caching indeppendent values for sentiment analyzing

This commit is contained in:
jenzur 2019-05-19 20:35:18 +02:00
parent 5ccadbffbd
commit a4139e4ae4
4 changed files with 1658 additions and 1114 deletions

View File

@ -7,6 +7,7 @@ package FunctionLayer;
import DataLayer.DataMapper;
import FunctionLayer.StanfordParser.SentimentAnalyzerTest;
import FunctionLayer.StanfordParser.SentimentValueCache;
import com.google.common.base.Stopwatch;
import com.google.common.collect.MapMaker;
import edu.stanford.nlp.ie.AbstractSequenceClassifier;
@ -69,6 +70,7 @@ public class Datahandler {
private static ConcurrentMap<String, CoreDocument> coreDocumentAnnotationCache;
private static ConcurrentMap<String, Integer> conversationMatchMap;
private static ConcurrentMap<String, Integer> conversationUserMatchMap;
private static ConcurrentMap<String, SentimentValueCache> sentimentCachingMap = new MapMaker().concurrencyLevel(6).makeMap();
private static final ConcurrentMap<String, Integer> locateFaultySentences = new MapMaker().concurrencyLevel(6).makeMap();
private static final ConcurrentMap<String, Double> mapUdate = new MapMaker().concurrencyLevel(4).makeMap();
private final static ConcurrentMap<Integer, String> strmapreturn = new MapMaker().concurrencyLevel(4).makeMap();
@ -233,7 +235,7 @@ public class Datahandler {
hlStatsMessages.put(str, hlStatsMessages.size());
}
}
int capacity = 15000;
int capacity = 5550;
hlStatsMessages.keySet().forEach(str -> {
if (!str.startsWith("!") && MessageResponseHandler.getStr().values().size() < capacity) {
String orElse = strCacheLocal.values().parallelStream().filter(e -> e.equals(str)).findAny().orElse(null);
@ -278,28 +280,40 @@ public class Datahandler {
}
}
private final static void futuresReturnOverallEvaluation(ConcurrentMap<String, Future<SimilarityMatrix>> entries, String str) {
private static void futuresReturnOverallEvaluation(ConcurrentMap<String, Future<SimilarityMatrix>> entries, String str) {
for (Entry<String, Future<SimilarityMatrix>> entrySet : entries.entrySet()) {
String transmittedStr = entrySet.getKey();
final SimilarityMatrix getSMX = retrieveFutureSMX(entrySet.getValue());
SimilarityMatrix getSMX = retrieveFutureSMX(entrySet.getValue());
if (handleRetrievedSMX(getSMX, str, transmittedStr)) {
break;
}
try {
SentimentValueCache cacheValue1 = getSMX.getCacheValue1();
SentimentValueCache cacheValue2 = getSMX.getCacheValue2();
if (cacheValue1 != null && !sentimentCachingMap.keySet().contains(str)) {
sentimentCachingMap.put(str, getSMX.getCacheValue1());
}
if (cacheValue2 != null && !sentimentCachingMap.keySet().contains(transmittedStr)) {
sentimentCachingMap.put(transmittedStr, getSMX.getCacheValue2());
}
} catch (Exception ex) {
//System.out.println("FAILING futures return. EX: " + ex.getLocalizedMessage() + "\n");
}
}
sentenceRelationMap.put(str, mapUdate);
}
private static final boolean handleRetrievedSMX(SimilarityMatrix getSMX, String str, String transmittedStr) {
private static boolean handleRetrievedSMX(SimilarityMatrix getSMX, String str, String transmittedStr) {
final int relationCap = 20;
if (getSMX != null) {
//System.out.println("getSMX primary: " + getSMX.getPrimaryString() + "\ngetSMX secondary: " + getSMX.getSecondaryString() + "\n");
final Double scoreRelationNewMsgToRecentMsg = getSMX.getDistance();
System.out.println("scoreRelationNewMsgToRecentMsg: " + scoreRelationNewMsgToRecentMsg + "\n");
//System.out.println("scoreRelationNewMsgToRecentMsg: " + scoreRelationNewMsgToRecentMsg + "\n");
mapUdate.put(getSMX.getSecondaryString(), scoreRelationNewMsgToRecentMsg);
System.out.println("getSMX primary: " + getSMX.getPrimaryString() + "\ngetSMX secodary: " + getSMX.getSecondaryString() + "\n");
if (scoreRelationNewMsgToRecentMsg >= 200.0) {
positiveRelationCounter++;
if (positiveRelationCounter >= relationCap) {
System.out.println("added to strmapreturn str: " + str + "\n");
//System.out.println("added to strmapreturn str: " + str + "\n");
strmapreturn.put(strmapreturn.size() + 1, str);
return true;
}
@ -320,7 +334,9 @@ public class Datahandler {
return false;
}
private final static Entry<ConcurrentMap<String, Future<SimilarityMatrix>>, ConcurrentMap<Integer, String>> StrComparringNoSentenceRelationMap(ConcurrentMap<Integer, String> strCacheLocal, String str, ConcurrentMap<String, Annotation> localJMWEMap, ConcurrentMap<String, Annotation> localPipelineAnnotation, ConcurrentMap<String, Annotation> localPipelineSentimentAnnotation,
private static Entry<ConcurrentMap<String, Future<SimilarityMatrix>>, ConcurrentMap<Integer, String>> StrComparringNoSentenceRelationMap(
ConcurrentMap<Integer, String> strCacheLocal, String str, ConcurrentMap<String, Annotation> localJMWEMap,
ConcurrentMap<String, Annotation> localPipelineAnnotation, ConcurrentMap<String, Annotation> localPipelineSentimentAnnotation,
ConcurrentMap<String, CoreDocument> localCoreDocumentMap) {
final ConcurrentMap<String, Future<SimilarityMatrix>> futures = new MapMaker().concurrencyLevel(4).makeMap();
strCacheLocal.values().removeIf(e -> {
@ -330,27 +346,30 @@ public class Datahandler {
}
return true;
});
SentimentValueCache sentimentCacheStr = sentimentCachingMap.getOrDefault(str, null);
for (String str1 : strCacheLocal.values()) {
if (!str.equals(str1)) {
//experimental change
if (!str.equals(str1) && !futures.keySet().contains(str1)) {
final SimilarityMatrix SMX = new SimilarityMatrix(str, str1);
SentimentValueCache sentimentCacheStr1 = sentimentCachingMap.getOrDefault(str1, null);
final Callable<SimilarityMatrix> worker;
if (stringCache.size() < 150) {
worker = new SentimentAnalyzerTest(str, str1, SMX,
localJMWEMap.get(str), localJMWEMap.get(str1), localPipelineAnnotation.get(str),
localPipelineAnnotation.get(str1), localPipelineSentimentAnnotation.get(str),
localPipelineSentimentAnnotation.get(str1), localCoreDocumentMap.get(str), localCoreDocumentMap.get(str1));
localPipelineSentimentAnnotation.get(str1), localCoreDocumentMap.get(str), localCoreDocumentMap.get(str1), sentimentCacheStr, sentimentCacheStr1);
} else {
worker = new SentimentAnalyzerTest(str, str1, SMX,
localJMWEMap.get(str), jmweAnnotationCache.get(str1), localPipelineAnnotation.get(str),
pipelineAnnotationCache.get(str1), localPipelineSentimentAnnotation.get(str),
pipelineSentimentAnnotationCache.get(str1), localCoreDocumentMap.get(str), coreDocumentAnnotationCache.get(str1));
pipelineSentimentAnnotationCache.get(str1), localCoreDocumentMap.get(str), coreDocumentAnnotationCache.get(str1), sentimentCacheStr, sentimentCacheStr1);
}
futures.put(str1, executor.submit(worker));
}
}
Map.Entry<ConcurrentMap<String, Future<SimilarityMatrix>>, ConcurrentMap<Integer, String>> entryReturn
Map.Entry<ConcurrentMap<String, Future<SimilarityMatrix>>, ConcurrentMap<Integer, String>> mapreturn
= new AbstractMap.SimpleEntry(futures, strCacheLocal);
return entryReturn;
return mapreturn;
}
private static ConcurrentMap<Integer, String> stringIteratorComparator(ConcurrentMap<Integer, String> strmap,
@ -387,11 +406,14 @@ public class Datahandler {
return stringIteratorComparator(strmap, strCacheLocal, localJMWEMap, localPipelineAnnotation, localPipelineSentimentAnnotation, localCoreDocumentMap);
}
private final static SimilarityMatrix retrieveFutureSMX(Future<SimilarityMatrix> future) {
private static SimilarityMatrix retrieveFutureSMX(Future<SimilarityMatrix> future) {
try {
return future.get(5, TimeUnit.SECONDS);
// SimilarityMatrix SMX = future.get();
SimilarityMatrix SMX = future.get(5, TimeUnit.SECONDS);
return SMX;
} catch (InterruptedException | ExecutionException | TimeoutException ex) {
Logger.getLogger(Datahandler.class.getName()).log(Level.SEVERE, null, ex);
System.out.println("retrieveFutureSMX timeout Exception; " + ex.getLocalizedMessage() + "\n");
}
return null;
}
@ -435,13 +457,6 @@ public class Datahandler {
}
}
/**
*
* @param str is strF aka user message,
* @param MostRecent String most recently responded with
* @return
* @throws CustomError
*/
public synchronized String getResponseMsg(String str, String MostRecent) throws CustomError {
str = str.trim();
if (str.startsWith("<@")) {
@ -470,19 +485,21 @@ public class Datahandler {
}
if (!present) {
SimilarityMatrix SMX = new SimilarityMatrix(strF, str1);
SentimentValueCache sentimentCacheStr1 = sentimentCachingMap.getOrDefault(str1, null);
Callable<SimilarityMatrix> worker = new SentimentAnalyzerTest(strF, str1, SMX,
strAnnoJMWE, jmweAnnotationCache.get(str1), strAnno,
pipelineAnnotationCache.get(str1), strAnnoSentiment,
pipelineSentimentAnnotationCache.get(str1), coreDoc, coreDocumentAnnotationCache.get(str1));
pipelineSentimentAnnotationCache.get(str1), coreDoc, coreDocumentAnnotationCache.get(str1), null, sentimentCacheStr1);
futureslocal.put(futureslocal.size() + 1, executor.submit(worker));
}
}
});
futureslocal.values().forEach((future) -> {
SimilarityMatrix SMX = new SimilarityMatrix("", "");
SimilarityMatrix SMX;
try {
SMX = future.get(5, TimeUnit.SECONDS);
futureAndCacheCombineMap.put(futureAndCacheCombineMap.size(), SMX);
//System.out.println("futureAndCacheCombineMap size: " + futureAndCacheCombineMap.size() + "\n");
} catch (InterruptedException | ExecutionException | TimeoutException ex) {
System.out.println("ex getResponsemsg: " + ex.getMessage() + "\n");
}
@ -494,6 +511,7 @@ public class Datahandler {
futureAndCacheCombineMap.put(futureAndCacheCombineMap.size(), SMX);
}
}
//System.out.println("futureAndCacheCombineMap size: " + futureAndCacheCombineMap.size() + "\n");
futureAndCacheCombineMap.values().parallelStream().forEach((SMX) -> {
if (sentenceRelationMap.get(strF) == null) {
ConcurrentMap<String, Double> localMap = new MapMaker().concurrencyLevel(2).makeMap();
@ -514,13 +532,20 @@ public class Datahandler {
Double scoreRelationOldUserMsg = 0.0;
ConcurrentMap<String, Double> getPrimaryLocal = new MapMaker().concurrencyLevel(2).makeMap();
for (String conversationStr : conversationMatchMap.keySet()) {
getPrimaryLocal = sentenceRelationMap.get(strF);
Double getSecondary = getPrimaryLocal.get(conversationStr);
Double getSecondary = 0.0;
getPrimaryLocal = sentenceRelationMap.getOrDefault(strF, null);
if (getPrimaryLocal == null) {
getSecondary = getScoreRelationStrF(strF, conversationStr);
getPrimaryLocal.put(conversationStr, getSecondary);
sentenceRelationMap.put(strF, getPrimaryLocal);
} else {
getSecondary = getPrimaryLocal.get(conversationStr);
if (getSecondary == null) {
getSecondary = getScoreRelationStrF(strF, conversationStr);
getPrimaryLocal.put(conversationStr, getSecondary);
sentenceRelationMap.put(strF, getPrimaryLocal);
}
}
scoreRelationNewMsgToRecentMsg += getSecondary;
System.out.println("scoreRelationNewMsgToRecentMsg: " + scoreRelationNewMsgToRecentMsg + "\n");
}
@ -546,6 +571,7 @@ public class Datahandler {
}
ConcurrentMap<Integer, Entry<Double, SimilarityMatrix>> concurrentRelationsMap = new MapMaker().concurrencyLevel(2).makeMap();
ConcurrentMap<Integer, Double> preRelationUserCountersMap = new MapMaker().concurrencyLevel(2).makeMap();
System.out.println("futureAndCacheCombineMap size for: " + futureAndCacheCombineMap.values().size() + "\n");
for (SimilarityMatrix SMX : futureAndCacheCombineMap.values()) {
Double scoreRelation = 500.0;
Double scoreRelationLastUserMsg = SMX.getDistance();
@ -574,13 +600,17 @@ public class Datahandler {
}
}
Double totalRelation = scoreRelation + scoreRelationLastUserMsg;
if (totalRelation > preRelationCounters + preRelationUserCounters && scoreRelationLastUserMsg + (preRelationUserCounters / 10)
> preRelationUserCounters) {
if (totalRelation > preRelationCounters + preRelationUserCounters && (scoreRelationLastUserMsg + (preRelationUserCounters / 10)
>= preRelationUserCounters) || preRelationUserCounters == -100.0) {
Entry<Double, SimilarityMatrix> localEntry = new AbstractMap.SimpleEntry(totalRelation, SMX);
concurrentRelationsMap.put(concurrentRelationsMap.size(), localEntry);
preRelationUserCountersMap.put(preRelationUserCountersMap.size(), preRelationUserCounters);
System.out.println("SUCESS concurrentRelationsMap size: " + concurrentRelationsMap.size() + "\n");
preRelationCounters = scoreRelation;
preRelationUserCounters = scoreRelationLastUserMsg;
} else {
System.out.println("FAILED totalRelation: " + totalRelation + "\npreRelationUserCounters: " + preRelationUserCounters + "\npreRelationCounters: "
+ preRelationCounters + "\nscoreRelationLastUserMsg: " + scoreRelationLastUserMsg + "\n");
}
}
StringBuilder SB = new StringBuilder();
@ -643,11 +673,13 @@ public class Datahandler {
private Double getScoreRelationNewMsgToRecentMsg(String str, String mostRecentMsg) {
SimilarityMatrix SMX = new SimilarityMatrix(str, mostRecentMsg);
SentimentValueCache cacheSentiment1 = sentimentCachingMap.getOrDefault(str, null);
SentimentValueCache cacheSentiment2 = sentimentCachingMap.getOrDefault(mostRecentMsg, null);
Callable<SimilarityMatrix> worker = new SentimentAnalyzerTest(str, mostRecentMsg, SMX,
jmweAnnotationCache.get(str), jmweAnnotationCache.get(mostRecentMsg), pipelineAnnotationCache.get(str),
pipelineAnnotationCache.get(mostRecentMsg), pipelineSentimentAnnotationCache.get(str),
pipelineSentimentAnnotationCache.get(mostRecentMsg), coreDocumentAnnotationCache.get(str),
coreDocumentAnnotationCache.get(mostRecentMsg));
coreDocumentAnnotationCache.get(mostRecentMsg), cacheSentiment1, cacheSentiment2);
SimilarityMatrix callSMX = null;
try {
callSMX = worker.call();
@ -664,10 +696,12 @@ public class Datahandler {
private Double getScoreRelationStrF(String str, String mostRecentMsg) {
SimilarityMatrix SMX = new SimilarityMatrix(str, mostRecentMsg);
SentimentValueCache cacheSentiment1 = sentimentCachingMap.getOrDefault(str, null);
SentimentValueCache cacheSentiment2 = sentimentCachingMap.getOrDefault(mostRecentMsg, null);
Callable<SimilarityMatrix> worker = new SentimentAnalyzerTest(str, mostRecentMsg, SMX,
strAnnoJMWE, jmweAnnotationCache.get(mostRecentMsg), strAnno,
pipelineAnnotationCache.get(mostRecentMsg), strAnnoSentiment,
pipelineSentimentAnnotationCache.get(mostRecentMsg), coreDoc, coreDocumentAnnotationCache.get(mostRecentMsg));
pipelineSentimentAnnotationCache.get(mostRecentMsg), coreDoc, coreDocumentAnnotationCache.get(mostRecentMsg), cacheSentiment1, cacheSentiment2);
SimilarityMatrix callSMX = null;
try {
callSMX = worker.call();

View File

@ -5,22 +5,33 @@
*/
package FunctionLayer;
import FunctionLayer.StanfordParser.SentimentValueCache;
/**
*
* @author install1
*/
public class SimilarityMatrix{
public class SimilarityMatrix {
private String PrimaryString;
private String SecondaryString;
private double distance;
private static String PrimaryString;
private static String SecondaryString;
private static double distance;
private static SentimentValueCache cacheValue1;
private static SentimentValueCache cacheValue2;
public double getDistance() {
public final SentimentValueCache getCacheValue2() {
return cacheValue2;
}
public final void setCacheValue2(SentimentValueCache cacheValue2) {
SimilarityMatrix.cacheValue2 = cacheValue2;
}
public final double getDistance() {
return distance;
}
public void setDistance(double distance) {
public final void setDistance(double distance) {
this.distance = distance;
}
@ -35,21 +46,28 @@ public class SimilarityMatrix{
this.distance = result;
}
public String getPrimaryString() {
public final String getPrimaryString() {
return PrimaryString;
}
public void setPrimaryString(String PrimaryString) {
public final void setPrimaryString(String PrimaryString) {
this.PrimaryString = PrimaryString;
}
public String getSecondaryString() {
public final String getSecondaryString() {
return SecondaryString;
}
public void setSecondaryString(String SecondaryString) {
public final void setSecondaryString(String SecondaryString) {
this.SecondaryString = SecondaryString;
}
public final SentimentValueCache getCacheValue1() {
return cacheValue1;
}
public final void setCacheValue1(SentimentValueCache cacheValue1) {
this.cacheValue1 = cacheValue1;
}
}

View File

@ -0,0 +1,334 @@
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
package FunctionLayer.StanfordParser;
import com.google.common.collect.MapMaker;
import edu.stanford.nlp.ling.TaggedWord;
import edu.stanford.nlp.trees.GrammaticalStructure;
import edu.stanford.nlp.trees.Tree;
import edu.stanford.nlp.trees.TypedDependency;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentMap;
import org.ejml.simple.SimpleMatrix;
/**
*
* @author install1
*/
public final class SentimentValueCache {
private final String sentence;
private static int counter;
private static List<List<TaggedWord>> taggedwordlist = new ArrayList();
private final ConcurrentMap<Integer, String> tgwlistIndex = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, Tree> sentenceConstituencyParseList = new MapMaker().concurrencyLevel(2).makeMap();
private final Collection<TypedDependency> allTypedDependencies = new ArrayList();
private final ConcurrentMap<Integer, GrammaticalStructure> gsMap = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, SimpleMatrix> simpleSMXlist = new MapMaker().concurrencyLevel(3).makeMap();
private final ConcurrentMap<Integer, SimpleMatrix> simpleSMXlistVector = new MapMaker().concurrencyLevel(3).makeMap();
private final ConcurrentMap<Integer, Integer> rnnPredictClassMap = new MapMaker().concurrencyLevel(3).makeMap();
private static List classifyRaw;
private static int mainSentiment = 0;
private static int longest = 0;
private static int tokensCounter = 0;
private static int anotatorcounter = 0;
private static int inflectedCounterPositive = 0;
private static int inflectedCounterNegative = 0;
private static int MarkedContinuousCounter = 0;
private static int MarkedContiniousCounterEntries = 0;
private static int UnmarkedPatternCounter = 0;
private static int pairCounter = 0;
private final ConcurrentMap<Integer, String> ITokenMapTag = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, String> strTokenStems = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, String> strTokenForm = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, String> strTokenGetEntry = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, String> strTokenGetiPart = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, String> strTokenEntryPOS = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, Integer> entryCounts = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, String> nerEntities1 = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, String> nerEntities2 = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, String> nerEntityTokenTags = new MapMaker().concurrencyLevel(3).makeMap();
private final ConcurrentMap<Integer, String> stopwordTokens = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, String> stopWordLemma = new MapMaker().concurrencyLevel(2).makeMap();
public final int getPairCounter() {
return pairCounter;
}
public final void setPairCounter(int pairCounter) {
SentimentValueCache.pairCounter = pairCounter;
}
public final void addStopWordLemma(String str) {
stopWordLemma.put(stopWordLemma.size(), str);
}
public final void addstopwordTokens(String str) {
stopwordTokens.put(stopwordTokens.size(), str);
}
public final ConcurrentMap<Integer, String> getStopwordTokens() {
return stopwordTokens;
}
public final ConcurrentMap<Integer, String> getStopWordLemma() {
return stopWordLemma;
}
public final void addnerEntityTokenTags(String str) {
nerEntityTokenTags.put(nerEntityTokenTags.size(), str);
}
public final ConcurrentMap<Integer, String> getnerEntityTokenTags() {
return nerEntityTokenTags;
}
public final ConcurrentMap<Integer, String> getnerEntities1() {
return nerEntities1;
}
public final ConcurrentMap<Integer, String> getnerEntities2() {
return nerEntities2;
}
public final void addNEREntities1(String str) {
nerEntities1.put(nerEntities1.size(), str);
}
public final void addNEREntities2(String str) {
nerEntities2.put(nerEntities2.size(), str);
}
public final void setTaggedwords(List<List<TaggedWord>> twlist) {
taggedwordlist = twlist;
}
public final List<List<TaggedWord>> getTaggedwordlist() {
return taggedwordlist;
}
public final void addEntryCounts(int counts) {
entryCounts.put(entryCounts.size(), counts);
}
public final ConcurrentMap<Integer, Integer> getEntryCounts() {
return entryCounts;
}
public final void addstrTokenEntryPOS(String str) {
strTokenEntryPOS.put(strTokenEntryPOS.size(), str);
}
public final ConcurrentMap<Integer, String> getstrTokenEntryPOS() {
return strTokenEntryPOS;
}
public final void addstrTokenGetiPart(String str) {
strTokenGetiPart.put(strTokenGetiPart.size(), str);
}
public final ConcurrentMap<Integer, String> getstrTokenGetiPart() {
return strTokenGetiPart;
}
public final ConcurrentMap<Integer, String> getstrTokenGetEntry() {
return strTokenGetEntry;
}
public final void addstrTokenGetEntry(String str) {
strTokenGetEntry.put(strTokenGetEntry.size(), str);
}
public final ConcurrentMap<Integer, String> getstrTokenForm() {
return strTokenForm;
}
public final void addstrTokenForm(String str) {
strTokenForm.put(strTokenForm.size(), str);
}
public final ConcurrentMap<Integer, String> getstrTokenStems() {
return strTokenStems;
}
public final void addstrTokenStems(String str) {
strTokenStems.put(strTokenStems.size(), str);
}
public final ConcurrentMap<Integer, String> getITokenMapTag() {
return ITokenMapTag;
}
public final void addITokenMapTag(String str) {
ITokenMapTag.put(ITokenMapTag.size(), str);
}
public final int getUnmarkedPatternCounter() {
return UnmarkedPatternCounter;
}
public final void setUnmarkedPatternCounter(int UnmarkedPatternCounter) {
SentimentValueCache.UnmarkedPatternCounter = UnmarkedPatternCounter;
}
public final int getMarkedContiniousCounterEntries() {
return MarkedContiniousCounterEntries;
}
public final void setMarkedContiniousCounterEntries(int MarkedContiniousCounterEntries) {
SentimentValueCache.MarkedContiniousCounterEntries = MarkedContiniousCounterEntries;
}
public final int getMarkedContinuousCounter() {
return MarkedContinuousCounter;
}
public final void setMarkedContinuousCounter(int MarkedContinuousCounter) {
SentimentValueCache.MarkedContinuousCounter = MarkedContinuousCounter;
}
public final int getInflectedCounterNegative() {
return inflectedCounterNegative;
}
public final void setInflectedCounterNegative(int inflectedCounterNegative) {
SentimentValueCache.inflectedCounterNegative = inflectedCounterNegative;
}
public final int getInflectedCounterPositive() {
return inflectedCounterPositive;
}
public final void setInflectedCounterPositive(int inflectedCounterPositive) {
SentimentValueCache.inflectedCounterPositive = inflectedCounterPositive;
}
public final int getAnotatorcounter() {
return anotatorcounter;
}
public final void setAnotatorcounter(int anotatorcounter) {
SentimentValueCache.anotatorcounter = anotatorcounter;
}
public final int getTokensCounter() {
return tokensCounter;
}
public final void setTokensCounter(int tokensCounter) {
SentimentValueCache.tokensCounter = tokensCounter;
}
public final int getMainSentiment() {
return mainSentiment;
}
public final void setMainSentiment(int mainSentiment) {
SentimentValueCache.mainSentiment = mainSentiment;
}
public final int getLongest() {
return longest;
}
public final void setLongest(int longest) {
SentimentValueCache.longest = longest;
}
public final List getClassifyRaw() {
return classifyRaw;
}
public final void setClassifyRaw(List classifyRaw) {
SentimentValueCache.classifyRaw = classifyRaw;
}
public final ConcurrentMap<Integer, Integer> getRnnPrediectClassMap() {
return rnnPredictClassMap;
}
public final void addRNNPredictClass(int rnnPrediction) {
rnnPredictClassMap.put(rnnPredictClassMap.size(), rnnPrediction);
}
public final void addSimpleMatrix(SimpleMatrix SMX) {
simpleSMXlist.put(simpleSMXlist.size(), SMX);
}
public final void addSimpleMatrixVector(SimpleMatrix SMX) {
simpleSMXlistVector.put(simpleSMXlistVector.size(), SMX);
}
public final ConcurrentMap<Integer, GrammaticalStructure> getGsMap() {
return gsMap;
}
public final ConcurrentMap<Integer, SimpleMatrix> getSimpleSMXlist() {
return simpleSMXlist;
}
public final ConcurrentMap<Integer, SimpleMatrix> getSimpleSMXlistVector() {
return simpleSMXlistVector;
}
public final ConcurrentMap<Integer, GrammaticalStructure> getGs() {
return gsMap;
}
public final int getCounter() {
return counter;
}
public final void addGS(GrammaticalStructure gs) {
gsMap.put(gsMap.size(), gs);
}
public final Collection<TypedDependency> getAllTypedDependencies() {
return allTypedDependencies;
}
public final void addTypedDependencies(Collection<TypedDependency> TDPlist) {
for (TypedDependency TDP : TDPlist) {
allTypedDependencies.add(TDP);
}
}
public final ConcurrentMap<Integer, Tree> getSentenceConstituencyParseList() {
return sentenceConstituencyParseList;
}
public final void addSentenceConstituencyParse(Tree tree) {
sentenceConstituencyParseList.put(sentenceConstituencyParseList.size(), tree);
}
public final void setCounter(int counter) {
SentimentValueCache.counter = counter;
}
public final String getSentence() {
return sentence;
}
public SentimentValueCache(String str, int counter) {
this.sentence = str;
this.counter = counter;
}
public final ConcurrentMap<Integer, String> getTgwlistIndex() {
return tgwlistIndex;
}
public final void addTgwlistIndex(String str) {
tgwlistIndex.put(tgwlistIndex.size(), str);
}
public SentimentValueCache(String str) {
this.sentence = str;
}
}