slight moving, predominantly calculation updates

This commit is contained in:
jenzur 2019-03-31 01:22:25 +01:00
parent feaf9b0adc
commit d788d76ac6
5 changed files with 503 additions and 367 deletions

View File

@ -122,7 +122,7 @@ public class DataMapper {
l_cCon = DBCPDataSource.getConnection();
l_pStatement = l_cCon.prepareStatement(l_sSQL, java.sql.ResultSet.TYPE_FORWARD_ONLY,
java.sql.ResultSet.CONCUR_READ_ONLY);
l_pStatement.setFetchSize(Integer.MIN_VALUE);
l_pStatement.setFetchSize(0);
System.out.println("Matrix update size: " + WS4JListUpdate.size());
for (SimilarityMatrix ws4j : WS4JListUpdate.values()) {
l_pStatement.setString(1, ws4j.getPrimaryString());
@ -146,8 +146,9 @@ public class DataMapper {
String l_sSQL = "SELECT * FROM `WordMatrix`";
try (PreparedStatement l_pStatement = l_cCon.prepareStatement(l_sSQL, java.sql.ResultSet.TYPE_FORWARD_ONLY,
java.sql.ResultSet.CONCUR_READ_ONLY)) {
l_pStatement.setFetchSize(Integer.MIN_VALUE);
l_pStatement.setFetchSize(0);
try (ResultSet l_rsSearch = l_pStatement.executeQuery()) {
l_rsSearch.setFetchSize(0);
int i = 0;
LinkedHashMap<String, Double> LHMLocal = new LinkedHashMap();
while (l_rsSearch.next()) {

View File

@ -217,7 +217,7 @@ public class Datahandler {
public void addHLstatsMessages() {
ConcurrentMap<Integer, String> hlStatsMessages = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strCacheLocal = stringCache;
int hardcap = 8500;
int hardcap = 55000;
int ij = 0;
for (String str : DataMapper.getHLstatsMessages().values()) {
hlStatsMessages.put(ij, str);
@ -483,7 +483,7 @@ public class Datahandler {
public String mostSimilar(String toBeCompared, ConcurrentMap<Integer, String> concurrentStrings) {
similar = "";
minDistance = 7.5;
minDistance = 12.5;
concurrentStrings.values().parallelStream().forEach((str) -> {
LevenshteinDistance leven = new LevenshteinDistance(toBeCompared, str);
double distance = leven.computeLevenshteinDistance();
@ -630,8 +630,8 @@ public class Datahandler {
}
private ConcurrentMap<Integer, String> removeSlacks(ConcurrentMap<Integer, String> str) {
ShiftReduceParser model = getModel();
MaxentTagger tagger = getTagger();
ShiftReduceParser modelLocal = getModel();
MaxentTagger taggerLocal = getTagger();
ConcurrentMap<Integer, String> strreturn = new MapMaker().concurrencyLevel(2).makeMap();
str.values().parallelStream().forEach(str1 -> {
ConcurrentMap<Integer, String> TGWList = new MapMaker().concurrencyLevel(2).makeMap();
@ -646,8 +646,8 @@ public class Datahandler {
for (List<HasWord> sentence : tokenizer) {
int counter = 0;
List<TaggedWord> taggedWords;
List<TaggedWord> tagged1 = tagger.tagSentence(sentence);
Tree tree = model.apply(tagged1);
List<TaggedWord> tagged1 = taggerLocal.tagSentence(sentence);
Tree tree = modelLocal.apply(tagged1);
taggedWords = tree.taggedYield();
for (TaggedWord TGW : taggedWords) {
if (!TGWList.values().contains(TGW.tag()) && !TGW.tag().equals(":") && !TGW.word().equals(TGW.tag())) {
@ -659,7 +659,6 @@ public class Datahandler {
ConcurrentMap<Integer, Word> wordList = new MapMaker().concurrencyLevel(2).makeMap();
for (Word lab : tree.yieldWords()) {
if (lab != null && lab.word() != null) {
//System.out.println("lab: " + lab + " \n");
if (!wordList.values().contains(lab) && lab.value() != null && !lab.value().equals(":")) {
wordList.put(wordList.size() + 1, lab);
addCounter++;
@ -681,7 +680,7 @@ public class Datahandler {
for (String strVals : values) {
LevenshteinDistance leven = new LevenshteinDistance(strVals, str1);
double Distance = leven.computeLevenshteinDistance();
int maxpermittedDistance = 2;
int maxpermittedDistance = 5;
if (Distance < maxpermittedDistance) {
tooclosematch = true;
break;

View File

@ -5,12 +5,6 @@
*/
package FunctionLayer;
import com.google.common.collect.MapMaker;
import java.util.Map;
import java.util.Map.Entry;
import java.util.concurrent.Callable;
import java.util.concurrent.ConcurrentMap;
/**
*
* @author install1

View File

@ -38,11 +38,14 @@ import java.io.StringReader;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import java.util.Objects;
import java.util.OptionalDouble;
import java.util.Set;
import java.util.concurrent.Callable;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.function.BinaryOperator;
import java.util.function.Function;
import org.ejml.simple.SimpleMatrix;
/*
@ -96,378 +99,517 @@ public class SentimentAnalyzerTest implements Callable<SimilarityMatrix> {
Double score = -100.0;
try {
List<List<TaggedWord>> taggedwordlist1 = new ArrayList();
List<List<TaggedWord>> taggedwordlist2 = new ArrayList();
DocumentPreprocessor tokenizer = new DocumentPreprocessor(new StringReader(str1));
//noneDelete
TokenizerFactory<CoreLabel> ptbTokenizerFactory
= PTBTokenizer.factory(new CoreLabelTokenFactory(), "untokenizable=firstDelete");
tokenizer.setTokenizerFactory(ptbTokenizerFactory);
for (List<HasWord> sentence : tokenizer) {
taggedwordlist1.add(model.apply(tagger.tagSentence(sentence)).taggedYield());
}
tokenizer = new DocumentPreprocessor(new StringReader(str));
tokenizer.setTokenizerFactory(ptbTokenizerFactory);
for (List<HasWord> sentence : tokenizer) {
taggedwordlist2.add(model.apply(tagger.tagSentence(sentence)).taggedYield());
}
int counter = 0;
int counter1 = 0;
counter = taggedwordlist2.stream().map((taggedlist2) -> taggedlist2.size()).reduce(counter, Integer::sum);
counter1 = taggedwordlist1.stream().map((taggedlist1) -> taggedlist1.size()).reduce(counter1, Integer::sum);
int overValue = counter >= counter1 ? counter - counter1 : counter1 - counter;
overValue *= 32;
score -= overValue;
ConcurrentMap<Integer, String> tgwlistIndex = new MapMaker().concurrencyLevel(2).makeMap();
taggedwordlist1.forEach((TGWList) -> {
TGWList.forEach((TaggedWord) -> {
if (!tgwlistIndex.values().contains(TaggedWord.tag()) && !TaggedWord.tag().equals(":")) {
tgwlistIndex.put(tgwlistIndex.size() + 1, TaggedWord.tag());
}
});
});
AtomicInteger runCount = new AtomicInteger(0);
taggedwordlist2.forEach((TGWList) -> {
TGWList.forEach((TaggedWord) -> {
if (tgwlistIndex.values().contains(TaggedWord.tag())) {
tgwlistIndex.values().remove(TaggedWord.tag());
runCount.getAndIncrement();
}
});
});
score += runCount.get() * 64;
ConcurrentMap<Integer, Tree> sentenceConstituencyParseList = new MapMaker().concurrencyLevel(2).makeMap();
try {
for (CoreMap sentence : pipelineAnnotation1.get(CoreAnnotations.SentencesAnnotation.class)) {
Tree sentenceConstituencyParse = sentence.get(TreeCoreAnnotations.TreeAnnotation.class);
sentenceConstituencyParseList.put(sentenceConstituencyParseList.size(), sentenceConstituencyParse);
List<List<TaggedWord>> taggedwordlist2 = new ArrayList();
DocumentPreprocessor tokenizer = new DocumentPreprocessor(new StringReader(str1));
//noneDelete
TokenizerFactory<CoreLabel> ptbTokenizerFactory
= PTBTokenizer.factory(new CoreLabelTokenFactory(), "untokenizable=firstDelete");
tokenizer.setTokenizerFactory(ptbTokenizerFactory);
for (List<HasWord> sentence : tokenizer) {
taggedwordlist1.add(model.apply(tagger.tagSentence(sentence)).taggedYield());
}
for (CoreMap sentence : pipelineAnnotation2.get(CoreAnnotations.SentencesAnnotation.class)) {
int constiRelationsize = 0;
Tree sentenceConstituencyParse = sentence.get(TreeCoreAnnotations.TreeAnnotation.class);
GrammaticalStructure gs = gsf.newGrammaticalStructure(sentenceConstituencyParse);
Collection<TypedDependency> allTypedDependencies = gs.allTypedDependencies();
ConcurrentMap<Integer, String> filerTreeContent = new MapMaker().concurrencyLevel(2).makeMap();
for (Tree sentenceConstituencyParse1 : sentenceConstituencyParseList.values()) {
Set<Constituent> constinuent1 = Tdiff.markDiff(sentenceConstituencyParse, sentenceConstituencyParse1);
Set<Constituent> constinuent2 = Tdiff.markDiff(sentenceConstituencyParse1, sentenceConstituencyParse);
ConcurrentMap<Integer, String> constiLabels = new MapMaker().concurrencyLevel(2).makeMap();
for (Constituent consti : constinuent1) {
for (Constituent consti1 : constinuent2) {
if (consti.value().equals(consti1.value()) && !constiLabels.values().contains(consti.value())) {
constiLabels.put(constiLabels.size(), consti.value());
constiRelationsize++;
tokenizer = new DocumentPreprocessor(new StringReader(str));
tokenizer.setTokenizerFactory(ptbTokenizerFactory);
for (List<HasWord> sentence : tokenizer) {
taggedwordlist2.add(model.apply(tagger.tagSentence(sentence)).taggedYield());
}
int counter = 0;
int counter1 = 0;
counter = taggedwordlist2.stream().map((taggedlist2) -> taggedlist2.size()).reduce(counter, Integer::sum);
counter1 = taggedwordlist1.stream().map((taggedlist1) -> taggedlist1.size()).reduce(counter1, Integer::sum);
int overValue = counter >= counter1 ? counter - counter1 : counter1 - counter;
overValue *= 32;
score -= overValue;
ConcurrentMap<Integer, String> tgwlistIndex = new MapMaker().concurrencyLevel(2).makeMap();
taggedwordlist1.forEach((TGWList) -> {
TGWList.forEach((TaggedWord) -> {
if (!tgwlistIndex.values().contains(TaggedWord.tag()) && !TaggedWord.tag().equals(":")) {
tgwlistIndex.put(tgwlistIndex.size() + 1, TaggedWord.tag());
}
});
});
AtomicInteger runCount = new AtomicInteger(0);
taggedwordlist2.forEach((TGWList) -> {
TGWList.forEach((TaggedWord) -> {
if (tgwlistIndex.values().contains(TaggedWord.tag())) {
tgwlistIndex.values().remove(TaggedWord.tag());
runCount.getAndIncrement();
}
});
});
score += runCount.get() * 64;
ConcurrentMap<Integer, Tree> sentenceConstituencyParseList = new MapMaker().concurrencyLevel(2).makeMap();
try {
for (CoreMap sentence : pipelineAnnotation1.get(CoreAnnotations.SentencesAnnotation.class)) {
Tree sentenceConstituencyParse = sentence.get(TreeCoreAnnotations.TreeAnnotation.class);
sentenceConstituencyParseList.put(sentenceConstituencyParseList.size(), sentenceConstituencyParse);
}
for (CoreMap sentence : pipelineAnnotation2.get(CoreAnnotations.SentencesAnnotation.class)) {
int constiRelationsize = 0;
Tree sentenceConstituencyParse = sentence.get(TreeCoreAnnotations.TreeAnnotation.class);
GrammaticalStructure gs = gsf.newGrammaticalStructure(sentenceConstituencyParse);
Collection<TypedDependency> allTypedDependencies = gs.allTypedDependencies();
ConcurrentMap<Integer, String> filerTreeContent = new MapMaker().concurrencyLevel(2).makeMap();
for (Tree sentenceConstituencyParse1 : sentenceConstituencyParseList.values()) {
Set<Constituent> constinuent1 = Tdiff.markDiff(sentenceConstituencyParse, sentenceConstituencyParse1);
Set<Constituent> constinuent2 = Tdiff.markDiff(sentenceConstituencyParse1, sentenceConstituencyParse);
ConcurrentMap<Integer, String> constiLabels = new MapMaker().concurrencyLevel(2).makeMap();
for (Constituent consti : constinuent1) {
for (Constituent consti1 : constinuent2) {
if (consti.value().equals(consti1.value()) && !constiLabels.values().contains(consti.value())) {
constiLabels.put(constiLabels.size(), consti.value());
constiRelationsize++;
}
}
}
}
int constituents1 = constinuent1.size() - constiRelationsize;
int constituents2 = constinuent2.size() - constiRelationsize;
if (constituents1 > 0 && constituents2 > 0) {
score -= (constituents1 + constituents2) * 200;
} else {
score += constiRelationsize * 200;
}
GrammaticalStructure gs1 = gsf.newGrammaticalStructure(sentenceConstituencyParse1);
Collection<TypedDependency> allTypedDependencies1 = gs1.allTypedDependencies();
for (TypedDependency TDY1 : allTypedDependencies1) {
IndexedWord dep = TDY1.dep();
IndexedWord gov = TDY1.gov();
GrammaticalRelation grammaticalRelation = gs.getGrammaticalRelation(gov, dep);
if (grammaticalRelation.isApplicable(sentenceConstituencyParse)) {
score += 1900;
int constituents1 = constinuent1.size() - constiRelationsize;
int constituents2 = constinuent2.size() - constiRelationsize;
if (constituents1 > 0 && constituents2 > 0) {
score -= (constituents1 + constituents2) * 200;
} else {
score += constiRelationsize * 200;
}
GrammaticalRelation reln = TDY1.reln();
if (reln.isApplicable(sentenceConstituencyParse)) {
score += 525;
GrammaticalStructure gs1 = gsf.newGrammaticalStructure(sentenceConstituencyParse1);
Collection<TypedDependency> allTypedDependencies1 = gs1.allTypedDependencies();
for (TypedDependency TDY1 : allTypedDependencies1) {
IndexedWord dep = TDY1.dep();
IndexedWord gov = TDY1.gov();
GrammaticalRelation grammaticalRelation = gs.getGrammaticalRelation(gov, dep);
if (grammaticalRelation.isApplicable(sentenceConstituencyParse)) {
score += 1900;
}
GrammaticalRelation reln = TDY1.reln();
if (reln.isApplicable(sentenceConstituencyParse)) {
score += 525;
}
}
}
for (TypedDependency TDY : allTypedDependencies) {
IndexedWord dep = TDY.dep();
IndexedWord gov = TDY.gov();
GrammaticalRelation grammaticalRelation = gs1.getGrammaticalRelation(gov, dep);
if (grammaticalRelation.isApplicable(sentenceConstituencyParse)) {
score += 900;
for (TypedDependency TDY : allTypedDependencies) {
IndexedWord dep = TDY.dep();
IndexedWord gov = TDY.gov();
GrammaticalRelation grammaticalRelation = gs1.getGrammaticalRelation(gov, dep);
if (grammaticalRelation.isApplicable(sentenceConstituencyParse)) {
score += 900;
}
GrammaticalRelation reln = TDY.reln();
if (reln.isApplicable(sentenceConstituencyParse1)) {
score += 525;
}
}
GrammaticalRelation reln = TDY.reln();
if (reln.isApplicable(sentenceConstituencyParse1)) {
score += 525;
}
}
AtomicInteger runCount1 = new AtomicInteger(0);
sentenceConstituencyParse.taggedLabeledYield().forEach((LBW) -> {
sentenceConstituencyParse1.taggedLabeledYield().stream().filter((LBW1) -> (LBW.lemma().equals(LBW1.lemma())
&& !filerTreeContent.values().contains(LBW.lemma()))).map((_item) -> {
filerTreeContent.put(filerTreeContent.size() + 1, LBW.lemma());
return _item;
}).forEachOrdered((_item) -> {
runCount1.getAndIncrement();
AtomicInteger runCount1 = new AtomicInteger(0);
sentenceConstituencyParse.taggedLabeledYield().forEach((LBW) -> {
sentenceConstituencyParse1.taggedLabeledYield().stream().filter((LBW1) -> (LBW.lemma().equals(LBW1.lemma())
&& !filerTreeContent.values().contains(LBW.lemma()))).map((_item) -> {
filerTreeContent.put(filerTreeContent.size() + 1, LBW.lemma());
return _item;
}).forEachOrdered((_item) -> {
runCount1.getAndIncrement();
});
});
});
score += runCount1.get() * 1500;
score += runCount1.get() * 1500;
}
}
} catch (Exception ex) {
System.out.println("pipelineAnnotation stacktrace: " + ex.getLocalizedMessage() + "\n");
}
sentenceConstituencyParseList.clear();
ConcurrentMap<Integer, SimpleMatrix> simpleSMXlist = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, SimpleMatrix> simpleSMXlistVector = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, Integer> sentiment1 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, Integer> sentiment2 = new MapMaker().concurrencyLevel(2).makeMap();
for (CoreMap sentence : pipelineAnnotation1Sentiment.get(CoreAnnotations.SentencesAnnotation.class)) {
Tree tree = sentence.get(SentimentCoreAnnotations.SentimentAnnotatedTree.class);
sentiment1.put(sentiment1.size(), RNNCoreAnnotations.getPredictedClass(tree));
SimpleMatrix predictions = RNNCoreAnnotations.getPredictions(tree);
SimpleMatrix nodeVector = RNNCoreAnnotations.getNodeVector(tree);
simpleSMXlist.put(simpleSMXlist.size(), predictions);
simpleSMXlistVector.put(simpleSMXlistVector.size() + 1, nodeVector);
}
ConcurrentMap<Integer, Double> elementSumCounter = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, Double> dotMap = new MapMaker().concurrencyLevel(2).makeMap();
for (CoreMap sentence : pipelineAnnotation2Sentiment.get(CoreAnnotations.SentencesAnnotation.class)) {
Tree tree = sentence.get(SentimentCoreAnnotations.SentimentAnnotatedTree.class);
sentiment2.put(sentiment2.size() + 1, RNNCoreAnnotations.getPredictedClass(tree));
SimpleMatrix predictions = RNNCoreAnnotations.getPredictions(tree);
SimpleMatrix nodeVector = RNNCoreAnnotations.getNodeVector(tree);
ConcurrentMap<Integer, Double> AccumulateDotMap = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, Double> subtractorMap = new MapMaker().concurrencyLevel(2).makeMap();
score += simpleSMXlist.values().stream().map(new Function<SimpleMatrix, Double>() {
@Override
public Double apply(SimpleMatrix simpleSMX) {
return predictions.dot(simpleSMX) * 100;
}
}).map(new Function<Double, Double>() {
@Override
public Double apply(Double dot) {
AccumulateDotMap.put(AccumulateDotMap.size() + 1, dot);
return dot > 50 ? dot - 100 : dot > 0 ? 100 - dot : 0;
}
}).map((subtracter) -> {
subtractorMap.put(subtractorMap.size() + 1, subtracter);
subtracter *= 25; //25
return subtracter;
}).map(new Function<Double, Double>() {
@Override
public Double apply(Double subtracter) {
return subtracter;
}
}).reduce(score, new BinaryOperator<Double>() {
@Override
public Double apply(Double accumulator, Double _item) {
int accumulator1 = 0;
while (accumulator < 0) {
accumulator++;
accumulator1++;
}
return accumulator1 + _item;
}
});
Double subTracPre = 0.0;
for (Double subtractors : subtractorMap.values()) {
if (Objects.equals(subTracPre, subtractors)) {
score -= 2000;
}
subTracPre = subtractors;
}
score += simpleSMXlist.values().stream().map(new Function<SimpleMatrix, Double>() {
@Override
public Double apply(SimpleMatrix simpleSMX) {
return simpleSMX.dot(predictions) * 100;
}
}).map(new Function<Double, Double>() {
@Override
public Double apply(Double dot) {
AccumulateDotMap.put(AccumulateDotMap.size() + 1, dot);
return dot > 50 ? dot - 50 : dot > 0 ? 50 - dot : 0;
}
}).map((subtracter) -> {
subtracter *= 25; //25
return subtracter;
}).map(new Function<Double, Double>() {
@Override
public Double apply(Double subtracter) {
return subtracter;
}
}).reduce(score, new BinaryOperator<Double>() {
@Override
public Double apply(Double accumulator, Double _item) {
int accumulator1 = 0;
while (accumulator < 0) {
accumulator++;
accumulator1++;
}
return accumulator1 + _item;
}
});
Double preAccumulatorDot = 0.0;
Double postAccumulatorDot = 0.0;
for (Double accumulators : AccumulateDotMap.values()) {
if (preAccumulatorDot == accumulators) {
if (postAccumulatorDot == accumulators) {
score -= 4000;
}
postAccumulatorDot = accumulators;
}
preAccumulatorDot = accumulators;
}
subTracPre = 0.0;
for (Double subtractors : subtractorMap.values()) {
if (Objects.equals(subTracPre, subtractors)) {
score -= 2000;
}
subTracPre = subtractors;
}
Double preDot = 0.0;
Double postDot = 0.0;
for (SimpleMatrix simpleSMX : simpleSMXlistVector.values()) {
double dot = nodeVector.dot(simpleSMX);
double elementSum = nodeVector.kron(simpleSMX).elementSum();
if (preDot == dot) {
if (postDot == dot) {
score -= 4000;
}
postDot = dot;
}
preDot = dot;
elementSum = Math.round(elementSum * 100.0) / 100.0;
elementSumCounter.put(elementSumCounter.size() + 1, elementSum);
dotMap.put(dotMap.size() + 1, dot);
if (dot < 0.1) {
score += 256;
}
if (dot > 0.50) {
score -= 2400;
}
if (elementSum < 0.01 && elementSum > 0.00) {
score += 3300;
} else if (elementSum > 0.1 && elementSum < 0.2) {
score += 1100;
} else {
score -= elementSum * 1424;
}
}
for (SimpleMatrix simpleSMX : simpleSMXlistVector.values()) {
double dot = simpleSMX.dot(nodeVector);
double elementSum = simpleSMX.kron(nodeVector).elementSum();
if (preDot == dot) {
if (postDot == dot) {
score -= 4000;
}
postDot = dot;
}
preDot = dot;
elementSum = Math.round(elementSum * 100.0) / 100.0;
elementSumCounter.put(elementSumCounter.size() + 1, elementSum);
dotMap.put(dotMap.size() + 1, dot);
if (dot < 0.1) {
score += 256;
}
if (dot > 0.50) {
score -= 2400;
}
if (elementSum < 0.01 && elementSum > 0.00) {
score += 1300;
} else if (elementSum > 0.1 && elementSum < 1.0) {
score += 1100;
} else {
score -= elementSum * 1424;
}
}
}
} catch (Exception ex) {
System.out.println("pipelineAnnotation stacktrace: " + ex.getLocalizedMessage() + "\n");
}
sentenceConstituencyParseList.clear();
ConcurrentMap<Integer, SimpleMatrix> simpleSMXlist = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, SimpleMatrix> simpleSMXlistVector = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, Integer> sentiment1 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, Integer> sentiment2 = new MapMaker().concurrencyLevel(2).makeMap();
for (CoreMap sentence : pipelineAnnotation1Sentiment.get(CoreAnnotations.SentencesAnnotation.class)) {
Tree tree = sentence.get(SentimentCoreAnnotations.SentimentAnnotatedTree.class);
sentiment1.put(sentiment1.size(), RNNCoreAnnotations.getPredictedClass(tree));
SimpleMatrix predictions = RNNCoreAnnotations.getPredictions(tree);
SimpleMatrix nodeVector = RNNCoreAnnotations.getNodeVector(tree);
simpleSMXlist.put(simpleSMXlist.size(), predictions);
simpleSMXlistVector.put(simpleSMXlistVector.size() + 1, nodeVector);
}
ConcurrentMap<Integer, Double> elementSumCounter = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, Double> dotMap = new MapMaker().concurrencyLevel(2).makeMap();
for (CoreMap sentence : pipelineAnnotation2Sentiment.get(CoreAnnotations.SentencesAnnotation.class)) {
Tree tree = sentence.get(SentimentCoreAnnotations.SentimentAnnotatedTree.class);
sentiment2.put(sentiment2.size() + 1, RNNCoreAnnotations.getPredictedClass(tree));
SimpleMatrix predictions = RNNCoreAnnotations.getPredictions(tree);
SimpleMatrix nodeVector = RNNCoreAnnotations.getNodeVector(tree);
score += simpleSMXlist.values().stream().map((simpleSMX) -> predictions.dot(simpleSMX) * 100).map((dot) -> dot > 50 ? dot - 50 : dot > 0 ? 50 - dot : 50).map((subtracter) -> {
subtracter *= 25; //25
return subtracter;
}).map((subtracter) -> subtracter).reduce(score, (accumulator, _item) -> accumulator + _item);
for (SimpleMatrix simpleSMX : simpleSMXlistVector.values()) {
double dot = nodeVector.dot(simpleSMX);
double elementSum = nodeVector.kron(simpleSMX).elementSum();
elementSum = Math.round(elementSum * 100.0) / 100.0;
elementSumCounter.put(elementSumCounter.size() + 1, elementSum);
dotMap.put(dotMap.size() + 1, dot);
if (dot < 0.1) {
score += 256;
}
if (dot > 0.50) {
score -= 2400;
}
if (elementSum < 0.01 && elementSum > 0.00) {
score += 1300;
} else if (elementSum > 0.1 && elementSum < 1.0) {
score += 1100;
} else {
score -= elementSum * 1424;
}
}
}
if (dotMap.values().size() > 1) {
OptionalDouble minvalueDots = dotMap.values().stream().mapToDouble(Double::doubleValue).min();
OptionalDouble maxvalueDots = dotMap.values().stream().mapToDouble(Double::doubleValue).max();
if (maxvalueDots.getAsDouble() - minvalueDots.getAsDouble() < 0.05) {
score += 3500;
double total = minvalueDots.getAsDouble() + maxvalueDots.getAsDouble();
boolean permitted = false;
if (minvalueDots.getAsDouble() != maxvalueDots.getAsDouble()) {
permitted = true;
}
if (permitted) {
Double dotsVariance = maxvalueDots.getAsDouble() - minvalueDots.getAsDouble();
if (maxvalueDots.getAsDouble() > minvalueDots.getAsDouble() * 10) {
score -= 5500;
} else if (minvalueDots.getAsDouble() < -0.10) {
score -= 3500;
} else if (dotsVariance < 0.5) {
score += 3500;
} else if (dotsVariance > minvalueDots.getAsDouble() * 2) {
score += 3500;
}
}
}
if (elementSumCounter.values().size() > 1){
OptionalDouble minvalueElements = elementSumCounter.values().stream().mapToDouble(Double::doubleValue).min();
OptionalDouble maxvalueElements = elementSumCounter.values().stream().mapToDouble(Double::doubleValue).max();
if (maxvalueElements.getAsDouble() - minvalueElements.getAsDouble() < 0.05) {
Double elementsVariance = maxvalueElements.getAsDouble() - minvalueElements.getAsDouble();
if (elementsVariance < 0.05 && maxvalueElements.getAsDouble() > 0.0 && minvalueElements.getAsDouble() > 0.0 && elementsVariance > 0.000) {
score += 3500;
} else if (minvalueElements.getAsDouble() < 0.0 && minvalueElements.getAsDouble() - maxvalueElements.getAsDouble() < 0.50) {
score -= 2500;
}
}
score -= (sentiment1.size() > sentiment2.size() ? sentiment1.size() - sentiment2.size() : sentiment2.size() - sentiment1.size()) * 500;
DocumentReaderAndWriter<CoreLabel> readerAndWriter = classifier.makePlainTextReaderAndWriter();
List classifyRaw1 = classifier.classifyRaw(str, readerAndWriter);
List classifyRaw2 = classifier.classifyRaw(str1, readerAndWriter);
score -= (classifyRaw1.size() > classifyRaw2.size() ? classifyRaw1.size() - classifyRaw2.size() : classifyRaw2.size() - classifyRaw1.size()) * 200;
int mainSentiment1 = 0;
int longest1 = 0;
int mainSentiment2 = 0;
int longest2 = 0;
for (CoreMap sentence : pipelineAnnotation1Sentiment.get(CoreAnnotations.SentencesAnnotation.class)) {
Tree tree = sentence.get(SentimentCoreAnnotations.SentimentAnnotatedTree.class);
int sentiment = RNNCoreAnnotations.getPredictedClass(tree);
String partText = sentence.toString();
SimpleMatrix predictions = RNNCoreAnnotations.getPredictions(tree);
if (partText.length() > longest1) {
mainSentiment1 = sentiment;
longest1 = partText.length();
}
}
for (CoreMap sentence : pipelineAnnotation2Sentiment.get(CoreAnnotations.SentencesAnnotation.class)) {
Tree tree = sentence.get(SentimentCoreAnnotations.SentimentAnnotatedTree.class);
int sentiment = RNNCoreAnnotations.getPredictedClass(tree);
SimpleMatrix predictions = RNNCoreAnnotations.getPredictions(tree);
String partText = sentence.toString();
if (partText.length() > longest2) {
mainSentiment2 = sentiment;
longest2 = partText.length();
}
}
if (longest1 != longest2) {
long deffLongest = longest1 > longest2 ? longest1 : longest2;
long deffshorter = longest1 < longest2 ? longest1 : longest2;
//deffLongest >= (deffshorter * 2)
if (deffLongest < (deffshorter * 2) - 1 && deffLongest - deffshorter <= 45) {
score += (deffLongest - deffshorter) * 120;
} else if (mainSentiment1 != mainSentiment2 && deffLongest - deffshorter > 20 && deffLongest - deffshorter < 45) {
score += (deffLongest - deffshorter) * 120;
} else if (deffLongest - deffshorter < 2) {
score += (deffLongest + deffshorter) * 40;
} else if (deffLongest - deffshorter <= 5){
score += 2500;
} else{
score -= (deffLongest - deffshorter) * 50;
}
}
int tokensCounter1 = 0;
int tokensCounter2 = 0;
int anotatorcounter1 = 0;
int anotatorcounter2 = 0;
int inflectedCounterPositive1 = 0;
int inflectedCounterPositive2 = 0;
int inflectedCounterNegative = 0;
int MarkedContinuousCounter1 = 0;
int MarkedContinuousCounter2 = 0;
int UnmarkedPatternCounter = 0;
ConcurrentMap<Integer, String> ITokenMapTag1 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> ITokenMapTag2 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strTokenStems1 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strTokenStems2 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strTokenForm1 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strTokenForm2 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strTokenGetEntry1 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strTokenGetEntry2 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strTokenGetiPart1 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strTokenGetiPart2 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strTokenEntryPOS1 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strTokenEntryPOS2 = new MapMaker().concurrencyLevel(2).makeMap();
try {
List<CoreMap> sentences = jmweStrAnnotation1.get(CoreAnnotations.SentencesAnnotation.class);
for (CoreMap sentence : sentences) {
for (IMWE<IToken> token : sentence.get(JMWEAnnotation.class)) {
if (token.isInflected()) {
inflectedCounterPositive1++;
} else {
inflectedCounterNegative++;
}
strTokenForm1.put(strTokenForm1.size() + 1, token.getForm());
strTokenGetEntry1.put(strTokenGetEntry1.size() + 1, token.getEntry().toString().substring(token.getEntry().toString().length() - 1));
Collection<IMWEDesc.IPart> values = token.getPartMap().values();
IMWEDesc entry = token.getEntry();
MarkedContinuousCounter1 += entry.getMarkedContinuous();
UnmarkedPatternCounter += entry.getUnmarkedPattern();
for (IMWEDesc.IPart iPart : values) {
strTokenGetiPart1.put(strTokenGetiPart1.size() + 1, iPart.getForm());
}
for (String strPostPrefix : entry.getPOS().getPrefixes()) {
strTokenEntryPOS1.put(strTokenEntryPOS1.size() + 1, strPostPrefix);
}
for (IToken tokens : token.getTokens()) {
ITokenMapTag1.put(ITokenMapTag1.size() + 1, tokens.getTag());
for (String strtoken : tokens.getStems()) {
strTokenStems1.put(strTokenStems1.size() + 1, strtoken);
}
}
tokensCounter1++;
}
anotatorcounter1++;
}
sentences = jmweStrAnnotation2.get(CoreAnnotations.SentencesAnnotation.class);
for (CoreMap sentence : sentences) {
for (IMWE<IToken> token : sentence.get(JMWEAnnotation.class)) {
if (token.isInflected()) {
inflectedCounterPositive2++;
} else {
inflectedCounterNegative--;
}
strTokenForm2.put(strTokenForm2.size() + 1, token.getForm());
strTokenGetEntry2.put(strTokenGetEntry2.size() + 1, token.getEntry().toString().substring(token.getEntry().toString().length() - 1));
Collection<IMWEDesc.IPart> values = token.getPartMap().values();
IMWEDesc entry = token.getEntry();
MarkedContinuousCounter2 += entry.getMarkedContinuous();
UnmarkedPatternCounter += entry.getUnmarkedPattern();
for (IMWEDesc.IPart iPart : values) {
strTokenGetiPart2.put(strTokenGetiPart2.size() + 1, iPart.getForm());
}
for (String strPostPrefix : entry.getPOS().getPrefixes()) {
strTokenEntryPOS2.put(strTokenEntryPOS2.size() + 1, strPostPrefix);
}
for (IToken tokens : token.getTokens()) {
ITokenMapTag2.put(ITokenMapTag2.size() + 1, tokens.getTag());
for (String strtoken : tokens.getStems()) {
strTokenStems2.put(strTokenStems2.size() + 1, strtoken);
}
}
tokensCounter2++;
}
anotatorcounter2++;
}
} catch (Exception ex) {
System.out.println("SENTIMENT stacktrace: " + ex.getMessage() + "\n");
}
for (String strTokenPos1 : strTokenEntryPOS1.values()) {
for (String strTokenPos2 : strTokenEntryPOS2.values()) {
if (strTokenPos1.equals(strTokenPos2)) {
score += 500;
score -= (sentiment1.size() > sentiment2.size() ? sentiment1.size() - sentiment2.size() : sentiment2.size() - sentiment1.size()) * 500;
DocumentReaderAndWriter<CoreLabel> readerAndWriter = classifier.makePlainTextReaderAndWriter();
List classifyRaw1 = classifier.classifyRaw(str, readerAndWriter);
List classifyRaw2 = classifier.classifyRaw(str1, readerAndWriter);
score -= (classifyRaw1.size() > classifyRaw2.size() ? classifyRaw1.size() - classifyRaw2.size() : classifyRaw2.size() - classifyRaw1.size()) * 200;
int mainSentiment1 = 0;
int longest1 = 0;
int mainSentiment2 = 0;
int longest2 = 0;
for (CoreMap sentence : pipelineAnnotation1Sentiment.get(CoreAnnotations.SentencesAnnotation.class)) {
Tree tree = sentence.get(SentimentCoreAnnotations.SentimentAnnotatedTree.class);
int sentiment = RNNCoreAnnotations.getPredictedClass(tree);
String partText = sentence.toString();
SimpleMatrix predictions = RNNCoreAnnotations.getPredictions(tree);
if (partText.length() > longest1) {
mainSentiment1 = sentiment;
longest1 = partText.length();
}
}
}
if (UnmarkedPatternCounter > 0 && UnmarkedPatternCounter < 5) {
score += UnmarkedPatternCounter * 1600;
}
if (MarkedContinuousCounter1 > 0 && MarkedContinuousCounter2 > 0) {
score += MarkedContinuousCounter1 > MarkedContinuousCounter2 ? (MarkedContinuousCounter1 - MarkedContinuousCounter2) * 500
: (MarkedContinuousCounter2 - MarkedContinuousCounter1) * 500;
}
for (String strTokeniPart1 : strTokenGetiPart1.values()) {
for (String strTokeniPart2 : strTokenGetiPart2.values()) {
if (strTokeniPart1.equals(strTokeniPart2)) {
score += 400;
for (CoreMap sentence : pipelineAnnotation2Sentiment.get(CoreAnnotations.SentencesAnnotation.class)) {
Tree tree = sentence.get(SentimentCoreAnnotations.SentimentAnnotatedTree.class);
int sentiment = RNNCoreAnnotations.getPredictedClass(tree);
SimpleMatrix predictions = RNNCoreAnnotations.getPredictions(tree);
String partText = sentence.toString();
if (partText.length() > longest2) {
mainSentiment2 = sentiment;
longest2 = partText.length();
}
}
}
for (String strTokenEntry1 : strTokenGetEntry1.values()) {
for (String strTokenEntry2 : strTokenGetEntry2.values()) {
if (strTokenEntry1.equals(strTokenEntry2)) {
if (longest1 != longest2) {
long deffLongest = longest1 > longest2 ? longest1 : longest2;
long deffshorter = longest1 < longest2 ? longest1 : longest2;
if (deffLongest > deffshorter * 5) {
score -= 5500;
} else if (deffLongest < (deffshorter * 2) - 1 && deffLongest - deffshorter <= 45) {
score += (deffLongest - deffshorter) * 120;
} else if (mainSentiment1 != mainSentiment2 && deffLongest - deffshorter > 20 && deffLongest - deffshorter < 45) {
score += (deffLongest - deffshorter) * 120;
} else if (deffLongest - deffshorter < 2) {
score += (deffLongest + deffshorter) * 40;
} else {
score -= (deffLongest - deffshorter) * 50;
}
if (deffLongest - deffshorter <= 5) {
score += 2500;
}
}
}
for (String strmapTag : ITokenMapTag1.values()) {
for (String strmapTag1 : ITokenMapTag2.values()) {
if (strmapTag.equals(strmapTag1)) {
score += 1450;
int tokensCounter1 = 0;
int tokensCounter2 = 0;
int anotatorcounter1 = 0;
int anotatorcounter2 = 0;
int inflectedCounterPositive1 = 0;
int inflectedCounterPositive2 = 0;
int inflectedCounterNegative = 0;
int MarkedContinuousCounter1 = 0;
int MarkedContinuousCounter2 = 0;
int UnmarkedPatternCounter = 0;
ConcurrentMap<Integer, String> ITokenMapTag1 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> ITokenMapTag2 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strTokenStems1 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strTokenStems2 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strTokenForm1 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strTokenForm2 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strTokenGetEntry1 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strTokenGetEntry2 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strTokenGetiPart1 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strTokenGetiPart2 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strTokenEntryPOS1 = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, String> strTokenEntryPOS2 = new MapMaker().concurrencyLevel(2).makeMap();
try {
List<CoreMap> sentences = jmweStrAnnotation1.get(CoreAnnotations.SentencesAnnotation.class);
for (CoreMap sentence : sentences) {
for (IMWE<IToken> token : sentence.get(JMWEAnnotation.class)) {
if (token.isInflected()) {
inflectedCounterPositive1++;
} else {
inflectedCounterNegative++;
}
strTokenForm1.put(strTokenForm1.size() + 1, token.getForm());
strTokenGetEntry1.put(strTokenGetEntry1.size() + 1, token.getEntry().toString().substring(token.getEntry().toString().length() - 1));
Collection<IMWEDesc.IPart> values = token.getPartMap().values();
IMWEDesc entry = token.getEntry();
MarkedContinuousCounter1 += entry.getMarkedContinuous();
UnmarkedPatternCounter += entry.getUnmarkedPattern();
for (IMWEDesc.IPart iPart : values) {
strTokenGetiPart1.put(strTokenGetiPart1.size() + 1, iPart.getForm());
}
for (String strPostPrefix : entry.getPOS().getPrefixes()) {
strTokenEntryPOS1.put(strTokenEntryPOS1.size() + 1, strPostPrefix);
}
for (IToken tokens : token.getTokens()) {
ITokenMapTag1.put(ITokenMapTag1.size() + 1, tokens.getTag());
for (String strtoken : tokens.getStems()) {
strTokenStems1.put(strTokenStems1.size() + 1, strtoken);
}
}
tokensCounter1++;
}
anotatorcounter1++;
}
sentences = jmweStrAnnotation2.get(CoreAnnotations.SentencesAnnotation.class);
for (CoreMap sentence : sentences) {
for (IMWE<IToken> token : sentence.get(JMWEAnnotation.class)) {
if (token.isInflected()) {
inflectedCounterPositive2++;
} else {
inflectedCounterNegative--;
}
strTokenForm2.put(strTokenForm2.size() + 1, token.getForm());
strTokenGetEntry2.put(strTokenGetEntry2.size() + 1, token.getEntry().toString().substring(token.getEntry().toString().length() - 1));
Collection<IMWEDesc.IPart> values = token.getPartMap().values();
IMWEDesc entry = token.getEntry();
MarkedContinuousCounter2 += entry.getMarkedContinuous();
UnmarkedPatternCounter += entry.getUnmarkedPattern();
for (IMWEDesc.IPart iPart : values) {
strTokenGetiPart2.put(strTokenGetiPart2.size() + 1, iPart.getForm());
}
for (String strPostPrefix : entry.getPOS().getPrefixes()) {
strTokenEntryPOS2.put(strTokenEntryPOS2.size() + 1, strPostPrefix);
}
for (IToken tokens : token.getTokens()) {
ITokenMapTag2.put(ITokenMapTag2.size() + 1, tokens.getTag());
for (String strtoken : tokens.getStems()) {
strTokenStems2.put(strTokenStems2.size() + 1, strtoken);
}
}
tokensCounter2++;
}
anotatorcounter2++;
}
} catch (Exception ex) {
System.out.println("SENTIMENT stacktrace: " + ex.getMessage() + "\n");
}
for (String strTokenPos1 : strTokenEntryPOS1.values()) {
for (String strTokenPos2 : strTokenEntryPOS2.values()) {
if (strTokenPos1.equals(strTokenPos2)) {
score += 500;
}
}
}
}
for (String strTokenForm1itr1 : strTokenForm1.values()) {
for (String strTokenForm1itr2 : strTokenForm2.values()) {
if (strTokenForm1itr1.equals(strTokenForm1itr2)) {
score += 2600;
} else if (strTokenForm1itr1.contains(strTokenForm1itr2)) {
score += 500;
if (UnmarkedPatternCounter > 0 && UnmarkedPatternCounter < 5) {
score += UnmarkedPatternCounter * 1600;
}
if (MarkedContinuousCounter1 > 0 && MarkedContinuousCounter2 > 0) {
score += MarkedContinuousCounter1 > MarkedContinuousCounter2 ? (MarkedContinuousCounter1 - MarkedContinuousCounter2) * 500
: (MarkedContinuousCounter2 - MarkedContinuousCounter1) * 500;
}
for (String strTokeniPart1 : strTokenGetiPart1.values()) {
for (String strTokeniPart2 : strTokenGetiPart2.values()) {
if (strTokeniPart1.equals(strTokeniPart2)) {
score += 400;
}
}
}
}
for (String strTokenStem : strTokenStems1.values()) {
for (String strTokenStem1 : strTokenStems2.values()) {
if (strTokenStem.equals(strTokenStem1)) {
score += 1500;
for (String strTokenEntry1 : strTokenGetEntry1.values()) {
for (String strTokenEntry2 : strTokenGetEntry2.values()) {
if (strTokenEntry1.equals(strTokenEntry2)) {
score += 2500;
}
}
}
}
if (inflectedCounterPositive1 + inflectedCounterPositive2 > inflectedCounterNegative && inflectedCounterNegative > 0) {
score += (inflectedCounterPositive1 - inflectedCounterNegative) * 650;
}
if (inflectedCounterPositive1 > 0 && inflectedCounterPositive2 > 0) {
score += ((inflectedCounterPositive1 + inflectedCounterPositive2) - inflectedCounterNegative) * 550;
}
if (anotatorcounter1 > 1 && anotatorcounter2 > 1) {
score += (anotatorcounter1 + anotatorcounter2) * 400;
}
if (tokensCounter1 > 0 && tokensCounter2 > 0) {
score += (tokensCounter1 + tokensCounter2) * 400;
} else {
int elseint = tokensCounter1 >= tokensCounter2 ? (tokensCounter1 - tokensCounter2) * 500 : (tokensCounter2 - tokensCounter1) * 500;
score -= elseint;
}
LevenshteinDistance leven = new LevenshteinDistance(str, str1);
double SentenceScoreDiff = leven.computeLevenshteinDistance();
SentenceScoreDiff *= 15;
score -= SentenceScoreDiff;
for (String strmapTag : ITokenMapTag1.values()) {
for (String strmapTag1 : ITokenMapTag2.values()) {
if (strmapTag.equals(strmapTag1)) {
score += 1450;
}
}
}
for (String strTokenForm1itr1 : strTokenForm1.values()) {
for (String strTokenForm1itr2 : strTokenForm2.values()) {
if (strTokenForm1itr1.equals(strTokenForm1itr2)) {
score += 2600;
} else if (strTokenForm1itr1.contains(strTokenForm1itr2)) {
score += 500;
}
}
}
for (String strTokenStem : strTokenStems1.values()) {
for (String strTokenStem1 : strTokenStems2.values()) {
if (strTokenStem.equals(strTokenStem1)) {
score += 1500;
}
}
}
if (inflectedCounterPositive1 + inflectedCounterPositive2 > inflectedCounterNegative && inflectedCounterNegative > 0) {
score += (inflectedCounterPositive1 - inflectedCounterNegative) * 650;
}
if (inflectedCounterPositive1 > 0 && inflectedCounterPositive2 > 0) {
score += ((inflectedCounterPositive1 + inflectedCounterPositive2) - inflectedCounterNegative) * 550;
}
if (anotatorcounter1 > 1 && anotatorcounter2 > 1) {
score += (anotatorcounter1 - anotatorcounter2) * 400;
}
if (tokensCounter1 > 0 && tokensCounter2 > 0) {
score += (tokensCounter1 + tokensCounter2) * 400;
} else {
int elseint = tokensCounter1 >= tokensCounter2 ? (tokensCounter1 - tokensCounter2) * 500 : (tokensCounter2 - tokensCounter1) * 500;
if (elseint > 0) {
score -= elseint * 2;
} else {
score -= 1500;
}
}
LevenshteinDistance leven = new LevenshteinDistance(str, str1);
double SentenceScoreDiff = leven.computeLevenshteinDistance();
SentenceScoreDiff *= 15;
score -= SentenceScoreDiff;
} catch (Exception ex) {
System.out.println("SENTIMENT stacktrace Overall catch: " + ex.getMessage() + "\n");
}

View File

@ -87,14 +87,6 @@ public class DiscordHandler {
}
}
MessageResponseHandler.getMessage(strresult);
new Thread(() -> {
try {
Datahandler.instance.checkIfUpdateStrings(false);
Datahandler.instance.updateMatrixes();
} catch (CustomError ex) {
Logger.getLogger(DiscordHandler.class.getName()).log(Level.SEVERE, null, ex);
}
}).start();
}
if (event.getMessage().getMentionedUsers().contains(api.getYourself())
|| event.getServerTextChannel().get().toString().contains("general-autism")) {
@ -105,6 +97,14 @@ public class DiscordHandler {
System.out.print("\nResponseStr3: " + ResponseStr + "\n");
event.getChannel().sendMessage(ResponseStr);
}
new Thread(() -> {
try {
Datahandler.instance.checkIfUpdateStrings(false);
Datahandler.instance.updateMatrixes();
} catch (CustomError ex) {
Logger.getLogger(DiscordHandler.class.getName()).log(Level.SEVERE, null, ex);
}
}).start();
} catch (CustomError ex) {
Logger.getLogger(DiscordHandler.class.getName()).log(Level.SEVERE, null, ex);
}