707 lines
20 KiB
C
707 lines
20 KiB
C
|
/*
|
||
|
** 2001 September 15
|
||
|
**
|
||
|
** The author disclaims copyright to this source code. In place of
|
||
|
** a legal notice, here is a blessing:
|
||
|
**
|
||
|
** May you do good and not evil.
|
||
|
** May you find forgiveness for yourself and forgive others.
|
||
|
** May you share freely, never taking more than you give.
|
||
|
**
|
||
|
*************************************************************************
|
||
|
** Utility functions used throughout sqlite.
|
||
|
**
|
||
|
** This file contains functions for allocating memory, comparing
|
||
|
** strings, and stuff like that.
|
||
|
**
|
||
|
** $Id$
|
||
|
*/
|
||
|
#include "sqliteInt.h"
|
||
|
#include <stdarg.h>
|
||
|
#include <ctype.h>
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Set the most recent error code and error string for the sqlite
|
||
|
** handle "db". The error code is set to "err_code".
|
||
|
**
|
||
|
** If it is not NULL, string zFormat specifies the format of the
|
||
|
** error string in the style of the printf functions: The following
|
||
|
** format characters are allowed:
|
||
|
**
|
||
|
** %s Insert a string
|
||
|
** %z A string that should be freed after use
|
||
|
** %d Insert an integer
|
||
|
** %T Insert a token
|
||
|
** %S Insert the first element of a SrcList
|
||
|
**
|
||
|
** zFormat and any string tokens that follow it are assumed to be
|
||
|
** encoded in UTF-8.
|
||
|
**
|
||
|
** To clear the most recent error for sqlite handle "db", sqlite3Error
|
||
|
** should be called with err_code set to SQLITE_OK and zFormat set
|
||
|
** to NULL.
|
||
|
*/
|
||
|
void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
|
||
|
if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
|
||
|
db->errCode = err_code;
|
||
|
if( zFormat ){
|
||
|
char *z;
|
||
|
va_list ap;
|
||
|
va_start(ap, zFormat);
|
||
|
z = sqlite3VMPrintf(db, zFormat, ap);
|
||
|
va_end(ap);
|
||
|
sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, sqlite3_free);
|
||
|
}else{
|
||
|
sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Add an error message to pParse->zErrMsg and increment pParse->nErr.
|
||
|
** The following formatting characters are allowed:
|
||
|
**
|
||
|
** %s Insert a string
|
||
|
** %z A string that should be freed after use
|
||
|
** %d Insert an integer
|
||
|
** %T Insert a token
|
||
|
** %S Insert the first element of a SrcList
|
||
|
**
|
||
|
** This function should be used to report any error that occurs whilst
|
||
|
** compiling an SQL statement (i.e. within sqlite3_prepare()). The
|
||
|
** last thing the sqlite3_prepare() function does is copy the error
|
||
|
** stored by this function into the database handle using sqlite3Error().
|
||
|
** Function sqlite3Error() should be used during statement execution
|
||
|
** (sqlite3_step() etc.).
|
||
|
*/
|
||
|
void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
|
||
|
va_list ap;
|
||
|
pParse->nErr++;
|
||
|
sqlite3_free(pParse->zErrMsg);
|
||
|
va_start(ap, zFormat);
|
||
|
pParse->zErrMsg = sqlite3VMPrintf(pParse->db, zFormat, ap);
|
||
|
va_end(ap);
|
||
|
if( pParse->rc==SQLITE_OK ){
|
||
|
pParse->rc = SQLITE_ERROR;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Clear the error message in pParse, if any
|
||
|
*/
|
||
|
void sqlite3ErrorClear(Parse *pParse){
|
||
|
sqlite3_free(pParse->zErrMsg);
|
||
|
pParse->zErrMsg = 0;
|
||
|
pParse->nErr = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Convert an SQL-style quoted string into a normal string by removing
|
||
|
** the quote characters. The conversion is done in-place. If the
|
||
|
** input does not begin with a quote character, then this routine
|
||
|
** is a no-op.
|
||
|
**
|
||
|
** 2002-Feb-14: This routine is extended to remove MS-Access style
|
||
|
** brackets from around identifers. For example: "[a-b-c]" becomes
|
||
|
** "a-b-c".
|
||
|
*/
|
||
|
void sqlite3Dequote(char *z){
|
||
|
int quote;
|
||
|
int i, j;
|
||
|
if( z==0 ) return;
|
||
|
quote = z[0];
|
||
|
switch( quote ){
|
||
|
case '\'': break;
|
||
|
case '"': break;
|
||
|
case '`': break; /* For MySQL compatibility */
|
||
|
case '[': quote = ']'; break; /* For MS SqlServer compatibility */
|
||
|
default: return;
|
||
|
}
|
||
|
for(i=1, j=0; z[i]; i++){
|
||
|
if( z[i]==quote ){
|
||
|
if( z[i+1]==quote ){
|
||
|
z[j++] = quote;
|
||
|
i++;
|
||
|
}else{
|
||
|
z[j++] = 0;
|
||
|
break;
|
||
|
}
|
||
|
}else{
|
||
|
z[j++] = z[i];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* An array to map all upper-case characters into their corresponding
|
||
|
** lower-case character.
|
||
|
*/
|
||
|
const unsigned char sqlite3UpperToLower[] = {
|
||
|
#ifdef SQLITE_ASCII
|
||
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
||
|
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
|
||
|
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
|
||
|
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
|
||
|
104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
|
||
|
122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
|
||
|
108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
|
||
|
126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
|
||
|
144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
|
||
|
162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
|
||
|
180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
|
||
|
198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
|
||
|
216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
|
||
|
234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
|
||
|
252,253,254,255
|
||
|
#endif
|
||
|
#ifdef SQLITE_EBCDIC
|
||
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */
|
||
|
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */
|
||
|
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */
|
||
|
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */
|
||
|
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */
|
||
|
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */
|
||
|
96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */
|
||
|
112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */
|
||
|
128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */
|
||
|
144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */
|
||
|
160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */
|
||
|
176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */
|
||
|
192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */
|
||
|
208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */
|
||
|
224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */
|
||
|
239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */
|
||
|
#endif
|
||
|
};
|
||
|
#define UpperToLower sqlite3UpperToLower
|
||
|
|
||
|
/*
|
||
|
** Some systems have stricmp(). Others have strcasecmp(). Because
|
||
|
** there is no consistency, we will define our own.
|
||
|
*/
|
||
|
int sqlite3StrICmp(const char *zLeft, const char *zRight){
|
||
|
register unsigned char *a, *b;
|
||
|
a = (unsigned char *)zLeft;
|
||
|
b = (unsigned char *)zRight;
|
||
|
while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
||
|
return UpperToLower[*a] - UpperToLower[*b];
|
||
|
}
|
||
|
int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){
|
||
|
register unsigned char *a, *b;
|
||
|
a = (unsigned char *)zLeft;
|
||
|
b = (unsigned char *)zRight;
|
||
|
while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
||
|
return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Return TRUE if z is a pure numeric string. Return FALSE if the
|
||
|
** string contains any character which is not part of a number. If
|
||
|
** the string is numeric and contains the '.' character, set *realnum
|
||
|
** to TRUE (otherwise FALSE).
|
||
|
**
|
||
|
** An empty string is considered non-numeric.
|
||
|
*/
|
||
|
int sqlite3IsNumber(const char *z, int *realnum, u8 enc){
|
||
|
int incr = (enc==SQLITE_UTF8?1:2);
|
||
|
if( enc==SQLITE_UTF16BE ) z++;
|
||
|
if( *z=='-' || *z=='+' ) z += incr;
|
||
|
if( !isdigit(*(u8*)z) ){
|
||
|
return 0;
|
||
|
}
|
||
|
z += incr;
|
||
|
if( realnum ) *realnum = 0;
|
||
|
while( isdigit(*(u8*)z) ){ z += incr; }
|
||
|
if( *z=='.' ){
|
||
|
z += incr;
|
||
|
if( !isdigit(*(u8*)z) ) return 0;
|
||
|
while( isdigit(*(u8*)z) ){ z += incr; }
|
||
|
if( realnum ) *realnum = 1;
|
||
|
}
|
||
|
if( *z=='e' || *z=='E' ){
|
||
|
z += incr;
|
||
|
if( *z=='+' || *z=='-' ) z += incr;
|
||
|
if( !isdigit(*(u8*)z) ) return 0;
|
||
|
while( isdigit(*(u8*)z) ){ z += incr; }
|
||
|
if( realnum ) *realnum = 1;
|
||
|
}
|
||
|
return *z==0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** The string z[] is an ascii representation of a real number.
|
||
|
** Convert this string to a double.
|
||
|
**
|
||
|
** This routine assumes that z[] really is a valid number. If it
|
||
|
** is not, the result is undefined.
|
||
|
**
|
||
|
** This routine is used instead of the library atof() function because
|
||
|
** the library atof() might want to use "," as the decimal point instead
|
||
|
** of "." depending on how locale is set. But that would cause problems
|
||
|
** for SQL. So this routine always uses "." regardless of locale.
|
||
|
*/
|
||
|
int sqlite3AtoF(const char *z, double *pResult){
|
||
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
||
|
int sign = 1;
|
||
|
const char *zBegin = z;
|
||
|
LONGDOUBLE_TYPE v1 = 0.0;
|
||
|
while( isspace(*(u8*)z) ) z++;
|
||
|
if( *z=='-' ){
|
||
|
sign = -1;
|
||
|
z++;
|
||
|
}else if( *z=='+' ){
|
||
|
z++;
|
||
|
}
|
||
|
while( isdigit(*(u8*)z) ){
|
||
|
v1 = v1*10.0 + (*z - '0');
|
||
|
z++;
|
||
|
}
|
||
|
if( *z=='.' ){
|
||
|
LONGDOUBLE_TYPE divisor = 1.0;
|
||
|
z++;
|
||
|
while( isdigit(*(u8*)z) ){
|
||
|
v1 = v1*10.0 + (*z - '0');
|
||
|
divisor *= 10.0;
|
||
|
z++;
|
||
|
}
|
||
|
v1 /= divisor;
|
||
|
}
|
||
|
if( *z=='e' || *z=='E' ){
|
||
|
int esign = 1;
|
||
|
int eval = 0;
|
||
|
LONGDOUBLE_TYPE scale = 1.0;
|
||
|
z++;
|
||
|
if( *z=='-' ){
|
||
|
esign = -1;
|
||
|
z++;
|
||
|
}else if( *z=='+' ){
|
||
|
z++;
|
||
|
}
|
||
|
while( isdigit(*(u8*)z) ){
|
||
|
eval = eval*10 + *z - '0';
|
||
|
z++;
|
||
|
}
|
||
|
while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; }
|
||
|
while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; }
|
||
|
while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; }
|
||
|
while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; }
|
||
|
if( esign<0 ){
|
||
|
v1 /= scale;
|
||
|
}else{
|
||
|
v1 *= scale;
|
||
|
}
|
||
|
}
|
||
|
*pResult = sign<0 ? -v1 : v1;
|
||
|
return z - zBegin;
|
||
|
#else
|
||
|
return sqlite3Atoi64(z, pResult);
|
||
|
#endif /* SQLITE_OMIT_FLOATING_POINT */
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Compare the 19-character string zNum against the text representation
|
||
|
** value 2^63: 9223372036854775808. Return negative, zero, or positive
|
||
|
** if zNum is less than, equal to, or greater than the string.
|
||
|
**
|
||
|
** Unlike memcmp() this routine is guaranteed to return the difference
|
||
|
** in the values of the last digit if the only difference is in the
|
||
|
** last digit. So, for example,
|
||
|
**
|
||
|
** compare2pow63("9223372036854775800")
|
||
|
**
|
||
|
** will return -8.
|
||
|
*/
|
||
|
static int compare2pow63(const char *zNum){
|
||
|
int c;
|
||
|
c = memcmp(zNum,"922337203685477580",18);
|
||
|
if( c==0 ){
|
||
|
c = zNum[18] - '8';
|
||
|
}
|
||
|
return c;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Return TRUE if zNum is a 64-bit signed integer and write
|
||
|
** the value of the integer into *pNum. If zNum is not an integer
|
||
|
** or is an integer that is too large to be expressed with 64 bits,
|
||
|
** then return false.
|
||
|
**
|
||
|
** When this routine was originally written it dealt with only
|
||
|
** 32-bit numbers. At that time, it was much faster than the
|
||
|
** atoi() library routine in RedHat 7.2.
|
||
|
*/
|
||
|
int sqlite3Atoi64(const char *zNum, i64 *pNum){
|
||
|
i64 v = 0;
|
||
|
int neg;
|
||
|
int i, c;
|
||
|
while( isspace(*(u8*)zNum) ) zNum++;
|
||
|
if( *zNum=='-' ){
|
||
|
neg = 1;
|
||
|
zNum++;
|
||
|
}else if( *zNum=='+' ){
|
||
|
neg = 0;
|
||
|
zNum++;
|
||
|
}else{
|
||
|
neg = 0;
|
||
|
}
|
||
|
while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */
|
||
|
for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
|
||
|
v = v*10 + c - '0';
|
||
|
}
|
||
|
*pNum = neg ? -v : v;
|
||
|
if( c!=0 || i==0 || i>19 ){
|
||
|
/* zNum is empty or contains non-numeric text or is longer
|
||
|
** than 19 digits (thus guaranting that it is too large) */
|
||
|
return 0;
|
||
|
}else if( i<19 ){
|
||
|
/* Less than 19 digits, so we know that it fits in 64 bits */
|
||
|
return 1;
|
||
|
}else{
|
||
|
/* 19-digit numbers must be no larger than 9223372036854775807 if positive
|
||
|
** or 9223372036854775808 if negative. Note that 9223372036854665808
|
||
|
** is 2^63. */
|
||
|
return compare2pow63(zNum)<neg;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** The string zNum represents an integer. There might be some other
|
||
|
** information following the integer too, but that part is ignored.
|
||
|
** If the integer that the prefix of zNum represents will fit in a
|
||
|
** 64-bit signed integer, return TRUE. Otherwise return FALSE.
|
||
|
**
|
||
|
** This routine returns FALSE for the string -9223372036854775808 even that
|
||
|
** that number will, in theory fit in a 64-bit integer. Positive
|
||
|
** 9223373036854775808 will not fit in 64 bits. So it seems safer to return
|
||
|
** false.
|
||
|
*/
|
||
|
int sqlite3FitsIn64Bits(const char *zNum){
|
||
|
int i, c;
|
||
|
int neg = 0;
|
||
|
if( *zNum=='-' ){
|
||
|
neg = 1;
|
||
|
zNum++;
|
||
|
}else if( *zNum=='+' ){
|
||
|
zNum++;
|
||
|
}
|
||
|
while( *zNum=='0' ){
|
||
|
zNum++; /* Skip leading zeros. Ticket #2454 */
|
||
|
}
|
||
|
for(i=0; (c=zNum[i])>='0' && c<='9'; i++){}
|
||
|
if( i<19 ){
|
||
|
/* Guaranteed to fit if less than 19 digits */
|
||
|
return 1;
|
||
|
}else if( i>19 ){
|
||
|
/* Guaranteed to be too big if greater than 19 digits */
|
||
|
return 0;
|
||
|
}else{
|
||
|
/* Compare against 2^63. */
|
||
|
return compare2pow63(zNum)<neg;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** If zNum represents an integer that will fit in 32-bits, then set
|
||
|
** *pValue to that integer and return true. Otherwise return false.
|
||
|
**
|
||
|
** Any non-numeric characters that following zNum are ignored.
|
||
|
** This is different from sqlite3Atoi64() which requires the
|
||
|
** input number to be zero-terminated.
|
||
|
*/
|
||
|
int sqlite3GetInt32(const char *zNum, int *pValue){
|
||
|
sqlite_int64 v = 0;
|
||
|
int i, c;
|
||
|
int neg = 0;
|
||
|
if( zNum[0]=='-' ){
|
||
|
neg = 1;
|
||
|
zNum++;
|
||
|
}else if( zNum[0]=='+' ){
|
||
|
zNum++;
|
||
|
}
|
||
|
while( zNum[0]=='0' ) zNum++;
|
||
|
for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
|
||
|
v = v*10 + c;
|
||
|
}
|
||
|
|
||
|
/* The longest decimal representation of a 32 bit integer is 10 digits:
|
||
|
**
|
||
|
** 1234567890
|
||
|
** 2^31 -> 2147483648
|
||
|
*/
|
||
|
if( i>10 ){
|
||
|
return 0;
|
||
|
}
|
||
|
if( v-neg>2147483647 ){
|
||
|
return 0;
|
||
|
}
|
||
|
if( neg ){
|
||
|
v = -v;
|
||
|
}
|
||
|
*pValue = (int)v;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Check to make sure we have a valid db pointer. This test is not
|
||
|
** foolproof but it does provide some measure of protection against
|
||
|
** misuse of the interface such as passing in db pointers that are
|
||
|
** NULL or which have been previously closed. If this routine returns
|
||
|
** TRUE it means that the db pointer is invalid and should not be
|
||
|
** dereferenced for any reason. The calling function should invoke
|
||
|
** SQLITE_MISUSE immediately.
|
||
|
*/
|
||
|
int sqlite3SafetyCheck(sqlite3 *db){
|
||
|
int magic;
|
||
|
if( db==0 ) return 1;
|
||
|
magic = db->magic;
|
||
|
if( magic!=SQLITE_MAGIC_CLOSED &&
|
||
|
magic!=SQLITE_MAGIC_OPEN &&
|
||
|
magic!=SQLITE_MAGIC_BUSY ) return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** The variable-length integer encoding is as follows:
|
||
|
**
|
||
|
** KEY:
|
||
|
** A = 0xxxxxxx 7 bits of data and one flag bit
|
||
|
** B = 1xxxxxxx 7 bits of data and one flag bit
|
||
|
** C = xxxxxxxx 8 bits of data
|
||
|
**
|
||
|
** 7 bits - A
|
||
|
** 14 bits - BA
|
||
|
** 21 bits - BBA
|
||
|
** 28 bits - BBBA
|
||
|
** 35 bits - BBBBA
|
||
|
** 42 bits - BBBBBA
|
||
|
** 49 bits - BBBBBBA
|
||
|
** 56 bits - BBBBBBBA
|
||
|
** 64 bits - BBBBBBBBC
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
** Write a 64-bit variable-length integer to memory starting at p[0].
|
||
|
** The length of data write will be between 1 and 9 bytes. The number
|
||
|
** of bytes written is returned.
|
||
|
**
|
||
|
** A variable-length integer consists of the lower 7 bits of each byte
|
||
|
** for all bytes that have the 8th bit set and one byte with the 8th
|
||
|
** bit clear. Except, if we get to the 9th byte, it stores the full
|
||
|
** 8 bits and is the last byte.
|
||
|
*/
|
||
|
int sqlite3PutVarint(unsigned char *p, u64 v){
|
||
|
int i, j, n;
|
||
|
u8 buf[10];
|
||
|
if( v & (((u64)0xff000000)<<32) ){
|
||
|
p[8] = v;
|
||
|
v >>= 8;
|
||
|
for(i=7; i>=0; i--){
|
||
|
p[i] = (v & 0x7f) | 0x80;
|
||
|
v >>= 7;
|
||
|
}
|
||
|
return 9;
|
||
|
}
|
||
|
n = 0;
|
||
|
do{
|
||
|
buf[n++] = (v & 0x7f) | 0x80;
|
||
|
v >>= 7;
|
||
|
}while( v!=0 );
|
||
|
buf[0] &= 0x7f;
|
||
|
assert( n<=9 );
|
||
|
for(i=0, j=n-1; j>=0; j--, i++){
|
||
|
p[i] = buf[j];
|
||
|
}
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Read a 64-bit variable-length integer from memory starting at p[0].
|
||
|
** Return the number of bytes read. The value is stored in *v.
|
||
|
*/
|
||
|
int sqlite3GetVarint(const unsigned char *p, u64 *v){
|
||
|
u32 x;
|
||
|
u64 x64;
|
||
|
int n;
|
||
|
unsigned char c;
|
||
|
if( ((c = p[0]) & 0x80)==0 ){
|
||
|
*v = c;
|
||
|
return 1;
|
||
|
}
|
||
|
x = c & 0x7f;
|
||
|
if( ((c = p[1]) & 0x80)==0 ){
|
||
|
*v = (x<<7) | c;
|
||
|
return 2;
|
||
|
}
|
||
|
x = (x<<7) | (c&0x7f);
|
||
|
if( ((c = p[2]) & 0x80)==0 ){
|
||
|
*v = (x<<7) | c;
|
||
|
return 3;
|
||
|
}
|
||
|
x = (x<<7) | (c&0x7f);
|
||
|
if( ((c = p[3]) & 0x80)==0 ){
|
||
|
*v = (x<<7) | c;
|
||
|
return 4;
|
||
|
}
|
||
|
x64 = (x<<7) | (c&0x7f);
|
||
|
n = 4;
|
||
|
do{
|
||
|
c = p[n++];
|
||
|
if( n==9 ){
|
||
|
x64 = (x64<<8) | c;
|
||
|
break;
|
||
|
}
|
||
|
x64 = (x64<<7) | (c&0x7f);
|
||
|
}while( (c & 0x80)!=0 );
|
||
|
*v = x64;
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Read a 32-bit variable-length integer from memory starting at p[0].
|
||
|
** Return the number of bytes read. The value is stored in *v.
|
||
|
*/
|
||
|
int sqlite3GetVarint32(const unsigned char *p, u32 *v){
|
||
|
u32 x;
|
||
|
int n;
|
||
|
unsigned char c;
|
||
|
if( ((signed char*)p)[0]>=0 ){
|
||
|
*v = p[0];
|
||
|
return 1;
|
||
|
}
|
||
|
x = p[0] & 0x7f;
|
||
|
if( ((signed char*)p)[1]>=0 ){
|
||
|
*v = (x<<7) | p[1];
|
||
|
return 2;
|
||
|
}
|
||
|
x = (x<<7) | (p[1] & 0x7f);
|
||
|
n = 2;
|
||
|
do{
|
||
|
x = (x<<7) | ((c = p[n++])&0x7f);
|
||
|
}while( (c & 0x80)!=0 && n<9 );
|
||
|
*v = x;
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Return the number of bytes that will be needed to store the given
|
||
|
** 64-bit integer.
|
||
|
*/
|
||
|
int sqlite3VarintLen(u64 v){
|
||
|
int i = 0;
|
||
|
do{
|
||
|
i++;
|
||
|
v >>= 7;
|
||
|
}while( v!=0 && i<9 );
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Read or write a four-byte big-endian integer value.
|
||
|
*/
|
||
|
u32 sqlite3Get4byte(const u8 *p){
|
||
|
return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
|
||
|
}
|
||
|
void sqlite3Put4byte(unsigned char *p, u32 v){
|
||
|
p[0] = v>>24;
|
||
|
p[1] = v>>16;
|
||
|
p[2] = v>>8;
|
||
|
p[3] = v;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) \
|
||
|
|| defined(SQLITE_TEST)
|
||
|
/*
|
||
|
** Translate a single byte of Hex into an integer.
|
||
|
*/
|
||
|
static int hexToInt(int h){
|
||
|
if( h>='0' && h<='9' ){
|
||
|
return h - '0';
|
||
|
}else if( h>='a' && h<='f' ){
|
||
|
return h - 'a' + 10;
|
||
|
}else{
|
||
|
assert( h>='A' && h<='F' );
|
||
|
return h - 'A' + 10;
|
||
|
}
|
||
|
}
|
||
|
#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC || SQLITE_TEST */
|
||
|
|
||
|
#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
|
||
|
/*
|
||
|
** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
|
||
|
** value. Return a pointer to its binary value. Space to hold the
|
||
|
** binary value has been obtained from malloc and must be freed by
|
||
|
** the calling routine.
|
||
|
*/
|
||
|
void *sqlite3HexToBlob(sqlite3 *db, const char *z){
|
||
|
char *zBlob;
|
||
|
int i;
|
||
|
int n = strlen(z);
|
||
|
if( n%2 ) return 0;
|
||
|
|
||
|
zBlob = (char *)sqlite3DbMallocRaw(db, n/2);
|
||
|
if( zBlob ){
|
||
|
for(i=0; i<n; i+=2){
|
||
|
zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]);
|
||
|
}
|
||
|
}
|
||
|
return zBlob;
|
||
|
}
|
||
|
#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.
|
||
|
** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN
|
||
|
** when this routine is called.
|
||
|
**
|
||
|
** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN
|
||
|
** value indicates that the database connection passed into the API is
|
||
|
** open and is not being used by another thread. By changing the value
|
||
|
** to SQLITE_MAGIC_BUSY we indicate that the connection is in use.
|
||
|
** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN
|
||
|
** when the API exits.
|
||
|
**
|
||
|
** This routine is a attempt to detect if two threads use the
|
||
|
** same sqlite* pointer at the same time. There is a race
|
||
|
** condition so it is possible that the error is not detected.
|
||
|
** But usually the problem will be seen. The result will be an
|
||
|
** error which can be used to debug the application that is
|
||
|
** using SQLite incorrectly.
|
||
|
**
|
||
|
** Ticket #202: If db->magic is not a valid open value, take care not
|
||
|
** to modify the db structure at all. It could be that db is a stale
|
||
|
** pointer. In other words, it could be that there has been a prior
|
||
|
** call to sqlite3_close(db) and db has been deallocated. And we do
|
||
|
** not want to write into deallocated memory.
|
||
|
*/
|
||
|
int sqlite3SafetyOn(sqlite3 *db){
|
||
|
if( db->magic==SQLITE_MAGIC_OPEN ){
|
||
|
db->magic = SQLITE_MAGIC_BUSY;
|
||
|
return 0;
|
||
|
}else if( db->magic==SQLITE_MAGIC_BUSY ){
|
||
|
db->magic = SQLITE_MAGIC_ERROR;
|
||
|
db->u1.isInterrupted = 1;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
|
||
|
** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
|
||
|
** when this routine is called.
|
||
|
*/
|
||
|
int sqlite3SafetyOff(sqlite3 *db){
|
||
|
if( db->magic==SQLITE_MAGIC_BUSY ){
|
||
|
db->magic = SQLITE_MAGIC_OPEN;
|
||
|
return 0;
|
||
|
}else {
|
||
|
db->magic = SQLITE_MAGIC_ERROR;
|
||
|
db->u1.isInterrupted = 1;
|
||
|
return 1;
|
||
|
}
|
||
|
}
|