further bot updates for chatting
This commit is contained in:
parent
509cd2cbe9
commit
4c205f49d5
@ -5,41 +5,69 @@
|
||||
*/
|
||||
package DataLayer;
|
||||
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
|
||||
import FunctionLayer.SimilarityMatrix;
|
||||
import FunctionLayer.CustomError;
|
||||
import com.google.common.collect.MapMaker;
|
||||
import java.sql.Connection;
|
||||
import java.sql.PreparedStatement;
|
||||
import java.sql.ResultSet;
|
||||
import java.sql.SQLException;
|
||||
import java.util.*;
|
||||
import java.sql.Statement;
|
||||
import java.util.ArrayList;
|
||||
import java.util.HashMap;
|
||||
import java.util.LinkedHashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.concurrent.ConcurrentMap;
|
||||
import java.util.logging.Level;
|
||||
import java.util.logging.Logger;
|
||||
|
||||
/**
|
||||
*
|
||||
* @author install1
|
||||
*/
|
||||
public class DataMapper {
|
||||
|
||||
public static ArrayList<String> getAllStrings() throws SQLException {
|
||||
public static void createTables() throws CustomError {
|
||||
Connection l_cCon = null;
|
||||
PreparedStatement l_pStatement = null;
|
||||
ResultSet l_rsSearch = null;
|
||||
try {
|
||||
l_cCon = DBCPDataSource.getConnection();
|
||||
String l_sSQL = "CREATE TABLE IF NOT EXISTS `ArtificialAutism`.`Sentences` (`Strings` text NOT NULL)";
|
||||
l_pStatement = l_cCon.prepareStatement(l_sSQL);
|
||||
l_pStatement.execute();
|
||||
} catch (SQLException ex) {
|
||||
throw new CustomError("failed in DataMapper " + ex.getMessage());
|
||||
} finally {
|
||||
CloseConnections(l_pStatement, l_rsSearch, l_cCon);
|
||||
}
|
||||
}
|
||||
|
||||
public static ConcurrentMap<Integer, String> getAllStrings() throws CustomError {
|
||||
ConcurrentMap<Integer, String> allStrings = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
Connection l_cCon = null;
|
||||
PreparedStatement l_pStatement = null;
|
||||
ResultSet l_rsSearch = null;
|
||||
ArrayList<String> arrayListStr = new ArrayList();
|
||||
try {
|
||||
l_cCon = DBCPDataSource.getConnection();
|
||||
String l_sSQL = "SELECT * FROM `Sentences`";
|
||||
l_pStatement = l_cCon.prepareStatement(l_sSQL);
|
||||
l_rsSearch = l_pStatement.executeQuery();
|
||||
int ij = 0;
|
||||
while (l_rsSearch.next()) {
|
||||
arrayListStr.add(l_rsSearch.getString(1));
|
||||
allStrings.put(ij, l_rsSearch.getString(1));
|
||||
ij++;
|
||||
}
|
||||
} catch (SQLException ex) {
|
||||
throw new CustomError("failed in DataMapper " + ex.getMessage());
|
||||
} finally {
|
||||
CloseConnections(l_pStatement, l_rsSearch, l_cCon);
|
||||
}
|
||||
return arrayListStr;
|
||||
return allStrings;
|
||||
}
|
||||
|
||||
public static void InsertMYSQLStrings(ArrayList<String> str) throws SQLException {
|
||||
public static void InsertMYSQLStrings(ConcurrentMap<Integer, String> str) throws CustomError {
|
||||
Connection l_cCon = null;
|
||||
PreparedStatement l_pStatement = null;
|
||||
ResultSet l_rsSearch = null;
|
||||
@ -47,15 +75,35 @@ public class DataMapper {
|
||||
try {
|
||||
l_cCon = DBCPDataSource.getConnection();
|
||||
l_pStatement = l_cCon.prepareStatement(l_sSQL);
|
||||
for (String str1 : str) {
|
||||
for (String str1 : str.values()) {
|
||||
//System.out.println("adding str1: " + str1 + "\n");
|
||||
l_pStatement.setString(1, str1);
|
||||
l_pStatement.execute();
|
||||
l_pStatement.addBatch();
|
||||
}
|
||||
l_pStatement.executeBatch();
|
||||
} catch (SQLException ex) {
|
||||
throw new CustomError("failed in DataMapper " + ex.getMessage());
|
||||
} finally {
|
||||
CloseConnections(l_pStatement, l_rsSearch, l_cCon);
|
||||
}
|
||||
}
|
||||
|
||||
public static ConcurrentMap<Integer, String> getHLstatsMessages() {
|
||||
ConcurrentMap<Integer, String> hlStatsMessages = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
try (Connection l_cCon = DBCPDataSourceHLstats.getConnection()) {
|
||||
String l_sSQL = "SELECT message FROM `hlstats_Events_Chat`";
|
||||
try (PreparedStatement l_pStatement = l_cCon.prepareStatement(l_sSQL)) {
|
||||
try (ResultSet l_rsSearch = l_pStatement.executeQuery()) {
|
||||
while (l_rsSearch.next()) {
|
||||
hlStatsMessages.put(hlStatsMessages.size() + 1, l_rsSearch.getString(1));
|
||||
}
|
||||
}
|
||||
}
|
||||
} catch (SQLException ex) {
|
||||
Logger.getLogger(DataMapper.class.getName()).log(Level.SEVERE, null, ex);
|
||||
}
|
||||
return hlStatsMessages;
|
||||
}
|
||||
|
||||
public static void CloseConnections(PreparedStatement ps, ResultSet rs, Connection con) {
|
||||
if (rs != null) {
|
||||
@ -80,39 +128,4 @@ public class DataMapper {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public static void checkStringsToDelete() {
|
||||
Connection l_cCon = null;
|
||||
PreparedStatement l_pStatement = null;
|
||||
ResultSet l_rsSearch = null;
|
||||
String l_sSQL = "delete from Sentences order by last_used asc LIMIT 15";
|
||||
try {
|
||||
l_cCon = DBCPDataSource.getConnection();
|
||||
l_pStatement = l_cCon.prepareStatement(l_sSQL);
|
||||
l_pStatement.execute();
|
||||
} catch (SQLException throwables) {
|
||||
throwables.printStackTrace();
|
||||
} finally {
|
||||
CloseConnections(l_pStatement, l_rsSearch, l_cCon);
|
||||
}
|
||||
}
|
||||
|
||||
public static void updateLastUsed(@NotNull ArrayList<String> mysqlUpdateLastUsed) {
|
||||
Connection l_cCon = null;
|
||||
PreparedStatement l_pStatement = null;
|
||||
ResultSet l_rsSearch = null;
|
||||
String l_sSQL = "update Sentences Set last_used = now() where Strings = (?)";
|
||||
try {
|
||||
l_cCon = DBCPDataSource.getConnection();
|
||||
l_pStatement = l_cCon.prepareStatement(l_sSQL);
|
||||
for (String str1 : mysqlUpdateLastUsed) {
|
||||
l_pStatement.setString(1, str1);
|
||||
l_pStatement.execute();
|
||||
}
|
||||
} catch (SQLException throwables) {
|
||||
throwables.printStackTrace();
|
||||
} finally {
|
||||
CloseConnections(l_pStatement, l_rsSearch, l_cCon);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -0,0 +1,17 @@
|
||||
/*
|
||||
* To change this license header, choose License Headers in Project Properties.
|
||||
* To change this template file, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
*/
|
||||
package FunctionLayer;
|
||||
|
||||
/**
|
||||
*
|
||||
* @author install1
|
||||
*/
|
||||
public class CustomError extends Exception {
|
||||
|
||||
public CustomError(String msg) {
|
||||
super(msg);
|
||||
}
|
||||
}
|
825
ArtificialAutism/src/main/java/FunctionLayer/Datahandler.java
Normal file
825
ArtificialAutism/src/main/java/FunctionLayer/Datahandler.java
Normal file
@ -0,0 +1,825 @@
|
||||
/*
|
||||
* To change this license header, choose License Headers in Project Properties.
|
||||
* To change this template file, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
*/
|
||||
package FunctionLayer;
|
||||
|
||||
import DataLayer.DataMapper;
|
||||
import FunctionLayer.StanfordParser.SentimentAnalyzerTest;
|
||||
import FunctionLayer.StanfordParser.SentimentValueCache;
|
||||
import com.google.common.base.Stopwatch;
|
||||
import com.google.common.collect.MapMaker;
|
||||
import edu.stanford.nlp.ie.AbstractSequenceClassifier;
|
||||
import edu.stanford.nlp.ie.crf.CRFClassifier;
|
||||
import edu.stanford.nlp.ling.CoreLabel;
|
||||
import edu.stanford.nlp.parser.lexparser.LexicalizedParser;
|
||||
import edu.stanford.nlp.pipeline.Annotation;
|
||||
import edu.stanford.nlp.pipeline.CoreDocument;
|
||||
import edu.stanford.nlp.pipeline.StanfordCoreNLP;
|
||||
import edu.stanford.nlp.tagger.maxent.MaxentTagger;
|
||||
import edu.stanford.nlp.trees.GrammaticalStructureFactory;
|
||||
import edu.stanford.nlp.trees.TreebankLanguagePack;
|
||||
import java.io.IOException;
|
||||
import java.io.UnsupportedEncodingException;
|
||||
import static java.lang.Math.random;
|
||||
import java.net.DatagramPacket;
|
||||
import java.net.DatagramSocket;
|
||||
import java.net.InetAddress;
|
||||
import java.net.SocketException;
|
||||
import java.sql.SQLException;
|
||||
import java.util.AbstractMap;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collection;
|
||||
import java.util.Collections;
|
||||
import java.util.LinkedHashMap;
|
||||
import java.util.List;
|
||||
import java.util.ListIterator;
|
||||
import java.util.Map;
|
||||
import java.util.Map.Entry;
|
||||
import java.util.Properties;
|
||||
import java.util.Set;
|
||||
import java.util.concurrent.Callable;
|
||||
import java.util.concurrent.CompletionService;
|
||||
import java.util.concurrent.ConcurrentMap;
|
||||
import java.util.concurrent.CountDownLatch;
|
||||
import java.util.concurrent.ExecutionException;
|
||||
import java.util.concurrent.ExecutorCompletionService;
|
||||
import java.util.concurrent.ExecutorService;
|
||||
import java.util.concurrent.Executors;
|
||||
import java.util.concurrent.ForkJoinPool;
|
||||
import java.util.concurrent.ForkJoinTask;
|
||||
import java.util.concurrent.Future;
|
||||
import java.util.concurrent.ThreadLocalRandom;
|
||||
import java.util.concurrent.TimeUnit;
|
||||
import java.util.concurrent.TimeoutException;
|
||||
import java.util.function.Consumer;
|
||||
import java.util.logging.Level;
|
||||
import java.util.logging.Logger;
|
||||
import java.util.stream.Collectors;
|
||||
import java.util.stream.Stream;
|
||||
|
||||
/**
|
||||
*
|
||||
* @author install1
|
||||
*/
|
||||
public class Datahandler {
|
||||
|
||||
public static final long EXPIRE_TIME_IN_SECONDS = TimeUnit.SECONDS.convert(10, TimeUnit.MINUTES);
|
||||
public static final long EXPIRE_TIME_IN_SECONDS1 = TimeUnit.SECONDS.convert(10, TimeUnit.HOURS);
|
||||
public static Datahandler instance = new Datahandler();
|
||||
private static Annotation strAnno;
|
||||
private static Annotation strAnnoSentiment;
|
||||
private static Annotation strAnnoJMWE;
|
||||
private static CoreDocument coreDoc;
|
||||
private static final ConcurrentMap<Integer, String> stringCache = new MapMaker().concurrencyLevel(6).makeMap();
|
||||
private static ConcurrentMap<String, Annotation> pipelineAnnotationCache;
|
||||
private static ConcurrentMap<String, Annotation> pipelineSentimentAnnotationCache;
|
||||
private static ConcurrentMap<String, Annotation> jmweAnnotationCache;
|
||||
private static ConcurrentMap<String, CoreDocument> coreDocumentAnnotationCache;
|
||||
private static ConcurrentMap<String, SentimentValueCache> sentimentCachingMap = new MapMaker().concurrencyLevel(6).makeMap();
|
||||
private LinkedHashMap<String, LinkedHashMap<String, Double>> lHMSMX = new LinkedHashMap();
|
||||
private final Stopwatch stopwatch;
|
||||
private static String similar = "";
|
||||
private static String shiftReduceParserPath = "edu/stanford/nlp/models/srparser/englishSR.ser.gz";
|
||||
private static String sentimentModel = "edu/stanford/nlp/models/sentiment/sentiment.ser.gz";
|
||||
private static String lexParserEnglishRNN = "edu/stanford/nlp/models/lexparser/englishRNN.ser.gz";
|
||||
private static String taggerPath = "edu/stanford/nlp/models/pos-tagger/english-left3words/english-left3words-distsim.tagger";
|
||||
private static String nerModel = "edu/stanford/nlp/models/ner/english.all.3class.caseless.distsim.crf.ser.gz";
|
||||
private static String nerModel2 = "edu/stanford/nlp/models/ner/english.conll.4class.caseless.distsim.crf.ser.gz";
|
||||
private static String nerModel3 = "edu/stanford/nlp/models/ner/english.muc.7class.caseless.distsim.crf.ser.gz";
|
||||
private static final String customStopWordList = "start,starts,period,periods,a,an,and,are,as,at,be,but,by,for,if,in,into,is,it,no,not,of,on,or,such,that,the,their,then,there,these,they,this,to,was,will,with";
|
||||
private static MaxentTagger tagger;
|
||||
private static String[] options = {"-maxLength", "100"};
|
||||
private static Properties props = new Properties();
|
||||
private static Properties propsSentiment = new Properties();
|
||||
private static GrammaticalStructureFactory gsf;
|
||||
private static LexicalizedParser lp;
|
||||
private static TreebankLanguagePack tlp;
|
||||
private static AbstractSequenceClassifier<CoreLabel> classifier;
|
||||
// set up Stanford CoreNLP pipeline
|
||||
private static final StanfordCoreNLP pipeline = getPipeLineSetUp();
|
||||
private static StanfordCoreNLP pipelineSentiment;
|
||||
|
||||
public Datahandler() {
|
||||
this.stopwatch = Stopwatch.createUnstarted();
|
||||
this.jmweAnnotationCache = new MapMaker().concurrencyLevel(3).makeMap();
|
||||
this.pipelineAnnotationCache = new MapMaker().concurrencyLevel(4).makeMap();
|
||||
this.pipelineSentimentAnnotationCache = new MapMaker().concurrencyLevel(4).makeMap();
|
||||
this.coreDocumentAnnotationCache = new MapMaker().concurrencyLevel(5).makeMap();
|
||||
}
|
||||
|
||||
public static StanfordCoreNLP getPipeline() {
|
||||
return pipeline;
|
||||
}
|
||||
|
||||
private static StanfordCoreNLP getPipeLineSetUp() {
|
||||
props.setProperty("annotators", "tokenize,ssplit,pos,lemma,ner,parse");
|
||||
props.setProperty("parse.model", shiftReduceParserPath);
|
||||
props.setProperty("parse.maxlen", "90");
|
||||
props.setProperty("parse.binaryTrees", "true");
|
||||
props.setProperty("threads", "8");
|
||||
props.setProperty("pos.maxlen", "90");
|
||||
props.setProperty("tokenize.maxlen", "90");
|
||||
props.setProperty("ssplit.maxlen", "90");
|
||||
props.setProperty("lemma.maxlen", "90");
|
||||
props.setProperty("ner.model", nerModel + "," + nerModel2 + "," + nerModel3);
|
||||
props.setProperty("ner.combinationMode", "HIGH_RECALL");
|
||||
props.setProperty("regexner.ignorecase", "true");
|
||||
props.setProperty("ner.fine.regexner.ignorecase", "true");
|
||||
props.setProperty("tokenize.options", "untokenizable=firstDelete");
|
||||
return new StanfordCoreNLP(props);
|
||||
}
|
||||
|
||||
public void shiftReduceParserInitiate() {
|
||||
//got 8 cores
|
||||
CountDownLatch cdl = new CountDownLatch(2);
|
||||
new Thread(() -> {
|
||||
try {
|
||||
classifier = CRFClassifier.getClassifierNoExceptions(nerModel);
|
||||
} catch (ClassCastException ex) {
|
||||
Logger.getLogger(Datahandler.class.getName()).log(Level.SEVERE, null, ex);
|
||||
}
|
||||
cdl.countDown();
|
||||
}).start();
|
||||
new Thread(() -> {
|
||||
propsSentiment.setProperty("parse.model", lexParserEnglishRNN);
|
||||
propsSentiment.setProperty("sentiment.model", sentimentModel);
|
||||
propsSentiment.setProperty("parse.maxlen", "90");
|
||||
propsSentiment.setProperty("threads", "8");
|
||||
propsSentiment.setProperty("pos.maxlen", "90");
|
||||
propsSentiment.setProperty("tokenize.maxlen", "90");
|
||||
propsSentiment.setProperty("ssplit.maxlen", "90");
|
||||
propsSentiment.setProperty("annotators", "tokenize,ssplit,pos,parse,sentiment,lemma,stopword"); //coref too expensive memorywise
|
||||
propsSentiment.setProperty("customAnnotatorClass.stopword", "FunctionLayer.StopwordAnnotator");
|
||||
propsSentiment.setProperty(StopwordAnnotator.STOPWORDS_LIST, customStopWordList);
|
||||
propsSentiment.setProperty("tokenize.options", "untokenizable=firstDelete");
|
||||
pipelineSentiment = new StanfordCoreNLP(propsSentiment);
|
||||
tagger = new MaxentTagger(taggerPath);
|
||||
cdl.countDown();
|
||||
}).start();
|
||||
lp = LexicalizedParser.loadModel(lexParserEnglishRNN, options);
|
||||
tlp = lp.getOp().langpack();
|
||||
gsf = tlp.grammaticalStructureFactory();
|
||||
try {
|
||||
cdl.await();
|
||||
} catch (InterruptedException ex) {
|
||||
//System.out.println("cdl await interrupted: " + ex.getLocalizedMessage() + "\n");
|
||||
}
|
||||
System.out.println("finished shiftReduceParserInitiate\n");
|
||||
}
|
||||
|
||||
public static AbstractSequenceClassifier<CoreLabel> getClassifier() {
|
||||
return classifier;
|
||||
}
|
||||
|
||||
public static void setClassifier(AbstractSequenceClassifier<CoreLabel> classifier) {
|
||||
Datahandler.classifier = classifier;
|
||||
}
|
||||
|
||||
public void updateStringCache() {
|
||||
try {
|
||||
checkIfUpdateStrings();
|
||||
} catch (CustomError ex) {
|
||||
Logger.getLogger(Datahandler.class.getName()).log(Level.SEVERE, null, ex);
|
||||
}
|
||||
}
|
||||
|
||||
public static GrammaticalStructureFactory getGsf() {
|
||||
return gsf;
|
||||
}
|
||||
|
||||
public static MaxentTagger getTagger() {
|
||||
return tagger;
|
||||
}
|
||||
|
||||
private Map<Integer, String> getCache() throws SQLException, IOException, CustomError {
|
||||
return DataMapper.getAllStrings();
|
||||
}
|
||||
|
||||
public int getlHMSMXSize() {
|
||||
return lHMSMX.size();
|
||||
}
|
||||
|
||||
public int getstringCacheSize() {
|
||||
return stringCache.size();
|
||||
}
|
||||
|
||||
public void initiateMYSQL() throws SQLException, IOException {
|
||||
try {
|
||||
DataMapper.createTables();
|
||||
stringCache.putAll(getCache());
|
||||
// lHMSMX = DataMapper.getAllRelationScores();
|
||||
} catch (CustomError ex) {
|
||||
Logger.getLogger(Datahandler.class
|
||||
.getName()).log(Level.SEVERE, null, ex);
|
||||
}
|
||||
}
|
||||
|
||||
public void addHLstatsMessages() {
|
||||
ConcurrentMap<String, Integer> hlStatsMessages = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
ConcurrentMap<Integer, String> strCacheLocal = stringCache;
|
||||
Collection<String> strs = DataMapper.getHLstatsMessages().values();
|
||||
for (String str : strs) {
|
||||
if (hlStatsMessages.get(str) == null) {
|
||||
hlStatsMessages.put(str, hlStatsMessages.size());
|
||||
}
|
||||
}
|
||||
int capacity = 150;
|
||||
hlStatsMessages.keySet().forEach(str -> {
|
||||
if (!str.startsWith("!") && MessageResponseHandler.getStr().values().size() < capacity) {
|
||||
String orElse = strCacheLocal.values().parallelStream().filter(e -> e.equals(str)).findAny().orElse(null);
|
||||
if (orElse == null) {
|
||||
MessageResponseHandler.getMessage(str);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
public void instantiateAnnotationMapJMWE() {
|
||||
if (!stringCache.isEmpty()) {
|
||||
ConcurrentMap<String, Annotation> jmweAnnotation = PipelineJMWESingleton.INSTANCE.getJMWEAnnotation(stringCache.values());
|
||||
for (Entry<String, Annotation> entries : jmweAnnotation.entrySet()) {
|
||||
jmweAnnotationCache.put(entries.getKey(), entries.getValue());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public void instantiateAnnotationMap() {
|
||||
if (!stringCache.isEmpty()) {
|
||||
ConcurrentMap<String, Annotation> Annotationspipeline = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
ConcurrentMap<String, Annotation> AnnotationspipelineSentiment = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
stringCache.values().parallelStream().forEach(str -> {
|
||||
Annotation strAnno = new Annotation(str);
|
||||
strAnno.compact();
|
||||
Annotationspipeline.put(str, strAnno);
|
||||
Annotation strAnno2 = new Annotation(str);
|
||||
strAnno2.compact();
|
||||
AnnotationspipelineSentiment.put(str, strAnno2);
|
||||
});
|
||||
ConcurrentMap<String, CoreDocument> coreDocumentpipelineMap = getMultipleCoreDocumentsWaySuggestion(stringCache.values(), pipeline);
|
||||
pipeline.annotate(Annotationspipeline.values());
|
||||
pipelineSentiment.annotate(AnnotationspipelineSentiment.values());
|
||||
Annotationspipeline.entrySet().forEach(pipelineEntry -> {
|
||||
//relatively experimental change
|
||||
pipelineEntry.getValue().compact();
|
||||
pipelineAnnotationCache.put(pipelineEntry.getKey(), pipelineEntry.getValue());
|
||||
});
|
||||
AnnotationspipelineSentiment.entrySet().forEach(pipelineEntry -> {
|
||||
pipelineEntry.getValue().compact();
|
||||
pipelineSentimentAnnotationCache.put(pipelineEntry.getKey(), pipelineEntry.getValue());
|
||||
});
|
||||
coreDocumentpipelineMap.entrySet().stream().forEach(CD -> {
|
||||
coreDocumentAnnotationCache.put(CD.getKey(), CD.getValue());
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
private ConcurrentMap<Integer, String> futuresReturnOverallEvaluation(List<SimilarityMatrix> similarityMatrixes) {
|
||||
ConcurrentMap<Integer, String> strmapreturn = new MapMaker().concurrencyLevel(6).makeMap();
|
||||
if (!similarityMatrixes.isEmpty()) {
|
||||
int iterator = 0;
|
||||
for (SimilarityMatrix SMX : similarityMatrixes) {
|
||||
final Double scoreRelationNewMsgToRecentMsg = SMX.getDistance();
|
||||
if (scoreRelationNewMsgToRecentMsg > 0.0) {
|
||||
strmapreturn = addSMXToMapReturn(strmapreturn, SMX);
|
||||
}
|
||||
//System.out.println("scoreRelationNewMsgToRecentMsg: " + scoreRelationNewMsgToRecentMsg + "\niterator: " + iterator);
|
||||
iterator++;
|
||||
}
|
||||
}
|
||||
return strmapreturn;
|
||||
}
|
||||
|
||||
private ConcurrentMap<Integer, String> addSMXToMapReturn(ConcurrentMap<Integer, String> strmapreturn, SimilarityMatrix SMX) {
|
||||
if (!strmapreturn.containsValue(SMX.getPrimaryString())) {
|
||||
strmapreturn.put(strmapreturn.size(), SMX.getPrimaryString());
|
||||
String transmittedStr = SMX.getSecondaryString();
|
||||
SentimentValueCache cacheValue1 = SMX.getCacheValue1();
|
||||
SentimentValueCache cacheValue2 = SMX.getCacheValue2();
|
||||
if (cacheValue1 != null && !sentimentCachingMap.keySet().contains(SMX.getPrimaryString())) {
|
||||
sentimentCachingMap.put(SMX.getSecondaryString(), SMX.getCacheValue1());
|
||||
}
|
||||
if (cacheValue2 != null && !sentimentCachingMap.keySet().contains(transmittedStr)) {
|
||||
sentimentCachingMap.put(transmittedStr, SMX.getCacheValue2());
|
||||
}
|
||||
}
|
||||
return strmapreturn;
|
||||
}
|
||||
|
||||
private List<SimilarityMatrix> StrComparringNoSentenceRelationMap(
|
||||
ConcurrentMap<Integer, String> strCacheLocal, Collection<String> strCollection, ConcurrentMap<String, Annotation> localJMWEMap,
|
||||
ConcurrentMap<String, Annotation> localPipelineAnnotation, ConcurrentMap<String, Annotation> localPipelineSentimentAnnotation,
|
||||
ConcurrentMap<String, CoreDocument> localCoreDocumentMap) {
|
||||
ExecutorService threadPool = Executors.newCachedThreadPool();
|
||||
CompletionService<SimilarityMatrix> ecs = new ExecutorCompletionService<>(threadPool);
|
||||
int index = 0;
|
||||
int prefix_size = 150;
|
||||
SentimentValueCache sentimentCacheStr = sentimentCachingMap.getOrDefault(strCollection, null);
|
||||
List<SimilarityMatrix> smxReturnList = new ArrayList();
|
||||
if (strCacheLocal.size() < prefix_size)
|
||||
{
|
||||
for (String colStr : strCollection)
|
||||
{
|
||||
strCacheLocal.put(strCacheLocal.size(), colStr);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
for (String str1 : strCollection) {
|
||||
for (String str : strCollection) {
|
||||
if (!str.equals(str1)) {
|
||||
SimilarityMatrix SMXInit = new SimilarityMatrix(str, str1);
|
||||
SentimentValueCache sentimentCacheStr1 = sentimentCachingMap.getOrDefault(str1, null);
|
||||
Callable<SimilarityMatrix> worker;
|
||||
if (stringCache.size() < prefix_size) {
|
||||
worker = new SentimentAnalyzerTest(str, str1, SMXInit,
|
||||
localJMWEMap.get(str), localJMWEMap.get(str1), localPipelineAnnotation.get(str),
|
||||
localPipelineAnnotation.get(str1), localPipelineSentimentAnnotation.get(str),
|
||||
localPipelineSentimentAnnotation.get(str1), localCoreDocumentMap.get(str), localCoreDocumentMap.get(str1), sentimentCacheStr, sentimentCacheStr1);
|
||||
} else {
|
||||
worker = new SentimentAnalyzerTest(str, str1, SMXInit,
|
||||
localJMWEMap.get(str), jmweAnnotationCache.get(str1), localPipelineAnnotation.get(str),
|
||||
pipelineAnnotationCache.get(str1), localPipelineSentimentAnnotation.get(str),
|
||||
pipelineSentimentAnnotationCache.get(str1), localCoreDocumentMap.get(str), coreDocumentAnnotationCache.get(str1), sentimentCacheStr, sentimentCacheStr1);
|
||||
}
|
||||
ecs.submit(worker);
|
||||
index++;
|
||||
if (index % 1000 == 0 && index > 0) {
|
||||
for (int i = 0; i < index; i++) {
|
||||
try {
|
||||
Future<SimilarityMatrix> take = ecs.take();
|
||||
SimilarityMatrix smx = take.get();
|
||||
if (smx != null) {
|
||||
smxReturnList.add(smx);
|
||||
}
|
||||
} catch (InterruptedException | ExecutionException ex) {
|
||||
//
|
||||
}
|
||||
}
|
||||
index = 0;
|
||||
//System.out.println("smxReturnList size iterating ECS.take(): " + smxReturnList.size());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
double distance_requirement = 15500.0;
|
||||
for (int i = 0; i < index; i++) {
|
||||
try {
|
||||
Future<SimilarityMatrix> take = ecs.take();
|
||||
SimilarityMatrix smx = take.get();
|
||||
|
||||
if (smx != null && smx.getDistance() > distance_requirement) {
|
||||
smxReturnList.add(smx);
|
||||
}
|
||||
} catch (InterruptedException | ExecutionException ex) {
|
||||
//
|
||||
}
|
||||
}
|
||||
//System.out.println("smxReturnList size: " + smxReturnList.size());
|
||||
threadPool.shutdown();
|
||||
return smxReturnList;
|
||||
}
|
||||
|
||||
private ConcurrentMap<Integer, String> stringIteratorComparator(ConcurrentMap<Integer, String> strmap,
|
||||
ConcurrentMap<Integer, String> strCacheLocal, ConcurrentMap<String, Annotation> localJMWEMap,
|
||||
ConcurrentMap<String, Annotation> localPipelineAnnotation, ConcurrentMap<String, Annotation> localPipelineSentimentAnnotation,
|
||||
ConcurrentMap<String, CoreDocument> localCoreDocumentMap) {
|
||||
//System.out.println("strmap siuze: " + strmap.size());
|
||||
List<SimilarityMatrix> StrComparringNoSentenceRelationMap = StrComparringNoSentenceRelationMap(strCacheLocal, strmap.values(),
|
||||
localJMWEMap, localPipelineAnnotation, localPipelineSentimentAnnotation, localCoreDocumentMap);
|
||||
Collections.sort(StrComparringNoSentenceRelationMap, (e1, e2) -> e1.getPrimaryString().compareTo(e2.getPrimaryString()));
|
||||
ConcurrentMap<Integer, String> strmapreturn = futuresReturnOverallEvaluation(StrComparringNoSentenceRelationMap);
|
||||
//System.out.println("strmapreturn size: " + strmapreturn.size());
|
||||
return strmapreturn;
|
||||
}
|
||||
|
||||
private ConcurrentMap<Integer, String> removeNonSensicalStrings(ConcurrentMap<Integer, String> strmap) {
|
||||
final ConcurrentMap<Integer, String> strCacheLocal = stringCache;
|
||||
final ConcurrentMap<String, Annotation> localJMWEMap = getMultipleJMWEAnnotation(strmap.values());
|
||||
final ConcurrentMap<String, Annotation> localPipelineAnnotation = getMultiplePipelineAnnotation(strmap.values());
|
||||
final ConcurrentMap<String, Annotation> localPipelineSentimentAnnotation = getMultiplePipelineSentimentAnnotation(strmap.values());
|
||||
final ConcurrentMap<String, CoreDocument> localCoreDocumentMap = getMultipleCoreDocumentsWaySuggestion(strmap.values(), pipeline);
|
||||
return stringIteratorComparator(strmap, strCacheLocal, localJMWEMap, localPipelineAnnotation, localPipelineSentimentAnnotation, localCoreDocumentMap);
|
||||
}
|
||||
|
||||
public synchronized void checkIfUpdateStrings() throws CustomError {
|
||||
if (stopwatch.elapsed(TimeUnit.SECONDS) >= EXPIRE_TIME_IN_SECONDS || !stopwatch.isRunning()) {
|
||||
ConcurrentMap<Integer, String> str = MessageResponseHandler.getStr();
|
||||
System.out.println("str size: " + str.size());
|
||||
str = filterContent(str);
|
||||
str = removeNonSensicalStrings(str);
|
||||
//System.out.println("removeNonSensicalStrings str size POST: " + str.size() + "\n");
|
||||
str = annotationCacheUpdate(str);
|
||||
System.out.println("annotationCacheUpdate str size POST: " + str.size() + "\n");
|
||||
ConcurrentMap<Integer, String> strf = str;
|
||||
if (!stringCache.isEmpty()) {
|
||||
new Thread(() -> {
|
||||
try {
|
||||
DataMapper.InsertMYSQLStrings(strf);
|
||||
} catch (CustomError ex) {
|
||||
Logger.getLogger(Datahandler.class
|
||||
.getName()).log(Level.SEVERE, null, ex);
|
||||
}
|
||||
MessageResponseHandler.setStr(new MapMaker().concurrencyLevel(6).makeMap());
|
||||
}).start();
|
||||
} else {
|
||||
try {
|
||||
DataMapper.InsertMYSQLStrings(strf);
|
||||
} catch (CustomError ex) {
|
||||
Logger.getLogger(Datahandler.class
|
||||
.getName()).log(Level.SEVERE, null, ex);
|
||||
}
|
||||
MessageResponseHandler.setStr(new MapMaker().concurrencyLevel(2).makeMap());
|
||||
}
|
||||
if (!stopwatch.isRunning()) {
|
||||
stopwatch.start();
|
||||
} else {
|
||||
stopwatch.reset();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private String trimString(String str) {
|
||||
str = str.trim();
|
||||
if (str.startsWith("<@")) {
|
||||
str = str.substring(str.indexOf("> ") + 2);
|
||||
}
|
||||
return str;
|
||||
}
|
||||
|
||||
private String getResponseFutures(String strF) {
|
||||
List<String> values_copy = new ArrayList<String>(stringCache.values());
|
||||
Collections.shuffle(values_copy);
|
||||
double preRelationUserCounters = -155000.0;
|
||||
List<String> concurrentRelations = new ArrayList();
|
||||
for (String str1 : values_copy) {
|
||||
if (!strF.equals(str1)) {
|
||||
SentimentValueCache sentimentCacheStr1 = sentimentCachingMap.getOrDefault(str1, null);
|
||||
Callable<SimilarityMatrix> worker = new SentimentAnalyzerTest(strF, str1, new SimilarityMatrix(strF, str1),
|
||||
strAnnoJMWE, jmweAnnotationCache.get(str1), strAnno,
|
||||
pipelineAnnotationCache.get(str1), strAnnoSentiment,
|
||||
pipelineSentimentAnnotationCache.get(str1), coreDoc, coreDocumentAnnotationCache.get(str1), null, sentimentCacheStr1);
|
||||
try {
|
||||
SimilarityMatrix getSMX = worker.call();
|
||||
if (getSMX != null) {
|
||||
Double scoreRelationLastUserMsg = getSMX.getDistance();
|
||||
if (scoreRelationLastUserMsg > preRelationUserCounters) {
|
||||
preRelationUserCounters = scoreRelationLastUserMsg;
|
||||
concurrentRelations.add(getSMX.getSecondaryString());
|
||||
//System.out.println("secondary: " + getSMX.getSecondaryString() + "\nDistance: " + getSMX.getDistance() + "\n");
|
||||
//System.out.println("SUCESS concurrentRelationsMap size: " + concurrentRelations.size() + "\n");
|
||||
}
|
||||
}
|
||||
} catch (Exception ex) {
|
||||
Logger.getLogger(Datahandler.class.getName()).log(Level.SEVERE, null, ex);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
StringBuilder SB = new StringBuilder();
|
||||
double randomLenghtPermit = strF.length() * ((Math.random() * Math.random() * Math.random()) * 5);
|
||||
Collections.reverse(concurrentRelations);
|
||||
if (concurrentRelations.isEmpty()) {
|
||||
return "failure, preventing stuckness";
|
||||
}
|
||||
String firstRelation = concurrentRelations.get(0);
|
||||
for (String secondaryRelation : concurrentRelations) {
|
||||
if (SB.toString().length() > randomLenghtPermit && !SB.toString().isEmpty()) {
|
||||
break;
|
||||
}
|
||||
boolean append = appendToString(firstRelation, secondaryRelation);
|
||||
if (append) {
|
||||
SB.append(secondaryRelation).append(" ");
|
||||
}
|
||||
}
|
||||
return SB.toString();
|
||||
}
|
||||
|
||||
private boolean appendToString(String firstRelation, String secondaryRelation) {
|
||||
if (firstRelation.equals(secondaryRelation)) {
|
||||
return true;
|
||||
}
|
||||
Double scoreRelationStrF = getScoreRelationStrF(firstRelation, secondaryRelation);
|
||||
if (scoreRelationStrF > 1900) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
public String getResponseMsg(String str) throws CustomError {
|
||||
String strF = trimString(str);
|
||||
getSingularAnnotation(strF);
|
||||
return getResponseFutures(strF);
|
||||
}
|
||||
|
||||
public void getSingularAnnotation(String str) {
|
||||
strAnno = new Annotation(str);
|
||||
strAnno.compact();
|
||||
pipeline.annotate(strAnno);
|
||||
strAnnoSentiment = new Annotation(str);
|
||||
strAnnoSentiment.compact();
|
||||
pipelineSentiment.annotate(strAnnoSentiment);
|
||||
List<String> notactualList = new ArrayList();
|
||||
notactualList.add(str);
|
||||
ConcurrentMap<String, Annotation> jmweAnnotation = PipelineJMWESingleton.INSTANCE.getJMWEAnnotation(notactualList);
|
||||
strAnnoJMWE = jmweAnnotation.values().iterator().next();
|
||||
strAnnoJMWE.compact();
|
||||
CoreDocument coreDocument = new CoreDocument(str);
|
||||
pipeline.annotate(coreDocument);
|
||||
coreDoc = coreDocument;
|
||||
}
|
||||
|
||||
private static ConcurrentMap<String, Annotation> getMultipleJMWEAnnotation(Collection<String> str) {
|
||||
ConcurrentMap<String, Annotation> jmweAnnotation = PipelineJMWESingleton.INSTANCE.getJMWEAnnotation(str);
|
||||
return jmweAnnotation;
|
||||
}
|
||||
|
||||
private static ConcurrentMap<String, Annotation> getMultiplePipelineAnnotation(Collection<String> str) {
|
||||
ConcurrentMap<String, Annotation> pipelineAnnotationMap = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
for (String str1 : str) {
|
||||
Annotation strAnno1 = new Annotation(str1);
|
||||
pipelineAnnotationMap.put(str1, strAnno1);
|
||||
}
|
||||
pipeline.annotate(pipelineAnnotationMap.values());
|
||||
return pipelineAnnotationMap;
|
||||
}
|
||||
|
||||
private static ConcurrentMap<String, Annotation> getMultiplePipelineSentimentAnnotation(Collection<String> str) {
|
||||
ConcurrentMap<String, Annotation> pipelineAnnotationMap = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
for (String str1 : str) {
|
||||
Annotation strAnno1 = new Annotation(str1);
|
||||
pipelineAnnotationMap.put(str1, strAnno1);
|
||||
}
|
||||
pipelineSentiment.annotate(pipelineAnnotationMap.values());
|
||||
return pipelineAnnotationMap;
|
||||
}
|
||||
|
||||
private Double getScoreRelationNewMsgToRecentMsg(String str, String mostRecentMsg) {
|
||||
SimilarityMatrix SMX = new SimilarityMatrix(str, mostRecentMsg);
|
||||
SentimentValueCache cacheSentiment1 = sentimentCachingMap.getOrDefault(str, null);
|
||||
SentimentValueCache cacheSentiment2 = sentimentCachingMap.getOrDefault(mostRecentMsg, null);
|
||||
Callable<SimilarityMatrix> worker = new SentimentAnalyzerTest(str, mostRecentMsg, SMX,
|
||||
jmweAnnotationCache.get(str), jmweAnnotationCache.get(mostRecentMsg), pipelineAnnotationCache.get(str),
|
||||
pipelineAnnotationCache.get(mostRecentMsg), pipelineSentimentAnnotationCache.get(str),
|
||||
pipelineSentimentAnnotationCache.get(mostRecentMsg), coreDocumentAnnotationCache.get(str),
|
||||
coreDocumentAnnotationCache.get(mostRecentMsg), cacheSentiment1, cacheSentiment2);
|
||||
SimilarityMatrix callSMX = null;
|
||||
try {
|
||||
callSMX = worker.call();
|
||||
} catch (Exception ex) {
|
||||
Logger.getLogger(Datahandler.class
|
||||
.getName()).log(Level.SEVERE, null, ex);
|
||||
}
|
||||
if (callSMX != null) {
|
||||
double smxDistance = callSMX.getDistance();
|
||||
return smxDistance;
|
||||
}
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
private Double getScoreRelationStrF(String str, String mostRecentMsg) {
|
||||
SimilarityMatrix SMX = new SimilarityMatrix(str, mostRecentMsg);
|
||||
SentimentValueCache cacheSentiment1 = sentimentCachingMap.getOrDefault(str, null);
|
||||
SentimentValueCache cacheSentiment2 = sentimentCachingMap.getOrDefault(mostRecentMsg, null);
|
||||
Callable<SimilarityMatrix> worker = new SentimentAnalyzerTest(str, mostRecentMsg, SMX,
|
||||
strAnnoJMWE, jmweAnnotationCache.get(mostRecentMsg), strAnno,
|
||||
pipelineAnnotationCache.get(mostRecentMsg), strAnnoSentiment,
|
||||
pipelineSentimentAnnotationCache.get(mostRecentMsg), coreDoc, coreDocumentAnnotationCache.get(mostRecentMsg), cacheSentiment1, cacheSentiment2);
|
||||
SimilarityMatrix callSMX = null;
|
||||
try {
|
||||
callSMX = worker.call();
|
||||
} catch (Exception ex) {
|
||||
Logger.getLogger(Datahandler.class
|
||||
.getName()).log(Level.SEVERE, null, ex);
|
||||
}
|
||||
if (callSMX != null) {
|
||||
double smxDistance = callSMX.getDistance();
|
||||
return smxDistance;
|
||||
}
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
public static ConcurrentMap<Integer, String> filterContent(ConcurrentMap<Integer, String> str) {
|
||||
ConcurrentMap<Integer, String> strlistreturn = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
str.values().forEach(str1 -> {
|
||||
if (!str1.isEmpty() && str1.length() > 3) {
|
||||
str1 = str1.trim();
|
||||
if (str1.contains("PM*")) {
|
||||
str1 = str1.substring(str1.indexOf("PM*") + 3);
|
||||
}
|
||||
if (str1.contains("AM*")) {
|
||||
str1 = str1.substring(str1.indexOf("AM*") + 3);
|
||||
}
|
||||
/*
|
||||
if (str1.contains("?") || str1.contains("°"))
|
||||
{
|
||||
if (!str1.contains("http"))
|
||||
{
|
||||
str1 = str1.replace("?", " <:wlenny:514861023002624001> ");
|
||||
str1 = str1.replace("°", " <:wlenny:514861023002624001> ");
|
||||
}
|
||||
}
|
||||
*/
|
||||
if (str1.contains("(Counter-Terrorist)")) {
|
||||
str1 = str1.replace("(Counter-Terrorist)", " ");
|
||||
}
|
||||
if (str1.contains("(Terrorist)")) {
|
||||
str1 = str1.replace("(Terrorist)", " ");
|
||||
}
|
||||
if (str1.contains("(Spectator)")) {
|
||||
str1 = str1.replace("(Spectator)", " ");
|
||||
}
|
||||
if (str1.contains("*DEAD*")) {
|
||||
str1 = str1.replace("*DEAD*", " ");
|
||||
}
|
||||
if (str1.contains("{red}")) {
|
||||
str1 = str1.replace("{red}", " ");
|
||||
}
|
||||
if (str1.contains("{orange}")) {
|
||||
str1 = str1.replace("{orange}", " ");
|
||||
}
|
||||
if (str1.contains("{yellow}")) {
|
||||
str1 = str1.replace("{yellow}", " ");
|
||||
}
|
||||
if (str1.contains("{green}")) {
|
||||
str1 = str1.replace("{green}", " ");
|
||||
}
|
||||
if (str1.contains("{lightblue}")) {
|
||||
str1 = str1.replace("{lightblue}", " ");
|
||||
}
|
||||
if (str1.contains("{blue}")) {
|
||||
str1 = str1.replace("{blue}", " ");
|
||||
}
|
||||
if (str1.contains("{purple}")) {
|
||||
str1 = str1.replace("{purple}", " ");
|
||||
}
|
||||
if (str1.contains("{white}")) {
|
||||
str1 = str1.replace("{white}", " ");
|
||||
}
|
||||
if (str1.contains("{fullblue}")) {
|
||||
str1 = str1.replace("{fullblue}", " ");
|
||||
}
|
||||
if (str1.contains("{cyan}")) {
|
||||
str1 = str1.replace("{cyan}", " ");
|
||||
}
|
||||
if (str1.contains("{lime}")) {
|
||||
str1 = str1.replace("{lime}", " ");
|
||||
}
|
||||
if (str1.contains("{deeppink}")) {
|
||||
str1 = str1.replace("{deeppink}", " ");
|
||||
}
|
||||
if (str1.contains("{slategray}")) {
|
||||
str1 = str1.replace("{slategray}", " ");
|
||||
}
|
||||
if (str1.contains("{dodgerblue}")) {
|
||||
str1 = str1.replace("{dodgerblue}", " ");
|
||||
}
|
||||
if (str1.contains("{black}")) {
|
||||
str1 = str1.replace("{black}", " ");
|
||||
}
|
||||
if (str1.contains("{orangered}")) {
|
||||
str1 = str1.replace("{orangered}", " ");
|
||||
}
|
||||
if (str1.contains("{darkorchid}")) {
|
||||
str1 = str1.replace("{darkorchid}", " ");
|
||||
}
|
||||
if (str1.contains("{pink}")) {
|
||||
str1 = str1.replace("{pink}", " ");
|
||||
}
|
||||
if (str1.contains("{lightyellow}")) {
|
||||
str1 = str1.replace("{lightyellow}", " ");
|
||||
}
|
||||
if (str1.contains("{chocolate}")) {
|
||||
str1 = str1.replace("{chocolate}", " ");
|
||||
}
|
||||
if (str1.contains("{beige}")) {
|
||||
str1 = str1.replace("{beige}", " ");
|
||||
}
|
||||
if (str1.contains("{azure}")) {
|
||||
str1 = str1.replace("{azure}", " ");
|
||||
}
|
||||
if (str1.contains("{yellowgreen}")) {
|
||||
str1 = str1.replace("{yellowgreen}", " ");
|
||||
}
|
||||
str1 = str1.trim();
|
||||
if (str1.length() > 2 && (!str1.startsWith("!"))) {
|
||||
strlistreturn.put(strlistreturn.size(), str1);
|
||||
}
|
||||
}
|
||||
});
|
||||
return strlistreturn;
|
||||
}
|
||||
|
||||
private ConcurrentMap<Integer, String> annotationCacheUpdate(ConcurrentMap<Integer, String> strmap) {
|
||||
ConcurrentMap<String, Annotation> jmweAnnotation = PipelineJMWESingleton.INSTANCE.getJMWEAnnotation(strmap.values());
|
||||
for (Entry<String, Annotation> jmweitr : jmweAnnotation.entrySet()) {
|
||||
jmweAnnotationCache.put(jmweitr.getKey(), jmweitr.getValue());
|
||||
}
|
||||
ConcurrentMap<String, Annotation> Annotationspipeline = new MapMaker().concurrencyLevel(4).makeMap();
|
||||
ConcurrentMap<String, Annotation> AnnotationspipelineSentiment = new MapMaker().concurrencyLevel(4).makeMap();
|
||||
ConcurrentMap<String, CoreDocument> coreDocumentpipelineMap = getMultipleCoreDocumentsWaySuggestion(strmap.values(), pipeline);
|
||||
strmap.values().forEach(str -> {
|
||||
Annotation strAnno1 = new Annotation(str);
|
||||
Annotationspipeline.put(str, strAnno1);
|
||||
Annotation strAnno2 = new Annotation(str);
|
||||
AnnotationspipelineSentiment.put(str, strAnno2);
|
||||
stringCache.put(stringCache.size() + 1, str);
|
||||
});
|
||||
pipeline.annotate(Annotationspipeline.values());
|
||||
pipelineSentiment.annotate(AnnotationspipelineSentiment.values());
|
||||
Annotationspipeline.entrySet().forEach(pipelineEntry -> {
|
||||
if (pipelineEntry != null) {
|
||||
pipelineAnnotationCache.put(pipelineEntry.getKey(), pipelineEntry.getValue());
|
||||
}
|
||||
});
|
||||
AnnotationspipelineSentiment.entrySet().forEach(pipelineEntry -> {
|
||||
if (pipelineEntry != null) {
|
||||
pipelineSentimentAnnotationCache.put(pipelineEntry.getKey(), pipelineEntry.getValue());
|
||||
}
|
||||
});
|
||||
coreDocumentpipelineMap.entrySet().forEach(coreDocumentEntry -> {
|
||||
coreDocumentAnnotationCache.put(coreDocumentEntry.getKey(), coreDocumentEntry.getValue());
|
||||
});
|
||||
return strmap;
|
||||
}
|
||||
|
||||
public int getMessageOverHead() {
|
||||
return stringCache.values().size() - (stringCache.values().size() / 10);
|
||||
}
|
||||
|
||||
public void update_autismo_socket_msg() {
|
||||
try {
|
||||
try (DatagramSocket serverSocket = new DatagramSocket(48477)) {
|
||||
try (DatagramSocket serverSocket1 = new DatagramSocket(48478)) {
|
||||
byte[] receiveData = new byte[4096];
|
||||
InetAddress IPAddress = InetAddress.getByName("144.76.218.19");
|
||||
DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length);
|
||||
while (true) {
|
||||
serverSocket.receive(receivePacket);
|
||||
String sentence = new String(receivePacket.getData(), 0, receivePacket.getLength());
|
||||
sentence = sentence.replace("clientmessage:", "");
|
||||
String getResponseMsg = getResponseMsg(sentence);
|
||||
byte[] sendData = getResponseMsg.getBytes("UTF-8");
|
||||
DatagramPacket sendPacket = new DatagramPacket(sendData, sendData.length, IPAddress, 48477);
|
||||
serverSocket.send(sendPacket);
|
||||
|
||||
receivePacket = new DatagramPacket(receiveData, receiveData.length);
|
||||
serverSocket1.receive(receivePacket);
|
||||
sentence = new String(receivePacket.getData(), 0, receivePacket.getLength());
|
||||
sentence = sentence.replace("clientmessage:", "");
|
||||
getResponseMsg = getResponseMsg(sentence);
|
||||
sendData = getResponseMsg.getBytes("UTF-8");
|
||||
sendPacket = new DatagramPacket(sendData, sendData.length, IPAddress, 48478);
|
||||
serverSocket1.send(sendPacket);
|
||||
}
|
||||
}
|
||||
} catch (CustomError ex) {
|
||||
Logger.getLogger(Datahandler.class.getName()).log(Level.SEVERE, null, ex);
|
||||
}
|
||||
} catch (SocketException ex) {
|
||||
Logger.getLogger(Datahandler.class.getName()).log(Level.SEVERE, null, ex);
|
||||
} catch (UnsupportedEncodingException ex) {
|
||||
Logger.getLogger(Datahandler.class.getName()).log(Level.SEVERE, null, ex);
|
||||
} catch (IOException ex) {
|
||||
Logger.getLogger(Datahandler.class.getName()).log(Level.SEVERE, null, ex);
|
||||
}
|
||||
}
|
||||
|
||||
private static class AnnotationCollector<T> implements Consumer<T> {
|
||||
|
||||
private static int i = 0;
|
||||
private List<T> annotationsT = new ArrayList();
|
||||
|
||||
@Override
|
||||
public void accept(T ann) {
|
||||
//System.out.println("adding ann: " + ann.toString());
|
||||
annotationsT.add(ann);
|
||||
}
|
||||
}
|
||||
|
||||
public static ConcurrentMap<String, CoreDocument> getMultipleCoreDocumentsWaySuggestion(Collection<String> str, StanfordCoreNLP localNLP) {
|
||||
AnnotationCollector<Annotation> annCollector = new AnnotationCollector();
|
||||
for (String exampleString : str) {
|
||||
localNLP.annotate(new Annotation(exampleString), annCollector);
|
||||
annCollector.i++;
|
||||
//System.out.println("iterator: " + annCollector.i + "\nstr size: " + str.size() + "\n");
|
||||
}
|
||||
try {
|
||||
Thread.sleep(8000);
|
||||
} catch (InterruptedException ex) {
|
||||
Logger.getLogger(Datahandler.class.getName()).log(Level.SEVERE, null, ex);
|
||||
}
|
||||
ConcurrentMap<String, CoreDocument> annotationreturnMap = new MapMaker().concurrencyLevel(6).makeMap();
|
||||
for (Annotation ann : annCollector.annotationsT) {
|
||||
if (ann != null) {
|
||||
ann.compact();
|
||||
CoreDocument CD = new CoreDocument(ann);
|
||||
annotationreturnMap.put(CD.text(), CD);
|
||||
//System.out.println("CD text:" + CD.text() + "\niterator: " + iterator + "\nsize: " + annCollector.annotationsT.size());
|
||||
}
|
||||
}
|
||||
return annotationreturnMap;
|
||||
}
|
||||
}
|
@ -1,658 +0,0 @@
|
||||
/*
|
||||
* To change this license header, choose License Headers in Project Properties.
|
||||
* To change this template file, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
*/
|
||||
package FunctionLayer
|
||||
|
||||
import DataLayer.DataMapper
|
||||
import FunctionLayer.StanfordParser.SentimentAnalyzerTest
|
||||
import com.google.common.base.Stopwatch
|
||||
import edu.mit.jmwe.data.IMWE
|
||||
import edu.mit.jmwe.data.IToken
|
||||
import edu.stanford.nlp.ie.AbstractSequenceClassifier
|
||||
import edu.stanford.nlp.ie.crf.CRFClassifier
|
||||
import edu.stanford.nlp.ling.CoreAnnotations
|
||||
import edu.stanford.nlp.ling.CoreLabel
|
||||
import edu.stanford.nlp.ling.TaggedWord
|
||||
import edu.stanford.nlp.parser.lexparser.LexicalizedParser
|
||||
import edu.stanford.nlp.pipeline.Annotation
|
||||
import edu.stanford.nlp.pipeline.CoreDocument
|
||||
import edu.stanford.nlp.pipeline.StanfordCoreNLP
|
||||
import edu.stanford.nlp.tagger.maxent.MaxentTagger
|
||||
import edu.stanford.nlp.trees.*
|
||||
import edu.stanford.nlp.util.CoreMap
|
||||
import kotlinx.coroutines.*
|
||||
import org.ejml.simple.SimpleMatrix
|
||||
import java.util.*
|
||||
import java.util.concurrent.TimeUnit
|
||||
import java.util.regex.Pattern
|
||||
import kotlin.collections.ArrayList
|
||||
import kotlin.collections.HashMap
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
* @author install1
|
||||
*/
|
||||
public class Datahandler {
|
||||
private val stopwatch: Stopwatch
|
||||
private val EXPIRE_TIME_IN_MINUTES = TimeUnit.MINUTES.convert(30, TimeUnit.MINUTES)
|
||||
private var pipelineAnnotationCache: HashMap<String, Annotation>
|
||||
private var pipelineSentimentAnnotationCache = HashMap<String, Annotation>()
|
||||
private var coreDocumentAnnotationCache: HashMap<String, CoreDocument>
|
||||
private var jmweAnnotationCache = HashMap<String, Annotation>()
|
||||
private var stringCache = ArrayList<String>()
|
||||
|
||||
//private val nerModel = "edu/stanford/nlp/models/ner/english.all.3class.caseless.distsim.crf.ser.gz"
|
||||
private val nerModel = "edu/stanford/nlp/models/ner/english.all.3class.distsim.crf.ser.gz"
|
||||
private var tagger: MaxentTagger = MaxentTagger()
|
||||
private var gsf: GrammaticalStructureFactory
|
||||
private var classifier: AbstractSequenceClassifier<CoreLabel>
|
||||
|
||||
//SentimentAnalyzer Hashmaps
|
||||
private var tokenizeCountingHashMap: HashMap<String, Int> = HashMap()
|
||||
private var taggedWordListHashMap: HashMap<String, List<List<TaggedWord>>> = HashMap()
|
||||
private var retrieveTGWListHashMap: HashMap<String, java.util.ArrayList<String>> =
|
||||
HashMap()
|
||||
private var sentences1HashMap: HashMap<String, List<CoreMap>> = HashMap()
|
||||
private var sentencesSentimentHashMap: HashMap<String, List<CoreMap>> = HashMap()
|
||||
private var trees1HashMap: HashMap<String, java.util.ArrayList<Tree>> = HashMap()
|
||||
private var grammaticalStructureHashMap: HashMap<String, java.util.ArrayList<GrammaticalStructure>> =
|
||||
HashMap()
|
||||
private var typedDependenciesHashMap: HashMap<String, java.util.ArrayList<TypedDependency>> =
|
||||
HashMap()
|
||||
private var rnnCoreAnnotationsPredictedHashMap: HashMap<String, java.util.ArrayList<Int>> = HashMap()
|
||||
private var simpleMatricesHashMap: HashMap<String, java.util.ArrayList<SimpleMatrix>> = HashMap()
|
||||
private var simpleMatricesNodevectorsHashMap: HashMap<String, java.util.ArrayList<SimpleMatrix>> = HashMap()
|
||||
private var listHashMap: HashMap<String, MutableList<Any?>> = HashMap()
|
||||
private var longestHashMap: HashMap<String, Int> = HashMap()
|
||||
private var sentimentHashMap: HashMap<String, Int> = HashMap()
|
||||
private var imwesHashMap: HashMap<String, List<IMWE<IToken>>> = HashMap()
|
||||
private var InflectedCounterNegativeHashMap: HashMap<String, Int> = HashMap()
|
||||
private var InflectedCounterPositiveHashMap: HashMap<String, Int> = HashMap()
|
||||
private var tokenEntryHashMap: HashMap<String, ArrayList<String>> = HashMap()
|
||||
private var MarkedContinuousCounterHashMap: HashMap<String, Int> = HashMap()
|
||||
private var UnmarkedPatternCounterHashMap: HashMap<String, Int> = HashMap()
|
||||
private var strTokensIpartFormHashMap: HashMap<String, java.util.ArrayList<String>> = HashMap()
|
||||
private var tokenFormsHashMap: HashMap<String, java.util.ArrayList<String>> = HashMap()
|
||||
private var strTokenEntryGetPOSHashMap: HashMap<String, java.util.ArrayList<String>> = HashMap()
|
||||
private var intTokenEntyCountsHashMap: HashMap<String, java.util.ArrayList<Int>> = HashMap()
|
||||
private var ITokenTagsHashMap: HashMap<String, java.util.ArrayList<String>> = HashMap()
|
||||
private var strTokenStemsHashMap: HashMap<String, java.util.ArrayList<String>> = HashMap()
|
||||
private var AnotatorcounterHashMap: HashMap<String, Int> = HashMap()
|
||||
private var TokensCounterHashMap: HashMap<String, Int> = HashMap()
|
||||
private var entityTokenTagsHashMap: HashMap<String, java.util.ArrayList<String>> = HashMap()
|
||||
private var nerEntitiesHashMap: HashMap<String, java.util.ArrayList<String>> = HashMap()
|
||||
private var nerEntitiesTypeHashMap: HashMap<String, java.util.ArrayList<String>> = HashMap()
|
||||
private var stopWordTokenHashMap: HashMap<String, java.util.ArrayList<String>> = HashMap()
|
||||
private var stopWordLemmaHashMap: HashMap<String, java.util.ArrayList<String>> = HashMap()
|
||||
private var PairCounterHashMap: HashMap<String, Int> = HashMap()
|
||||
|
||||
constructor() {
|
||||
stopwatch = Stopwatch.createUnstarted()
|
||||
jmweAnnotationCache = HashMap<String, Annotation>()
|
||||
pipelineAnnotationCache = HashMap<String, Annotation>()
|
||||
pipelineSentimentAnnotationCache = HashMap<String, Annotation>()
|
||||
coreDocumentAnnotationCache = HashMap<String, CoreDocument>()
|
||||
gsf = initiateGrammaticalStructureFactory()
|
||||
classifier = CRFClassifier.getClassifierNoExceptions(nerModel)
|
||||
}
|
||||
|
||||
fun initiateGrammaticalStructureFactory(): GrammaticalStructureFactory {
|
||||
val options = arrayOf("-maxLength", "100")
|
||||
//val lexParserEnglishRNN = "edu/stanford/nlp/models/lexparser/englishRNN.ser.gz"
|
||||
val lexParserEnglishPCFG = "edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz"
|
||||
val lp = LexicalizedParser.loadModel(lexParserEnglishPCFG, *options)
|
||||
val tlp = lp.getOp().langpack()
|
||||
return tlp.grammaticalStructureFactory()
|
||||
}
|
||||
|
||||
public fun pipeLineSetUp(): StanfordCoreNLP {
|
||||
val props = Properties()
|
||||
val shiftReduceParserPath = "edu/stanford/nlp/models/srparser/englishSR.ser.gz"
|
||||
//val nerModel2 = "edu/stanford/nlp/models/ner/english.conll.4class.caseless.distsim.crf.ser.gz"
|
||||
val nerModel2 = "edu/stanford/nlp/models/ner/english.conll.4class.distsim.crf.ser.gz"
|
||||
//val nerModel3 = "edu/stanford/nlp/models/ner/english.muc.7class.caseless.distsim.crf.ser.gz"
|
||||
val nerModel3 = "edu/stanford/nlp/models/ner/english.muc.7class.distsim.crf.ser.gz"
|
||||
props.setProperty("annotators", "tokenize,ssplit,pos,lemma,ner,parse")
|
||||
props.setProperty("parse.model", shiftReduceParserPath)
|
||||
props.setProperty("parse.maxlen", "90")
|
||||
props.setProperty("parse.binaryTrees", "true")
|
||||
props.setProperty("threads", "5")
|
||||
props.setProperty("pos.maxlen", "90")
|
||||
props.setProperty("tokenize.maxlen", "90")
|
||||
props.setProperty("ssplit.maxlen", "90")
|
||||
props.setProperty("lemma.maxlen", "90")
|
||||
props.setProperty("ner.model", "$nerModel,$nerModel2,$nerModel3")
|
||||
props.setProperty("ner.combinationMode", "HIGH_RECALL")
|
||||
props.setProperty("regexner.ignorecase", "true")
|
||||
props.setProperty("ner.fine.regexner.ignorecase", "true")
|
||||
props.setProperty("tokenize.options", "untokenizable=firstKeep")
|
||||
return StanfordCoreNLP(props)
|
||||
}
|
||||
|
||||
fun shiftReduceParserInitiate(): StanfordCoreNLP {
|
||||
val propsSentiment = Properties()
|
||||
//val lexParserEnglishRNN = "edu/stanford/nlp/models/lexparser/englishRNN.ser.gz"
|
||||
val lexParserEnglishPCFG = "edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz"
|
||||
val sentimentModel = "edu/stanford/nlp/models/sentiment/sentiment.ser.gz"
|
||||
//val taggerPath = "edu/stanford/nlp/models/pos-tagger/english-left3words/english-left3words-distsim.tagger"
|
||||
val taggerPath = "edu/stanford/nlp/models/pos-tagger/english-left3words-distsim.tagger"
|
||||
val customStopWordList = "start,starts,period,periods,a,an,and,are,as,at,be,but,by,for,if,in,into,is,it,no,not,of," +
|
||||
"on,or,such,that,the,their,then,there,these,they,this,to,was,will,with"
|
||||
propsSentiment.setProperty("parse.model", lexParserEnglishPCFG)
|
||||
propsSentiment.setProperty("sentiment.model", sentimentModel)
|
||||
propsSentiment.setProperty("parse.maxlen", "90")
|
||||
propsSentiment.setProperty("threads", "5")
|
||||
propsSentiment.setProperty("pos.maxlen", "90")
|
||||
propsSentiment.setProperty("tokenize.maxlen", "90")
|
||||
propsSentiment.setProperty("ssplit.maxlen", "90")
|
||||
propsSentiment.setProperty("annotators", "tokenize,ssplit,pos,parse,sentiment,lemma,stopword") //coref too expensive memorywise
|
||||
propsSentiment.setProperty("customAnnotatorClass.stopword", "FunctionLayer.StopwordAnnotator")
|
||||
propsSentiment.setProperty(StopwordAnnotator.STOPWORDS_LIST, customStopWordList)
|
||||
propsSentiment.setProperty("tokenize.options", "untokenizable=firstKeep")
|
||||
tagger = MaxentTagger(taggerPath)
|
||||
|
||||
println("finished shiftReduceParserInitiate\n")
|
||||
return StanfordCoreNLP(propsSentiment)
|
||||
}
|
||||
|
||||
fun updateStringCache() {
|
||||
if (stopwatch.elapsed(TimeUnit.MINUTES) >= EXPIRE_TIME_IN_MINUTES || !stopwatch.isRunning) {
|
||||
if (!stopwatch.isRunning) {
|
||||
stopwatch.start()
|
||||
} else {
|
||||
stopwatch.reset()
|
||||
}
|
||||
stringCache.sortWith(Comparator.comparingInt(String::length).reversed());
|
||||
System.out.println("pre InsertMYSQLStrings")
|
||||
val arrayList = java.util.ArrayList<String>(stringCache)
|
||||
DataMapper.InsertMYSQLStrings(arrayList)
|
||||
DataMapper.checkStringsToDelete();
|
||||
stringCache = ArrayList<String>();
|
||||
initiateMYSQL();
|
||||
}
|
||||
}
|
||||
|
||||
fun initiateMYSQL() {
|
||||
stringCache.addAll(DataMapper.getAllStrings())
|
||||
}
|
||||
|
||||
private fun trimString(str: String): String {
|
||||
var message = str.trim { it <= ' ' }
|
||||
if (message.startsWith("<@")) {
|
||||
message = message.substring(message.indexOf("> ") + 2)
|
||||
}
|
||||
if (!message.isEmpty()) {
|
||||
message = message.replace("@", "")
|
||||
if (message.contains("<>")) {
|
||||
message = message.substring(message.indexOf(">"))
|
||||
}
|
||||
if (message.startsWith("[ *")) {
|
||||
message = message.substring(message.indexOf("]"))
|
||||
}
|
||||
}
|
||||
return message
|
||||
}
|
||||
|
||||
private fun createStrAnnotation(str: String, stanfordCoreNLP: StanfordCoreNLP, sentimentBool: Boolean) {
|
||||
val strAnno2 = Annotation(str)
|
||||
strAnno2.compact()
|
||||
stanfordCoreNLP.annotate(strAnno2)
|
||||
if (sentimentBool) {
|
||||
pipelineSentimentAnnotationCache.put(str, strAnno2)
|
||||
} else {
|
||||
pipelineAnnotationCache.put(str, strAnno2)
|
||||
}
|
||||
}
|
||||
|
||||
private fun getResponseFutures(strF: String, stanfordCoreNLP: StanfordCoreNLP, stanfordCoreNLPSentiment: StanfordCoreNLP): String {
|
||||
val strAnno: Annotation = Annotation(strF)
|
||||
strAnno.compact()
|
||||
stanfordCoreNLP.annotate(strAnno)
|
||||
|
||||
val strAnnoSentiment: Annotation = Annotation(strF)
|
||||
strAnnoSentiment.compact()
|
||||
stanfordCoreNLPSentiment.annotate(strAnnoSentiment)
|
||||
|
||||
val coreDocument = CoreDocument(strF)
|
||||
stanfordCoreNLP.annotate(coreDocument)
|
||||
|
||||
val values_copy: List<String> = ArrayList(stringCache)
|
||||
var preRelationUserCounters = -155000.0
|
||||
val concurrentRelations: MutableList<String> = arrayListOf()
|
||||
val SB = StringBuilder()
|
||||
var jmweAnnotationF = PipelineJMWESingleton.INSTANCE.getJMWEAnnotation(strF)
|
||||
var tokenizeCountingF: Int? = null
|
||||
var taggedWordListF: List<List<TaggedWord>>? = null
|
||||
var retrieveTGWListF: java.util.ArrayList<String>? = null
|
||||
var sentencesF: List<CoreMap>? = null
|
||||
var sentencesSentimentF: List<CoreMap>? = null
|
||||
var coreMaps1: List<CoreMap> = jmweAnnotationF.get(CoreAnnotations.SentencesAnnotation::class.java)
|
||||
var treesF: java.util.ArrayList<Tree>? = null
|
||||
var grammaticalStructuresF: ArrayList<GrammaticalStructure>? = null
|
||||
var typedDependenciesF: java.util.ArrayList<TypedDependency>? = null
|
||||
var rnnCoreAnnotationsPredictedF: java.util.ArrayList<Int>? = null
|
||||
var simpleMatricesF: java.util.ArrayList<SimpleMatrix>? = null
|
||||
var simpleMatricesNodevectorsF: java.util.ArrayList<SimpleMatrix>? = null
|
||||
var listF: MutableList<Any?>? = null
|
||||
var longestF: Int? = null
|
||||
var sentimentLongestF: Int? = null
|
||||
var imwesF: List<IMWE<IToken>>? = null
|
||||
var InflectedCounterNegativeF: Int? = null
|
||||
var InflectedCounterPositiveF: Int? = null
|
||||
var tokenEntryF: ArrayList<String>? = null
|
||||
var MarkedContinuousCounterF: Int? = null
|
||||
var UnmarkedPatternCounterF: Int? = null
|
||||
var strTokensIpartFormF: ArrayList<String>? = null
|
||||
var tokenFormsF: java.util.ArrayList<String>? = null
|
||||
var strTokenEntryGetPOSF: ArrayList<String>? = null
|
||||
var intTokenEntyCountsF: java.util.ArrayList<Int>? = null
|
||||
var ITokenTagsF: ArrayList<String>? = null
|
||||
var strTokenStemsF: java.util.ArrayList<String>? = null
|
||||
var AnotatorcounterF: Int? = null
|
||||
var TokensCounterF: Int? = null
|
||||
var entityTokenTagsF: java.util.ArrayList<String>? = null
|
||||
var nerEntitiesF: java.util.ArrayList<String>? = null
|
||||
var nerEntitiesTypeF: java.util.ArrayList<String>? = null
|
||||
var stopWordTokenF: java.util.ArrayList<String>? = null
|
||||
var stopWordLemmaF: java.util.ArrayList<String>? = null
|
||||
var PairCounterF: Int? = null
|
||||
for (str1 in values_copy) {
|
||||
if (strF != str1) {
|
||||
val annotation2 = pipelineSentimentAnnotationCache.getOrDefault(str1, null)
|
||||
val annotation4 = pipelineAnnotationCache.getOrDefault(str1, null)
|
||||
val coreDocument1 = coreDocumentAnnotationCache.getOrDefault(str1, null)
|
||||
var jmweAnnotation = jmweAnnotationCache.getOrDefault(str1, null)
|
||||
if (annotation2 == null) {
|
||||
createStrAnnotation(str1, stanfordCoreNLPSentiment, true)
|
||||
}
|
||||
if (annotation4 == null) {
|
||||
createStrAnnotation(str1, stanfordCoreNLP, false)
|
||||
}
|
||||
if (coreDocument1 == null) {
|
||||
getCoreDocumentsSuggested(stanfordCoreNLP, str1)
|
||||
}
|
||||
if (jmweAnnotation == null) {
|
||||
getJMWEAnnotation(str1)
|
||||
jmweAnnotation = jmweAnnotationCache.get(str1)
|
||||
}
|
||||
val tokenizeCounting: Int? = tokenizeCountingHashMap.getOrDefault(str1, null)
|
||||
val taggedWordList1: List<List<TaggedWord>>? = taggedWordListHashMap.getOrDefault(str1, null)
|
||||
val retrieveTGWList1: java.util.ArrayList<String>? = retrieveTGWListHashMap.getOrDefault(str1, null)
|
||||
val sentence1: List<CoreMap>? = sentences1HashMap.getOrDefault(str1, null)
|
||||
val sentenceSentiment1: List<CoreMap>? = sentencesSentimentHashMap.getOrDefault(str1, null)
|
||||
val trees1 = trees1HashMap.getOrDefault(str1, null)
|
||||
var coreMaps2: List<CoreMap> = listOf()
|
||||
val grammaticalStructures1 = grammaticalStructureHashMap.getOrDefault(
|
||||
str1, null)
|
||||
if (jmweAnnotation != null) {
|
||||
coreMaps2 = jmweAnnotation.get(CoreAnnotations.SentencesAnnotation::class.java)
|
||||
}
|
||||
val typedDependencies1 = typedDependenciesHashMap.getOrDefault(str1, null)
|
||||
val rnnCoreAnnotationsPredicted1 = rnnCoreAnnotationsPredictedHashMap.getOrDefault(str1, null)
|
||||
val simpleMatrices1 = simpleMatricesHashMap.getOrDefault(str1, null);
|
||||
val simpleMatricesNodevectors1 = simpleMatricesNodevectorsHashMap.getOrDefault(str1, null);
|
||||
val list1 = listHashMap.getOrDefault(str1, null);
|
||||
val longest1 = longestHashMap.getOrDefault(str1, null);
|
||||
val sentimentLongest1 = sentimentHashMap.getOrDefault(str1, null);
|
||||
val imwes1 = imwesHashMap.getOrDefault(str1, null);
|
||||
val InflectedCounterNegative1 = InflectedCounterNegativeHashMap.getOrDefault(str1, null);
|
||||
val InflectedCounterPositive1 = InflectedCounterPositiveHashMap.getOrDefault(str1, null)
|
||||
val tokenEntry1 = tokenEntryHashMap.getOrDefault(str1, null)
|
||||
val MarkedContinuousCounter1 = MarkedContinuousCounterHashMap.getOrDefault(str1, null)
|
||||
val UnmarkedPatternCounter1 = UnmarkedPatternCounterHashMap.getOrDefault(str1, null)
|
||||
val strTokensIpartForm1 = strTokensIpartFormHashMap.getOrDefault(str1, null);
|
||||
val tokenForms1 = tokenFormsHashMap.getOrDefault(str1, null);
|
||||
val strTokenEntryGetPOS1 = strTokenEntryGetPOSHashMap.getOrDefault(str1, null)
|
||||
val intTokenEntyCounts1 = intTokenEntyCountsHashMap.getOrDefault(str1, null);
|
||||
val ITokenTags1 = ITokenTagsHashMap.getOrDefault(str1, null);
|
||||
val strTokenStems1 = strTokenStemsHashMap.getOrDefault(str1, null);
|
||||
val Anotatorcounter1 = AnotatorcounterHashMap.getOrDefault(str1, null);
|
||||
val TokensCounter1 = TokensCounterHashMap.getOrDefault(str1, null);
|
||||
val entityTokenTags1 = entityTokenTagsHashMap.getOrDefault(str1, null);
|
||||
val nerEntities1 = nerEntitiesHashMap.getOrDefault(str1, null);
|
||||
val nerEntitiesType1 = nerEntitiesTypeHashMap.getOrDefault(str1, null);
|
||||
val stopWordToken1 = stopWordTokenHashMap.getOrDefault(str1, null);
|
||||
val stopWordLemma1 = stopWordLemmaHashMap.getOrDefault(str1, null);
|
||||
val PairCounter1 = PairCounterHashMap.getOrDefault(str1, null);
|
||||
|
||||
var SMX = SentimentAnalyzerTest(strF, str1, SimilarityMatrix(strF, str1),
|
||||
coreMaps1, coreMaps2, strAnno,
|
||||
pipelineAnnotationCache[str1], strAnnoSentiment,
|
||||
pipelineSentimentAnnotationCache[str1], coreDocument, coreDocumentAnnotationCache[str1],
|
||||
tagger, gsf, classifier, tokenizeCounting, tokenizeCountingF,
|
||||
taggedWordListF, taggedWordList1, retrieveTGWListF, retrieveTGWList1,
|
||||
sentencesF, sentence1, sentencesSentimentF, sentenceSentiment1, treesF, trees1,
|
||||
grammaticalStructuresF, grammaticalStructures1, typedDependenciesF,
|
||||
typedDependencies1, rnnCoreAnnotationsPredictedF, rnnCoreAnnotationsPredicted1,
|
||||
simpleMatricesF, simpleMatrices1, simpleMatricesNodevectorsF, simpleMatricesNodevectors1,
|
||||
listF, list1, longestF, longest1, sentimentLongestF, sentimentLongest1, imwesF,
|
||||
imwes1, InflectedCounterNegativeF, InflectedCounterNegative1, InflectedCounterPositiveF,
|
||||
InflectedCounterPositive1, tokenEntryF, tokenEntry1, MarkedContinuousCounterF,
|
||||
MarkedContinuousCounter1, UnmarkedPatternCounterF, UnmarkedPatternCounter1,
|
||||
strTokensIpartFormF, strTokensIpartForm1, tokenFormsF, tokenForms1,
|
||||
strTokenEntryGetPOSF, strTokenEntryGetPOS1, intTokenEntyCountsF,
|
||||
intTokenEntyCounts1, ITokenTagsF, ITokenTags1, strTokenStemsF, strTokenStems1,
|
||||
AnotatorcounterF, Anotatorcounter1, TokensCounterF, TokensCounter1,
|
||||
entityTokenTagsF, entityTokenTags1, nerEntitiesF, nerEntities1, nerEntitiesTypeF,
|
||||
nerEntitiesType1, stopWordTokenF, stopWordToken1, stopWordLemmaF, stopWordLemma1,
|
||||
PairCounterF, PairCounter1)
|
||||
if (tokenizeCounting == null) {
|
||||
tokenizeCountingHashMap.put(str1, SMX.getTokenizeCounting())
|
||||
}
|
||||
if (taggedWordList1 == null) {
|
||||
taggedWordListHashMap.put(str1, SMX.getTaggedWordList1())
|
||||
}
|
||||
if (tokenizeCountingF == null) {
|
||||
tokenizeCountingF = SMX.getTokenizeCountingF();
|
||||
}
|
||||
if (taggedWordListF == null) {
|
||||
taggedWordListF = SMX.getTaggedWordListF();
|
||||
}
|
||||
if (retrieveTGWListF == null) {
|
||||
retrieveTGWListF = SMX.getRetrieveTGWListF();
|
||||
}
|
||||
if (retrieveTGWList1 == null) {
|
||||
retrieveTGWListHashMap.put(str1, SMX.getRetrieveTGWList1());
|
||||
}
|
||||
if (sentencesF == null) {
|
||||
sentencesF = SMX.getSentencesF();
|
||||
}
|
||||
if (sentence1 == null) {
|
||||
sentences1HashMap.put(str1, SMX.getSentences1())
|
||||
}
|
||||
if (sentencesSentimentF == null) {
|
||||
sentencesSentimentF = SMX.getSentencesSentimentF();
|
||||
}
|
||||
if (sentenceSentiment1 == null) {
|
||||
sentencesSentimentHashMap.put(str1, SMX.getSentencesSentiment1());
|
||||
}
|
||||
if (treesF == null) {
|
||||
treesF = SMX.getTreesF();
|
||||
}
|
||||
if (trees1 == null) {
|
||||
trees1HashMap.put(str1, SMX.getTrees1())
|
||||
}
|
||||
if (grammaticalStructuresF == null) {
|
||||
grammaticalStructuresF = SMX.getGrammaticalStructuresF();
|
||||
}
|
||||
if (grammaticalStructures1 == null) {
|
||||
grammaticalStructureHashMap.put(str1, SMX.getGrammaticalStructures1())
|
||||
}
|
||||
if (typedDependenciesF == null) {
|
||||
typedDependenciesF = SMX.getTypedDependenciesF();
|
||||
}
|
||||
if (typedDependencies1 == null) {
|
||||
typedDependenciesHashMap.put(str1, SMX.getTypedDependencies1())
|
||||
}
|
||||
if (rnnCoreAnnotationsPredictedF == null) {
|
||||
rnnCoreAnnotationsPredictedF = SMX.getRnnCoreAnnotationsPredictedF()
|
||||
}
|
||||
if (rnnCoreAnnotationsPredicted1 == null) {
|
||||
rnnCoreAnnotationsPredictedHashMap.put(str1, SMX.getRnnCoreAnnotationsPredicted1())
|
||||
}
|
||||
if (simpleMatricesF == null) {
|
||||
simpleMatricesF = SMX.getSimpleMatricesF();
|
||||
}
|
||||
if (simpleMatrices1 == null) {
|
||||
simpleMatricesHashMap.put(str1, SMX.getSimpleMatrices1());
|
||||
}
|
||||
if (simpleMatricesNodevectorsF == null) {
|
||||
simpleMatricesNodevectorsF = SMX.getSimpleMatricesNodevectorsF();
|
||||
}
|
||||
if (simpleMatricesNodevectors1 == null) {
|
||||
simpleMatricesNodevectorsHashMap.put(str1, SMX.getSimpleMatricesNodevectors1());
|
||||
}
|
||||
if (listF == null) {
|
||||
listF = SMX.getListF();
|
||||
}
|
||||
if (list1 == null) {
|
||||
listHashMap.put(str1, SMX.getList1());
|
||||
}
|
||||
if (longestF == null) {
|
||||
longestF = SMX.getLongestF();
|
||||
}
|
||||
if (longest1 == null) {
|
||||
longestHashMap.put(str1, SMX.getLongest1());
|
||||
}
|
||||
if (sentimentLongestF == null) {
|
||||
sentimentLongestF = SMX.getSentimentLongestF();
|
||||
}
|
||||
if (sentimentLongest1 == null) {
|
||||
sentimentHashMap.put(str1, SMX.getSentimentLongest1());
|
||||
}
|
||||
if (imwesF == null) {
|
||||
imwesF = SMX.getImwesF();
|
||||
}
|
||||
if (imwes1 == null) {
|
||||
imwesHashMap.put(str1, SMX.getImwes1());
|
||||
}
|
||||
if (InflectedCounterNegativeF == null) {
|
||||
InflectedCounterNegativeF = SMX.getInflectedCounterNegativeF();
|
||||
}
|
||||
if (InflectedCounterNegative1 == null) {
|
||||
InflectedCounterNegativeHashMap.put(str1, SMX.getInflectedCounterNegative1());
|
||||
}
|
||||
if (InflectedCounterPositiveF == null) {
|
||||
InflectedCounterPositiveF = SMX.getInflectedCounterPositiveF();
|
||||
}
|
||||
if (InflectedCounterPositive1 == null) {
|
||||
InflectedCounterPositiveHashMap.put(str1, SMX.getInflectedCounterPositive1());
|
||||
}
|
||||
if (tokenEntryF == null) {
|
||||
tokenEntryF = SMX.getTokenEntryF();
|
||||
}
|
||||
if (tokenEntry1 == null) {
|
||||
tokenEntryHashMap.put(str1, SMX.getTokenEntry1())
|
||||
}
|
||||
if (MarkedContinuousCounterF == null) {
|
||||
MarkedContinuousCounterF = SMX.getMarkedContinuousCounterF();
|
||||
}
|
||||
if (MarkedContinuousCounter1 == null) {
|
||||
MarkedContinuousCounterHashMap.put(str1, SMX.getMarkedContinuousCounter1());
|
||||
}
|
||||
if (UnmarkedPatternCounterF == null) {
|
||||
UnmarkedPatternCounterF = SMX.getUnmarkedPatternCounterF();
|
||||
}
|
||||
if (UnmarkedPatternCounter1 == null) {
|
||||
UnmarkedPatternCounterHashMap.put(str1, SMX.getUnmarkedPatternCounter1());
|
||||
}
|
||||
if (strTokensIpartFormF == null) {
|
||||
strTokensIpartFormF = SMX.getStrTokensIpartFormF();
|
||||
}
|
||||
if (strTokensIpartForm1 == null) {
|
||||
strTokensIpartFormHashMap.put(str1, SMX.getStrTokensIpartForm1());
|
||||
}
|
||||
if (tokenFormsF == null) {
|
||||
tokenFormsF = SMX.getTokenFormsF();
|
||||
}
|
||||
if (tokenForms1 == null) {
|
||||
tokenFormsHashMap.put(str1, SMX.getTokenForms1());
|
||||
}
|
||||
if (strTokenEntryGetPOSF == null) {
|
||||
strTokenEntryGetPOSF = SMX.getStrTokenEntryGetPOSF();
|
||||
}
|
||||
if (strTokenEntryGetPOS1 == null) {
|
||||
strTokenEntryGetPOSHashMap.put(str1, SMX.getStrTokenEntryGetPOS1())
|
||||
}
|
||||
if (intTokenEntyCountsF == null) {
|
||||
intTokenEntyCountsF = SMX.getIntTokenEntyCountsF();
|
||||
}
|
||||
if (intTokenEntyCounts1 == null) {
|
||||
intTokenEntyCountsHashMap.put(str1, SMX.getIntTokenEntyCounts1());
|
||||
}
|
||||
if (ITokenTagsF == null) {
|
||||
ITokenTagsF = SMX.getITokenTagsF();
|
||||
}
|
||||
if (ITokenTags1 == null) {
|
||||
ITokenTagsHashMap.put(str1, SMX.getITokenTags1());
|
||||
}
|
||||
if (strTokenStemsF == null) {
|
||||
strTokenStemsF = SMX.getStrTokenStemsF();
|
||||
}
|
||||
if (strTokenStems1 == null) {
|
||||
strTokenStemsHashMap.put(str1, SMX.getStrTokenStems1());
|
||||
}
|
||||
if (AnotatorcounterF == null) {
|
||||
AnotatorcounterF = SMX.getAnotatorcounterF();
|
||||
}
|
||||
if (Anotatorcounter1 == null) {
|
||||
AnotatorcounterHashMap.put(str1, SMX.getAnotatorcounter1());
|
||||
}
|
||||
if (TokensCounterF == null) {
|
||||
TokensCounterF = SMX.getTokensCounterF();
|
||||
}
|
||||
if (TokensCounter1 == null) {
|
||||
TokensCounterHashMap.put(str1, SMX.getTokensCounter1());
|
||||
}
|
||||
if (entityTokenTagsF == null) {
|
||||
entityTokenTagsF = SMX.getEntityTokenTagsF();
|
||||
}
|
||||
if (entityTokenTags1 == null) {
|
||||
entityTokenTagsHashMap.put(str1, SMX.getEntityTokenTags1());
|
||||
}
|
||||
if (nerEntitiesF == null) {
|
||||
nerEntitiesF = SMX.getNerEntitiesF();
|
||||
}
|
||||
if (nerEntities1 == null) {
|
||||
nerEntitiesHashMap.put(str1, SMX.getNerEntities1());
|
||||
}
|
||||
if (nerEntitiesTypeF == null) {
|
||||
nerEntitiesTypeF = SMX.getNerEntitiesTypeF();
|
||||
}
|
||||
if (nerEntitiesType1 == null) {
|
||||
nerEntitiesTypeHashMap.put(str1, SMX.getNerEntitiesType1());
|
||||
}
|
||||
if (stopWordTokenF == null) {
|
||||
stopWordTokenF = SMX.getStopWordTokenF();
|
||||
}
|
||||
if (stopWordToken1 == null) {
|
||||
stopWordTokenHashMap.put(str1, SMX.getStopWordToken1());
|
||||
}
|
||||
if (stopWordLemmaF == null) {
|
||||
stopWordLemmaF = SMX.getStopWordLemmaF();
|
||||
}
|
||||
if (stopWordLemma1 == null) {
|
||||
stopWordLemmaHashMap.put(str1, SMX.getStopWordLemma1());
|
||||
}
|
||||
if (PairCounterF == null) {
|
||||
PairCounterF = SMX.getPairCounterF();
|
||||
}
|
||||
if (PairCounter1 == null) {
|
||||
PairCounterHashMap.put(str1, SMX.getPairCounter1());
|
||||
}
|
||||
|
||||
var getSMX: SimilarityMatrix = SMX.callSMX()
|
||||
val scoreRelationLastUserMsg = getSMX.distance
|
||||
if (scoreRelationLastUserMsg > preRelationUserCounters) {
|
||||
preRelationUserCounters = scoreRelationLastUserMsg
|
||||
concurrentRelations.add(getSMX.secondaryString)
|
||||
}
|
||||
}
|
||||
}
|
||||
val cacheRequirement = 6500;
|
||||
if (preRelationUserCounters > cacheRequirement && !stringCache.contains(strF) && filterContent(strF)) {
|
||||
stringCache.add(strF)
|
||||
}
|
||||
val randomLenghtPermit = strF.length * (Math.random() * Math.random() * Math.random() * (Math.random() * 10))
|
||||
Collections.reverse(concurrentRelations)
|
||||
val mysqlUpdateLastUsed: ArrayList<String> = ArrayList()
|
||||
if (!concurrentRelations.isEmpty()) {
|
||||
for (secondaryRelation in concurrentRelations) {
|
||||
if (SB.toString().length > randomLenghtPermit && !SB.toString().isEmpty()) {
|
||||
break
|
||||
}
|
||||
SB.append(secondaryRelation).append(" ")
|
||||
mysqlUpdateLastUsed.add(secondaryRelation)
|
||||
}
|
||||
}
|
||||
if (SB.toString().isEmpty()) {
|
||||
return "failure, preventing stuckness"
|
||||
}
|
||||
runBlocking {
|
||||
CoroutineScope(launch(Dispatchers.IO) {
|
||||
DataMapper.updateLastUsed(mysqlUpdateLastUsed);
|
||||
yield()
|
||||
})
|
||||
}
|
||||
return SB.toString()
|
||||
}
|
||||
|
||||
private fun getJMWEAnnotation(str1: String) {
|
||||
val jmweAnnotation = PipelineJMWESingleton.INSTANCE.getJMWEAnnotation(str1)
|
||||
jmweAnnotationCache.put(str1, jmweAnnotation)
|
||||
}
|
||||
|
||||
fun getResponseMsg(str: String, personName: String, stanfordCoreNLP: StanfordCoreNLP,
|
||||
stanfordCoreNLPSentiment: StanfordCoreNLP, ingameResponse: Boolean): String {
|
||||
var responseFutures: String = ""
|
||||
runBlocking {
|
||||
val launch1 = launch(Dispatchers.Default) {
|
||||
var strF = trimString(str)
|
||||
responseFutures = getResponseFutures(strF, stanfordCoreNLP, stanfordCoreNLPSentiment)
|
||||
if (!ingameResponse) {
|
||||
responseFutures = checkPersonPresentInSentence(personName, responseFutures, strF, stanfordCoreNLP,
|
||||
stanfordCoreNLPSentiment)
|
||||
}
|
||||
yield()
|
||||
}
|
||||
launch1.join()
|
||||
}
|
||||
return responseFutures
|
||||
}
|
||||
|
||||
private fun checkPersonPresentInSentence(personName: String, responseMsg: String, userLastMessage: String,
|
||||
stanfordCoreNLP: StanfordCoreNLP,
|
||||
stanfordCoreNLPSentiment: StanfordCoreNLP): String {
|
||||
try {
|
||||
val pipelineCoreDcoument = CoreDocument(responseMsg)
|
||||
val pipelineCoreDcoumentLastMsg = CoreDocument(userLastMessage)
|
||||
stanfordCoreNLP.annotate(pipelineCoreDcoument)
|
||||
stanfordCoreNLPSentiment.annotate(pipelineCoreDcoumentLastMsg)
|
||||
val regex = "(.*?\\d){10,}"
|
||||
for (em in pipelineCoreDcoument.entityMentions()) {
|
||||
val entityType = em.entityType()
|
||||
if (entityType == "PERSON") {
|
||||
var str = responseMsg
|
||||
val emText = em.text()
|
||||
val pattern = Pattern.compile(regex)
|
||||
val matcher = pattern.matcher(personName)
|
||||
val isMatched = matcher.matches()
|
||||
if (emText != personName && !isMatched) {
|
||||
for (emLastMsg in pipelineCoreDcoumentLastMsg.entityMentions()) {
|
||||
if (emText != emLastMsg.text() && !Character.isDigit(emLastMsg.text().trim { it <= ' ' }[0])) {
|
||||
//System.out.println("emLastMsg.text(): " + emLastMsg.text());
|
||||
str = (responseMsg.substring(0, responseMsg.indexOf(emText)) + " "
|
||||
+ emLastMsg + " " + responseMsg.substring(responseMsg.indexOf(emText)))
|
||||
}
|
||||
}
|
||||
str += " $personName"
|
||||
return str
|
||||
}
|
||||
}
|
||||
}
|
||||
} catch (e: Exception) {
|
||||
println("""SCUFFED JAYZ: ${e.localizedMessage}""".trimIndent())
|
||||
}
|
||||
return responseMsg
|
||||
}
|
||||
|
||||
fun filterContent(str: String): Boolean {
|
||||
if (!str.isEmpty() && str.length > 3) {
|
||||
var str1Local: String = str.trim();
|
||||
if (str1Local.length > 2 && !str1Local.startsWith("!")) {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
fun getCoreDocumentsSuggested(pipeline: StanfordCoreNLP, str: String) {
|
||||
val annotation = Annotation(str)
|
||||
pipeline.annotate(annotation)
|
||||
val coreDocument = CoreDocument(annotation)
|
||||
coreDocumentAnnotationCache.put(str, coreDocument)
|
||||
}
|
||||
}
|
@ -9,43 +9,45 @@ import PresentationLayer.DiscordHandler;
|
||||
import discord4j.core.event.domain.message.MessageCreateEvent;
|
||||
import discord4j.core.object.entity.User;
|
||||
import discord4j.core.object.entity.channel.TextChannel;
|
||||
|
||||
import java.math.BigInteger;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.logging.Level;
|
||||
import java.util.logging.Logger;
|
||||
|
||||
import edu.stanford.nlp.pipeline.StanfordCoreNLP;
|
||||
import reactor.core.publisher.Flux;
|
||||
import reactor.core.publisher.Mono;
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
* @author install1
|
||||
*/
|
||||
public class DoStuff {
|
||||
|
||||
public static boolean occupied = false;
|
||||
|
||||
public static void doStuff(MessageCreateEvent event, String usernameBot, Datahandler datahandler,
|
||||
StanfordCoreNLP stanfordCoreNLP, StanfordCoreNLP stanfordCoreNLPSentiment) {
|
||||
String username = "";
|
||||
public static boolean isOccupied() {
|
||||
return occupied;
|
||||
}
|
||||
|
||||
public static void doStuff(MessageCreateEvent event, String usernameBot) {
|
||||
String username = null;
|
||||
try {
|
||||
username = event.getMessage().getAuthor().get().getUsername();
|
||||
} catch (java.util.NoSuchElementException e) {
|
||||
username = null;
|
||||
}
|
||||
if (username != null && !username.equals(usernameBot)) {
|
||||
occupied = true;
|
||||
TextChannel block = event.getMessage().getChannel().cast(TextChannel.class).block();
|
||||
String name = block.getCategory().block().getName();
|
||||
name = name.toLowerCase();
|
||||
String channelName = block.getName().toLowerCase();
|
||||
boolean channelpermissionsDenied = false;
|
||||
if (channelName.contains("suggestion-box")) {
|
||||
channelpermissionsDenied = true;
|
||||
}
|
||||
switch (name) {
|
||||
case "public area":
|
||||
case "public area": {
|
||||
break;
|
||||
}
|
||||
case "information area": {
|
||||
break;
|
||||
}
|
||||
@ -54,34 +56,49 @@ public class DoStuff {
|
||||
break;
|
||||
}
|
||||
}
|
||||
List<User> blockLast = event.getMessage().getUserMentions().buffer().blockLast();
|
||||
String content = event.getMessage().getContent();
|
||||
if (!channelpermissionsDenied) {
|
||||
List<User> blockLast = event.getMessage().getUserMentions().buffer().blockLast();
|
||||
String content = event.getMessage().getContent();
|
||||
if (blockLast != null) {
|
||||
if (blockLast != null)
|
||||
{
|
||||
for (User user : blockLast) {
|
||||
content = content.replace(user.getId().asString(), "");
|
||||
}
|
||||
}
|
||||
boolean mentionedBot = false;
|
||||
if (blockLast != null) {
|
||||
for (User user : blockLast) {
|
||||
if (user.getUsername().equals(usernameBot)) {
|
||||
mentionedBot = true;
|
||||
break;
|
||||
}
|
||||
MessageResponseHandler.getMessage(content);
|
||||
}
|
||||
boolean mentionedBot = false;
|
||||
if (blockLast != null){
|
||||
for (User user : blockLast)
|
||||
{
|
||||
if (user.getUsername().equals(usernameBot))
|
||||
{
|
||||
mentionedBot = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (mentionedBot || channelName.contains("general-autism")) {
|
||||
}
|
||||
if (mentionedBot || channelName.contains("general-autism")) {
|
||||
try {
|
||||
String ResponseStr;
|
||||
ResponseStr = datahandler.getResponseMsg(content, username, stanfordCoreNLP, stanfordCoreNLPSentiment,
|
||||
false);
|
||||
ResponseStr = MessageResponseHandler.selectReponseMessage(content, username);
|
||||
if (!ResponseStr.isEmpty()) {
|
||||
System.out.print("\nResponseStr3: " + ResponseStr + "\n");
|
||||
event.getMessage().getChannel().block().createMessage(ResponseStr).block();
|
||||
}
|
||||
} catch (CustomError ex) {
|
||||
Logger.getLogger(DoStuff.class.getName()).log(Level.SEVERE, null, ex);
|
||||
}
|
||||
|
||||
}
|
||||
datahandler.updateStringCache();
|
||||
new Thread(() -> {
|
||||
try {
|
||||
Datahandler.instance.checkIfUpdateStrings();
|
||||
} catch (CustomError ex) {
|
||||
Logger.getLogger(DiscordHandler.class.getName()).log(Level.SEVERE, null, ex);
|
||||
}
|
||||
}).start();
|
||||
occupied = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -0,0 +1,101 @@
|
||||
/*
|
||||
* To change this license header, choose License Headers in Project Properties.
|
||||
* To change this template file, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
*/
|
||||
package FunctionLayer;
|
||||
|
||||
import com.google.common.collect.MapMaker;
|
||||
import edu.stanford.nlp.pipeline.CoreDocument;
|
||||
import edu.stanford.nlp.pipeline.CoreEntityMention;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.concurrent.ConcurrentMap;
|
||||
import java.util.regex.Matcher;
|
||||
import java.util.regex.Pattern;
|
||||
|
||||
/**
|
||||
*
|
||||
* @author install1
|
||||
*/
|
||||
public class MessageResponseHandler {
|
||||
|
||||
private static ConcurrentMap<Integer, String> str = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
|
||||
public static ConcurrentMap<Integer, String> getStr() {
|
||||
return str;
|
||||
}
|
||||
|
||||
public static void setStr(ConcurrentMap<Integer, String> str) {
|
||||
MessageResponseHandler.str = str;
|
||||
}
|
||||
|
||||
public static void getMessage(String message) {
|
||||
if (message != null && !message.isEmpty()) {
|
||||
message = message.replace("@", "");
|
||||
if (message.contains("<>")) {
|
||||
message = message.substring(message.indexOf(">"));
|
||||
}
|
||||
if (message.startsWith("[ *")) {
|
||||
message = message.substring(message.indexOf("]"));
|
||||
}
|
||||
str.put(str.size() + 1, message);
|
||||
}
|
||||
}
|
||||
|
||||
public static String selectReponseMessage(String toString, String personName) throws CustomError {
|
||||
ConcurrentMap<Integer, String> str1 = new MapMaker().concurrencyLevel(6).makeMap();
|
||||
str1.put(str1.size() + 1, toString);
|
||||
String strreturn = "";
|
||||
for (String str : str1.values()) {
|
||||
if (!str.isEmpty()) {
|
||||
strreturn = str;
|
||||
}
|
||||
}
|
||||
String getResponseMsg = Datahandler.instance.getResponseMsg(strreturn);
|
||||
getResponseMsg = checkPersonPresentInSentence(personName, getResponseMsg, strreturn);
|
||||
return getResponseMsg;
|
||||
}
|
||||
|
||||
private static String checkPersonPresentInSentence(String personName, String responseMsg, String userLastMessage) {
|
||||
//check if userlastmsg contains person as refference
|
||||
//check if first person is author or their person of mention
|
||||
try {
|
||||
String strreturn = responseMsg;
|
||||
CoreDocument pipelineCoreDcoument = new CoreDocument(responseMsg);
|
||||
CoreDocument pipelineCoreDcoumentLastMsg = new CoreDocument(userLastMessage);
|
||||
Datahandler.getPipeline().annotate(pipelineCoreDcoument);
|
||||
Datahandler.getPipeline().annotate(pipelineCoreDcoumentLastMsg);
|
||||
String regex = "(.*?\\d){10,}";
|
||||
for (CoreEntityMention em : pipelineCoreDcoument.entityMentions()) {
|
||||
String entityType = em.entityType();
|
||||
if (entityType.equals("PERSON")) {
|
||||
String str = strreturn;
|
||||
String emText = em.text();
|
||||
Pattern pattern = Pattern.compile(regex);
|
||||
Matcher matcher = pattern.matcher(personName);
|
||||
boolean isMatched = matcher.matches();
|
||||
if (!emText.equals(personName) && !isMatched) {
|
||||
for (CoreEntityMention emLastMsg : pipelineCoreDcoumentLastMsg.entityMentions()) {
|
||||
if (!emText.equals(emLastMsg.text()) && !Character.isDigit(emLastMsg.text().trim().charAt(0))) {
|
||||
//System.out.println("emLastMsg.text(): " + emLastMsg.text());
|
||||
str = strreturn.substring(0, strreturn.indexOf(emText)) + " "
|
||||
+ emLastMsg + " " + strreturn.substring(strreturn.indexOf(emText));
|
||||
}
|
||||
}
|
||||
str += " " + personName;
|
||||
return str;
|
||||
}
|
||||
}
|
||||
}
|
||||
} catch (Exception e) {
|
||||
System.out.println("SCUFFED JAYZ: " + e.getLocalizedMessage() + "\n");
|
||||
}
|
||||
return responseMsg;
|
||||
}
|
||||
|
||||
public static int getOverHead() {
|
||||
int getResponseMsgOverHead = Datahandler.instance.getMessageOverHead();
|
||||
return getResponseMsgOverHead;
|
||||
}
|
||||
}
|
@ -5,6 +5,7 @@
|
||||
*/
|
||||
package FunctionLayer;
|
||||
|
||||
import com.google.common.collect.MapMaker;
|
||||
import edu.mit.jmwe.data.IMWE;
|
||||
import edu.mit.jmwe.data.IToken;
|
||||
import edu.mit.jmwe.data.Token;
|
||||
@ -23,29 +24,37 @@ import edu.stanford.nlp.ling.JMWEAnnotation;
|
||||
import edu.stanford.nlp.pipeline.Annotation;
|
||||
import edu.stanford.nlp.pipeline.StanfordCoreNLP;
|
||||
import edu.stanford.nlp.util.CoreMap;
|
||||
|
||||
import java.io.File;
|
||||
import java.io.IOException;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collection;
|
||||
import java.util.List;
|
||||
import java.util.Properties;
|
||||
import java.util.concurrent.ConcurrentMap;
|
||||
|
||||
/**
|
||||
*
|
||||
* @author install1
|
||||
*/
|
||||
//maybe not public?
|
||||
public class PipelineJMWESingleton {
|
||||
|
||||
//if not needed to be volatile dont make it, increases time
|
||||
//public volatile static PipelineJMWESingleton INSTANCE;
|
||||
public static PipelineJMWESingleton INSTANCE;
|
||||
public volatile static PipelineJMWESingleton INSTANCE;
|
||||
private static StanfordCoreNLP localNLP = initializeJMWE();
|
||||
private static String underscoreSpaceReplacement;
|
||||
private static IMWEIndex index;
|
||||
private static IMWEDetector detector;
|
||||
|
||||
private PipelineJMWESingleton() {
|
||||
String jmweIndexData = "/home/gameservers/autism_bot/lib/mweindex_wordnet3.0_semcor1.6.data"; // ./lib/mweindex_wordnet3.0_semcor1.6.data
|
||||
}
|
||||
|
||||
public static void getINSTANCE() {
|
||||
INSTANCE = new PipelineJMWESingleton();
|
||||
}
|
||||
|
||||
public final ConcurrentMap<String, Annotation> getJMWEAnnotation(Collection<String> strvalues) {
|
||||
boolean verbose = false;
|
||||
IMWEIndex index;
|
||||
String jmweIndexData = "/home/debian/autism_bot/lib/mweindex_wordnet3.0_semcor1.6.data"; // ./lib/mweindex_wordnet3.0_semcor1.6.data
|
||||
String jmweIndexDataLocalTest = "E:/java8/Projects/mweindex_wordnet3.0_semcor1.6.data";
|
||||
File indexFile = new File((String) jmweIndexData);
|
||||
index = new MWEIndex(indexFile);
|
||||
@ -55,45 +64,36 @@ public class PipelineJMWESingleton {
|
||||
} catch (IOException e) {
|
||||
throw new RuntimeException("unable to open IMWEIndex index: " + e + "\n");
|
||||
}
|
||||
detector = getDetector(index, detectorName);
|
||||
IMWEDetector detector = getDetector(index, detectorName);
|
||||
ConcurrentMap<String, Annotation> returnAnnotations = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
strvalues.forEach(str -> {
|
||||
Annotation annoStr = new Annotation(str);
|
||||
returnAnnotations.put(str, annoStr);
|
||||
});
|
||||
localNLP.annotate(returnAnnotations.values());
|
||||
returnAnnotations.values().parallelStream().forEach(annoStr -> {
|
||||
for (CoreMap sentence : annoStr.get(CoreAnnotations.SentencesAnnotation.class)) {
|
||||
List<IMWE<IToken>> mwes = getjMWEInSentence(sentence, index, detector, verbose);
|
||||
sentence.set(JMWEAnnotation.class, mwes);
|
||||
}
|
||||
});
|
||||
index.close();
|
||||
}
|
||||
|
||||
public static void getINSTANCE() {
|
||||
INSTANCE = new PipelineJMWESingleton();
|
||||
}
|
||||
|
||||
public final Annotation getJMWEAnnotation(String str) {
|
||||
try {
|
||||
index.open();
|
||||
} catch (IOException e) {
|
||||
throw new RuntimeException("unable to open IMWEIndex index: " + e + "\n");
|
||||
}
|
||||
Annotation annoStr = new Annotation(str);
|
||||
localNLP.annotate(annoStr);
|
||||
Class<CoreAnnotations.SentencesAnnotation> sentencesAnnotationClass = CoreAnnotations.SentencesAnnotation.class;
|
||||
for (CoreMap sentence : annoStr.get(sentencesAnnotationClass)) {
|
||||
List<IMWE<IToken>> mwes = getjMWEInSentence(sentence, index, detector, false);
|
||||
//annoStr.set(JMWEAnnotation.class, mwes);
|
||||
sentence.set(JMWEAnnotation.class, mwes);
|
||||
}
|
||||
index.close();
|
||||
return annoStr;
|
||||
return returnAnnotations;
|
||||
}
|
||||
|
||||
public final static StanfordCoreNLP initializeJMWE() {
|
||||
Properties propsJMWE;
|
||||
propsJMWE = new Properties();
|
||||
propsJMWE.setProperty("annotators", "tokenize,ssplit,pos,lemma");
|
||||
propsJMWE.setProperty("tokenize.options", "untokenizable=firstKeep");
|
||||
propsJMWE.setProperty("threads", "5");
|
||||
propsJMWE.setProperty("tokenize.options", "untokenizable=firstDelete");
|
||||
propsJMWE.setProperty("threads", "25");
|
||||
propsJMWE.setProperty("pos.maxlen", "90");
|
||||
propsJMWE.setProperty("tokenize.maxlen", "90");
|
||||
propsJMWE.setProperty("ssplit.maxlen", "90");
|
||||
propsJMWE.setProperty("lemma.maxlen", "90");
|
||||
underscoreSpaceReplacement = "-";
|
||||
localNLP = new StanfordCoreNLP(propsJMWE);
|
||||
System.out.println("finished JMWE constructor \n");
|
||||
System.out.println("finished singleton constructor \n");
|
||||
return localNLP;
|
||||
}
|
||||
|
||||
@ -124,7 +124,7 @@ public class PipelineJMWESingleton {
|
||||
}
|
||||
|
||||
public List<IMWE<IToken>> getjMWEInSentence(CoreMap sentence, IMWEIndex index, IMWEDetector detector,
|
||||
boolean verbose) {
|
||||
boolean verbose) {
|
||||
List<IToken> tokens = getITokens(sentence.get(CoreAnnotations.TokensAnnotation.class));
|
||||
List<IMWE<IToken>> mwes = detector.detect(tokens);
|
||||
if (verbose) {
|
||||
@ -146,4 +146,5 @@ public class PipelineJMWESingleton {
|
||||
}
|
||||
return sentence;
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -5,7 +5,10 @@
|
||||
*/
|
||||
package FunctionLayer;
|
||||
|
||||
import FunctionLayer.StanfordParser.SentimentValueCache;
|
||||
|
||||
/**
|
||||
*
|
||||
* @author install1
|
||||
*/
|
||||
public class SimilarityMatrix {
|
||||
@ -13,6 +16,8 @@ public class SimilarityMatrix {
|
||||
private String PrimaryString;
|
||||
private String SecondaryString;
|
||||
private double distance;
|
||||
private SentimentValueCache cacheValue1;
|
||||
private SentimentValueCache cacheValue2;
|
||||
|
||||
public final double getDistance() {
|
||||
return distance;
|
||||
@ -33,8 +38,36 @@ public class SimilarityMatrix {
|
||||
this.distance = result;
|
||||
}
|
||||
|
||||
public final String getPrimaryString() {
|
||||
return PrimaryString;
|
||||
}
|
||||
|
||||
public final void setPrimaryString(String PrimaryString) {
|
||||
this.PrimaryString = PrimaryString;
|
||||
}
|
||||
|
||||
public final String getSecondaryString() {
|
||||
return SecondaryString;
|
||||
}
|
||||
|
||||
public final void setSecondaryString(String SecondaryString) {
|
||||
this.SecondaryString = SecondaryString;
|
||||
}
|
||||
|
||||
public final SentimentValueCache getCacheValue1() {
|
||||
return cacheValue1;
|
||||
}
|
||||
|
||||
public final void setCacheValue1(SentimentValueCache cacheValue1) {
|
||||
this.cacheValue1 = cacheValue1;
|
||||
}
|
||||
|
||||
public final SentimentValueCache getCacheValue2() {
|
||||
return cacheValue2;
|
||||
}
|
||||
|
||||
public final void setCacheValue2(SentimentValueCache cacheValue2) {
|
||||
this.cacheValue2 = cacheValue2;
|
||||
}
|
||||
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,334 @@
|
||||
/*
|
||||
* To change this license header, choose License Headers in Project Properties.
|
||||
* To change this template file, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
*/
|
||||
package FunctionLayer.StanfordParser;
|
||||
|
||||
import com.google.common.collect.MapMaker;
|
||||
import edu.stanford.nlp.ling.TaggedWord;
|
||||
import edu.stanford.nlp.trees.GrammaticalStructure;
|
||||
import edu.stanford.nlp.trees.Tree;
|
||||
import edu.stanford.nlp.trees.TypedDependency;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collection;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.concurrent.ConcurrentMap;
|
||||
import org.ejml.simple.SimpleMatrix;
|
||||
|
||||
/**
|
||||
*
|
||||
* @author install1
|
||||
*/
|
||||
public class SentimentValueCache {
|
||||
|
||||
private String sentence;
|
||||
private int counter;
|
||||
private List<List<TaggedWord>> taggedwordlist = new ArrayList();
|
||||
private final ConcurrentMap<Integer, String> tgwlistIndex = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
private final ConcurrentMap<Integer, Tree> sentenceConstituencyParseList = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
private final Collection<TypedDependency> allTypedDependencies = new ArrayList();
|
||||
private final ConcurrentMap<Integer, GrammaticalStructure> gsMap = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
private final ConcurrentMap<Integer, SimpleMatrix> simpleSMXlist = new MapMaker().concurrencyLevel(3).makeMap();
|
||||
private final ConcurrentMap<Integer, SimpleMatrix> simpleSMXlistVector = new MapMaker().concurrencyLevel(3).makeMap();
|
||||
private final ConcurrentMap<Integer, Integer> rnnPredictClassMap = new MapMaker().concurrencyLevel(3).makeMap();
|
||||
private List classifyRaw;
|
||||
private int mainSentiment = 0;
|
||||
private int longest = 0;
|
||||
private int tokensCounter = 0;
|
||||
private int anotatorcounter = 0;
|
||||
private int inflectedCounterPositive = 0;
|
||||
private int inflectedCounterNegative = 0;
|
||||
private int MarkedContinuousCounter = 0;
|
||||
private int MarkedContiniousCounterEntries = 0;
|
||||
private int UnmarkedPatternCounter = 0;
|
||||
private int pairCounter = 0;
|
||||
private final ConcurrentMap<Integer, String> ITokenMapTag = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
private final ConcurrentMap<Integer, String> strTokenStems = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
private final ConcurrentMap<Integer, String> strTokenForm = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
private final ConcurrentMap<Integer, String> strTokenGetEntry = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
private final ConcurrentMap<Integer, String> strTokenGetiPart = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
private final ConcurrentMap<Integer, String> strTokenEntryPOS = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
private final ConcurrentMap<Integer, Integer> entryCounts = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
private final ConcurrentMap<Integer, String> nerEntities1 = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
private final ConcurrentMap<Integer, String> nerEntities2 = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
private final ConcurrentMap<Integer, String> nerEntityTokenTags = new MapMaker().concurrencyLevel(3).makeMap();
|
||||
private final ConcurrentMap<Integer, String> stopwordTokens = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
private final ConcurrentMap<Integer, String> stopWordLemma = new MapMaker().concurrencyLevel(2).makeMap();
|
||||
|
||||
public int getPairCounter() {
|
||||
return pairCounter;
|
||||
}
|
||||
|
||||
public void setPairCounter(int pairCounter) {
|
||||
this.pairCounter = pairCounter;
|
||||
}
|
||||
|
||||
public void addStopWordLemma(String str) {
|
||||
stopWordLemma.put(stopWordLemma.size(), str);
|
||||
}
|
||||
|
||||
public void addstopwordTokens(String str) {
|
||||
stopwordTokens.put(stopwordTokens.size(), str);
|
||||
}
|
||||
|
||||
public ConcurrentMap<Integer, String> getStopwordTokens() {
|
||||
return stopwordTokens;
|
||||
}
|
||||
|
||||
public ConcurrentMap<Integer, String> getStopWordLemma() {
|
||||
return stopWordLemma;
|
||||
}
|
||||
|
||||
public void addnerEntityTokenTags(String str) {
|
||||
nerEntityTokenTags.put(nerEntityTokenTags.size(), str);
|
||||
}
|
||||
|
||||
public ConcurrentMap<Integer, String> getnerEntityTokenTags() {
|
||||
return nerEntityTokenTags;
|
||||
}
|
||||
|
||||
public ConcurrentMap<Integer, String> getnerEntities1() {
|
||||
return nerEntities1;
|
||||
}
|
||||
|
||||
public ConcurrentMap<Integer, String> getnerEntities2() {
|
||||
return nerEntities2;
|
||||
}
|
||||
|
||||
public void addNEREntities1(String str) {
|
||||
nerEntities1.put(nerEntities1.size(), str);
|
||||
}
|
||||
|
||||
public void addNEREntities2(String str) {
|
||||
nerEntities2.put(nerEntities2.size(), str);
|
||||
}
|
||||
|
||||
public void setTaggedwords(List<List<TaggedWord>> twlist) {
|
||||
taggedwordlist = twlist;
|
||||
}
|
||||
|
||||
public List<List<TaggedWord>> getTaggedwordlist() {
|
||||
return taggedwordlist;
|
||||
}
|
||||
|
||||
public void addEntryCounts(int counts) {
|
||||
entryCounts.put(entryCounts.size(), counts);
|
||||
}
|
||||
|
||||
public ConcurrentMap<Integer, Integer> getEntryCounts() {
|
||||
return entryCounts;
|
||||
}
|
||||
|
||||
public void addstrTokenEntryPOS(String str) {
|
||||
strTokenEntryPOS.put(strTokenEntryPOS.size(), str);
|
||||
}
|
||||
|
||||
public ConcurrentMap<Integer, String> getstrTokenEntryPOS() {
|
||||
return strTokenEntryPOS;
|
||||
}
|
||||
|
||||
public void addstrTokenGetiPart(String str) {
|
||||
strTokenGetiPart.put(strTokenGetiPart.size(), str);
|
||||
}
|
||||
|
||||
public ConcurrentMap<Integer, String> getstrTokenGetiPart() {
|
||||
return strTokenGetiPart;
|
||||
}
|
||||
|
||||
public ConcurrentMap<Integer, String> getstrTokenGetEntry() {
|
||||
return strTokenGetEntry;
|
||||
}
|
||||
|
||||
public void addstrTokenGetEntry(String str) {
|
||||
strTokenGetEntry.put(strTokenGetEntry.size(), str);
|
||||
}
|
||||
|
||||
public ConcurrentMap<Integer, String> getstrTokenForm() {
|
||||
return strTokenForm;
|
||||
}
|
||||
|
||||
public void addstrTokenForm(String str) {
|
||||
strTokenForm.put(strTokenForm.size(), str);
|
||||
}
|
||||
|
||||
public ConcurrentMap<Integer, String> getstrTokenStems() {
|
||||
return strTokenStems;
|
||||
}
|
||||
|
||||
public void addstrTokenStems(String str) {
|
||||
strTokenStems.put(strTokenStems.size(), str);
|
||||
}
|
||||
|
||||
public ConcurrentMap<Integer, String> getITokenMapTag() {
|
||||
return ITokenMapTag;
|
||||
}
|
||||
|
||||
public void addITokenMapTag(String str) {
|
||||
ITokenMapTag.put(ITokenMapTag.size(), str);
|
||||
}
|
||||
|
||||
public int getUnmarkedPatternCounter() {
|
||||
return UnmarkedPatternCounter;
|
||||
}
|
||||
|
||||
public void setUnmarkedPatternCounter(int UnmarkedPatternCounter) {
|
||||
this.UnmarkedPatternCounter = UnmarkedPatternCounter;
|
||||
}
|
||||
|
||||
public int getMarkedContiniousCounterEntries() {
|
||||
return MarkedContiniousCounterEntries;
|
||||
}
|
||||
|
||||
public void setMarkedContiniousCounterEntries(int MarkedContiniousCounterEntries) {
|
||||
this.MarkedContiniousCounterEntries = MarkedContiniousCounterEntries;
|
||||
}
|
||||
|
||||
public int getMarkedContinuousCounter() {
|
||||
return MarkedContinuousCounter;
|
||||
}
|
||||
|
||||
public void setMarkedContinuousCounter(int MarkedContinuousCounter) {
|
||||
this.MarkedContinuousCounter = MarkedContinuousCounter;
|
||||
}
|
||||
|
||||
public int getInflectedCounterNegative() {
|
||||
return inflectedCounterNegative;
|
||||
}
|
||||
|
||||
public void setInflectedCounterNegative(int inflectedCounterNegative) {
|
||||
this.inflectedCounterNegative = inflectedCounterNegative;
|
||||
}
|
||||
|
||||
public int getInflectedCounterPositive() {
|
||||
return inflectedCounterPositive;
|
||||
}
|
||||
|
||||
public void setInflectedCounterPositive(int inflectedCounterPositive) {
|
||||
this.inflectedCounterPositive = inflectedCounterPositive;
|
||||
}
|
||||
|
||||
public int getAnotatorcounter() {
|
||||
return anotatorcounter;
|
||||
}
|
||||
|
||||
public void setAnotatorcounter(int anotatorcounter) {
|
||||
this.anotatorcounter = anotatorcounter;
|
||||
}
|
||||
|
||||
public int getTokensCounter() {
|
||||
return tokensCounter;
|
||||
}
|
||||
|
||||
public void setTokensCounter(int tokensCounter) {
|
||||
this.tokensCounter = tokensCounter;
|
||||
}
|
||||
|
||||
public int getMainSentiment() {
|
||||
return mainSentiment;
|
||||
}
|
||||
|
||||
public void setMainSentiment(int mainSentiment) {
|
||||
this.mainSentiment = mainSentiment;
|
||||
}
|
||||
|
||||
public int getLongest() {
|
||||
return longest;
|
||||
}
|
||||
|
||||
public void setLongest(int longest) {
|
||||
this.longest = longest;
|
||||
}
|
||||
|
||||
public List getClassifyRaw() {
|
||||
return classifyRaw;
|
||||
}
|
||||
|
||||
public void setClassifyRaw(List classifyRaw) {
|
||||
this.classifyRaw = classifyRaw;
|
||||
}
|
||||
|
||||
public ConcurrentMap<Integer, Integer> getRnnPrediectClassMap() {
|
||||
return rnnPredictClassMap;
|
||||
}
|
||||
|
||||
public void addRNNPredictClass(int rnnPrediction) {
|
||||
rnnPredictClassMap.put(rnnPredictClassMap.size(), rnnPrediction);
|
||||
}
|
||||
|
||||
public void addSimpleMatrix(SimpleMatrix SMX) {
|
||||
simpleSMXlist.put(simpleSMXlist.size(), SMX);
|
||||
}
|
||||
|
||||
public void addSimpleMatrixVector(SimpleMatrix SMX) {
|
||||
simpleSMXlistVector.put(simpleSMXlistVector.size(), SMX);
|
||||
}
|
||||
|
||||
public ConcurrentMap<Integer, GrammaticalStructure> getGsMap() {
|
||||
return gsMap;
|
||||
}
|
||||
|
||||
public ConcurrentMap<Integer, SimpleMatrix> getSimpleSMXlist() {
|
||||
return simpleSMXlist;
|
||||
}
|
||||
|
||||
public ConcurrentMap<Integer, SimpleMatrix> getSimpleSMXlistVector() {
|
||||
return simpleSMXlistVector;
|
||||
}
|
||||
|
||||
public ConcurrentMap<Integer, GrammaticalStructure> getGs() {
|
||||
return gsMap;
|
||||
}
|
||||
|
||||
public int getCounter() {
|
||||
return counter;
|
||||
}
|
||||
|
||||
public void addGS(GrammaticalStructure gs) {
|
||||
gsMap.put(gsMap.size(), gs);
|
||||
}
|
||||
|
||||
public Collection<TypedDependency> getAllTypedDependencies() {
|
||||
return allTypedDependencies;
|
||||
}
|
||||
|
||||
public void addTypedDependencies(Collection<TypedDependency> TDPlist) {
|
||||
for (TypedDependency TDP : TDPlist) {
|
||||
allTypedDependencies.add(TDP);
|
||||
}
|
||||
}
|
||||
|
||||
public ConcurrentMap<Integer, Tree> getSentenceConstituencyParseList() {
|
||||
return sentenceConstituencyParseList;
|
||||
}
|
||||
|
||||
public void addSentenceConstituencyParse(Tree tree) {
|
||||
sentenceConstituencyParseList.put(sentenceConstituencyParseList.size(), tree);
|
||||
}
|
||||
|
||||
public void setCounter(int counter) {
|
||||
counter = counter;
|
||||
}
|
||||
|
||||
public String getSentence() {
|
||||
return sentence;
|
||||
}
|
||||
|
||||
public SentimentValueCache(String str, int counter) {
|
||||
this.sentence = str;
|
||||
this.counter = counter;
|
||||
}
|
||||
|
||||
public ConcurrentMap<Integer, String> getTgwlistIndex() {
|
||||
return tgwlistIndex;
|
||||
}
|
||||
|
||||
public void addTgwlistIndex(String str) {
|
||||
tgwlistIndex.put(tgwlistIndex.size(), str);
|
||||
}
|
||||
|
||||
public SentimentValueCache(String str) {
|
||||
this.sentence = str;
|
||||
}
|
||||
}
|
@ -1,3 +0,0 @@
|
||||
Manifest-Version: 1.0
|
||||
Main-Class: PresentationLayer.DiscordHandler
|
||||
|
@ -1,111 +1,71 @@
|
||||
/*
|
||||
* To change this license header, choose License Headers in Project Properties.
|
||||
* To change this template file, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
|
||||
ps ax | grep EventNotfierDiscordBot-1.0
|
||||
kill $pid (number)
|
||||
|
||||
nohup screen -d -m -S nonroot java -Xmx6048M -jar /home/javatests/ArtificialAutism-1.0.jar
|
||||
nohup screen -d -m -S nonroot java -Xmx6800M -jar /home/javatests/ArtificialAutism-1.0.jar
|
||||
|
||||
screen -ls (number1)
|
||||
screen -X -S (number1) quit
|
||||
*/
|
||||
package PresentationLayer;
|
||||
|
||||
import DataLayer.settings;
|
||||
import FunctionLayer.Datahandler;
|
||||
import FunctionLayer.DoStuff;
|
||||
import FunctionLayer.PipelineJMWESingleton;
|
||||
import discord4j.core.DiscordClient;
|
||||
import discord4j.core.GatewayDiscordClient;
|
||||
import discord4j.core.event.domain.message.MessageCreateEvent;
|
||||
import edu.stanford.nlp.pipeline.StanfordCoreNLP;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.io.UnsupportedEncodingException;
|
||||
import java.net.*;
|
||||
import java.sql.SQLException;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Timer;
|
||||
import java.util.TimerTask;
|
||||
import java.util.logging.Level;
|
||||
import java.util.logging.Logger;
|
||||
import DataLayer.settings;
|
||||
import discord4j.common.util.Snowflake;
|
||||
import discord4j.core.event.domain.message.MessageCreateEvent;
|
||||
import java.math.BigInteger;
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
* @author install1
|
||||
*/
|
||||
public class DiscordHandler {
|
||||
|
||||
private static void receiveAndSendPacket(DatagramSocket serverSocket, InetAddress ipAddress, int port,
|
||||
Datahandler datahandler, StanfordCoreNLP stanfordCoreNLP, StanfordCoreNLP stanfordCoreNLPSentiment) throws IOException {
|
||||
byte[] receiveData = new byte[4096];
|
||||
DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length);
|
||||
public static void main(String[] args) {
|
||||
System.setProperty("java.util.concurrent.ForkJoinPool.common.parallelism", "15");
|
||||
try {
|
||||
serverSocket.receive(receivePacket);
|
||||
} catch (IOException e) {
|
||||
e.printStackTrace();
|
||||
Datahandler.instance.initiateMYSQL();
|
||||
//nohup screen -d -m -S nonroot java -Xmx6900M -jar /home/javatests/ArtificialAutism-1.0.jar
|
||||
//uncomment db fetch when ready, just keep the comment for future reference
|
||||
System.out.println("finished initiating MYSQL");
|
||||
} catch (SQLException | IOException ex) {
|
||||
Logger.getLogger(DiscordHandler.class.getName()).log(Level.SEVERE, null, ex);
|
||||
}
|
||||
String sentence = new String(receivePacket.getData(), 0,
|
||||
receivePacket.getLength());
|
||||
sentence = sentence.replace("clientmessage:", "");
|
||||
String ResponseMsg = datahandler.getResponseMsg(sentence, "", stanfordCoreNLP, stanfordCoreNLPSentiment,
|
||||
true);
|
||||
byte[] sendData = ResponseMsg.getBytes("UTF-8");
|
||||
int deliver_port = 0;
|
||||
switch (port) {
|
||||
case 48475:
|
||||
deliver_port = 48470;
|
||||
break;
|
||||
case 48476:
|
||||
deliver_port = 48471;
|
||||
break;
|
||||
case 48477:
|
||||
deliver_port = 48472;
|
||||
break;
|
||||
case 48478:
|
||||
deliver_port = 48473;
|
||||
break;
|
||||
}
|
||||
DatagramPacket sendPacket = new DatagramPacket(sendData, sendData.length, ipAddress, deliver_port);
|
||||
serverSocket.send(sendPacket);
|
||||
}
|
||||
|
||||
public static void handleUDPTraffic(int port, Datahandler datahandler,
|
||||
StanfordCoreNLP stanfordCoreNLP, StanfordCoreNLP stanfordCoreNLPSentiment) {
|
||||
|
||||
try (DatagramSocket serverSocket = new DatagramSocket(port)) {
|
||||
|
||||
String hostIP = "195.154.53.196";
|
||||
if (port == 48477 || port == 48478) {
|
||||
hostIP = "51.158.20.245";
|
||||
}
|
||||
InetAddress ipAddress = InetAddress.getByName(hostIP);//used ip'
|
||||
while (true) {
|
||||
receiveAndSendPacket(serverSocket, ipAddress, port, datahandler, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
}
|
||||
} catch (SocketException | UnknownHostException e) {
|
||||
e.printStackTrace();
|
||||
} catch (UnsupportedEncodingException e) {
|
||||
e.printStackTrace();
|
||||
} catch (IOException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
public static void main(String[] args) throws IOException, SQLException {
|
||||
Datahandler datahandler = new Datahandler();
|
||||
datahandler.initiateMYSQL();
|
||||
|
||||
PipelineJMWESingleton.getINSTANCE();
|
||||
StanfordCoreNLP stanfordCoreNLP = datahandler.pipeLineSetUp();
|
||||
StanfordCoreNLP stanfordCoreNLPSentiment = datahandler.shiftReduceParserInitiate();
|
||||
Datahandler.instance.instantiateAnnotationMapJMWE();
|
||||
Datahandler.instance.shiftReduceParserInitiate();
|
||||
Datahandler.instance.instantiateAnnotationMap();
|
||||
System.out.println("FINISHED ALL ANNOTATIONS");
|
||||
datahandler.updateStringCache();
|
||||
System.out.println("updatedstring cache");
|
||||
Datahandler.instance.addHLstatsMessages();
|
||||
Datahandler.instance.updateStringCache();
|
||||
//String token = "NTI5NzAxNTk5NjAyMjc4NDAx.Dw0vDg.7-aMjVWdQMYPl8qVNyvTCPS5F_A";
|
||||
String token = new settings().getDiscordToken();
|
||||
final DiscordClient client = DiscordClient.create(token);
|
||||
final GatewayDiscordClient gateway = client.login().block();
|
||||
String usernameBot = gateway.getSelf().block().getUsername();
|
||||
int autismbotCount = 4;
|
||||
//make sure not to use ports that are already occupied.
|
||||
for (int i = 0; i < autismbotCount; i++) {
|
||||
final int j = i;
|
||||
new Thread(() -> {
|
||||
ArrayList<Integer> ports = new ArrayList<Integer>();
|
||||
ports.add(48475);
|
||||
ports.add(48476);
|
||||
ports.add(48477);
|
||||
ports.add(48478);
|
||||
handleUDPTraffic(ports.get(j), datahandler, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
}).start();
|
||||
}
|
||||
new Thread(() -> {
|
||||
Datahandler.instance.update_autismo_socket_msg();
|
||||
}).start();
|
||||
gateway.on(MessageCreateEvent.class).subscribe(event -> {
|
||||
FunctionLayer.DoStuff.doStuff(event, usernameBot, datahandler, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
if (!FunctionLayer.DoStuff.isOccupied()) {
|
||||
FunctionLayer.DoStuff.doStuff(event, usernameBot);
|
||||
}
|
||||
});
|
||||
gateway.onDisconnect().block();
|
||||
} //3.1.1 discord4j version
|
||||
}
|
||||
}
|
||||
|
497
ArtificialAutism/src/test/java/junit.java
Normal file
497
ArtificialAutism/src/test/java/junit.java
Normal file
@ -0,0 +1,497 @@
|
||||
import FunctionLayer.Datahandler;
|
||||
import FunctionLayer.PipelineJMWESingleton;
|
||||
import FunctionLayer.StanfordParser.SentimentAnalyzerTest;
|
||||
import edu.mit.jmwe.data.IMWE;
|
||||
import edu.mit.jmwe.data.IToken;
|
||||
import edu.stanford.nlp.ie.AbstractSequenceClassifier;
|
||||
import edu.stanford.nlp.ie.crf.CRFClassifier;
|
||||
import edu.stanford.nlp.ling.CoreAnnotations;
|
||||
import edu.stanford.nlp.ling.CoreLabel;
|
||||
import edu.stanford.nlp.ling.TaggedWord;
|
||||
import edu.stanford.nlp.parser.lexparser.LexicalizedParser;
|
||||
import edu.stanford.nlp.pipeline.Annotation;
|
||||
import edu.stanford.nlp.pipeline.CoreDocument;
|
||||
import edu.stanford.nlp.pipeline.StanfordCoreNLP;
|
||||
import edu.stanford.nlp.tagger.maxent.MaxentTagger;
|
||||
import edu.stanford.nlp.trees.*;
|
||||
import edu.stanford.nlp.util.CoreMap;
|
||||
import org.ejml.simple.SimpleMatrix;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
import FunctionLayer.SimilarityMatrix;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.logging.FileHandler;
|
||||
import java.util.logging.Logger;
|
||||
import java.util.logging.SimpleFormatter;
|
||||
|
||||
public class junit {
|
||||
|
||||
private String taggerPath = "edu/stanford/nlp/models/pos-tagger/english-left3words-distsim.tagger";
|
||||
private MaxentTagger tagger = new MaxentTagger(taggerPath);
|
||||
private GrammaticalStructureFactory gsf = initiateGrammaticalStructureFactory();
|
||||
|
||||
String nerModel = "edu/stanford/nlp/models/ner/english.all.3class.distsim.crf.ser.gz";
|
||||
AbstractSequenceClassifier<CoreLabel> classifier = CRFClassifier.
|
||||
getClassifierNoExceptions(nerModel);
|
||||
|
||||
public GrammaticalStructureFactory initiateGrammaticalStructureFactory() {
|
||||
String lexParserEnglishPCFG = "edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz";
|
||||
LexicalizedParser lp = LexicalizedParser.
|
||||
loadModel(lexParserEnglishPCFG, "-maxLength", "100");
|
||||
TreebankLanguagePack langpack = lp.getOp().langpack();
|
||||
return langpack.grammaticalStructureFactory();
|
||||
}
|
||||
|
||||
public Double testCall(String sent1, String sent2, StanfordCoreNLP stanfordCoreNLP,
|
||||
StanfordCoreNLP stanfordCoreNLPSentiment) {
|
||||
System.out.println("\n\n\n\nNEW ITERATION");
|
||||
System.out.println("sent1: " + sent1);
|
||||
System.out.println("sent2: " + sent2);
|
||||
ArrayList<String> concurrentRelations = new ArrayList<String>();
|
||||
Annotation jmweAnnotationF = PipelineJMWESingleton.INSTANCE.getJMWEAnnotation(sent1);
|
||||
Annotation jmweAnnotation = PipelineJMWESingleton.INSTANCE.getJMWEAnnotation(sent2);
|
||||
|
||||
Integer tokenizeCountingF = null;
|
||||
List<List<TaggedWord>> taggedWordListF = null;
|
||||
List<List<TaggedWord>> taggedWordList1 = null;
|
||||
ArrayList<String> retrieveTGWListF = null;
|
||||
java.util.ArrayList<String> retrieveTGWList1 = null;
|
||||
List<CoreMap> sentencesF = null;
|
||||
List<CoreMap> sentence1 = null;
|
||||
List<CoreMap> sentencesSentimentF = null;
|
||||
List<CoreMap> sentenceSentiment1 = null;
|
||||
List<CoreMap> coreMaps1 = jmweAnnotationF.get(CoreAnnotations.SentencesAnnotation.class);
|
||||
ArrayList<Tree> treesF = null;
|
||||
ArrayList<Tree> trees1 = null;
|
||||
ArrayList<GrammaticalStructure> grammaticalStructuresF = null;
|
||||
ArrayList<GrammaticalStructure> grammaticalStructures1 = null;
|
||||
ArrayList<TypedDependency> typedDependenciesF = null;
|
||||
ArrayList<Integer> rnnCoreAnnotationsPredictedF = null;
|
||||
ArrayList<SimpleMatrix> simpleMatricesF = null;
|
||||
ArrayList<SimpleMatrix> simpleMatricesNodevectorsF = null;
|
||||
ArrayList<?> listF = null;
|
||||
Integer longestF = null;
|
||||
Integer sentimentLongestF = null;
|
||||
List<IMWE<IToken>> imwesF = null;
|
||||
Integer InflectedCounterNegativeF = null;
|
||||
Integer InflectedCounterPositiveF = null;
|
||||
ArrayList<String> tokenEntryF = null;
|
||||
Integer MarkedContinuousCounterF = null;
|
||||
Integer UnmarkedPatternCounterF = null;
|
||||
ArrayList<String> strTokensIpartFormF = null;
|
||||
ArrayList<String> tokenFormsF = null;
|
||||
ArrayList<String> strTokenEntryGetPOSF = null;
|
||||
ArrayList<Integer> intTokenEntyCountsF = null;
|
||||
ArrayList<String> ITokenTagsF = null;
|
||||
ArrayList<String> strTokenStemsF = null;
|
||||
Integer AnotatorcounterF = null;
|
||||
Integer TokensCounterF = null;
|
||||
ArrayList<String> entityTokenTagsF = null;
|
||||
ArrayList<String> nerEntitiesF = null;
|
||||
ArrayList<String> nerEntitiesTypeF = null;
|
||||
ArrayList<String> stopWordTokenF = null;
|
||||
ArrayList<String> stopWordLemmaF = null;
|
||||
Integer PairCounterF = null;
|
||||
|
||||
java.util.ArrayList<TypedDependency> typedDependencies1 = null;
|
||||
ArrayList<Integer> rnnCoreAnnotationsPredicted1 = null;
|
||||
ArrayList<SimpleMatrix> simpleMatrices1 = null;
|
||||
ArrayList<SimpleMatrix> simpleMatricesNodevectors1 = null;
|
||||
List<?> list1 = null;
|
||||
Integer longest1 = null;
|
||||
Integer sentimentLongest1 = null;
|
||||
List<IMWE<IToken>> imwes1 = null;
|
||||
Integer InflectedCounterNegative1 = null;
|
||||
Integer InflectedCounterPositive1 = null;
|
||||
ArrayList<String> tokenEntry1 = null;
|
||||
Integer MarkedContinuousCounter1 = null;
|
||||
Integer UnmarkedPatternCounter1 = null;
|
||||
ArrayList<String> strTokensIpartForm1 = null;
|
||||
ArrayList<String> tokenForms1 = null;
|
||||
ArrayList<String> strTokenEntryGetPOS1 = null;
|
||||
ArrayList<Integer> intTokenEntyCounts1 = null;
|
||||
ArrayList<String> ITokenTags1 = null;
|
||||
ArrayList<String> strTokenStems1 = null;
|
||||
Integer Anotatorcounter1 = null;
|
||||
Integer TokensCounter1 = null;
|
||||
ArrayList<String> entityTokenTags1 = null;
|
||||
ArrayList<String> nerEntities1 = null;
|
||||
ArrayList<String> nerEntitiesType1 = null;
|
||||
ArrayList<String> stopWordToken1 = null;
|
||||
ArrayList<String> stopWordLemma1 = null;
|
||||
Integer PairCounter1 = null;
|
||||
List<CoreMap> coreMaps2 = jmweAnnotation.get(CoreAnnotations.SentencesAnnotation.class);
|
||||
Annotation strAnno = new Annotation(sent1);
|
||||
strAnno.compact();
|
||||
stanfordCoreNLP.annotate(strAnno);
|
||||
|
||||
Annotation strAnnoSentiment = new Annotation(sent2);
|
||||
strAnnoSentiment.compact();
|
||||
stanfordCoreNLPSentiment.annotate(strAnnoSentiment);
|
||||
|
||||
Annotation strAnno2 = new Annotation(sent2);
|
||||
strAnno2.compact();
|
||||
stanfordCoreNLP.annotate(strAnno2);
|
||||
|
||||
Annotation strAnno22 = new Annotation(sent2);
|
||||
strAnno22.compact();
|
||||
stanfordCoreNLPSentiment.annotate(strAnno22);
|
||||
|
||||
Annotation annotation = new Annotation(sent1);
|
||||
stanfordCoreNLP.annotate(annotation);
|
||||
CoreDocument coreDocument = new CoreDocument(annotation);
|
||||
|
||||
annotation = new Annotation(sent2);
|
||||
stanfordCoreNLP.annotate(annotation);
|
||||
CoreDocument coreDocument1 = new CoreDocument(annotation);
|
||||
|
||||
|
||||
Integer tokenizeCounting = null;
|
||||
|
||||
SentimentAnalyzerTest sentimentAnalyzerTest = new SentimentAnalyzerTest(sent1, sent2,
|
||||
new SimilarityMatrix(sent1, sent2), coreMaps1, coreMaps2, strAnno,
|
||||
strAnno2, strAnnoSentiment,
|
||||
strAnno22, coreDocument,
|
||||
coreDocument1,
|
||||
tagger, gsf, classifier, tokenizeCounting, tokenizeCountingF,
|
||||
taggedWordListF, taggedWordList1, retrieveTGWListF, retrieveTGWList1,
|
||||
sentencesF, sentence1, sentencesSentimentF, sentenceSentiment1, treesF, trees1,
|
||||
grammaticalStructuresF, grammaticalStructures1, typedDependenciesF,
|
||||
typedDependencies1, rnnCoreAnnotationsPredictedF, rnnCoreAnnotationsPredicted1,
|
||||
simpleMatricesF, simpleMatrices1, simpleMatricesNodevectorsF, simpleMatricesNodevectors1,
|
||||
listF, list1, longestF, longest1, sentimentLongestF, sentimentLongest1, imwesF,
|
||||
imwes1, InflectedCounterNegativeF, InflectedCounterNegative1, InflectedCounterPositiveF,
|
||||
InflectedCounterPositive1, tokenEntryF, tokenEntry1, MarkedContinuousCounterF,
|
||||
MarkedContinuousCounter1, UnmarkedPatternCounterF, UnmarkedPatternCounter1,
|
||||
strTokensIpartFormF, strTokensIpartForm1, tokenFormsF, tokenForms1,
|
||||
strTokenEntryGetPOSF, strTokenEntryGetPOS1, intTokenEntyCountsF,
|
||||
intTokenEntyCounts1, ITokenTagsF, ITokenTags1, strTokenStemsF, strTokenStems1,
|
||||
AnotatorcounterF, Anotatorcounter1, TokensCounterF, TokensCounter1,
|
||||
entityTokenTagsF, entityTokenTags1, nerEntitiesF, nerEntities1, nerEntitiesTypeF,
|
||||
nerEntitiesType1, stopWordTokenF, stopWordToken1, stopWordLemmaF, stopWordLemma1,
|
||||
PairCounterF, PairCounter1);
|
||||
Double score = sentimentAnalyzerTest.callSMX().getDistance();
|
||||
System.out.println("score: " + score + "\n");
|
||||
return score;
|
||||
}
|
||||
|
||||
//@Test
|
||||
public void testScoring() {
|
||||
Datahandler datahandler = new Datahandler();
|
||||
PipelineJMWESingleton.getINSTANCE();
|
||||
StanfordCoreNLP stanfordCoreNLP = datahandler.pipeLineSetUp();
|
||||
StanfordCoreNLP stanfordCoreNLPSentiment = datahandler.shiftReduceParserInitiate();
|
||||
String sent1 = "I was thinking to small supplies to avoid waiting in the rain. This way, in case of trouble you go home and take in your supply instead of waiting 45 min";
|
||||
String sent2 = "*NêkØ* Kroaat_West bG <3";
|
||||
double PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 800.0);
|
||||
sent2 = "no thanks but i know some ladyboys here that would";
|
||||
sent1 = "u want head from me :wlenny:";
|
||||
double PerformTestingFitting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
|
||||
Assert.assertTrue(PerformTestingFitting > 200.0);
|
||||
sent1 = "we need a trim for kroaat's teamwin";
|
||||
double PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFitting > PerformTestingFittingLess);
|
||||
sent1 = "i am not a stalker";
|
||||
sent2 = "but we ban for bhop hack";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
sent2 = "hey stalker";
|
||||
PerformTestingFitting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFittingLess < PerformTestingFitting);
|
||||
sent1 = "what do you think of humanzz";
|
||||
sent2 = "did we actually go inside rocket -_-";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
sent2 = "crying for beeing tossed for fire";
|
||||
PerformTestingFitting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFitting > PerformTestingFittingLess);
|
||||
Assert.assertTrue(PerformTestingFitting > 3000);
|
||||
sent1 = "admin ! this map needs a Free Torchlight for all";
|
||||
sent2 = "( ? <:wlenny:514861023002624001> ?? ? <:wlenny:514861023002624001> ) ( ? <:wlenny:514861023002624001> ?? ? <:wlenny:514861023002624001> ) ( ? <:wlenny:514861023002624001> ?? ? <:wlenny:514861023002624001> ) ( ? <:wlenny:514861023002624001> ?? ?";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFittingLess < 100);
|
||||
sent1 = "i said that because i indeed have more knowledge about medicines than the average joe";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
sent2 = "Depends on the situation but i will mostly trust my doctor if he says this will help and i actually need it";
|
||||
PerformTestingFitting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFitting > PerformTestingFittingLess);
|
||||
sent1 = "tell me something";
|
||||
sent2 = "you learn fast yoshmi";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
sent2 = "when i see europeans dead i laugh";
|
||||
PerformTestingFitting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFitting > PerformTestingFittingLess);
|
||||
sent1 = "crobat im gonna nominate next event for you";
|
||||
sent2 = "why did we sploit . <:wlenny:514861023002624001> <:wlenny:514861023002624001> <:wlenny:514861023002624001>";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
sent2 = "lets go for mako";
|
||||
PerformTestingFitting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFitting > PerformTestingFittingLess);
|
||||
sent1 = "how are the calcluations going? any issue with the JMWE?";
|
||||
sent2 = "anyone know if upgrading damage increases the mines' damage also";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
sent2 = "i have to get back to work";
|
||||
PerformTestingFitting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFitting > PerformTestingFittingLess);
|
||||
sent1 = "sprichst du Deutsch?";
|
||||
sent2 = "like rpggift unknown !!! 130";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFittingLess < 500);
|
||||
sent1 = "do you like memes?";
|
||||
sent2 = "we need to adapt to the team we have";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFittingLess < 3400);
|
||||
sent2 = "i have to get back to work";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFittingLess < 4400);
|
||||
sent1 = "is that a cursed sentence?";
|
||||
sent2 = "just didnt want to have heal since i died";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFittingLess < 2000);
|
||||
sent1 = "my name is ? ? ? ? G ? ? ? but this server doesn't read my special ? ? ? ? ? ? characters";
|
||||
sent2 = "dont say that sentence again";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFittingLess < 5000);
|
||||
sent2 = "please dont tell me your gonna repeat that";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFittingLess < 2000);
|
||||
sent2 = "na it was a good try";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFittingLess < 2000);
|
||||
sent2 = "NATSU DIES IN THE END";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFittingLess < 2000);
|
||||
sent1 = "reeee";
|
||||
sent2 = "??( ? :wlenny~1: ?? ? :wlenny~1: )?? ( ? :wlenny~1: ?? ? :wlenny~1: )/ [ :wlenny~1: ?~ :wlenny~1: :] ? :wlenny~1: ?? ?? <";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFittingLess < 2500);
|
||||
sent1 = "dw, my mom is a stupid cunt, she deserved it";
|
||||
sent2 = "(????????????-)---….. JOINT :wlenny~1: !";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFittingLess < 2500);
|
||||
sent1 = "are you a paste cut or a cut and paste?";
|
||||
sent2 = "? ? ? ? ? ? ? ? A ? ? ? V ? ? ? ? ? ? ? ? ?";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFittingLess < 2500);
|
||||
sent1 = "Did you know that Denmark's short form (DK) is pronounced as \"decay\"? :thonk~1:";
|
||||
sent2 = "?( ? <:wlenny:514861023002624001> ?? ? <:wlenny:514861023002624001> )??( ? <:wlenny:514861023002624001> ?? ? <:wlenny:514861023002624001> )??( ? <:wlenny:514861023002624001> ?? ?<:wlenny:514861023002624001>)??( ?<:wlenny:514861023002624001>?? ? <:w";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFittingLess < 2500);
|
||||
sent1 = "are you a space cat or a cat in space? <:thonk:382012909942734858>";
|
||||
sent2 = "{fullred}( ? <:wlenny:514861023002624001> ? ? {hotpink}? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? <:wlenny:514861023002624001> ?)";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFittingLess < 2500);
|
||||
sent1 = "something else to tell me now";
|
||||
sent2 = "{fullred}(--)? ?(--? )?{mediumblue}?(--)? ?(--)?{magenta}?(--)?{indigo}?(--? )?";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFittingLess < 2500);
|
||||
sent1 = "do you have repeating sentences";
|
||||
sent2 = "its pretty cheap with 10 ppl you pay about 60 euro for a week";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFittingLess < 5500);
|
||||
sent1 = "what is 60 euro a week";
|
||||
sent2 = "{fullred}( ? <:wlenny:514861023002624001> ? ? {hotpink}? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? <:wlenny:514861023002624001> ?)";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFittingLess < 2500);
|
||||
sent1 = "do you watch news and if yes which one";
|
||||
sent2 = "? ? ? ? ? ? ? ? A ? ? ? V ? ? ? ? ? ? ? ? ?";
|
||||
PerformTestingFittingLess = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTestingFittingLess < 2500);
|
||||
sent1 = "\"im gonna bad manner you";
|
||||
sent2 = "? ? ? ? ? ? ? ? A ? ? ? V ? ? ? ? ? ? ? ? ?";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 2500.0);
|
||||
sent1 = "LOOK OUT BIG DOG";
|
||||
sent2 = "? ? ? ? ? ? ? ? A ? ? ? V ? ? ? ? ? ? ? ? ?";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 2500.0);
|
||||
sent1 = "3 days = 30 cents";
|
||||
sent2 = "? ? ? ? ? ? ? ? A ? ? ? V ? ? ? ? ? ? ? ? ?";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 2500.0);
|
||||
sent1 = ":D we had a lot of fun for 2 rounds :D";
|
||||
sent2 = "? ? ? ? ? ? ? ? A ? ? ? V ? ? ? ? ? ? ? ? ?";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 2500.0);
|
||||
sent1 = ">FUCK I JUST PRESSED MY ZTELE BIND";
|
||||
sent2 = "? ? ? ? ? ? ? ? A ? ? ? V ? ? ? ? ? ? ? ? ?";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 2500.0);
|
||||
sent1 = "400 solos on mako <:wlenny:514861023002624001>";
|
||||
sent2 = "? ? ? ? ? ? ? ? A ? ? ? V ? ? ? ? ? ? ? ? ?";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 2500.0);
|
||||
sent1 = "2 noobs 3 not bad";
|
||||
sent2 = "{fullred}( ? <:wlenny:514861023002624001> ? ? {hotpink}? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? <:wlenny:514861023002624001> ?)";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 2500.0);
|
||||
sent1 = "??????? NOW WE RIOT ???????";
|
||||
sent2 = "{fullred}( ? <:wlenny:514861023002624001> ? ? {hotpink}? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? <:wlenny:514861023002624001> ?)";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 2500.0);
|
||||
sent1 = "admin turn on bhop pleas";
|
||||
sent2 = "{fullred}( ? <:wlenny:514861023002624001> ? ? {hotpink}? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? <:wlenny:514861023002624001> ?)";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 2500.0);
|
||||
sent1 = "paranoid is never event";
|
||||
sent2 = "{fullred}( ? <:wlenny:514861023002624001> ? ? {hotpink}? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? <:wlenny:514861023002624001> ?)";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 2500.0);
|
||||
sent1 = "players keep diying LLLLOOOOLLL";
|
||||
sent2 = "{fullred}( ? <:wlenny:514861023002624001> ? ? {hotpink}? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? <:wlenny:514861023002624001> ?)";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 2500.0);
|
||||
sent1 = "PRESS THE FUCKING BUTTON IN THE ELEVATOR";
|
||||
sent2 = "{fullred}( ? <:wlenny:514861023002624001> ? ? {hotpink}? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? <:wlenny:514861023002624001> ?)";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 2500.0);
|
||||
sent1 = "but instead of minecraft server i got css ze";
|
||||
sent2 = "Rocklee when did you come back from the isis khalifate <:wlenny:514861023002624001>";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 5500.0);
|
||||
sent1 = "First time there's that many CT at this point";
|
||||
sent2 = "Rocklee when did you come back from the isis khalifate <:wlenny:514861023002624001>";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 2500.0);
|
||||
sent1 = "go to spec so changemap";
|
||||
sent2 = "Rocklee when did you come back from the isis khalifate <:wlenny:514861023002624001>";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 2500.0);
|
||||
sent1 = "What's for lunch?";
|
||||
sent2 = "what does bm stand for";
|
||||
double PerformTesting1 = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
sent2 = "2 eggs and 1 cup";
|
||||
double PerformTesting2 = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting1 < PerformTesting2);
|
||||
sent1 = "do you watch any series or animes or cartoons";
|
||||
sent2 = "you guys voted for this";
|
||||
PerformTesting1 = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting1 < 5500);
|
||||
sent1 = "do you know pyrono";
|
||||
sent2 = "i have to get accustomed to it";
|
||||
PerformTesting1 = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting1 < 2000);
|
||||
sent1 = "Is William a good admin?";
|
||||
sent2 = "but this is helms deep";
|
||||
PerformTesting1 = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
sent2 = "keep an eye on them";
|
||||
PerformTesting2 = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting2 > PerformTesting1);
|
||||
sent1 = "scuffed jenz";
|
||||
sent2 = "I HAVE WATCHED ONLY ONE CARTOON AND IT'S POKEMON";
|
||||
PerformTesting1 = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting1 < 2500);
|
||||
sent1 = "So what?";
|
||||
PerformTesting1 = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting1 < 5500);
|
||||
sent1 = "Who is the enemy?";
|
||||
PerformTesting1 = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting1 < 2500);
|
||||
sent1 = "Sounds bad, doesn't work";
|
||||
sent2 = "that hold is identical to the other room";
|
||||
PerformTesting1 = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting1 < 2500);
|
||||
sent1 = "oh wait, because I don't have any";
|
||||
sent2 = "would be cool if VIPs would nominate other than paranoid. All the maps in the vote all the time suck so people just vote for an";
|
||||
PerformTesting1 = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting1 < 4500);
|
||||
sent1 = "{navy}? :wlenny~1: ?? {violet}? :wlenny~1: ? :wlenny~1: ? :wlenny~1: ?? ? :wlenny~1: ? :wlenny~1: ? :wlenny~1: ??";
|
||||
sent2 = "will you still be online tommorow?";
|
||||
PerformTesting1 = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting1 < 4500);
|
||||
sent1 = "stop being such a kid and act more polite towards people ";
|
||||
sent2 = "i played nemesis on paradise a few days ago and it worked fine";
|
||||
PerformTesting1 = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting1 < 6500);
|
||||
sent1 = "Enfin. Map noob";
|
||||
sent2 = "dagger dagger";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 400.0);
|
||||
sent1 = "u have to hit the middle one with ur nade";
|
||||
sent2 = "your not going to mcdonalds, you have had your chance with the cheeseburger";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 1400.0);
|
||||
sent1 = "How is everyone doing";
|
||||
sent2 = "wieso ist dein Bein am Arsch. Eigdl hängt das runter";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 400.0);
|
||||
sent2 = "meshlem how does it feel to be russian";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 700.0);
|
||||
|
||||
//new pairs
|
||||
sent1 = "they dont buy kefvlar";
|
||||
sent2 = "you have a database available again";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 400.0);
|
||||
sent1 = "because of lag?";
|
||||
sent2 = "french tourit";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 400.0);
|
||||
sent2 = "Even when I'm working";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 3500.0);
|
||||
sent1 = "or need another restart";
|
||||
sent2 = "Even when I'm working";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 600.0);
|
||||
sent2 = "french tourit";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 400.0);
|
||||
sent1 = "wow that clock works/";
|
||||
sent2 = "didnt the bot like mako? what happened to that?";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 400.0);
|
||||
sent1 = "haHAA stop that cringe chat haHAA";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 400.0);
|
||||
sent1 = "like 1s down now i guess i will die";
|
||||
sent2 = "monkaGIGA";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 400.0);
|
||||
sent1 = "what do you want";
|
||||
sent2 = "admun extend";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting > 100.0);
|
||||
sent1 = "You are a one large bug";
|
||||
sent2 = "omg you are right";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting > 5900.0);
|
||||
sent1 = "I'm not a mapper, wtf";
|
||||
sent2 = "this map was made by wtf";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting > 1400.0);
|
||||
sent1 = "do you have plants thonk";
|
||||
sent2 = "banana trees are plants";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting > 1400.0);
|
||||
sent2 = "fucking alcolo";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 600.0);
|
||||
sent2 = "qual arma e 382012909942734858";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < -400.0);
|
||||
sent2 = "wlenny on gamebanana";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 2500.0);
|
||||
sent1 = "And how was it? :wlenny~1:";
|
||||
sent2 = "at lvl 1 avad is 140 cd";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < 400.0);
|
||||
sent1 = "wtf? :monkaS~2:";
|
||||
sent2 = "think thats it kangaroo next";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < -400.0);
|
||||
sent1 = "yurope";
|
||||
sent2 = "?? ??????? ??? ??";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < -2400.0);
|
||||
sent1 = "fuck";
|
||||
PerformTesting = testCall(sent1, sent2, stanfordCoreNLP, stanfordCoreNLPSentiment);
|
||||
Assert.assertTrue(PerformTesting < -2400.0);
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user