysAlarm(nByte);
|
||
|
p = malloc(totalSize);
|
||
|
}
|
||
|
}
|
||
|
if( p ){
|
||
|
z = p;
|
||
|
pBt = (void**)&z[mem.nTitle];
|
||
|
pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace];
|
||
|
pHdr->pNext = 0;
|
||
|
pHdr->pPrev = mem.pLast;
|
||
|
if( mem.pLast ){
|
||
|
mem.pLast->pNext = pHdr;
|
||
|
}else{
|
||
|
mem.pFirst = pHdr;
|
||
|
}
|
||
|
mem.pLast = pHdr;
|
||
|
pHdr->iForeGuard = FOREGUARD;
|
||
|
pHdr->nBacktraceSlots = mem.nBacktrace;
|
||
|
pHdr->nTitle = mem.nTitle;
|
||
|
if( mem.nBacktrace ){
|
||
|
void *aAddr[40];
|
||
|
pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1;
|
||
|
memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*));
|
||
|
}else{
|
||
|
pHdr->nBacktrace = 0;
|
||
|
}
|
||
|
if( mem.nTitle ){
|
||
|
memcpy(z, mem.zTitle, mem.nTitle);
|
||
|
}
|
||
|
pHdr->iSize = nByte;
|
||
|
pInt = (int*)&pHdr[1];
|
||
|
pInt[nByte/sizeof(int)] = REARGUARD;
|
||
|
memset(pInt, 0x65, nByte);
|
||
|
mem.nowUsed += nByte;
|
||
|
if( mem.nowUsed>mem.mxUsed ){
|
||
|
mem.mxUsed = mem.nowUsed;
|
||
|
}
|
||
|
p = (void*)pInt;
|
||
|
}
|
||
|
sqlite3_mutex_leave(mem.mutex);
|
||
|
}
|
||
|
mem.iNextIsBenign = 0;
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Free memory.
|
||
|
*/
|
||
|
void sqlite3_free(void *pPrior){
|
||
|
struct MemBlockHdr *pHdr;
|
||
|
void **pBt;
|
||
|
char *z;
|
||
|
if( pPrior==0 ){
|
||
|
return;
|
||
|
}
|
||
|
assert( mem.mutex!=0 );
|
||
|
pHdr = sqlite3MemsysGetHeader(pPrior);
|
||
|
pBt = (void**)pHdr;
|
||
|
pBt -= pHdr->nBacktraceSlots;
|
||
|
sqlite3_mutex_enter(mem.mutex);
|
||
|
mem.nowUsed -= pHdr->iSize;
|
||
|
if( pHdr->pPrev ){
|
||
|
assert( pHdr->pPrev->pNext==pHdr );
|
||
|
pHdr->pPrev->pNext = pHdr->pNext;
|
||
|
}else{
|
||
|
assert( mem.pFirst==pHdr );
|
||
|
mem.pFirst = pHdr->pNext;
|
||
|
}
|
||
|
if( pHdr->pNext ){
|
||
|
assert( pHdr->pNext->pPrev==pHdr );
|
||
|
pHdr->pNext->pPrev = pHdr->pPrev;
|
||
|
}else{
|
||
|
assert( mem.pLast==pHdr );
|
||
|
mem.pLast = pHdr->pPrev;
|
||
|
}
|
||
|
z = (char*)pBt;
|
||
|
z -= pHdr->nTitle;
|
||
|
memset(z, 0x2b, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) +
|
||
|
pHdr->iSize + sizeof(int) + pHdr->nTitle);
|
||
|
free(z);
|
||
|
sqlite3_mutex_leave(mem.mutex);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Change the size of an existing memory allocation.
|
||
|
**
|
||
|
** For this debugging implementation, we *always* make a copy of the
|
||
|
** allocation into a new place in memory. In this way, if the
|
||
|
** higher level code is using pointer to the old allocation, it is
|
||
|
** much more likely to break and we are much more liking to find
|
||
|
** the error.
|
||
|
*/
|
||
|
void *sqlite3_realloc(void *pPrior, int nByte){
|
||
|
struct MemBlockHdr *pOldHdr;
|
||
|
void *pNew;
|
||
|
if( pPrior==0 ){
|
||
|
return sqlite3_malloc(nByte);
|
||
|
}
|
||
|
if( nByte<=0 ){
|
||
|
sqlite3_free(pPrior);
|
||
|
return 0;
|
||
|
}
|
||
|
assert( mem.disallow==0 );
|
||
|
pOldHdr = sqlite3MemsysGetHeader(pPrior);
|
||
|
pNew = sqlite3_malloc(nByte);
|
||
|
if( pNew ){
|
||
|
memcpy(pNew, pPrior, nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize);
|
||
|
if( nByte>pOldHdr->iSize ){
|
||
|
memset(&((char*)pNew)[pOldHdr->iSize], 0x2b, nByte - pOldHdr->iSize);
|
||
|
}
|
||
|
sqlite3_free(pPrior);
|
||
|
}
|
||
|
return pNew;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Set the number of backtrace levels kept for each allocation.
|
||
|
** A value of zero turns of backtracing. The number is always rounded
|
||
|
** up to a multiple of 2.
|
||
|
*/
|
||
|
void sqlite3_memdebug_backtrace(int depth){
|
||
|
if( depth<0 ){ depth = 0; }
|
||
|
if( depth>20 ){ depth = 20; }
|
||
|
depth = (depth+1)&0xfe;
|
||
|
mem.nBacktrace = depth;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Set the title string for subsequent allocations.
|
||
|
*/
|
||
|
void sqlite3_memdebug_settitle(const char *zTitle){
|
||
|
int n = strlen(zTitle) + 1;
|
||
|
enterMem();
|
||
|
if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1;
|
||
|
memcpy(mem.zTitle, zTitle, n);
|
||
|
mem.zTitle[n] = 0;
|
||
|
mem.nTitle = (n+3)&~3;
|
||
|
sqlite3_mutex_leave(mem.mutex);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Open the file indicated and write a log of all unfreed memory
|
||
|
** allocations into that log.
|
||
|
*/
|
||
|
void sqlite3_memdebug_dump(const char *zFilename){
|
||
|
FILE *out;
|
||
|
struct MemBlockHdr *pHdr;
|
||
|
void **pBt;
|
||
|
out = fopen(zFilename, "w");
|
||
|
if( out==0 ){
|
||
|
fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
|
||
|
zFilename);
|
||
|
return;
|
||
|
}
|
||
|
for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
|
||
|
char *z = (char*)pHdr;
|
||
|
z -= pHdr->nBacktraceSlots*sizeof(void*) + pHdr->nTitle;
|
||
|
fprintf(out, "**** %d bytes at %p from %s ****\n",
|
||
|
pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???");
|
||
|
if( pHdr->nBacktrace ){
|
||
|
fflush(out);
|
||
|
pBt = (void**)pHdr;
|
||
|
pBt -= pHdr->nBacktraceSlots;
|
||
|
backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out));
|
||
|
fprintf(out, "\n");
|
||
|
}
|
||
|
}
|
||
|
fclose(out);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** This routine is used to simulate malloc failures.
|
||
|
**
|
||
|
** After calling this routine, there will be iFail successful
|
||
|
** memory allocations and then a failure. If iRepeat is 1
|
||
|
** all subsequent memory allocations will fail. If iRepeat is
|
||
|
** 0, only a single allocation will fail. If iRepeat is negative
|
||
|
** then the previous setting for iRepeat is unchanged.
|
||
|
**
|
||
|
** Each call to this routine overrides the previous. To disable
|
||
|
** the simulated allocation failure mechanism, set iFail to -1.
|
||
|
**
|
||
|
** This routine returns the number of simulated failures that have
|
||
|
** occurred since the previous call.
|
||
|
*/
|
||
|
int sqlite3_memdebug_fail(int iFail, int iRepeat, int *piBenign){
|
||
|
int n = mem.iFailCnt;
|
||
|
if( piBenign ){
|
||
|
*piBenign = mem.iBenignFailCnt;
|
||
|
}
|
||
|
mem.iFail = iFail+1;
|
||
|
if( iRepeat>=0 ){
|
||
|
mem.iReset = iRepeat;
|
||
|
}
|
||
|
mem.iFailCnt = 0;
|
||
|
mem.iBenignFailCnt = 0;
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
int sqlite3_memdebug_pending(){
|
||
|
return (mem.iFail-1);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** The following three functions are used to indicate to the test
|
||
|
** infrastructure which malloc() calls may fail benignly without
|
||
|
** affecting functionality. This can happen when resizing hash tables
|
||
|
** (failing to resize a hash-table is a performance hit, but not an
|
||
|
** error) or sometimes during a rollback operation.
|
||
|
**
|
||
|
** If the argument is true, sqlite3MallocBenignFailure() indicates that the
|
||
|
** next call to allocate memory may fail benignly.
|
||
|
**
|
||
|
** If sqlite3MallocEnterBenignBlock() is called with a non-zero argument,
|
||
|
** then all memory allocations requested before the next call to
|
||
|
** sqlite3MallocLeaveBenignBlock() may fail benignly.
|
||
|
*/
|
||
|
void sqlite3MallocBenignFailure(int isBenign){
|
||
|
if( isBenign ){
|
||
|
mem.iNextIsBenign = 1;
|
||
|
}
|
||
|
}
|
||
|
void sqlite3MallocEnterBenignBlock(int isBenign){
|
||
|
if( isBenign ){
|
||
|
mem.iIsBenign = 1;
|
||
|
}
|
||
|
}
|
||
|
void sqlite3MallocLeaveBenignBlock(){
|
||
|
mem.iIsBenign = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** The following two routines are used to assert that no memory
|
||
|
** allocations occur between one call and the next. The use of
|
||
|
** these routines does not change the computed results in any way.
|
||
|
** These routines are like asserts.
|
||
|
*/
|
||
|
void sqlite3MallocDisallow(void){
|
||
|
assert( mem.mutex!=0 );
|
||
|
sqlite3_mutex_enter(mem.mutex);
|
||
|
mem.disallow++;
|
||
|
sqlite3_mutex_leave(mem.mutex);
|
||
|
}
|
||
|
void sqlite3MallocAllow(void){
|
||
|
assert( mem.mutex );
|
||
|
sqlite3_mutex_enter(mem.mutex);
|
||
|
assert( mem.disallow>0 );
|
||
|
mem.disallow--;
|
||
|
sqlite3_mutex_leave(mem.mutex);
|
||
|
}
|
||
|
|
||
|
#endif /* SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */
|