refactoring the flow, still missing some caching for sentimentAnalyzerTest

This commit is contained in:
christian 2021-08-22 17:10:29 +02:00
parent 5568a1dc75
commit 78532929ae
10 changed files with 1053 additions and 1762 deletions

View File

@ -5,69 +5,39 @@
*/
package DataLayer;
import FunctionLayer.SimilarityMatrix;
import FunctionLayer.CustomError;
import com.google.common.collect.MapMaker;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentMap;
import java.util.*;
import java.util.logging.Level;
import java.util.logging.Logger;
/**
*
* @author install1
*/
public class DataMapper {
public static void createTables() throws CustomError {
Connection l_cCon = null;
PreparedStatement l_pStatement = null;
ResultSet l_rsSearch = null;
try {
l_cCon = DBCPDataSource.getConnection();
String l_sSQL = "CREATE TABLE IF NOT EXISTS `ArtificialAutism`.`Sentences` (`Strings` text NOT NULL)";
l_pStatement = l_cCon.prepareStatement(l_sSQL);
l_pStatement.execute();
} catch (SQLException ex) {
throw new CustomError("failed in DataMapper " + ex.getMessage());
} finally {
CloseConnections(l_pStatement, l_rsSearch, l_cCon);
}
}
public static ConcurrentMap<Integer, String> getAllStrings() throws CustomError {
ConcurrentMap<Integer, String> allStrings = new MapMaker().concurrencyLevel(2).makeMap();
public static ArrayList<String> getAllStrings() throws SQLException {
Connection l_cCon = null;
PreparedStatement l_pStatement = null;
ResultSet l_rsSearch = null;
ArrayList<String> arrayListStr = new ArrayList();
try {
l_cCon = DBCPDataSource.getConnection();
String l_sSQL = "SELECT * FROM `Sentences`";
l_pStatement = l_cCon.prepareStatement(l_sSQL);
l_rsSearch = l_pStatement.executeQuery();
int ij = 0;
while (l_rsSearch.next()) {
allStrings.put(ij, l_rsSearch.getString(1));
ij++;
arrayListStr.add(l_rsSearch.getString(1));
}
} catch (SQLException ex) {
throw new CustomError("failed in DataMapper " + ex.getMessage());
} finally {
CloseConnections(l_pStatement, l_rsSearch, l_cCon);
}
return allStrings;
return arrayListStr;
}
public static void InsertMYSQLStrings(ConcurrentMap<Integer, String> str) throws CustomError {
public static void InsertMYSQLStrings(ArrayList<String> str) throws SQLException {
Connection l_cCon = null;
PreparedStatement l_pStatement = null;
ResultSet l_rsSearch = null;
@ -75,14 +45,10 @@ public class DataMapper {
try {
l_cCon = DBCPDataSource.getConnection();
l_pStatement = l_cCon.prepareStatement(l_sSQL);
for (String str1 : str.values()) {
//System.out.println("adding str1: " + str1 + "\n");
for (String str1 : str) {
l_pStatement.setString(1, str1);
l_pStatement.addBatch();
l_pStatement.execute();
}
l_pStatement.executeBatch();
} catch (SQLException ex) {
throw new CustomError("failed in DataMapper " + ex.getMessage());
} finally {
CloseConnections(l_pStatement, l_rsSearch, l_cCon);
}

View File

@ -1,17 +0,0 @@
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
package FunctionLayer;
/**
*
* @author install1
*/
public class CustomError extends Exception {
public CustomError(String msg) {
super(msg);
}
}

View File

@ -7,32 +7,29 @@ package FunctionLayer
import DataLayer.DataMapper
import FunctionLayer.StanfordParser.SentimentAnalyzerTest
import FunctionLayer.StanfordParser.SentimentValueCache
import com.google.common.base.Stopwatch
import com.google.common.collect.MapMaker
import edu.stanford.nlp.ie.AbstractSequenceClassifier
import edu.stanford.nlp.ie.crf.CRFClassifier
import edu.stanford.nlp.ling.CoreAnnotations
import edu.stanford.nlp.ling.CoreLabel
import edu.stanford.nlp.ling.TaggedWord
import edu.stanford.nlp.parser.lexparser.LexicalizedParser
import edu.stanford.nlp.pipeline.Annotation
import edu.stanford.nlp.pipeline.CoreDocument
import edu.stanford.nlp.pipeline.StanfordCoreNLP
import edu.stanford.nlp.tagger.maxent.MaxentTagger
import edu.stanford.nlp.trees.GrammaticalStructureFactory
import edu.stanford.nlp.trees.TreebankLanguagePack
import kotlinx.coroutines.*
import java.io.IOException
import java.io.UnsupportedEncodingException
import java.net.*
import java.sql.SQLException
import edu.stanford.nlp.trees.Tree
import edu.stanford.nlp.util.CoreMap
import kotlinx.coroutines.Dispatchers
import kotlinx.coroutines.launch
import kotlinx.coroutines.runBlocking
import kotlinx.coroutines.yield
import java.util.*
import java.util.concurrent.ConcurrentMap
import java.util.concurrent.CountDownLatch
import java.util.concurrent.TimeUnit
import java.util.function.Consumer
import java.util.logging.Level
import java.util.logging.Logger
import java.util.regex.Pattern
import kotlin.collections.ArrayList
import kotlin.collections.HashMap
/**
@ -41,338 +38,266 @@ import kotlin.collections.ArrayList
*/
public class Datahandler {
private val stopwatch: Stopwatch
fun shiftReduceParserInitiate() = runBlocking {
val cdl = CountDownLatch(2)
coroutineScope {
val job = launch(Dispatchers.Default) {
propsSentiment.setProperty("parse.model", lexParserEnglishRNN)
propsSentiment.setProperty("sentiment.model", sentimentModel)
propsSentiment.setProperty("parse.maxlen", "90")
propsSentiment.setProperty("threads", "5")
propsSentiment.setProperty("pos.maxlen", "90")
propsSentiment.setProperty("tokenize.maxlen", "90")
propsSentiment.setProperty("ssplit.maxlen", "90")
propsSentiment.setProperty("annotators", "tokenize,ssplit,pos,parse,sentiment,lemma,stopword") //coref too expensive memorywise
propsSentiment.setProperty("customAnnotatorClass.stopword", "FunctionLayer.StopwordAnnotator")
propsSentiment.setProperty(StopwordAnnotator.STOPWORDS_LIST, customStopWordList)
propsSentiment.setProperty("tokenize.options", "untokenizable=firstKeep")
pipelineSentiment = StanfordCoreNLP(propsSentiment)
tagger = MaxentTagger(taggerPath)
lp = LexicalizedParser.loadModel(lexParserEnglishRNN, *options)
tlp = lp.getOp().langpack()
gsf = tlp.grammaticalStructureFactory()
cdl.countDown()
yield()
}
job.join()
}
coroutineScope {
val job = launch(Dispatchers.Default) {
try {
classifier = CRFClassifier.getClassifierNoExceptions(nerModel)
} catch (ex: ClassCastException) {
Logger.getLogger(Datahandler::class.java.name).log(Level.SEVERE, null, ex)
}
cdl.countDown()
yield()
}
job.join()
}
try {
cdl.await()
} catch (ex: InterruptedException) {
//System.out.println("cdl await interrupted: " + ex.getLocalizedMessage() + "\n");
}
private val EXPIRE_TIME_IN_MINUTES = TimeUnit.MINUTES.convert(30, TimeUnit.MINUTES)
private var pipelineAnnotationCache: HashMap<String, Annotation>
private var pipelineSentimentAnnotationCache = HashMap<String, Annotation>()
private var coreDocumentAnnotationCache: HashMap<String, CoreDocument>
private var jmweAnnotationCache = HashMap<String, Annotation>()
private val stringCache = ArrayList<String>()
private val nerModel = "edu/stanford/nlp/models/ner/english.all.3class.caseless.distsim.crf.ser.gz"
private var tagger: MaxentTagger = MaxentTagger()
private var gsf: GrammaticalStructureFactory
private var classifier: AbstractSequenceClassifier<CoreLabel>
//SentimentAnalyzer Hashmaps
private var tokenizeCountingHashMap: HashMap<String, Int> = HashMap()
private var taggedWordListHashMap: HashMap<String, List<List<TaggedWord>>> = HashMap()
private var retrieveTGWListHashMap: HashMap<String, java.util.ArrayList<String>> =
HashMap()
private var sentences1HashMap: HashMap<String, List<CoreMap>> = HashMap()
private var sentencesSentimentHashMap: HashMap<String, List<CoreMap>> = HashMap()
private var trees1HashMap: HashMap<String, java.util.ArrayList<Tree>> = HashMap()
constructor() {
stopwatch = Stopwatch.createUnstarted()
jmweAnnotationCache = HashMap<String, Annotation>()
pipelineAnnotationCache = HashMap<String, Annotation>()
pipelineSentimentAnnotationCache = HashMap<String, Annotation>()
coreDocumentAnnotationCache = HashMap<String, CoreDocument>()
gsf = initiateGrammaticalStructureFactory()
classifier = CRFClassifier.getClassifierNoExceptions(nerModel)
}
fun initiateGrammaticalStructureFactory(): GrammaticalStructureFactory {
val options = arrayOf("-maxLength", "100")
val lexParserEnglishRNN = "edu/stanford/nlp/models/lexparser/englishRNN.ser.gz"
val lp = LexicalizedParser.loadModel(lexParserEnglishRNN, *options)
val tlp = lp.getOp().langpack()
return tlp.grammaticalStructureFactory()
}
public fun pipeLineSetUp(): StanfordCoreNLP {
val props = Properties()
val shiftReduceParserPath = "edu/stanford/nlp/models/srparser/englishSR.ser.gz"
val nerModel2 = "edu/stanford/nlp/models/ner/english.conll.4class.caseless.distsim.crf.ser.gz"
val nerModel3 = "edu/stanford/nlp/models/ner/english.muc.7class.caseless.distsim.crf.ser.gz"
props.setProperty("annotators", "tokenize,ssplit,pos,lemma,ner,parse")
props.setProperty("parse.model", shiftReduceParserPath)
props.setProperty("parse.maxlen", "90")
props.setProperty("parse.binaryTrees", "true")
props.setProperty("threads", "5")
props.setProperty("pos.maxlen", "90")
props.setProperty("tokenize.maxlen", "90")
props.setProperty("ssplit.maxlen", "90")
props.setProperty("lemma.maxlen", "90")
props.setProperty("ner.model", "$nerModel,$nerModel2,$nerModel3")
props.setProperty("ner.combinationMode", "HIGH_RECALL")
props.setProperty("regexner.ignorecase", "true")
props.setProperty("ner.fine.regexner.ignorecase", "true")
props.setProperty("tokenize.options", "untokenizable=firstKeep")
return StanfordCoreNLP(props)
}
fun shiftReduceParserInitiate(): StanfordCoreNLP {
val propsSentiment = Properties()
val lexParserEnglishRNN = "edu/stanford/nlp/models/lexparser/englishRNN.ser.gz"
val sentimentModel = "edu/stanford/nlp/models/sentiment/sentiment.ser.gz"
val taggerPath = "edu/stanford/nlp/models/pos-tagger/english-left3words/english-left3words-distsim.tagger"
val customStopWordList = "start,starts,period,periods,a,an,and,are,as,at,be,but,by,for,if,in,into,is,it,no,not,of," +
"on,or,such,that,the,their,then,there,these,they,this,to,was,will,with"
propsSentiment.setProperty("parse.model", lexParserEnglishRNN)
propsSentiment.setProperty("sentiment.model", sentimentModel)
propsSentiment.setProperty("parse.maxlen", "90")
propsSentiment.setProperty("threads", "5")
propsSentiment.setProperty("pos.maxlen", "90")
propsSentiment.setProperty("tokenize.maxlen", "90")
propsSentiment.setProperty("ssplit.maxlen", "90")
propsSentiment.setProperty("annotators", "tokenize,ssplit,pos,parse,sentiment,lemma,stopword") //coref too expensive memorywise
propsSentiment.setProperty("customAnnotatorClass.stopword", "FunctionLayer.StopwordAnnotator")
propsSentiment.setProperty(StopwordAnnotator.STOPWORDS_LIST, customStopWordList)
propsSentiment.setProperty("tokenize.options", "untokenizable=firstKeep")
tagger = MaxentTagger(taggerPath)
println("finished shiftReduceParserInitiate\n")
return StanfordCoreNLP(propsSentiment)
}
fun updateStringCache() {
try {
checkIfUpdateStrings()
} catch (ex: CustomError) {
Logger.getLogger(Datahandler::class.java.name).log(Level.SEVERE, null, ex)
}
}
@get:Throws(SQLException::class, IOException::class, CustomError::class)
private val cache: Map<Int, String?>
private get() = DataMapper.getAllStrings()
@Throws(SQLException::class, IOException::class)
fun initiateMYSQL() {
try {
DataMapper.createTables()
stringCache.putAll(cache)
} catch (ex: CustomError) {
Logger.getLogger(Datahandler::class.java
.name).log(Level.SEVERE, null, ex)
}
}
fun instantiateAnnotationMapJMWE() {
if (!stringCache.isEmpty()) {
val jmweAnnotation = PipelineJMWESingleton.INSTANCE.getJMWEAnnotation(stringCache.values)
for ((key, value) in jmweAnnotation) {
jmweAnnotationCache[key] = value
}
}
}
fun instantiateAnnotationMap() = runBlocking {
if (!stringCache.isEmpty()) {
val Annotationspipeline = MapMaker().concurrencyLevel(5).makeMap<String?, Annotation>()
val AnnotationspipelineSentiment = MapMaker().concurrencyLevel(5).makeMap<String?, Annotation>()
coroutineScope {
for (str in stringCache.values) {
val job = launch(Dispatchers.Default) {
val strAnno = Annotation(str)
strAnno.compact()
Annotationspipeline[str] = strAnno
val strAnno2 = Annotation(str)
strAnno2.compact()
AnnotationspipelineSentiment[str] = strAnno2
yield()
}
job.join();
}
}
System.out.println("PRE getMultipleCoreDocumentsWaySuggestion lag")
val coreDocumentpipelineMap = getMultipleCoreDocumentsWaySuggestion(stringCache.values, pipeline)
//System.out.println("post getMultipleCoreDocumentsWaySuggestion instantiateAnnotationMap lag")
pipeline.annotate(Annotationspipeline.values, 4)
pipelineSentiment!!.annotate(AnnotationspipelineSentiment.values, 4)
//System.out.println("reached second job instantiateAnnotationMap lag");
coroutineScope {
for (i in Annotationspipeline.entries) {
val job = launch(Dispatchers.Default) {
i.value.compact()
pipelineAnnotationCache[i.key] = i.value
yield()
}
job.join();
}
for (i in AnnotationspipelineSentiment.entries) {
val job = launch(Dispatchers.Default) {
i.value.compact()
pipelineSentimentAnnotationCache[i.key] = i.value
yield()
}
job.join();
}
}
System.out.println("post Annotationspipeline lag")
for (i in coreDocumentpipelineMap.entries) {
coreDocumentAnnotationCache[i.key] = i.value
}
}
}
private fun futuresReturnOverallEvaluation(similarityMatrixes: List<SimilarityMatrix?>): ConcurrentMap<Int?, String?> {
var strmapreturn = MapMaker().concurrencyLevel(6).makeMap<Int?, String?>()
if (!similarityMatrixes.isEmpty()) {
for (SMX in similarityMatrixes) {
strmapreturn = addSMXToMapReturn(strmapreturn, SMX)
}
}
return strmapreturn
}
private fun addSMXToMapReturn(strmapreturn: ConcurrentMap<Int?, String?>, SMX: SimilarityMatrix?): ConcurrentMap<Int?, String?> {
if (!strmapreturn.containsValue(SMX!!.primaryString)) {
strmapreturn[strmapreturn.size] = SMX.primaryString
val transmittedStr = SMX.secondaryString
val cacheValue1 = SMX.cacheValue1
val cacheValue2 = SMX.cacheValue2
if (cacheValue1 != null && !sentimentCachingMap.keys.contains(SMX.primaryString)) {
sentimentCachingMap[SMX.secondaryString] = SMX.cacheValue1
}
if (cacheValue2 != null && !sentimentCachingMap.keys.contains(transmittedStr)) {
sentimentCachingMap[transmittedStr] = SMX.cacheValue2
}
}
return strmapreturn
}
private fun checkForNullValues(index: String?): Boolean {
if (jmweAnnotationCache[index] != null && pipelineAnnotationCache[index] != null
&& pipelineSentimentAnnotationCache[index] != null &&
coreDocumentAnnotationCache[index] != null) {
return true;
}
return false;
}
private suspend fun StrComparringNoSentenceRelationMap(strCacheLocal: ConcurrentMap<Int, String?>, strCollection: Collection<String?>, localJMWEMap: ConcurrentMap<String, Annotation>,
localPipelineAnnotation: ConcurrentMap<String?, Annotation>, localPipelineSentimentAnnotation: ConcurrentMap<String?, Annotation>,
localCoreDocumentMap: ConcurrentMap<String, CoreDocument>): List<SimilarityMatrix?> {
val distance_requirement = 10500.0
val prefix_size = 150
val smxReturnList: ArrayList<SimilarityMatrix> = ArrayList<SimilarityMatrix>()
coroutineScope {
for (j in strCollection) {
val job = launch(Dispatchers.Default) {
for (i in strCollection) {
if (j != i) {
val SMXInit = SimilarityMatrix(j, i)
val sentimentCacheStr1 = sentimentCachingMap.getOrDefault(i, null)
val sentimentCacheStr = sentimentCachingMap.getOrDefault(j, null)
var sentimentAnalyzerTest: SentimentAnalyzerTest? = null
val checkedVal: Boolean = checkForNullValues(i)
if (stringCache.size < prefix_size || !checkedVal) {
sentimentAnalyzerTest = SentimentAnalyzerTest(j, i, SMXInit,
localJMWEMap[j], localJMWEMap[i], localPipelineAnnotation[j],
localPipelineAnnotation[i], localPipelineSentimentAnnotation[j],
localPipelineSentimentAnnotation[i], localCoreDocumentMap[j], localCoreDocumentMap[i],
sentimentCacheStr, sentimentCacheStr1)
} else {
sentimentAnalyzerTest = SentimentAnalyzerTest(j, i, SMXInit,
localJMWEMap[j], jmweAnnotationCache[i], localPipelineAnnotation[j],
pipelineAnnotationCache[i], localPipelineSentimentAnnotation[j],
pipelineSentimentAnnotationCache[i], localCoreDocumentMap[j],
coreDocumentAnnotationCache[i], sentimentCacheStr, sentimentCacheStr1)
}
val call = sentimentAnalyzerTest.callSMX();
if (call != null && call.distance > distance_requirement) {
smxReturnList.add(call)
}
}
}
yield()
}
job.join()
}
}
return smxReturnList
}
private suspend fun stringIteratorComparator(strmap: ConcurrentMap<Int?, String?>,
strCacheLocal: ConcurrentMap<Int, String?>, localJMWEMap: ConcurrentMap<String, Annotation>,
localPipelineAnnotation: ConcurrentMap<String?, Annotation>, localPipelineSentimentAnnotation: ConcurrentMap<String?, Annotation>,
localCoreDocumentMap: ConcurrentMap<String, CoreDocument>): ConcurrentMap<Int?, String?> {
//System.out.println("strmap siuze: " + strmap.size());
val ComparringNoSentenceRelationMap: List<SimilarityMatrix> = StrComparringNoSentenceRelationMap(strCacheLocal, strmap.values,
localJMWEMap, localPipelineAnnotation, localPipelineSentimentAnnotation, localCoreDocumentMap) as List<SimilarityMatrix>
Collections.sort(ComparringNoSentenceRelationMap, Comparator<SimilarityMatrix> { e1: SimilarityMatrix, e2: SimilarityMatrix -> e1.primaryString.compareTo(e2.primaryString) })
System.out.println("ComparringNoSentenceRelationMap size: " + ComparringNoSentenceRelationMap.size);
return futuresReturnOverallEvaluation(ComparringNoSentenceRelationMap)
}
private suspend fun removeNonSensicalStrings(strmap: ConcurrentMap<Int?, String?>): ConcurrentMap<Int?, String?> {
val strCacheLocal = stringCache
val localJMWEMap = getMultipleJMWEAnnotation(strmap.values)
val localPipelineAnnotation = getMultiplePipelineAnnotation(strmap.values)
System.out.println("str size post getMultiplePipelineAnnotation: " + strmap.size)
val localPipelineSentimentAnnotation = getMultiplePipelineSentimentAnnotation(strmap.values)
val localCoreDocumentMap = getMultipleCoreDocumentsWaySuggestion(strmap.values, pipeline)
System.out.println("strmap size pre stringIteratorComparator: " + strmap.size)
return stringIteratorComparator(strmap, strCacheLocal, localJMWEMap, localPipelineAnnotation, localPipelineSentimentAnnotation, localCoreDocumentMap)
}
fun checkIfUpdateStrings() = runBlocking {
if (stopwatch.elapsed(TimeUnit.SECONDS) >= EXPIRE_TIME_IN_SECONDS || !stopwatch.isRunning) {
var str = MessageResponseHandler.getStr()
println("str size: " + str.size)
str = filterContent(str)
System.out.println("str size post filtercontent: " + str.size)
str = removeNonSensicalStrings(str)
System.out.println("removeNonSensicalStrings str size POST: " + str.size + "\n");
str = annotationCacheUpdate(str)
println("""
annotationCacheUpdate str size POST: ${str.size}
""".trimIndent())
val strf = str
if (!stringCache.isEmpty()) {
coroutineScope {
val job = launch(Dispatchers.IO) {
try {
DataMapper.InsertMYSQLStrings(strf)
} catch (ex: CustomError) {
Logger.getLogger(Datahandler::class.java
.name).log(Level.SEVERE, null, ex)
}
MessageResponseHandler.setStr(MapMaker().concurrencyLevel(6).makeMap())
yield()
}
job.join()
}
} else {
try {
DataMapper.InsertMYSQLStrings(strf)
} catch (ex: CustomError) {
Logger.getLogger(Datahandler::class.java
.name).log(Level.SEVERE, null, ex)
}
MessageResponseHandler.setStr(MapMaker().concurrencyLevel(6).makeMap())
}
if (stopwatch.elapsed(TimeUnit.MINUTES) >= EXPIRE_TIME_IN_MINUTES || !stopwatch.isRunning) {
if (!stopwatch.isRunning) {
stopwatch.start()
} else {
stopwatch.reset()
}
stringCache.sortWith(Comparator.comparingInt(String::length).reversed());
System.out.println("pre InsertMYSQLStrings")
DataMapper.InsertMYSQLStrings(stringCache)
}
}
fun initiateMYSQL() {
stringCache.addAll(DataMapper.getAllStrings())
}
private fun trimString(str: String): String {
var str = str
str = str.trim { it <= ' ' }
if (str.startsWith("<@")) {
str = str.substring(str.indexOf("> ") + 2)
var message = str.trim { it <= ' ' }
if (message.startsWith("<@")) {
message = message.substring(message.indexOf("> ") + 2)
}
return str
if (!message.isEmpty()) {
message = message.replace("@", "")
if (message.contains("<>")) {
message = message.substring(message.indexOf(">"))
}
if (message.startsWith("[ *")) {
message = message.substring(message.indexOf("]"))
}
}
return message
}
private suspend fun getResponseFutures(strF: String): String {
val values_copy: List<String?> = ArrayList(stringCache.values)
Collections.sort<String>(values_copy) { o1, o2 -> o2.length - o1.length }
var preRelationUserCounters = -155000.0
val concurrentRelations: MutableList<String?> = arrayListOf()
val SB = StringBuilder()
coroutineScope {
for (str1 in values_copy) {
if (strF != str1) {
val job = launch(Dispatchers.Default) {
var sentimentCacheStr1 = sentimentCachingMap.getOrDefault(str1, null)
var sentimentAnalyzerTest = SentimentAnalyzerTest(strF, str1, SimilarityMatrix(strF, str1),
strAnnoJMWE, jmweAnnotationCache[str1], strAnno,
pipelineAnnotationCache[str1], strAnnoSentiment,
pipelineSentimentAnnotationCache[str1], coreDoc, coreDocumentAnnotationCache[str1],
null, sentimentCacheStr1)
private fun createStrAnnotation(str: String, stanfordCoreNLP: StanfordCoreNLP, sentimentBool: Boolean) {
val strAnno2 = Annotation(str)
strAnno2.compact()
stanfordCoreNLP.annotate(strAnno2)
if (sentimentBool) {
pipelineSentimentAnnotationCache.put(str, strAnno2)
} else {
pipelineAnnotationCache.put(str, strAnno2)
}
}
var getSMX: SimilarityMatrix = sentimentAnalyzerTest.callSMX()
if (getSMX != null) {
val scoreRelationLastUserMsg = getSMX.distance
if (scoreRelationLastUserMsg > preRelationUserCounters) {
preRelationUserCounters = scoreRelationLastUserMsg
concurrentRelations.add(getSMX.secondaryString)
}
}
yield()
}
job.join()
private fun getResponseFutures(strF: String, stanfordCoreNLP: StanfordCoreNLP, stanfordCoreNLPSentiment: StanfordCoreNLP): String {
val strAnno: Annotation = Annotation(strF)
strAnno.compact()
stanfordCoreNLP.annotate(strAnno)
val strAnnoSentiment: Annotation = Annotation(strF)
strAnnoSentiment.compact()
stanfordCoreNLPSentiment.annotate(strAnnoSentiment)
val coreDocument = CoreDocument(strF)
stanfordCoreNLP.annotate(coreDocument)
val values_copy: List<String> = ArrayList(stringCache)
var preRelationUserCounters = -155000.0
val concurrentRelations: MutableList<String> = arrayListOf()
val SB = StringBuilder()
var jmweAnnotationF = PipelineJMWESingleton.INSTANCE.getJMWEAnnotation(strF)
var tokenizeCountingF: Int? = null
var taggedWordListF: List<List<TaggedWord>>? = null
var retrieveTGWListF: java.util.ArrayList<String>? = null
var sentencesF: List<CoreMap>? = null
var sentencesSentimentF: List<CoreMap>? = null
var coreMaps1: List<CoreMap> = jmweAnnotationF.get(CoreAnnotations.SentencesAnnotation::class.java)
var treesF: java.util.ArrayList<Tree>? = null
for (str1 in values_copy) {
if (strF != str1) {
val annotation2 = pipelineSentimentAnnotationCache.getOrDefault(str1, null)
val annotation4 = pipelineAnnotationCache.getOrDefault(str1, null)
val coreDocument1 = coreDocumentAnnotationCache.getOrDefault(str1, null)
var jmweAnnotation = jmweAnnotationCache.getOrDefault(str1, null)
if (annotation2 == null) {
createStrAnnotation(str1, stanfordCoreNLPSentiment, true)
}
if (annotation4 == null) {
createStrAnnotation(str1, stanfordCoreNLP, false)
}
if (coreDocument1 == null) {
getCoreDocumentsSuggested(stanfordCoreNLP, str1)
}
if (jmweAnnotation == null) {
getJMWEAnnotation(str1)
jmweAnnotation = jmweAnnotationCache.get(str1)
}
val tokenizeCounting: Int? = tokenizeCountingHashMap.getOrDefault(str1, null)
val taggedWordList1: List<List<TaggedWord>>? = taggedWordListHashMap.getOrDefault(str1, null)
val retrieveTGWList1: java.util.ArrayList<String>? = retrieveTGWListHashMap.getOrDefault(str1, null)
val sentence1: List<CoreMap>? = sentences1HashMap.getOrDefault(str1, null)
val sentenceSentiment1: List<CoreMap>? = sentencesSentimentHashMap.getOrDefault(str1, null)
val trees1 = trees1HashMap.getOrDefault(str1, null)
var coreMaps2: List<CoreMap> = listOf()
if (jmweAnnotation != null) {
coreMaps2 = jmweAnnotation.get(CoreAnnotations.SentencesAnnotation::class.java)
}
var SMX = SentimentAnalyzerTest(strF, str1, SimilarityMatrix(strF, str1),
coreMaps1, coreMaps2, strAnno,
pipelineAnnotationCache[str1], strAnnoSentiment,
pipelineSentimentAnnotationCache[str1], coreDocument, coreDocumentAnnotationCache[str1],
tagger, gsf, classifier, tokenizeCounting, tokenizeCountingF,
taggedWordListF, taggedWordList1, retrieveTGWListF, retrieveTGWList1,
sentencesF, sentence1, sentencesSentimentF, sentenceSentiment1, treesF, trees1)
if (tokenizeCounting == null) {
val tokenizeCounting1 = SMX.getTokenizeCounting();
tokenizeCountingHashMap.put(str1, tokenizeCounting1)
}
if (taggedWordList1 == null) {
val taggedWordList1Local = SMX.getTaggedWordList1();
taggedWordListHashMap.put(str1, taggedWordList1Local)
}
if (tokenizeCountingF == null) {
val tokenizeCountingF1 = SMX.getTokenizeCountingF();
tokenizeCountingF = tokenizeCountingF1;
}
if (taggedWordListF == null) {
val taggedWordListF1 = SMX.getTaggedWordListF();
taggedWordListF = taggedWordListF1;
}
if (retrieveTGWListF == null) {
val retrieveTGWListF1 = SMX.getRetrieveTGWListF();
retrieveTGWListF = retrieveTGWListF1;
}
if (retrieveTGWList1 == null) {
val retrieveTGWList11 = SMX.getRetrieveTGWList1();
retrieveTGWListHashMap.put(str1, retrieveTGWList11);
}
if (sentencesF == null) {
val sentencesF1 = SMX.getSentencesF();
sentencesF = sentencesF1;
}
if (sentence1 == null) {
val sentences1 = SMX.getSentences1();
sentences1HashMap.put(str1, sentences1)
}
if (sentencesSentimentF == null) {
val sentencesSentimentF1 = SMX.getSentencesSentimentF();
sentencesSentimentF = sentencesSentimentF1;
}
if (sentenceSentiment1 == null) {
val sentencesSentiment1 = SMX.getSentencesSentiment1();
sentencesSentimentHashMap.put(str1, sentencesSentiment1);
}
if (treesF == null) {
val treesF1 = SMX.getTreesF();
treesF = treesF1;
}
if (trees1 == null) {
val trees11 = SMX.getTrees1();
trees1HashMap.put(str1, trees11)
}
var getSMX: SimilarityMatrix = SMX.callSMX()
val scoreRelationLastUserMsg = getSMX.distance
if (scoreRelationLastUserMsg > preRelationUserCounters) {
preRelationUserCounters = scoreRelationLastUserMsg
concurrentRelations.add(getSMX.secondaryString)
}
}
val randomLenghtPermit = strF.length * (Math.random() * Math.random() * Math.random() * (Math.random() * 10))
Collections.reverse(concurrentRelations)
if (!concurrentRelations.isEmpty()) {
val firstRelation = concurrentRelations[0]
val job1 = launch(Dispatchers.Default) {
for (secondaryRelation in concurrentRelations) {
if (SB.toString().length > randomLenghtPermit && !SB.toString().isEmpty()) {
break
}
val append = appendToString(firstRelation, secondaryRelation)
if (append) {
SB.append(secondaryRelation).append(" ")
}
}
yield()
}
val cacheRequirement = 6500;
if (preRelationUserCounters > cacheRequirement && !stringCache.contains(strF) && filterContent(strF)) {
stringCache.add(strF)
}
val randomLenghtPermit = strF.length * (Math.random() * Math.random() * Math.random() * (Math.random() * 10))
Collections.reverse(concurrentRelations)
if (!concurrentRelations.isEmpty()) {
for (secondaryRelation in concurrentRelations) {
if (SB.toString().length > randomLenghtPermit && !SB.toString().isEmpty()) {
break
}
job1.join()
SB.append(secondaryRelation).append(" ")
}
}
if (SB.toString().isEmpty()) {
@ -381,299 +306,79 @@ public class Datahandler {
return SB.toString()
}
private fun appendToString(firstRelation: String?, secondaryRelation: String?): Boolean {
if (firstRelation == secondaryRelation) {
return true
}
val scoreRelationStrF = getScoreRelationStrF(firstRelation, secondaryRelation)
return if (scoreRelationStrF > 1900) {
true
} else false
private fun getJMWEAnnotation(str1: String) {
val jmweAnnotation = PipelineJMWESingleton.INSTANCE.getJMWEAnnotation(str1)
jmweAnnotationCache.put(str1, jmweAnnotation)
}
fun getResponseMsg(str: String): String {
val responseFutures: String
fun getResponseMsg(str: String, personName: String, stanfordCoreNLP: StanfordCoreNLP,
stanfordCoreNLPSentiment: StanfordCoreNLP, ingameResponse: Boolean): String {
var responseFutures: String = ""
runBlocking {
val strF = trimString(str)
getSingularAnnotation(strF)
responseFutures = getResponseFutures(strF)
val launch1 = launch(Dispatchers.Default) {
var strF = trimString(str)
responseFutures = getResponseFutures(strF, stanfordCoreNLP, stanfordCoreNLPSentiment)
if (!ingameResponse) {
responseFutures = checkPersonPresentInSentence(personName, responseFutures, strF, stanfordCoreNLP,
stanfordCoreNLPSentiment)
}
yield()
}
launch1.join()
}
return responseFutures
}
suspend fun getSingularAnnotation(str: String?) {
coroutineScope {
val job = launch(Dispatchers.Default) {
strAnno = Annotation(str)
strAnno!!.compact()
pipeline.annotate(strAnno)
yield()
}
job.join()
val job1 = launch(Dispatchers.Default) {
strAnnoSentiment = Annotation(str)
strAnnoSentiment!!.compact()
pipelineSentiment!!.annotate(strAnnoSentiment)
val notactualList: MutableList<String?> = arrayListOf()
notactualList.add(str)
val jmweAnnotation = PipelineJMWESingleton.INSTANCE.getJMWEAnnotation(notactualList)
strAnnoJMWE = jmweAnnotation.values.iterator().next()
strAnnoJMWE.compact()
yield()
}
job1.join()
val job3 = launch(Dispatchers.Default) {
val coreDocument = CoreDocument(str)
pipeline.annotate(coreDocument)
coreDoc = coreDocument
yield()
}
job3.join()
}
}
private fun getScoreRelationStrF(str: String?, mostRecentMsg: String?): Double {
val SMX = SimilarityMatrix(str, mostRecentMsg)
val cacheSentiment1 = sentimentCachingMap.getOrDefault(str, null)
val cacheSentiment2 = sentimentCachingMap.getOrDefault(mostRecentMsg, null)
val sentimentAnalyzerTest = SentimentAnalyzerTest(str, mostRecentMsg, SMX,
strAnnoJMWE, jmweAnnotationCache[mostRecentMsg], strAnno,
pipelineAnnotationCache[mostRecentMsg], strAnnoSentiment,
pipelineSentimentAnnotationCache[mostRecentMsg], coreDoc,
coreDocumentAnnotationCache[mostRecentMsg],
cacheSentiment1, cacheSentiment2)
val callSMX = sentimentAnalyzerTest.callSMX()
return callSMX.distance ?: 0.0
}
suspend private fun annotationCacheUpdate(strmap: ConcurrentMap<Int?, String?>): ConcurrentMap<Int?, String?> {
val jmweAnnotation = PipelineJMWESingleton.INSTANCE.getJMWEAnnotation(strmap.values)
for ((key, value) in jmweAnnotation) {
jmweAnnotationCache[key] = value
}
val Annotationspipeline = MapMaker().concurrencyLevel(5).makeMap<String?, Annotation>()
val AnnotationspipelineSentiment = MapMaker().concurrencyLevel(5).makeMap<String?, Annotation>()
val coreDocumentpipelineMap = getMultipleCoreDocumentsWaySuggestion(strmap.values, pipeline)
coroutineScope {
val job = launch(Dispatchers.Default) {
for (str in strmap.values) {
val strAnno1 = Annotation(str)
Annotationspipeline[str] = strAnno1
val strAnno2 = Annotation(str)
AnnotationspipelineSentiment[str] = strAnno2
stringCache[stringCache.size + 1] = str
}
yield()
}
pipeline.annotate(Annotationspipeline.values, 5)
pipelineSentiment!!.annotate(AnnotationspipelineSentiment.values, 5)
job.join()
}
coroutineScope {
val job = launch(Dispatchers.Default) {
for (pipelineEntry in Annotationspipeline.entries) {
if (pipelineEntry != null) {
pipelineAnnotationCache[pipelineEntry.key] = pipelineEntry.value
}
}
yield()
}
job.join()
}
coroutineScope {
val job = launch(Dispatchers.Default) {
for (coreDocumentEntry in coreDocumentpipelineMap.entries) {
coreDocumentAnnotationCache[coreDocumentEntry.key] = coreDocumentEntry.value
}
yield()
}
job.join()
}
coroutineScope {
val job1 = launch(Dispatchers.Default) {
for (pipelineEntry in AnnotationspipelineSentiment.entries) {
if (pipelineEntry != null) {
pipelineSentimentAnnotationCache[pipelineEntry.key] = pipelineEntry.value
}
}
yield()
}
job1.join()
}
return strmap
}
private class AnnotationCollector<T> : Consumer<T> {
val annotationsT: MutableList<T?> = arrayListOf()
override fun accept(ann: T) {
//System.out.println("adding ann: " + ann.toString());
annotationsT.add(ann)
}
companion object {
var i = 0
}
}
companion object {
val EXPIRE_TIME_IN_SECONDS = TimeUnit.SECONDS.convert(10, TimeUnit.MINUTES)
val EXPIRE_TIME_IN_SECONDS1 = TimeUnit.SECONDS.convert(10, TimeUnit.HOURS)
@JvmField
var instance = Datahandler()
private var strAnno: Annotation? = null
private var strAnnoSentiment: Annotation? = null
private lateinit var strAnnoJMWE: Annotation
private var coreDoc: CoreDocument? = null
private val stringCache = MapMaker().concurrencyLevel(6).makeMap<Int, String?>()
private lateinit var pipelineAnnotationCache: ConcurrentMap<String?, Annotation>
private lateinit var pipelineSentimentAnnotationCache: ConcurrentMap<String?, Annotation>
private lateinit var jmweAnnotationCache: ConcurrentMap<String, Annotation>
private lateinit var coreDocumentAnnotationCache: ConcurrentMap<String, CoreDocument>
private val sentimentCachingMap = MapMaker().concurrencyLevel(6).makeMap<String, SentimentValueCache>()
private const val similar = ""
private const val shiftReduceParserPath = "edu/stanford/nlp/models/srparser/englishSR.ser.gz"
private const val sentimentModel = "edu/stanford/nlp/models/sentiment/sentiment.ser.gz"
private const val lexParserEnglishRNN = "edu/stanford/nlp/models/lexparser/englishRNN.ser.gz"
private const val taggerPath = "edu/stanford/nlp/models/pos-tagger/english-left3words/english-left3words-distsim.tagger"
private const val nerModel = "edu/stanford/nlp/models/ner/english.all.3class.caseless.distsim.crf.ser.gz"
private const val nerModel2 = "edu/stanford/nlp/models/ner/english.conll.4class.caseless.distsim.crf.ser.gz"
private const val nerModel3 = "edu/stanford/nlp/models/ner/english.muc.7class.caseless.distsim.crf.ser.gz"
private const val customStopWordList = "start,starts,period,periods,a,an,and,are,as,at,be,but,by,for,if,in,into,is,it,no,not,of,on,or,such,that,the,their,then,there,these,they,this,to,was,will,with"
@JvmStatic
var tagger: MaxentTagger? = null
private set
private val options = arrayOf("-maxLength", "100")
private val props = Properties()
private val propsSentiment = Properties()
@JvmStatic
var gsf: GrammaticalStructureFactory? = null
private set
private lateinit var lp: LexicalizedParser
private lateinit var tlp: TreebankLanguagePack
private lateinit var classifier: AbstractSequenceClassifier<CoreLabel>
public fun getPipeLine(): StanfordCoreNLP {
return pipeline
}
// set up Stanford CoreNLP pipeline
@JvmStatic
val pipeline = pipeLineSetUp
private var pipelineSentiment: StanfordCoreNLP? = null
private val pipeLineSetUp: StanfordCoreNLP
private get() {
props.setProperty("annotators", "tokenize,ssplit,pos,lemma,ner,parse")
props.setProperty("parse.model", shiftReduceParserPath)
props.setProperty("parse.maxlen", "90")
props.setProperty("parse.binaryTrees", "true")
props.setProperty("threads", "5")
props.setProperty("pos.maxlen", "90")
props.setProperty("tokenize.maxlen", "90")
props.setProperty("ssplit.maxlen", "90")
props.setProperty("lemma.maxlen", "90")
props.setProperty("ner.model", "$nerModel,$nerModel2,$nerModel3")
props.setProperty("ner.combinationMode", "HIGH_RECALL")
props.setProperty("regexner.ignorecase", "true")
props.setProperty("ner.fine.regexner.ignorecase", "true")
props.setProperty("tokenize.options", "untokenizable=firstKeep")
return StanfordCoreNLP(props)
}
@JvmStatic
fun getClassifier(): AbstractSequenceClassifier<CoreLabel> {
return classifier
}
private fun getMultipleJMWEAnnotation(str: Collection<String?>): ConcurrentMap<String, Annotation> {
return PipelineJMWESingleton.INSTANCE.getJMWEAnnotation(str)
}
private fun getMultiplePipelineAnnotation(str: Collection<String?>): ConcurrentMap<String?, Annotation> {
val pipelineAnnotationMap = MapMaker().concurrencyLevel(5).makeMap<String?, Annotation>()
for (str1 in str) {
val strAnno1 = Annotation(str1)
pipelineAnnotationMap[str1] = strAnno1
}
pipeline.annotate(pipelineAnnotationMap.values, 5)
return pipelineAnnotationMap
}
private fun getMultiplePipelineSentimentAnnotation(str: Collection<String?>): ConcurrentMap<String?, Annotation> {
val pipelineAnnotationMap = MapMaker().concurrencyLevel(5).makeMap<String?, Annotation>()
for (str1 in str) {
val strAnno1 = Annotation(str1)
pipelineAnnotationMap[str1] = strAnno1
}
pipelineSentiment?.annotate(pipelineAnnotationMap.values, 5)
return pipelineAnnotationMap
}
fun filterContent(str: ConcurrentMap<Int?, String?>): ConcurrentMap<Int?, String?> {
val strlistreturn = MapMaker().concurrencyLevel(5).makeMap<Int?, String?>()
for (str1: String? in str.values) {
if (!str1?.isEmpty()!! && str1.length > 3) {
var str1Local: String = str1.trim();
if (str1Local.length > 2 && !str1Local.startsWith("!")) {
strlistreturn[strlistreturn.size] = str1Local
}
}
}
return strlistreturn
}
suspend fun getMultipleCoreDocumentsWaySuggestion(str: Collection<String?>, localNLP: StanfordCoreNLP): ConcurrentMap<String, CoreDocument> {
val annCollector: AnnotationCollector<Annotation?> = AnnotationCollector<Annotation?>()
val annotationreturnMap = MapMaker().concurrencyLevel(6).makeMap<String, CoreDocument>()
coroutineScope {
val job = launch(Dispatchers.Default) {
for (exampleString in str) {
localNLP.annotate(Annotation(exampleString), annCollector)
AnnotationCollector.i++
}
yield()
}
job.join()
}
try {
Thread.sleep(1500)
} catch (ex: InterruptedException) {
Logger.getLogger(Datahandler::class.java.name).log(Level.SEVERE, null, ex)
}
coroutineScope {
val job1 = launch(Dispatchers.Default) {
for (ann in annCollector.annotationsT) {
if (ann != null) {
ann.compact()
val CD = CoreDocument(ann)
annotationreturnMap[CD.text()] = CD
private fun checkPersonPresentInSentence(personName: String, responseMsg: String, userLastMessage: String,
stanfordCoreNLP: StanfordCoreNLP,
stanfordCoreNLPSentiment: StanfordCoreNLP): String {
try {
val pipelineCoreDcoument = CoreDocument(responseMsg)
val pipelineCoreDcoumentLastMsg = CoreDocument(userLastMessage)
stanfordCoreNLP.annotate(pipelineCoreDcoument)
stanfordCoreNLPSentiment.annotate(pipelineCoreDcoumentLastMsg)
val regex = "(.*?\\d){10,}"
for (em in pipelineCoreDcoument.entityMentions()) {
val entityType = em.entityType()
if (entityType == "PERSON") {
var str = responseMsg
val emText = em.text()
val pattern = Pattern.compile(regex)
val matcher = pattern.matcher(personName)
val isMatched = matcher.matches()
if (emText != personName && !isMatched) {
for (emLastMsg in pipelineCoreDcoumentLastMsg.entityMentions()) {
if (emText != emLastMsg.text() && !Character.isDigit(emLastMsg.text().trim { it <= ' ' }[0])) {
//System.out.println("emLastMsg.text(): " + emLastMsg.text());
str = (responseMsg.substring(0, responseMsg.indexOf(emText)) + " "
+ emLastMsg + " " + responseMsg.substring(responseMsg.indexOf(emText)))
}
}
str += " $personName"
return str
}
yield()
}
job1.join()
}
try {
Thread.sleep(1500)
} catch (ex: InterruptedException) {
Logger.getLogger(Datahandler::class.java.name).log(Level.SEVERE, null, ex)
}
return annotationreturnMap
} catch (e: Exception) {
println("""SCUFFED JAYZ: ${e.localizedMessage}""".trimIndent())
}
return responseMsg
}
init {
stopwatch = Stopwatch.createUnstarted()
jmweAnnotationCache = MapMaker().concurrencyLevel(5).makeMap<String, Annotation>()
pipelineAnnotationCache = MapMaker().concurrencyLevel(5).makeMap<String, Annotation>()
pipelineSentimentAnnotationCache = MapMaker().concurrencyLevel(5).makeMap<String, Annotation>()
coreDocumentAnnotationCache = MapMaker().concurrencyLevel(5).makeMap<String, CoreDocument>()
fun filterContent(str: String): Boolean {
if (!str.isEmpty() && str.length > 3) {
var str1Local: String = str.trim();
if (str1Local.length > 2 && !str1Local.startsWith("!")) {
return true
}
}
return false
}
fun getCoreDocumentsSuggested(pipeline: StanfordCoreNLP, str: String) {
val annotation = Annotation(str)
pipeline.annotate(annotation)
val coreDocument = CoreDocument(annotation)
coreDocumentAnnotationCache.put(str, coreDocument)
}
}

View File

@ -16,6 +16,7 @@ import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;
import edu.stanford.nlp.pipeline.StanfordCoreNLP;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;
@ -25,30 +26,26 @@ import reactor.core.publisher.Mono;
*/
public class DoStuff {
public static boolean occupied = false;
public static boolean isOccupied() {
return occupied;
}
public static void doStuff(MessageCreateEvent event, String usernameBot) {
String username = null;
public static void doStuff(MessageCreateEvent event, String usernameBot, Datahandler datahandler,
StanfordCoreNLP stanfordCoreNLP, StanfordCoreNLP stanfordCoreNLPSentiment) {
String username = "";
try {
username = event.getMessage().getAuthor().get().getUsername();
} catch (java.util.NoSuchElementException e) {
username = null;
}
if (username != null && !username.equals(usernameBot)) {
occupied = true;
TextChannel block = event.getMessage().getChannel().cast(TextChannel.class).block();
String name = block.getCategory().block().getName();
name = name.toLowerCase();
String channelName = block.getName().toLowerCase();
boolean channelpermissionsDenied = false;
if (channelName.contains("suggestion-box")) {
channelpermissionsDenied = true;
}
switch (name) {
case "public area": {
break;
}
case "public area":
case "information area": {
break;
}
@ -57,37 +54,36 @@ public class DoStuff {
break;
}
}
List<User> blockLast = event.getMessage().getUserMentions().buffer().blockLast();
String content = event.getMessage().getContent();
if (!channelpermissionsDenied) {
List<User> blockLast = event.getMessage().getUserMentions().buffer().blockLast();
String content = event.getMessage().getContent();
if (blockLast != null) {
for (User user : blockLast) {
content = content.replace(user.getId().asString(), "");
}
}
MessageResponseHandler.getMessage(content);
}
boolean mentionedBot = false;
if (blockLast != null) {
for (User user : blockLast) {
if (user.getUsername().equals(usernameBot)) {
mentionedBot = true;
break;
boolean mentionedBot = false;
if (blockLast != null) {
for (User user : blockLast) {
if (user.getUsername().equals(usernameBot)) {
mentionedBot = true;
break;
}
}
}
if (mentionedBot || channelName.contains("general-autism")) {
String ResponseStr;
ResponseStr = datahandler.getResponseMsg(content, username, stanfordCoreNLP, stanfordCoreNLPSentiment,
false);
if (!ResponseStr.isEmpty()) {
System.out.print("\nResponseStr3: " + ResponseStr + "\n");
event.getMessage().getChannel().block().createMessage(ResponseStr).block();
}
}
}
if (mentionedBot || channelName.contains("general-autism")) {
String ResponseStr;
ResponseStr = MessageResponseHandler.selectReponseMessage(content, username);
if (!ResponseStr.isEmpty()) {
System.out.print("\nResponseStr3: " + ResponseStr + "\n");
event.getMessage().getChannel().block().createMessage(ResponseStr).block();
}
}
new Thread(() -> {
Datahandler.instance.checkIfUpdateStrings();
datahandler.updateStringCache();
}).start();
occupied = false;
}
}
}

View File

@ -1,99 +0,0 @@
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
package FunctionLayer;
import com.google.common.collect.MapMaker;
import edu.stanford.nlp.pipeline.CoreDocument;
import edu.stanford.nlp.pipeline.CoreEntityMention;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.ConcurrentMap;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
/**
* @author install1
*/
public class MessageResponseHandler {
private static ConcurrentMap<Integer, String> str = new MapMaker().concurrencyLevel(6).makeMap();
public static ConcurrentMap<Integer, String> getStr() {
ArrayList<String> arrayList = new ArrayList(str.values());
Collections.sort(arrayList, (o1, o2) -> o2.length() - o1.length());
int iterator = 0;
for (String str1 : arrayList) {
str.put(iterator, str1);
iterator++;
}
return str;
}
public static void setStr(ConcurrentMap<Integer, String> str) {
MessageResponseHandler.str = str;
}
public static void getMessage(String message) {
if (message != null && !message.isEmpty()) {
message = message.replace("@", "");
if (message.contains("<>")) {
message = message.substring(message.indexOf(">"));
}
if (message.startsWith("[ *")) {
message = message.substring(message.indexOf("]"));
}
str.put(str.size() + 1, message);
}
}
public static String selectReponseMessage(String toString, String personName) {
String getResponseMsg = Datahandler.instance.getResponseMsg(toString);
getResponseMsg = checkPersonPresentInSentence(personName, getResponseMsg, toString);
return getResponseMsg;
}
private static String checkPersonPresentInSentence(String personName, String responseMsg, String userLastMessage) {
//check if userlastmsg contains person as refference
//check if first person is author or their person of mention
try {
String strreturn = responseMsg;
CoreDocument pipelineCoreDcoument = new CoreDocument(responseMsg);
CoreDocument pipelineCoreDcoumentLastMsg = new CoreDocument(userLastMessage);
Datahandler.getPipeline().annotate(pipelineCoreDcoument);
Datahandler.getPipeline().annotate(pipelineCoreDcoumentLastMsg);
//Datahandler.pipeline.annotate(pipelineCoreDcoument);
//Datahandler.pipeline.annotate(pipelineCoreDcoumentLastMsg);
String regex = "(.*?\\d){10,}";
for (CoreEntityMention em : pipelineCoreDcoument.entityMentions()) {
String entityType = em.entityType();
if (entityType.equals("PERSON")) {
String str = strreturn;
String emText = em.text();
Pattern pattern = Pattern.compile(regex);
Matcher matcher = pattern.matcher(personName);
boolean isMatched = matcher.matches();
if (!emText.equals(personName) && !isMatched) {
for (CoreEntityMention emLastMsg : pipelineCoreDcoumentLastMsg.entityMentions()) {
if (!emText.equals(emLastMsg.text()) && !Character.isDigit(emLastMsg.text().trim().charAt(0))) {
//System.out.println("emLastMsg.text(): " + emLastMsg.text());
str = strreturn.substring(0, strreturn.indexOf(emText)) + " "
+ emLastMsg + " " + strreturn.substring(strreturn.indexOf(emText));
}
}
str += " " + personName;
return str;
}
}
}
} catch (Exception e) {
System.out.println("SCUFFED JAYZ: " + e.getLocalizedMessage() + "\n");
}
return responseMsg;
}
}

View File

@ -5,7 +5,6 @@
*/
package FunctionLayer;
import com.google.common.collect.MapMaker;
import edu.mit.jmwe.data.IMWE;
import edu.mit.jmwe.data.IToken;
import edu.mit.jmwe.data.Token;
@ -28,10 +27,8 @@ import edu.stanford.nlp.util.CoreMap;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import java.util.Properties;
import java.util.concurrent.ConcurrentMap;
/**
* @author install1
@ -40,20 +37,14 @@ import java.util.concurrent.ConcurrentMap;
public class PipelineJMWESingleton {
//if not needed to be volatile dont make it, increases time
public volatile static PipelineJMWESingleton INSTANCE;
//public volatile static PipelineJMWESingleton INSTANCE;
public static PipelineJMWESingleton INSTANCE;
private static StanfordCoreNLP localNLP = initializeJMWE();
private static String underscoreSpaceReplacement;
private static IMWEIndex index;
private static IMWEDetector detector;
private PipelineJMWESingleton() {
}
public static void getINSTANCE() {
INSTANCE = new PipelineJMWESingleton();
}
public final ConcurrentMap<String, Annotation> getJMWEAnnotation(Collection<String> strvalues) {
boolean verbose = false;
IMWEIndex index;
String jmweIndexData = "/home/gameservers/autism_bot/lib/mweindex_wordnet3.0_semcor1.6.data"; // ./lib/mweindex_wordnet3.0_semcor1.6.data
String jmweIndexDataLocalTest = "E:/java8/Projects/mweindex_wordnet3.0_semcor1.6.data";
File indexFile = new File((String) jmweIndexData);
@ -64,22 +55,30 @@ public class PipelineJMWESingleton {
} catch (IOException e) {
throw new RuntimeException("unable to open IMWEIndex index: " + e + "\n");
}
IMWEDetector detector = getDetector(index, detectorName);
ConcurrentMap<String, Annotation> returnAnnotations = new MapMaker().concurrencyLevel(5).makeMap();
strvalues.forEach(str -> {
Annotation annoStr = new Annotation(str);
returnAnnotations.put(str, annoStr);
});
localNLP.annotate(returnAnnotations.values(), 4);
returnAnnotations.values().parallelStream().forEach(annoStr -> {
for (CoreMap sentence : annoStr.get(CoreAnnotations.SentencesAnnotation.class)) {
List<IMWE<IToken>> mwes = getjMWEInSentence(sentence, index, detector, verbose);
sentence.set(JMWEAnnotation.class, mwes);
}
});
detector = getDetector(index, detectorName);
index.close();
return returnAnnotations;
}
public static void getINSTANCE() {
INSTANCE = new PipelineJMWESingleton();
}
public final Annotation getJMWEAnnotation(String str) {
try {
index.open();
} catch (IOException e) {
throw new RuntimeException("unable to open IMWEIndex index: " + e + "\n");
}
Annotation annoStr = new Annotation(str);
localNLP.annotate(annoStr);
Class<CoreAnnotations.SentencesAnnotation> sentencesAnnotationClass = CoreAnnotations.SentencesAnnotation.class;
for (CoreMap sentence : annoStr.get(sentencesAnnotationClass)) {
List<IMWE<IToken>> mwes = getjMWEInSentence(sentence, index, detector, false);
//annoStr.set(JMWEAnnotation.class, mwes);
sentence.set(JMWEAnnotation.class, mwes);
}
index.close();
return annoStr;
}
public final static StanfordCoreNLP initializeJMWE() {
@ -94,7 +93,7 @@ public class PipelineJMWESingleton {
propsJMWE.setProperty("lemma.maxlen", "90");
underscoreSpaceReplacement = "-";
localNLP = new StanfordCoreNLP(propsJMWE);
System.out.println("finished singleton constructor \n");
System.out.println("finished JMWE constructor \n");
return localNLP;
}
@ -147,5 +146,4 @@ public class PipelineJMWESingleton {
}
return sentence;
}
}

View File

@ -5,10 +5,7 @@
*/
package FunctionLayer;
import FunctionLayer.StanfordParser.SentimentValueCache;
/**
*
* @author install1
*/
public class SimilarityMatrix {
@ -16,8 +13,6 @@ public class SimilarityMatrix {
private String PrimaryString;
private String SecondaryString;
private double distance;
private SentimentValueCache cacheValue1;
private SentimentValueCache cacheValue2;
public final double getDistance() {
return distance;
@ -38,36 +33,8 @@ public class SimilarityMatrix {
this.distance = result;
}
public final String getPrimaryString() {
return PrimaryString;
}
public final void setPrimaryString(String PrimaryString) {
this.PrimaryString = PrimaryString;
}
public final String getSecondaryString() {
return SecondaryString;
}
public final void setSecondaryString(String SecondaryString) {
this.SecondaryString = SecondaryString;
}
public final SentimentValueCache getCacheValue1() {
return cacheValue1;
}
public final void setCacheValue1(SentimentValueCache cacheValue1) {
this.cacheValue1 = cacheValue1;
}
public final SentimentValueCache getCacheValue2() {
return cacheValue2;
}
public final void setCacheValue2(SentimentValueCache cacheValue2) {
this.cacheValue2 = cacheValue2;
}
}

View File

@ -1,334 +0,0 @@
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
package FunctionLayer.StanfordParser;
import com.google.common.collect.MapMaker;
import edu.stanford.nlp.ling.TaggedWord;
import edu.stanford.nlp.trees.GrammaticalStructure;
import edu.stanford.nlp.trees.Tree;
import edu.stanford.nlp.trees.TypedDependency;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentMap;
import org.ejml.simple.SimpleMatrix;
/**
*
* @author install1
*/
public class SentimentValueCache {
private String sentence;
private int counter;
private List<List<TaggedWord>> taggedwordlist = new ArrayList();
private final ConcurrentMap<Integer, String> tgwlistIndex = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, Tree> sentenceConstituencyParseList = new MapMaker().concurrencyLevel(2).makeMap();
private final Collection<TypedDependency> allTypedDependencies = new ArrayList();
private final ConcurrentMap<Integer, GrammaticalStructure> gsMap = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, SimpleMatrix> simpleSMXlist = new MapMaker().concurrencyLevel(3).makeMap();
private final ConcurrentMap<Integer, SimpleMatrix> simpleSMXlistVector = new MapMaker().concurrencyLevel(3).makeMap();
private final ConcurrentMap<Integer, Integer> rnnPredictClassMap = new MapMaker().concurrencyLevel(3).makeMap();
private List classifyRaw;
private int mainSentiment = 0;
private int longest = 0;
private int tokensCounter = 0;
private int anotatorcounter = 0;
private int inflectedCounterPositive = 0;
private int inflectedCounterNegative = 0;
private int MarkedContinuousCounter = 0;
private int MarkedContiniousCounterEntries = 0;
private int UnmarkedPatternCounter = 0;
private int pairCounter = 0;
private final ConcurrentMap<Integer, String> ITokenMapTag = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, String> strTokenStems = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, String> strTokenForm = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, String> strTokenGetEntry = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, String> strTokenGetiPart = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, String> strTokenEntryPOS = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, Integer> entryCounts = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, String> nerEntities1 = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, String> nerEntities2 = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, String> nerEntityTokenTags = new MapMaker().concurrencyLevel(3).makeMap();
private final ConcurrentMap<Integer, String> stopwordTokens = new MapMaker().concurrencyLevel(2).makeMap();
private final ConcurrentMap<Integer, String> stopWordLemma = new MapMaker().concurrencyLevel(2).makeMap();
public int getPairCounter() {
return pairCounter;
}
public void setPairCounter(int pairCounter) {
this.pairCounter = pairCounter;
}
public void addStopWordLemma(String str) {
stopWordLemma.put(stopWordLemma.size(), str);
}
public void addstopwordTokens(String str) {
stopwordTokens.put(stopwordTokens.size(), str);
}
public ConcurrentMap<Integer, String> getStopwordTokens() {
return stopwordTokens;
}
public ConcurrentMap<Integer, String> getStopWordLemma() {
return stopWordLemma;
}
public void addnerEntityTokenTags(String str) {
nerEntityTokenTags.put(nerEntityTokenTags.size(), str);
}
public ConcurrentMap<Integer, String> getnerEntityTokenTags() {
return nerEntityTokenTags;
}
public ConcurrentMap<Integer, String> getnerEntities1() {
return nerEntities1;
}
public ConcurrentMap<Integer, String> getnerEntities2() {
return nerEntities2;
}
public void addNEREntities1(String str) {
nerEntities1.put(nerEntities1.size(), str);
}
public void addNEREntities2(String str) {
nerEntities2.put(nerEntities2.size(), str);
}
public void setTaggedwords(List<List<TaggedWord>> twlist) {
taggedwordlist = twlist;
}
public List<List<TaggedWord>> getTaggedwordlist() {
return taggedwordlist;
}
public void addEntryCounts(int counts) {
entryCounts.put(entryCounts.size(), counts);
}
public ConcurrentMap<Integer, Integer> getEntryCounts() {
return entryCounts;
}
public void addstrTokenEntryPOS(String str) {
strTokenEntryPOS.put(strTokenEntryPOS.size(), str);
}
public ConcurrentMap<Integer, String> getstrTokenEntryPOS() {
return strTokenEntryPOS;
}
public void addstrTokenGetiPart(String str) {
strTokenGetiPart.put(strTokenGetiPart.size(), str);
}
public ConcurrentMap<Integer, String> getstrTokenGetiPart() {
return strTokenGetiPart;
}
public ConcurrentMap<Integer, String> getstrTokenGetEntry() {
return strTokenGetEntry;
}
public void addstrTokenGetEntry(String str) {
strTokenGetEntry.put(strTokenGetEntry.size(), str);
}
public ConcurrentMap<Integer, String> getstrTokenForm() {
return strTokenForm;
}
public void addstrTokenForm(String str) {
strTokenForm.put(strTokenForm.size(), str);
}
public ConcurrentMap<Integer, String> getstrTokenStems() {
return strTokenStems;
}
public void addstrTokenStems(String str) {
strTokenStems.put(strTokenStems.size(), str);
}
public ConcurrentMap<Integer, String> getITokenMapTag() {
return ITokenMapTag;
}
public void addITokenMapTag(String str) {
ITokenMapTag.put(ITokenMapTag.size(), str);
}
public int getUnmarkedPatternCounter() {
return UnmarkedPatternCounter;
}
public void setUnmarkedPatternCounter(int UnmarkedPatternCounter) {
this.UnmarkedPatternCounter = UnmarkedPatternCounter;
}
public int getMarkedContiniousCounterEntries() {
return MarkedContiniousCounterEntries;
}
public void setMarkedContiniousCounterEntries(int MarkedContiniousCounterEntries) {
this.MarkedContiniousCounterEntries = MarkedContiniousCounterEntries;
}
public int getMarkedContinuousCounter() {
return MarkedContinuousCounter;
}
public void setMarkedContinuousCounter(int MarkedContinuousCounter) {
this.MarkedContinuousCounter = MarkedContinuousCounter;
}
public int getInflectedCounterNegative() {
return inflectedCounterNegative;
}
public void setInflectedCounterNegative(int inflectedCounterNegative) {
this.inflectedCounterNegative = inflectedCounterNegative;
}
public int getInflectedCounterPositive() {
return inflectedCounterPositive;
}
public void setInflectedCounterPositive(int inflectedCounterPositive) {
this.inflectedCounterPositive = inflectedCounterPositive;
}
public int getAnotatorcounter() {
return anotatorcounter;
}
public void setAnotatorcounter(int anotatorcounter) {
this.anotatorcounter = anotatorcounter;
}
public int getTokensCounter() {
return tokensCounter;
}
public void setTokensCounter(int tokensCounter) {
this.tokensCounter = tokensCounter;
}
public int getMainSentiment() {
return mainSentiment;
}
public void setMainSentiment(int mainSentiment) {
this.mainSentiment = mainSentiment;
}
public int getLongest() {
return longest;
}
public void setLongest(int longest) {
this.longest = longest;
}
public List getClassifyRaw() {
return classifyRaw;
}
public void setClassifyRaw(List classifyRaw) {
this.classifyRaw = classifyRaw;
}
public ConcurrentMap<Integer, Integer> getRnnPrediectClassMap() {
return rnnPredictClassMap;
}
public void addRNNPredictClass(int rnnPrediction) {
rnnPredictClassMap.put(rnnPredictClassMap.size(), rnnPrediction);
}
public void addSimpleMatrix(SimpleMatrix SMX) {
simpleSMXlist.put(simpleSMXlist.size(), SMX);
}
public void addSimpleMatrixVector(SimpleMatrix SMX) {
simpleSMXlistVector.put(simpleSMXlistVector.size(), SMX);
}
public ConcurrentMap<Integer, GrammaticalStructure> getGsMap() {
return gsMap;
}
public ConcurrentMap<Integer, SimpleMatrix> getSimpleSMXlist() {
return simpleSMXlist;
}
public ConcurrentMap<Integer, SimpleMatrix> getSimpleSMXlistVector() {
return simpleSMXlistVector;
}
public ConcurrentMap<Integer, GrammaticalStructure> getGs() {
return gsMap;
}
public int getCounter() {
return counter;
}
public void addGS(GrammaticalStructure gs) {
gsMap.put(gsMap.size(), gs);
}
public Collection<TypedDependency> getAllTypedDependencies() {
return allTypedDependencies;
}
public void addTypedDependencies(Collection<TypedDependency> TDPlist) {
for (TypedDependency TDP : TDPlist) {
allTypedDependencies.add(TDP);
}
}
public ConcurrentMap<Integer, Tree> getSentenceConstituencyParseList() {
return sentenceConstituencyParseList;
}
public void addSentenceConstituencyParse(Tree tree) {
sentenceConstituencyParseList.put(sentenceConstituencyParseList.size(), tree);
}
public void setCounter(int counter) {
counter = counter;
}
public String getSentence() {
return sentence;
}
public SentimentValueCache(String str, int counter) {
this.sentence = str;
this.counter = counter;
}
public ConcurrentMap<Integer, String> getTgwlistIndex() {
return tgwlistIndex;
}
public void addTgwlistIndex(String str) {
tgwlistIndex.put(tgwlistIndex.size(), str);
}
public SentimentValueCache(String str) {
this.sentence = str;
}
}

View File

@ -15,21 +15,18 @@ screen -X -S (number1) quit
package PresentationLayer;
import DataLayer.settings;
import FunctionLayer.CustomError;
import FunctionLayer.Datahandler;
import FunctionLayer.PipelineJMWESingleton;
import com.sun.tools.javac.util.List;
import discord4j.core.DiscordClient;
import discord4j.core.GatewayDiscordClient;
import discord4j.core.event.domain.message.MessageCreateEvent;
import edu.stanford.nlp.pipeline.StanfordCoreNLP;
import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.net.*;
import java.sql.SQLException;
import java.util.ArrayList;
import java.util.logging.Level;
import java.util.logging.Logger;
/**
@ -37,7 +34,8 @@ import java.util.logging.Logger;
*/
public class DiscordHandler {
private static void receiveAndSendPacket(DatagramSocket serverSocket, InetAddress ipAddress, int port) throws IOException, CustomError {
private static void receiveAndSendPacket(DatagramSocket serverSocket, InetAddress ipAddress, int port,
Datahandler datahandler, StanfordCoreNLP stanfordCoreNLP, StanfordCoreNLP stanfordCoreNLPSentiment) throws IOException {
byte[] receiveData = new byte[4096];
DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length);
try {
@ -48,8 +46,9 @@ public class DiscordHandler {
String sentence = new String(receivePacket.getData(), 0,
receivePacket.getLength());
sentence = sentence.replace("clientmessage:", "");
String getResponseMsg = Datahandler.instance.getResponseMsg(sentence);
byte[] sendData = getResponseMsg.getBytes("UTF-8");
String ResponseMsg = datahandler.getResponseMsg(sentence, "", stanfordCoreNLP, stanfordCoreNLPSentiment,
true);
byte[] sendData = ResponseMsg.getBytes("UTF-8");
int deliver_port = 0;
switch (port) {
case 48470:
@ -67,10 +66,10 @@ public class DiscordHandler {
}
DatagramPacket sendPacket = new DatagramPacket(sendData, sendData.length, ipAddress, deliver_port);
serverSocket.send(sendPacket);
//System.out.println("receiveAndSendPacket send message to port: " + deliver_port);
}
public static void handleUDPTraffic(int port) {
public static void handleUDPTraffic(int port, Datahandler datahandler,
StanfordCoreNLP stanfordCoreNLP, StanfordCoreNLP stanfordCoreNLPSentiment) {
try (DatagramSocket serverSocket = new DatagramSocket(port)) {
String hostIP = "";
if (port == 48473 || port == 48471) {
@ -80,35 +79,27 @@ public class DiscordHandler {
}
InetAddress ipAddress = InetAddress.getByName(hostIP);//used ip'
while (true) {
receiveAndSendPacket(serverSocket, ipAddress, port);
receiveAndSendPacket(serverSocket, ipAddress, port, datahandler, stanfordCoreNLP, stanfordCoreNLPSentiment);
}
} catch (SocketException | UnknownHostException e) {
e.printStackTrace();
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
} catch (CustomError customError) {
customError.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
public static void main(String[] args) {
try {
Datahandler.instance.initiateMYSQL();
//nohup screen -d -m -S nonroot java -Xmx6900M -jar /home/javatests/ArtificialAutism-1.0.jar
//uncomment db fetch when ready, just keep the comment for future reference
System.out.println("finished initiating MYSQL");
} catch (SQLException | IOException ex) {
Logger.getLogger(DiscordHandler.class.getName()).log(Level.SEVERE, null, ex);
}
public static void main(String[] args) throws IOException, SQLException {
Datahandler datahandler = new Datahandler();
datahandler.initiateMYSQL();
PipelineJMWESingleton.getINSTANCE();
Datahandler.instance.instantiateAnnotationMapJMWE();
Datahandler.instance.shiftReduceParserInitiate();
Datahandler.instance.instantiateAnnotationMap();
StanfordCoreNLP stanfordCoreNLP = datahandler.pipeLineSetUp();
StanfordCoreNLP stanfordCoreNLPSentiment = datahandler.shiftReduceParserInitiate();
System.out.println("FINISHED ALL ANNOTATIONS");
Datahandler.instance.updateStringCache();
//String token = "NTI5NzAxNTk5NjAyMjc4NDAx.Dw0vDg.7-aMjVWdQMYPl8qVNyvTCPS5F_A";
datahandler.updateStringCache();
System.out.println("updatedstring cache");
String token = new settings().getDiscordToken();
final DiscordClient client = DiscordClient.create(token);
final GatewayDiscordClient gateway = client.login().block();
@ -119,13 +110,11 @@ public class DiscordHandler {
final int j = i;
new Thread(() -> {
List<Integer> ports = List.of(48470, 48471, 48472, 48473);
handleUDPTraffic(ports.get(j));
handleUDPTraffic(ports.get(j), datahandler, stanfordCoreNLP, stanfordCoreNLPSentiment);
}).start();
}
gateway.on(MessageCreateEvent.class).subscribe(event -> {
if (!FunctionLayer.DoStuff.isOccupied()) {
FunctionLayer.DoStuff.doStuff(event, usernameBot);
}
FunctionLayer.DoStuff.doStuff(event, usernameBot, datahandler, stanfordCoreNLP, stanfordCoreNLPSentiment);
});
gateway.onDisconnect().block();
}