From 376e939980882e0c82d824ad823f07735315f949 Mon Sep 17 00:00:00 2001 From: jenzur Date: Fri, 5 Apr 2019 13:29:20 +0200 Subject: [PATCH] calculation updates --- .../main/java/FunctionLayer/Datahandler.java | 2 +- .../StanfordParser/SentimentAnalyzerTest.java | 293 ++++++++++++++---- .../PresentationLayer/DiscordHandler.java | 2 +- 3 files changed, 241 insertions(+), 56 deletions(-) diff --git a/ArtificialAutism/src/main/java/FunctionLayer/Datahandler.java b/ArtificialAutism/src/main/java/FunctionLayer/Datahandler.java index b3c8ed87..084ba1e6 100644 --- a/ArtificialAutism/src/main/java/FunctionLayer/Datahandler.java +++ b/ArtificialAutism/src/main/java/FunctionLayer/Datahandler.java @@ -217,7 +217,7 @@ public class Datahandler { public void addHLstatsMessages() { ConcurrentMap hlStatsMessages = new MapMaker().concurrencyLevel(2).makeMap(); ConcurrentMap strCacheLocal = stringCache; - int hardcap = 55000; + int hardcap = 10; //55000 int ij = 0; for (String str : DataMapper.getHLstatsMessages().values()) { hlStatsMessages.put(ij, str); diff --git a/ArtificialAutism/src/main/java/FunctionLayer/StanfordParser/SentimentAnalyzerTest.java b/ArtificialAutism/src/main/java/FunctionLayer/StanfordParser/SentimentAnalyzerTest.java index 954bc433..dfa93fcc 100644 --- a/ArtificialAutism/src/main/java/FunctionLayer/StanfordParser/SentimentAnalyzerTest.java +++ b/ArtificialAutism/src/main/java/FunctionLayer/StanfordParser/SentimentAnalyzerTest.java @@ -144,6 +144,8 @@ public class SentimentAnalyzerTest implements Callable { Tree sentenceConstituencyParse = sentence.get(TreeCoreAnnotations.TreeAnnotation.class); sentenceConstituencyParseList.put(sentenceConstituencyParseList.size(), sentenceConstituencyParse); } + ConcurrentMap alltypeDepsSizeMap = new MapMaker().concurrencyLevel(2).makeMap(); + ConcurrentMap summationMap = new MapMaker().concurrencyLevel(2).makeMap(); for (CoreMap sentence : pipelineAnnotation2.get(CoreAnnotations.SentencesAnnotation.class)) { int constiRelationsize = 0; Tree sentenceConstituencyParse = sentence.get(TreeCoreAnnotations.TreeAnnotation.class); @@ -173,12 +175,15 @@ public class SentimentAnalyzerTest implements Callable { Collection allTypedDependencies1 = gs1.allTypedDependencies(); int relationApplicable1 = 0; int relationApplicable2 = 0; + int grammaticalRelation1 = 0; + int grammaticalRelation2 = 0; for (TypedDependency TDY1 : allTypedDependencies1) { IndexedWord dep = TDY1.dep(); IndexedWord gov = TDY1.gov(); GrammaticalRelation grammaticalRelation = gs.getGrammaticalRelation(gov, dep); if (grammaticalRelation.isApplicable(sentenceConstituencyParse)) { score += 1900; + grammaticalRelation1++; } GrammaticalRelation reln = TDY1.reln(); if (reln.isApplicable(sentenceConstituencyParse)) { @@ -192,6 +197,7 @@ public class SentimentAnalyzerTest implements Callable { GrammaticalRelation grammaticalRelation = gs1.getGrammaticalRelation(gov, dep); if (grammaticalRelation.isApplicable(sentenceConstituencyParse)) { score += 900; + grammaticalRelation2++; } GrammaticalRelation reln = TDY.reln(); if (reln.isApplicable(sentenceConstituencyParse1)) { @@ -199,13 +205,40 @@ public class SentimentAnalyzerTest implements Callable { relationApplicable2++; } } + if ((grammaticalRelation1 == 0 && grammaticalRelation2 > 0) || (grammaticalRelation2 == 0 && grammaticalRelation1 > 0)) { + score -= 3450; + } if (!allTypedDependencies.isEmpty() || !allTypedDependencies1.isEmpty()) { - if (relationApplicable1 > 0 && relationApplicable2 > 0) { + int allTypeDep1 = allTypedDependencies.size(); + int allTypeDep2 = allTypedDependencies1.size(); + if (allTypeDep1 <= allTypeDep2 * 5 && allTypeDep2 <= allTypeDep1 * 5) { + if (!alltypeDepsSizeMap.values().contains(allTypeDep1)) { + score += allTypeDep1 * 600; + alltypeDepsSizeMap.put(alltypeDepsSizeMap.size() + 1, allTypeDep1); + } + if (!alltypeDepsSizeMap.values().contains(allTypeDep1)) { + score += allTypeDep2 * 600; + alltypeDepsSizeMap.put(alltypeDepsSizeMap.size() + 1, allTypeDep2); + } + } + if (allTypeDep1 >= 5 && allTypeDep2 >= 5) { + int largerTypeDep = allTypeDep1 > allTypeDep2 ? allTypeDep1 : allTypeDep2; + int smallerTypeDep = allTypeDep1 < allTypeDep2 ? allTypeDep1 : allTypeDep2; + int summation = largerTypeDep * largerTypeDep - smallerTypeDep * smallerTypeDep; + if (summation > 50 && summation < 75) { + score += summation * 80; + } else if (!summationMap.values().contains(summation)) { + score -= largerTypeDep * 500; + summationMap.put(summationMap.size() + 1, summation); + } + } + if (relationApplicable1 > 0 && relationApplicable2 > 0 && relationApplicable1 == relationApplicable2 + && grammaticalRelation1 > 0 && grammaticalRelation2 > 0 && grammaticalRelation1 == grammaticalRelation2) { score += 3500; } else { - score -= allTypedDependencies.size() > allTypedDependencies1.size() - ? (allTypedDependencies.size() - allTypedDependencies1.size()) * (allTypedDependencies.size() * 160) - : (allTypedDependencies1.size() - allTypedDependencies.size()) * (allTypedDependencies1.size() * 160); + score += allTypeDep1 > allTypeDep2 + ? (allTypeDep2 - allTypeDep1) * (allTypeDep2 * 50) + : (allTypeDep1 - allTypeDep2) * (allTypeDep1 * 50); } } AtomicInteger runCount1 = new AtomicInteger(0); @@ -221,6 +254,32 @@ public class SentimentAnalyzerTest implements Callable { score += runCount1.get() * 1500; } } + int typeSizeSmallest = 100; + int typeSizeLargest = 0; + for (Integer i : alltypeDepsSizeMap.values()) { + if (i > typeSizeLargest) { + typeSizeLargest = i; + } + if (i < typeSizeSmallest) { + typeSizeSmallest = i; + } + } + if (typeSizeLargest >= typeSizeSmallest * 3) { + score -= typeSizeLargest * 1600; + } + typeSizeLargest = 0; + typeSizeSmallest = 100; + for (int i : summationMap.values()) { + if (i > typeSizeLargest) { + typeSizeLargest = i; + } + if (i < typeSizeSmallest) { + typeSizeSmallest = i; + } + } + if (typeSizeLargest >= typeSizeSmallest * 3) { + score -= typeSizeLargest * 1600; + } } catch (Exception ex) { System.out.println("pipelineAnnotation stacktrace: " + ex.getLocalizedMessage() + "\n"); } @@ -239,6 +298,8 @@ public class SentimentAnalyzerTest implements Callable { } ConcurrentMap elementSumCounter = new MapMaker().concurrencyLevel(2).makeMap(); ConcurrentMap dotMap = new MapMaker().concurrencyLevel(2).makeMap(); + ConcurrentMap elementSumMap = new MapMaker().concurrencyLevel(2).makeMap(); + ConcurrentMap dotSumMap = new MapMaker().concurrencyLevel(2).makeMap(); for (CoreMap sentence : pipelineAnnotation2Sentiment.get(CoreAnnotations.SentencesAnnotation.class)) { Tree tree = sentence.get(SentimentCoreAnnotations.SentimentAnnotatedTree.class); sentiment2.put(sentiment2.size() + 1, RNNCoreAnnotations.getPredictedClass(tree)); @@ -343,20 +404,30 @@ public class SentimentAnalyzerTest implements Callable { elementSum = Math.round(elementSum * 100.0) / 100.0; elementSumCounter.put(elementSumCounter.size() + 1, elementSum); dotMap.put(dotMap.size() + 1, dot); - if (dot < 0.000) { - score += dot * 1500; - } else if (dot < 0.1) { - score += 256; - } - if (dot > 0.50) { - score -= 2400; - } - if (elementSum < 0.01 && elementSum > 0.00) { - score += 3300; - } else if (elementSum > 0.1 && elementSum < 0.2) { - score += 1100; + if (!dotSumMap.values().contains(dot)) { + if (dot < 0.000) { + score += dot * 1500; + } else if (dot < 0.1) { + score += 256; + } + if (dot > 0.50) { + score -= 2400; + } + dotSumMap.put(dotSumMap.size() + 1, dot); } else { - score -= elementSum * 1424; + score -= 750; + } + if (!elementSumMap.values().contains(elementSum)) { + if (elementSum < 0.01 && elementSum > 0.00) { + score += 3300; + } else if (elementSum > 0.1 && elementSum < 0.2) { + score += 1100; + } else { + score -= elementSum * 1424; + } + elementSumMap.put(elementSumMap.size() + 1, elementSum); + } else { + score -= 750; } } for (SimpleMatrix simpleSMX : simpleSMXlistVector.values()) { @@ -372,18 +443,28 @@ public class SentimentAnalyzerTest implements Callable { elementSum = Math.round(elementSum * 100.0) / 100.0; elementSumCounter.put(elementSumCounter.size() + 1, elementSum); dotMap.put(dotMap.size() + 1, dot); - if (dot < 0.1) { - score += 256; - } - if (dot > 0.50) { - score -= 2400; - } - if (elementSum < 0.01 && elementSum > 0.00) { - score += 1300; - } else if (elementSum > 0.1 && elementSum < 1.0) { - score += 1100; + if (!dotSumMap.values().contains(dot)) { + if (dot < 0.1) { + score += 256; + } + if (dot > 0.50) { + score -= 2400; + } + dotSumMap.put(dotSumMap.size() + 1, dot); } else { - score -= elementSum * 1424; + score -= 750; + } + if (!elementSumMap.values().contains(elementSum)) { + if (elementSum < 0.01 && elementSum > 0.00) { + score += 1300; + } else if (elementSum > 0.1 && elementSum < 1.0) { + score += 1100; + } else { + score -= elementSum * 1424; + } + elementSumMap.put(elementSumMap.size() + 1, elementSum); + } else { + score -= 750; } } } @@ -409,16 +490,23 @@ public class SentimentAnalyzerTest implements Callable { OptionalDouble minvalueElements = elementSumCounter.values().stream().mapToDouble(Double::doubleValue).min(); OptionalDouble maxvalueElements = elementSumCounter.values().stream().mapToDouble(Double::doubleValue).max(); Double elementsVariance = maxvalueElements.getAsDouble() - minvalueElements.getAsDouble(); - if (elementsVariance < 0.05 && maxvalueElements.getAsDouble() > 0.0 && minvalueElements.getAsDouble() > 0.0 && elementsVariance > 0.000) { + if (elementsVariance == 0.0) { + score -= 550; + } else if (elementsVariance < 0.02 && elementsVariance > -0.01) { + score += 3500; + } else if (elementsVariance < 0.5 && maxvalueElements.getAsDouble() > 0.0 && minvalueElements.getAsDouble() > 0.0 && elementsVariance > 0.000) { score += 3500; } else if (minvalueElements.getAsDouble() < 0.0 && minvalueElements.getAsDouble() - maxvalueElements.getAsDouble() < 0.50) { score -= 2500; } + score -= (sentiment1.size() > sentiment2.size() ? sentiment1.size() - sentiment2.size() : sentiment2.size() - sentiment1.size()) * 500; + DocumentReaderAndWriter readerAndWriter = classifier.makePlainTextReaderAndWriter(); List classifyRaw1 = classifier.classifyRaw(str, readerAndWriter); List classifyRaw2 = classifier.classifyRaw(str1, readerAndWriter); score -= (classifyRaw1.size() > classifyRaw2.size() ? classifyRaw1.size() - classifyRaw2.size() : classifyRaw2.size() - classifyRaw1.size()) * 200; + int mainSentiment1 = 0; int longest1 = 0; int mainSentiment2 = 0; @@ -449,13 +537,13 @@ public class SentimentAnalyzerTest implements Callable { if (deffLongest > deffshorter * 5) { score -= 5500; } else if (deffLongest < (deffshorter * 2) - 1 && deffLongest - deffshorter <= 45) { - score += (deffLongest - deffshorter) * 60; - } else if (mainSentiment1 != mainSentiment2 && deffLongest - deffshorter > 20 && deffLongest - deffshorter < 45) { score += (deffLongest - deffshorter) * 120; + } else if (mainSentiment1 != mainSentiment2 && deffLongest - deffshorter > 20 && deffLongest - deffshorter < 45) { + score += (deffLongest - deffshorter) * 20; } else if (deffLongest - deffshorter < 2) { score += (deffLongest + deffshorter) * 40; } else if (deffshorter * 2 >= deffLongest && deffshorter * 2 < deffLongest + 5) { - score += deffLongest * 160; + score += deffLongest * 20; } else { score -= (deffLongest - deffshorter) * 50; } @@ -487,6 +575,8 @@ public class SentimentAnalyzerTest implements Callable { ConcurrentMap strTokenGetiPart2 = new MapMaker().concurrencyLevel(2).makeMap(); ConcurrentMap strTokenEntryPOS1 = new MapMaker().concurrencyLevel(2).makeMap(); ConcurrentMap strTokenEntryPOS2 = new MapMaker().concurrencyLevel(2).makeMap(); + ConcurrentMap entryCounts1 = new MapMaker().concurrencyLevel(2).makeMap(); + ConcurrentMap entryCounts2 = new MapMaker().concurrencyLevel(2).makeMap(); try { List sentences = jmweStrAnnotation1.get(CoreAnnotations.SentencesAnnotation.class); for (CoreMap sentence : sentences) { @@ -508,6 +598,9 @@ public class SentimentAnalyzerTest implements Callable { for (String strPostPrefix : entry.getPOS().getPrefixes()) { strTokenEntryPOS1.put(strTokenEntryPOS1.size() + 1, strPostPrefix); } + for (int counts : entry.getCounts()) { + entryCounts1.put(entryCounts1.size() + 1, counts); + } for (IToken tokens : token.getTokens()) { ITokenMapTag1.put(ITokenMapTag1.size() + 1, tokens.getTag()); for (String strtoken : tokens.getStems()) { @@ -539,6 +632,9 @@ public class SentimentAnalyzerTest implements Callable { for (String strPostPrefix : entry.getPOS().getPrefixes()) { strTokenEntryPOS2.put(strTokenEntryPOS2.size() + 1, strPostPrefix); } + for (int counts : entry.getCounts()) { + entryCounts2.put(entryCounts2.size() + 1, counts); + } for (IToken tokens : token.getTokens()) { ITokenMapTag2.put(ITokenMapTag2.size() + 1, tokens.getTag()); for (String strtoken : tokens.getStems()) { @@ -553,61 +649,145 @@ public class SentimentAnalyzerTest implements Callable { } catch (Exception ex) { System.out.println("SENTIMENT stacktrace: " + ex.getMessage() + "\n"); } - for (String strTokenPos1 : strTokenEntryPOS1.values()) { - for (String strTokenPos2 : strTokenEntryPOS2.values()) { - if (strTokenPos1.equals(strTokenPos2)) { - score += 500; + int entry1 = entryCounts1.values().size(); + int entry2 = entryCounts2.values().size(); + if ((entry1 >= entry2 * 5 && entry2 > 0) || (entry2 >= entry1 * 5 && entry1 > 0)) { + score -= entry1 > entry2 ? (entry1 - entry2) * 450 : (entry2 - entry1) * 450; + } else if (entry1 >= entry2 * 50 || entry2 >= entry1 * 50) { + score -= entry1 > entry2 ? entry1 * 180 : entry2 * 180; + } else if (entry1 >= entry2 * 2 || entry2 >= entry1 * 2) { + score += entry1 > entry2 ? (entry1 - entry2) * 450 : (entry2 - entry1) * 450; + } else if (entry1 == 0 && entry2 == 0) { + score -= 4500; + } else if (entry1 == entry2) { + score += 5500; + } + ConcurrentMap countsMap = new MapMaker().concurrencyLevel(2).makeMap(); + for (int counts : entryCounts1.values()) { + for (int counts1 : entryCounts2.values()) { + if (counts == counts1 && counts > 0 && !countsMap.values().contains(counts)) { + score += counts * 250; + countsMap.put(countsMap.size() + 1, counts); + } + } + } + if (strTokenEntryPOS1.values().size() > 1 && strTokenEntryPOS2.values().size() > 1) { + for (String strTokenPos1 : strTokenEntryPOS1.values()) { + for (String strTokenPos2 : strTokenEntryPOS2.values()) { + if (strTokenPos1.equals(strTokenPos2)) { + score += 500; + + } else { + score -= 650; + + } } } } if (UnmarkedPatternCounter > 0 && UnmarkedPatternCounter < 5) { score -= UnmarkedPatternCounter * 1600; + } else { + score -= UnmarkedPatternCounter * 10; } + if (MarkedContinuousCounter1 > 0 && MarkedContinuousCounter2 > 0) { - if (!Objects.equals(MarkedContiniousCounter1Entries, MarkedContiniousCounter2Entries) + if (MarkedContinuousCounter1 > MarkedContinuousCounter2 * 50 || MarkedContinuousCounter2 > MarkedContinuousCounter1 * 50) { + score -= MarkedContinuousCounter1 > MarkedContinuousCounter2 ? MarkedContinuousCounter1 * 120 : MarkedContinuousCounter2 * 120; + } else if (!Objects.equals(MarkedContiniousCounter1Entries, MarkedContiniousCounter2Entries) && (MarkedContinuousCounter1 * 2 >= MarkedContinuousCounter2 * MarkedContinuousCounter1) || (MarkedContinuousCounter2 * 2 >= MarkedContinuousCounter1 * MarkedContinuousCounter2)) { - score += MarkedContinuousCounter1 > MarkedContinuousCounter2 ? (MarkedContinuousCounter1 - MarkedContinuousCounter2) * 500 - : (MarkedContinuousCounter2 - MarkedContinuousCounter1) * 500; - } else { + score += 4500; + } else if (MarkedContiniousCounter1Entries == 0 || MarkedContiniousCounter2Entries == 0) { score += MarkedContinuousCounter1 > MarkedContinuousCounter2 ? (MarkedContinuousCounter2 - MarkedContinuousCounter1) * 500 : (MarkedContinuousCounter1 - MarkedContinuousCounter2) * 500; } + if (MarkedContiniousCounter1Entries > 0 && MarkedContiniousCounter2Entries > 0 && MarkedContinuousCounter1 > 0 + && MarkedContinuousCounter2 > 0 && MarkedContinuousCounter1 < MarkedContinuousCounter2 * 10 + && MarkedContinuousCounter2 < MarkedContinuousCounter1 * 10) { + if (MarkedContiniousCounter1Entries > MarkedContiniousCounter2Entries * 5 + || MarkedContiniousCounter2Entries > MarkedContiniousCounter1Entries * 5 + || MarkedContiniousCounter1Entries * 5 < MarkedContinuousCounter1 + || MarkedContiniousCounter1Entries * 5 < MarkedContinuousCounter2 + || MarkedContiniousCounter2Entries * 5 < MarkedContinuousCounter1 + || MarkedContiniousCounter2Entries * 5 < MarkedContinuousCounter2) { + score -= MarkedContinuousCounter1 > MarkedContinuousCounter2 ? MarkedContinuousCounter1 * 400 : MarkedContinuousCounter2 * 400; + } + } } + ConcurrentMap strtokensMap = new MapMaker().concurrencyLevel(2).makeMap(); for (String strTokeniPart1 : strTokenGetiPart1.values()) { for (String strTokeniPart2 : strTokenGetiPart2.values()) { - if (strTokeniPart1.equals(strTokeniPart2)) { + if (strTokeniPart1.equals(strTokeniPart2) && !strtokensMap.values().contains(strTokeniPart2)) { + strtokensMap.put(strtokensMap.size() + 1, strTokeniPart2); score += 400; + } else { + score -= 200; } } } + int tokenEntry1 = strTokenGetEntry1.values().size(); + int tokenEntry2 = strTokenGetEntry2.values().size(); + boolean boundariyLeacks = false; + int remnantCounter = 0; + if (tokenEntry1 * 2 != tokenEntry2 && tokenEntry2 * 2 != tokenEntry1) { + boundariyLeacks = true; + } + ConcurrentMap entryTokenMap = new MapMaker().concurrencyLevel(2).makeMap(); for (String strTokenEntry1 : strTokenGetEntry1.values()) { for (String strTokenEntry2 : strTokenGetEntry2.values()) { - if (strTokenEntry1.equals(strTokenEntry2)) { - score += 2500; + if (!entryTokenMap.values().contains(strTokenEntry2)) { + if (strTokenEntry1.equals(strTokenEntry2)) { + score += boundariyLeacks ? 2500 : 2500 / 2; + } else if (!boundariyLeacks) { + score -= 1250; + } else { + remnantCounter++; + } } + entryTokenMap.put(entryTokenMap.size() + 1, strTokenEntry2); } } + score -= remnantCounter * 250; + ConcurrentMap iTokenMapTagsMap = new MapMaker().concurrencyLevel(2).makeMap(); for (String strmapTag : ITokenMapTag1.values()) { for (String strmapTag1 : ITokenMapTag2.values()) { if (strmapTag.equals(strmapTag1)) { - score += 1450; + score -= 1450; + } else if (!iTokenMapTagsMap.values().contains(strmapTag)) { + score += 725; + iTokenMapTagsMap.put(iTokenMapTagsMap.size() + 1, strmapTag); } } } - for (String strTokenForm1itr1 : strTokenForm1.values()) { - for (String strTokenForm1itr2 : strTokenForm2.values()) { - if (strTokenForm1itr1.equals(strTokenForm1itr2)) { - score += 2600; - } else if (strTokenForm1itr1.contains(strTokenForm1itr2)) { - score += 500; + int tokenform1size = strTokenForm1.values().size(); + int tokenform2size = strTokenForm2.values().size(); + if (tokenform1size > 0 || tokenform2size > 0) { + if (tokenform1size < tokenform2size * 5 && tokenform2size < tokenform1size * 5) { + for (String strTokenForm1itr1 : strTokenForm1.values()) { + for (String strTokenForm1itr2 : strTokenForm2.values()) { + if (strTokenForm1itr1.equals(strTokenForm1itr2)) { + score -= 1600; + } else { + score += 500; + } + } } + } else if (tokenform1size > 0 && tokenform2size > 0) { + score += tokenform1size > tokenform2size ? tokenform1size * 1600 : tokenform2size * 1600; } + } else { + tokenform1size = tokenform1size > 0 ? tokenform1size : 1; + tokenform2size = tokenform2size > 0 ? tokenform2size : 1; + score -= (tokenform1size + tokenform2size) * 1200; } + ConcurrentMap tokenStemmingMap = new MapMaker().concurrencyLevel(2).makeMap(); for (String strTokenStem : strTokenStems1.values()) { for (String strTokenStem1 : strTokenStems2.values()) { if (strTokenStem.equals(strTokenStem1)) { score += 1500; + } else if (!tokenStemmingMap.values().contains(strTokenStem)) { + score -= 150; + tokenStemmingMap.put(tokenStemmingMap.size() + 1, strTokenStem); } } } @@ -620,12 +800,17 @@ public class SentimentAnalyzerTest implements Callable { if (anotatorcounter1 > 1 && anotatorcounter2 > 1) { score += (anotatorcounter1 - anotatorcounter2) * 400; } - if (tokensCounter1 > 0 && tokensCounter2 > 0) { - score += (tokensCounter1 + tokensCounter2) * 400; + if ((tokensCounter1 > 0 && tokensCounter2 > 0) && tokensCounter1 < tokensCounter2 * 5 && tokensCounter2 < tokensCounter1 * 5) { + score += (tokensCounter1 + tokensCounter2) * 1400; } else { int elseint = tokensCounter1 >= tokensCounter2 ? (tokensCounter1 - tokensCounter2) * 500 : (tokensCounter2 - tokensCounter1) * 500; - if (elseint > 0) { - score -= elseint * 2; + if ((tokensCounter1 > tokensCounter2 * 5 || tokensCounter2 > tokensCounter1 * 5) + && tokensCounter1 > 0 && tokensCounter2 > 0) { + score -= (tokensCounter1 + tokensCounter2) * 1500; + } else if (elseint > 0 && tokensCounter1 > 0 && tokensCounter2 > 0) { + score += elseint * 2; + } else if (elseint == 0) { + score += 1500; } } LevenshteinDistance leven = new LevenshteinDistance(str, str1); diff --git a/ArtificialAutism/src/main/java/PresentationLayer/DiscordHandler.java b/ArtificialAutism/src/main/java/PresentationLayer/DiscordHandler.java index c327fd9a..9f537c3f 100644 --- a/ArtificialAutism/src/main/java/PresentationLayer/DiscordHandler.java +++ b/ArtificialAutism/src/main/java/PresentationLayer/DiscordHandler.java @@ -51,7 +51,7 @@ public class DiscordHandler { Datahandler.instance.updateStringCache(); //order matters if (Datahandler.instance.getstringCacheSize() != 0) { - while (Datahandler.instance.getlHMSMXSize() * Datahandler.instance.getlHMSMXSize() * 3 + while (Datahandler.instance.getlHMSMXSize() * Datahandler.instance.getlHMSMXSize() * 2.5 < (Datahandler.instance.getstringCacheSize() * Datahandler.instance.getstringCacheSize()) - Datahandler.instance.getstringCacheSize()) {